Sample records for local time variation

  1. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.

  2. Modelling of human low frequency sound localization acuity demonstrates dominance of spatial variation of interaural time difference and suggests uniform just-noticeable differences in interaural time difference.

    PubMed

    Smith, Rosanna C G; Price, Stephen R

    2014-01-01

    Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of around 1° at the midline. Acuity, a relative measure of localization ability, displays a non-linear variation as sound sources are positioned more laterally. All species studied localize sounds best at the midline and progressively worse as the sound is located out towards the side. To understand why sound localization displays this variation with azimuthal angle, we took a first-principles, systemic, analytical approach to model localization acuity. We calculated how ITDs vary with sound frequency, head size and sound source location for humans. This allowed us to model ITD variation for previously published experimental acuity data and determine the distribution of just-noticeable differences in ITD. Our results suggest that the best-fit model is one whereby just-noticeable differences in ITDs are identified with uniform or close to uniform sensitivity across the physiological range. We discuss how our results have several implications for neural ITD processing in different species as well as development of the auditory system.

  3. Plant Chemistry and Local Adaptation of a Specialized Folivore

    PubMed Central

    Laukkanen, Liisa; Leimu, Roosa; Muola, Anne; Lilley, Marianna; Salminen, Juha-Pekka; Mutikainen, Pia

    2012-01-01

    Local adaptation is central for creating and maintaining spatial variation in plant-herbivore interactions. Short-lived insect herbivores feeding on long-lived plants are likely to adapt to their local host plants, because of their short generation time, poor dispersal, and geographically varying selection due to variation in plant defences. In a reciprocal feeding trial, we investigated the impact of geographic variation in plant secondary chemistry of a long-lived plant, Vincetoxicum hirundinaria, on among-population variation in local adaptation of a specialist leaf-feeding herbivore, Abrostola asclepiadis. The occurrence and degree of local adaptation varied among populations. This variation correlated with qualitative and quantitative differences in plant chemistry among the plant populations. These findings provide insights into the mechanisms driving variation in local adaptation in this specialized plant-herbivore interaction. PMID:22666493

  4. Using a "time machine" to test for local adaptation of aquatic microbes to temporal and spatial environmental variation.

    PubMed

    Fox, Jeremy W; Harder, Lawrence D

    2015-01-01

    Local adaptation occurs when different environments are dominated by different specialist genotypes, each of which is relatively fit in its local conditions and relatively unfit under other conditions. Analogously, ecological species sorting occurs when different environments are dominated by different competing species, each of which is relatively fit in its local conditions. The simplest theory predicts that spatial, but not temporal, environmental variation selects for local adaptation (or generates species sorting), but this prediction is difficult to test. Although organisms can be reciprocally transplanted among sites, doing so among times seems implausible. Here, we describe a reciprocal transplant experiment testing for local adaptation or species sorting of lake bacteria in response to both temporal and spatial variation in water chemistry. The experiment used a -80°C freezer as a "time machine." Bacterial isolates and water samples were frozen for later use, allowing transplantation of older isolates "forward in time" and newer isolates "backward in time." Surprisingly, local maladaptation predominated over local adaptation in both space and time. Such local maladaptation may indicate that adaptation, or the analogous species sorting process, fails to keep pace with temporal fluctuations in water chemistry. This hypothesis could be tested with more finely resolved temporal data. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Spatiotemporal variation in local adaptation of a specialist insect herbivore to its long-lived host plant.

    PubMed

    Kalske, Aino; Leimu, Roosa; Scheepens, J F; Mutikainen, Pia

    2016-09-01

    Local adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations. However, such spatiotemporal variation has rarely been explicitly demonstrated in nature and local adaptation is commonly considered to be relatively static. We report persistent local adaptation of the short-lived herbivore Abrostola asclepiadis to its long-lived host plant Vincetoxicum hirundinaria over three successive generations in two studied populations and considerable temporal variation in local adaptation in six populations supporting the geographic mosaic theory. The observed variation in local adaptation among populations was best explained by geographic distance and population isolation, suggesting that gene flow reduces local adaptation. Changes in herbivore population size did not conclusively explain temporal variation in local adaptation. Our results also imply that short-term studies are likely to capture only a part of the existing variation in local adaptation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Geographic variation in public health spending: correlates and consequences.

    PubMed

    Mays, Glen P; Smith, Sharla A

    2009-10-01

    To examine the extent of variation in public health agency spending levels across communities and over time, and to identify institutional and community correlates of this variation. Three cross-sectional surveys of the nation's 2,900 local public health agencies conducted by the National Association of County and City Health Officials in 1993, 1997, and 2005, linked with contemporaneous information on population demographics, socioeconomic characteristics, and health resources. A longitudinal cohort design was used to analyze community-level variation and change in per-capita public health agency spending between 1993 and 2005. Multivariate regression models for panel data were used to estimate associations between spending, institutional characteristics, health resources, and population characteristics. The top 20 percent of communities had public health agency spending levels >13 times higher than communities in the lowest quintile, and most of this variation persisted after adjusting for differences in demographics and service mix. Local boards of health and decentralized state-local administrative structures were associated with higher spending levels and lower risks of spending reductions. Local public health agency spending was inversely associated with local-area medical spending. The mechanisms that determine funding flows to local agencies may place some communities at a disadvantage in securing resources for public health activities.

  7. Local Time Variation of Water Ice Clouds on Mars as Observed by TES During Aerobraking.

    NASA Astrophysics Data System (ADS)

    AlJanaahi, A. A.; AlShamsi, M. R.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    The large elliptical orbit during Mars Global Surveyor aerobraking enabled sampling the martian atmosphere over many local times. The Thermal Emission Spectrometer (TES) aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These early data from before the main "mapping" part of the mission have been mostly overlooked, and relatively little analysis has been done with them. These datasets have not been used before to study local time variation. Radiative transfer modeling is used to fit the spectra to retrieve surface and atmospheric temperature, and dust and water ice optical depths. Retrievals show significant and systematic variation in water ice cloud optical depth as a function of local time. Cloud optical depth is higher in the early morning (before 9:00) and in the evening (after 17:00) for all seasons observed (Ls=180°-30°). Clouds form consistently in the Tyrrhena region and in the area around Tharsis.

  8. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants.

    PubMed

    Phillimore, Albert B; Stålhandske, Sandra; Smithers, Richard J; Bernard, Rodolphe

    2012-11-01

    Phenology affects the abiotic and biotic conditions that an organism encounters and, consequently, its fitness. For populations of high-latitude species, spring phenology often occurs earlier in warmer years and regions. Here we apply a novel approach, a comparison of slope of phenology on temperature over space versus over time, to identify the relative roles of plasticity and local adaptation in generating spatial phenological variation in three interacting species, a butterfly, Anthocharis cardamines, and its two host plants, Cardamine pratensis and Alliaria petiolata. All three species overlap in the time window over which mean temperatures best predict variation in phenology, and we find little evidence that a day length requirement causes the sensitive time window to be delayed as latitude increases. The focal species all show pronounced temperature-mediated phenological plasticity of similar magnitude. While we find no evidence for local adaptation in the flowering times of the plants, geographic variation in the phenology of the butterfly is consistent with countergradient local adaptation. The butterfly's phenology appears to be better predicted by temperature than it is by the flowering times of either host plant, and we find no evidence that coevolution has generated geographic variation in adaptive phenological plasticity.

  9. Large-scale Observations of a Subauroral Polarization Stream by Midlatitude SuperDARN Radars: Instantaneous Longitudinal Velocity Variations

    NASA Technical Reports Server (NTRS)

    Clausen, L. B. N.; Baker, J. B. H.; Sazykin, S.; Ruohoniemi, J. M.; Greenwald, R. A.; Thomas, E. J.; Shepherd, S. G.; Talaat, E. R.; Bristow, W. A.; Zheng, Y.; hide

    2012-01-01

    We present simultaneous measurements of flow velocities inside a subauroral polarization stream (SAPS) made by six midlatitude high-frequency SuperDARN radars. The instantaneous observations cover three hours of universal time and six hours of magnetic local time (MLT). From velocity variations across the field-of-view of the radars we infer the local 2D flow direction at three different longitudes. We find that the local flow direction inside the SAPS channel is remarkably constant over the course of the event. The flow speed, however, shows significant temporal and spatial variations. After correcting for the radar look direction we are able to accurately determine the dependence of the SAPS velocity on magnetic local time. We find that the SAPS velocity variation with magnetic local time is best described by an exponential function. The average velocity at 00 MLT was 1.2 km/s and it decreased with a spatial e-folding scale of two hours of MLT toward the dawn sector. We speculate that the longitudinal distribution of pressure gradients in the ring current is responsible for this dependence and find these observations in good agreement with results from ring current models. Using TEC measurements we find that the high westward velocities of the SAPS are - as expected - located in a region of low TEC values, indicating low ionospheric conductivities.

  10. Characteristics of Seasonal Variation and Solar Activity Dependence of the Geomagnetic Solar Quiet Daily Variation

    NASA Astrophysics Data System (ADS)

    Shinbori, Atsuki; Koyama, Yukinobu; Nosé, Masahito; Hori, Tomoaki; Otsuka, Yuichi

    2017-10-01

    Characteristics of seasonal variation and solar activity dependence of the X and Y components of the geomagnetic solar quiet (Sq) daily variation at Memambetsu in midlatitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1 h time resolution from 1957 to 2016. The monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y) shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and the Sq-X and Sq-Y shows an almost linear relationship, but the slope of the linear fitted line varies as a function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The pattern of the local time and seasonal variations of Sq-Y at Guam shows good agreement with that of a magnetic field produced by interhemispheric field-aligned currents (FACs), which flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in the prenoon to afternoon sectors. The direction of the interhemispheric FAC in the dusk sector is opposite to the concept of Fukushima's model.

  11. Local Populations of Arabidopsis thaliana Show Clear Relationship between Photoperiodic Sensitivity of Flowering Time and Altitude

    PubMed Central

    Lewandowska-Sabat, Anna M.; Fjellheim, Siri; Olsen, Jorunn E.; Rognli, Odd A.

    2017-01-01

    Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2–850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana. PMID:28659966

  12. Fermion systems in discrete space-time

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  13. Localized sudden changes in the geomagnetic secular variation.

    USGS Publications Warehouse

    Alldredge, L.R.

    1987-01-01

    There is much debate as to whether there was a worldwide geomagnetic jerk in 1969 or 1970. It is agreed that there was an unusual sharp change in the secular variation in the east component, Y, in Europe at that time. This note points out how a localized sudden change in the secular variation pattern of one component in Europe can occur without having any large worldwide effects in any of the components. The accompanying changes in the spherical harmonic coefficients for such a localized change are also discussed. -after Author

  14. Local Time Variation of Water Vapor on Mars using TES Aerobraking Spectra

    NASA Astrophysics Data System (ADS)

    AlShamsi, M. R.; AlJanaahi, A. A.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    During the Mars Global Surveyor (MGS) aerobraking phase, the spacecraft was in a large elliptical orbit that enabled the Thermal Emission Spectrometer (TES) instrument to sample many local times of Mars. The observed TES aerobraking spectra during that phase cover the time range between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These TES aerobraking spectra have never been analyzed to study local time variations on Mars. Through radiative transfer modeling of the spectra, surface and atmospheric temperature, dust and water ice optical depth, and water vapor were retrieved. Specifically, the water vapor retrievals during aerobraking have similar seasonal and latitudinal trends to those in other Mars years observed by TES. These retrievals show somewhat higher water vapor during the morning hours (09:00-12:00) than in the afternoon (12:00-17:00) during southern summer (Ls=270°-330°) and little variation as a function of local time for southern fall (Ls=0°-30°). These retrievals show water vapor has a positive correlation with surface pressure (or negative correlation with altitude) indicating that water vapor is mixed in the lowest 10-20 km.

  15. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in the pre-noon to afternoon sectors. From the slope of the linear fitted line, we observe a weak solar activity dependence of the inter-hemispheric FACs, which shows that the intensity of inter-hemispheric FACs has positive and negative correlations in the morning-noon and afternoon sectors, respectively.

  16. Further study on the solar activity variation of daytime NmF2

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo

    2010-12-01

    The ionosonde observations in the East Asia-Australia sector are collected to further investigate the solar activity variation of daytime (0800 ˜ 1600 LT) NmF2. The linear increase rate of NmF2 with F10.7 at lower solar activity levels is remarkably dependent on latitude, season, and local time. The rate is largest in equinoxes (with an equinoctial asymmetry) and higher in the morning (afternoon) in local winter (summer) at geomagnetic midlatitudes; particularly, the maximum rates in local winter are obviously larger than those in local summer at northern midlatitudes. In the equatorial ionization anomaly (EIA) crest regions, the rates in equinoxes and December (June) solstice are remarkably higher than those in June (December) solstice at the northern (southern) EIA crest, and the rate grows from the morning sector to the afternoon sector. The variation trend of NmF2 with F10.7 also shows latitudinal, seasonal, and local time dependences. The saturation effect dominates in all seasons in the EIA regions; at midlatitudes, NmF2 nearly increases linearly with F10.7 in local winter so that a linear fit is a good approximation for NmF2 modeling, while the saturation effect still dominates in other seasons. The saturation effect is more significant in the afternoon, and the strongest saturation effect appears at the EIA crest latitudes in equinox afternoon. Discussions indicate that the variations of neutral atmosphere and hmF2 are responsible for the seasonal and local time dependences of the linear increase rate of NmF2 with F10.7 at midlatitudes, and the seasonal variation of neutral atmosphere is the primary reason for the seasonal dependence of the variation trend of NmF2 with F10.7, while dynamics processes are the more important factors controlling the linear increase rate and the variation trend of NmF2 with F10.7 at low latitudes. Furthermore, dynamics processes are important for the saturation effect, and the fountain effect is related to the strongest saturation effect appearing at the EIA crests.

  17. Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Walker, S. N.

    2017-12-01

    The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.

  18. Multiscale structure of time series revealed by the monotony spectrum.

    PubMed

    Vamoş, Călin

    2017-03-01

    Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.

  19. Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

    NASA Astrophysics Data System (ADS)

    Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.

    2016-03-01

    We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.

  20. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal variations, we find that between about 40 and 65 km, the ozone amounts and temperatures are mostly negatively correlated or neutral, while below approx. 40 km they are mostly positively correlated or neutral. The correlations are less systematic and less robust than for correlations of the mean. At altitudes above approx.65 km, the correlations are more complex, and depend on the tidal temperature variations. For the diurnal case, consideration needs to be given to transport by thermal tides and to the efficacy of response times of ozone concentrations and temperature to each other.

  1. The long-term changes in total ozone, as derived from Dobson measurements at Arosa (1948-2001)

    NASA Astrophysics Data System (ADS)

    Krzyscin, J. W.

    2003-04-01

    The longest possible total ozone time series (Arosa, Switzerland) is examined for a detection of trends. Two-step procedure is proposed to estimate the long-term (decadal) variations in the ozone time series. The first step consists of a standard least-squares multiple regression applied to the total ozone monthly means to parameterize "natural" (related to the oscillations in the atmospheric dynamics) variations in the analyzed time series. The standard proxies for the dynamical ozone variations are used including; the 11-year solar activity cycle, and indices of QBO, ENSO and NAO. We use the detrended time series of temperature at 100 hPa and 500 hPa over Arosa to parameterize short-term variations (with time periods<1 year) in total ozone related to local changes in the meteorological conditions over the station. The second step consists of a smooth-curve fitting to the total ozone residuals (original minus modeled "natural" time series), the time derivation applied to this curve to obtain local trends, and bootstrapping of the residual time series to estimate the standard error of local trends. Locally weighted regression and the wavelet analysis methodology are used to extract the smooth component out of the residual time series. The time integral over the local trend values provides the cumulative long-term change since the data beginning. Examining the pattern of the cumulative change we see the periods with total ozone loss (the end of 50s up to early 60s - probably the effect of the nuclear bomb tests), recovery (mid 60s up to beginning of 70s), apparent decrease (beginning of 70s lasting to mid 90s - probably the effect of the atmosphere contamination by anthropogenic substances containing chlorine), and with a kind of stabilization or recovery (starting in the mid of 90s - probably the effect of the Montreal protocol to eliminate substances reducing the ozone layer). We can also estimate that a full ozone recovery (return to the undisturbed total ozone level from the beginning of 70s) is expected around 2050. We propose to calculate both time series of local trends and the cumulative long-term change instead single trend value derived as a slope of straight line fit to the data.

  2. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  3. The Physical Significance of the Synthetic Running Correlation Coefficient and Its Applications in Oceanic and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Zhao, Jinping; Cao, Yong; Wang, Xin

    2018-06-01

    In order to study the temporal variations of correlations between two time series, a running correlation coefficient (RCC) could be used. An RCC is calculated for a given time window, and the window is then moved sequentially through time. The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient, calculated with the data within the time window, which we call the local running correlation coefficient (LRCC). The LRCC is calculated via the two anomalies corresponding to the two local means, meanwhile, the local means also vary. It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means. To address this problem, two unchanged means obtained from all available data are adopted to calculate an RCC, which is called the synthetic running correlation coefficient (SRCC). When the anomaly variations are dominant, the two RCCs are similar. However, when the variations of the means are dominant, the difference between the two RCCs becomes obvious. The SRCC reflects the correlations of both the anomaly variations and the variations of the means. Therefore, the SRCCs from different time points are intercomparable. A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data. The SRCC always meets this criterion, while the LRCC sometimes fails. Therefore, the SRCC is better than the LRCC for running correlations. We suggest using the SRCC to calculate the RCCs.

  4. Adjustment of relative humidity and temperature for differences in elevation.

    Treesearch

    Owen P. Cramer

    1961-01-01

    The variation of fire-weather elements in mountainous terrain is complex at any one time, and the patterns vary considerably with time. During periods of serious fire weather, this variation becomes important. Much information is obtainable by local interpretation of available forecasts and observations. Optimum use of available information requires some understanding...

  5. Decomposing intraday dependence in currency markets: evidence from the AUD/USD spot market

    NASA Astrophysics Data System (ADS)

    Batten, Jonathan A.; Ellis, Craig A.; Hogan, Warren P.

    2005-07-01

    The local Hurst exponent, a measure employed to detect the presence of dependence in a time series, may also be used to investigate the source of intraday variation observed in the returns in foreign exchange markets. Given that changes in the local Hurst exponent may be due to either a time-varying range, or standard deviation, or both of these simultaneously, values for the range, standard deviation and local Hurst exponent are recorded and analyzed separately. To illustrate this approach, a high-frequency data set of the spot Australian dollar/US dollar provides evidence of the returns distribution across the 24-hour trading ‘day’, with time-varying dependence and volatility clearly aligning with the opening and closing of markets. This variation is attributed to the effects of liquidity and the price-discovery actions of dealers.

  6. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.

  7. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847

  8. Fire and climate variation in western North America from fire-scar and tree-ring networks

    Treesearch

    Donald A. Falk; E. K. Heyerdahl; P. M. Brown; T. W. Swetnam; E. K. Sutherland; Z. Gedalof; L. Yocom; T. J. Brown

    2010-01-01

    Fire regimes (i.e., the pattern, frequency and intensity of fire in a region) reflect a complex interplay of bottom-up and top-down controls (Lertzman et al., 1998; Mc Kenzie et al., in press). Bottom-up controls include local variations in topographic, fuel and weather factors at the time of a burn (e.g., fuel moisture and continuity, ignition density and local wind...

  9. On the Interaction Between Gravity Waves and Atmospheric Thermal Tides

    NASA Astrophysics Data System (ADS)

    Agner, Ryan Matthew

    Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.

  10. Local Variation of Hashtag Spike Trains and Popularity in Twitter

    PubMed Central

    Sanlı, Ceyda; Lambiotte, Renaud

    2015-01-01

    We draw a parallel between hashtag time series and neuron spike trains. In each case, the process presents complex dynamic patterns including temporal correlations, burstiness, and all other types of nonstationarity. We propose the adoption of the so-called local variation in order to uncover salient dynamical properties, while properly detrending for the time-dependent features of a signal. The methodology is tested on both real and randomized hashtag spike trains, and identifies that popular hashtags present regular and so less bursty behavior, suggesting its potential use for predicting online popularity in social media. PMID:26161650

  11. Gravity effects obtained from global hydrology models in comparison with high precision gravimetric time series

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin

    2010-05-01

    Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.

  12. Thermospheric O/N2 in the Sunlit Disk From More Than Five Years of GUVI/TIMED Observations

    NASA Astrophysics Data System (ADS)

    Craven, J. D.; Christensen, A. B.; Paxton, L. J.

    2007-12-01

    GUVI indirect observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made on a nearly continuous basis from day 50 of 2002 to the present as part of the TIMED spacecraft mission. The basic large-scale spatial structure includes variations with local time (greater values in the morning), Universal Time (modulation at high latitudes due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). These differences are seen to fade in the approach to solar minimum. Superposed on this reasonably well-behaved background structure are the complex, transient perturbations driven by auroral substorms and geomagnetic storms. The spatial and temporal variations are summarized in part by time-lapse movies

  13. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Hsiao, C. C.; Liu, J. Y.; Liu, C. H.

    2007-12-01

    Longitudinal structure of the equatorial ionosphere during the 24 h local time period is observed by the FORMOSAT-3/COSMIC (F3/C) satellite constellation. By binning the F3/C radio occultation observations during September and October 2006, global ionospheric total electron content (TEC) maps at a constant local time map (local time TEC map, referred as LT map) can be obtained to monitor the development and subsidence of the four-peaked longitudinal structure of the equatorial ionosphere. From LT maps, the four-peaked structure starts to develop at 0800-1000 LT and becomes most prominent at 1200-1600 LT. The longitudinal structure starts to subside after 2200-2400 LT and becomes indiscernible after 0400-0600 LT. In addition to TEC, ionospheric peak altitude also shows a four-peaked longitudinal structure with variation very similar to TEC during daytime. The four-peaked structure of the ionospheric peak altitude is indiscernible at night. With global local time maps of ionospheric TEC and peak altitude, we compare temporal variations of the longitudinal structure with variations of E × B drift from the empirical model. Our results indicate that the observations are consistent with the hypothesis that the four-peaked longitudinal structure is caused by the equatorial plasma fountain modulated by the E3 nonmigrating tide. Additionally, the four maximum regions show a tendency of moving eastward with propagation velocity of several 10 s m/s.

  14. International normalized ratio (INR) testing in Europe: between-laboratory comparability of test results obtained by Quick and Owren reagents.

    PubMed

    Meijer, Piet; Kynde, Karin; van den Besselaar, Antonius M H P; Van Blerk, Marjan; Woods, Timothy A L

    2018-04-12

    This study was designed to obtain an overview of the analytical quality of the prothrombin time, reported as international normalized ratio (INR) and to assess the variation of INR results between European laboratories, the difference between Quick-type and Owren-type methods and the effect of using local INR calibration or not. In addition, we assessed the variation in INR results obtained for a single donation in comparison with a pool of several plasmas. A set of four different lyophilized plasma samples were distributed via national EQA organizations to participating laboratories for INR measurement. Between-laboratory variation was lower in the Owren group than in the Quick group (on average: 6.7% vs. 8.1%, respectively). Differences in the mean INR value between the Owren and Quick group were relatively small (<0.20 INR). Between-laboratory variation was lower after local INR calibration (CV: 6.7% vs. 8.6%). For laboratories performing local calibration, the between-laboratory variation was quite similar for the Owren and Quick group (on average: 6.5% and 6.7%, respectively). Clinically significant differences in INR results (difference in INR>0.5) were observed between different reagents. No systematic significant differences in the between-laboratory variation for a single-plasma sample and a pooled plasma sample were observed. The comparability for laboratories using local calibration of their thromboplastin reagent is better than for laboratories not performing local calibration. Implementing local calibration is strongly recommended for the measurement of INR.

  15. SST and terrestrial n-alkanes records in sediment of the Korean Plateau, East Sea (Japan Sea) during the last 400 kyr: Paleoceanographic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Hyun, Sangmin; Suh, Yean Jee; Kim, Jin Kyung

    2014-05-01

    SST variation was reconstructed using alkenones and their variation was compared with terrestrial n-alkanes signature from the sediment of the Korean Plateau, East Sea (Japan Sea) during the last 400 ka. SST variation showed glacial-interglacial time scale variation with a maximum temperature of 26 oC in MIS 7, and a minimum of 12 oC at MIS 2 and 6. The distribution of terrestrial n-alkanes signatures is characterized by the occurrence of high odd number predominance in most samples, however minor dominance of a specific compound (nC27 only) was the additional characteristic.bAverage Chain Length (ACL) and Carbon Preferences Index (ICP), derived from n-alkane distributions, showed a similar shifting between glacial-interglacial time-scale. This suggests that paleovegetation communities changed in response to paleoclimatological variations, and the input of terrestrial compound is strongly linked with paleoclimatology. In the previous work, isotopic composition of δ13C and δ15N of organic matter showed extreme temporal variation since MIS 11 suggesting influx of a large amount of terrestrial organic matters from the neighboring continent during MIS 2, 8 and 10. In particular, depleted values of δ13C during MIS 2, 8 and 10 were coincident with lower nitrogen isotope values indicating local paleoceanographic effects such as paleoproductivity changes. Decoupling of δ13C and δ15N during MIS 1, 3, 5, and 7, and coupling of the two during MIS 8 and 11 is observed, which can be interpreted as local productivity changes. The alkenones SST and n-alkanes signature coincided with carbon and nitrogen isotope variation in terms of glacial-interglacial time scale suggesting that the paleoenvironments in the East Sea is sensitive to the global climate changes associated with not only orbital-scale glacial-interglacial variations but also local paleceanographic variations.

  16. Impact of Broader Sharing on Transport Time for Deceased Donor Livers

    PubMed Central

    Gentry, Sommer E; Chow, Eric KH; Wickliffe, Corey E; Massie, Allan B; Leighton, Tabitha; Segev, Dorry L

    2014-01-01

    Recent allocation policy changes have increased sharing of deceased donor livers across local boundaries, and sharing even broader than this has been proposed as a remedy for persistent geographic disparities in liver transplantation. It is possible that broader sharing might increase cold ischemia time (CIT) and thus harm recipients. We constructed a detailed model of transport modes (driving, helicopter, or fixed-wing) and transport times between all hospitals, and investigated the relationship between transport time and CIT for deceased donor liver transplants. Median estimated transport time for regionally shared livers was 2.0 hours compared with 1.0 hours for locally allocated livers. Model-predicted transport mode was flying for 90% of regionally shared livers but only 22% of locally allocated livers. Median CIT was 7.0 hours for regionally shared livers compared with 6.0 hours for locally allocated livers. Variation in transport time accounted for only 14.7% of the variation in CIT and, on average, transport time comprised only 21% of CIT. In conclusion, non-transport factors play a substantially larger role in CIT than does transport time. Broader sharing will have only a marginal impact on CIT but will significantly increase the fraction of transplants that are transported by flying rather than driving. PMID:24975028

  17. Time variations in the mechanical characteristics of local crustal segments according to seismic observations

    NASA Astrophysics Data System (ADS)

    Kocharyan, G. G.; Gamburtseva, N. G.; Sanina, I. A.; Danilova, T. V.; Nesterkina, M. A.; Gorbunova, E. M.; Ivanchenko, G. N.

    2011-04-01

    The results of the seismic observations made with two different experimental setups are presented. In the first case, the signals produced by underground nuclear explosions at the Semipalatinsk Test Site were measured on a linear profile, which allowed one to definitely outline the areas where the mechanical properties of rocks experienced considerable time variations. In the second case, the waves excited by the open-pit mine blasts recorded at a small-aperture seismic array at the Mikhnevo Geophysical Station (Institute of Geosphere Dynamics, Russian Academy of Sciences) on the East European Platform favored the estimation of variations in the integral characteristics of the seismic path. Measurements in aseismic regions characterized by diverse geological structure and different tectonic conditions revealed similar effects of the strong dependency of seismic parameters on the time of explosions. Here, the variations experienced by the maximum amplitudes of oscillations and irrelevant to seasonal changes or local conditions reached a factor of two. The generic periods of these variations including the distinct annual rhythm are probably the fragments of a lower-frequency process. The obtained results suggest that these variations are due to changes in the stressstrain state of active fault zones, which, in turn, can be associated with the macroscale motion of large blocks triggered by tidal strains, tectonic forces and, possibly, variations in the rate of the Earth's rotation.

  18. Empirical wind model for the middle and lower atmosphere. Part 2: Local time variations

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Fleming, E. L.; Manson, A. H.; Schmidlin, F. J.; Avery, S. K.; Clark, R. R.; Franke, S. J.; Fraser, G. J.; Tsuda, T.; Vial, F.

    1993-01-01

    The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Local time variations in the mesosphere are derived from rocket soundings, incoherent scatter radar, MF radar, and meteor radar. Low-order spherical harmonics and Fourier series are used to describe these variations as a function of latitude and day of year with cubic spline interpolation in altitude. The model represents a smoothed compromise between the original data sources. Although agreement between various data sources is generally good, some systematic differences are noted. Overall root mean square differences between measured and model tidal components are on the order of 5 to 10 m/s.

  19. Efficient iris recognition by characterizing key local variations.

    PubMed

    Ma, Li; Tan, Tieniu; Wang, Yunhong; Zhang, Dexin

    2004-06-01

    Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.

  20. A major locus controls local adaptation and adaptive life history variation in a perennial plant.

    PubMed

    Wang, Jing; Ding, Jihua; Tan, Biyue; Robinson, Kathryn M; Michelson, Ingrid H; Johansson, Anna; Nystedt, Björn; Scofield, Douglas G; Nilsson, Ove; Jansson, Stefan; Street, Nathaniel R; Ingvarsson, Pär K

    2018-06-04

    The initiation of growth cessation and dormancy represent critical life-history trade-offs between survival and growth and have important fitness effects in perennial plants. Such adaptive life-history traits often show strong local adaptation along environmental gradients but, despite their importance, the genetic architecture of these traits remains poorly understood. We integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). A single genomic region containing the PtFT2 gene mediates local adaptation in the timing of bud set and explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affects the phenotypic variation in bud set that we observe in wild natural populations. Our results reveal a major effect locus that determines the timing of bud set and that has facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life-history trait is remarkable, given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.

  1. Impact of broader sharing on the transport time for deceased donor livers.

    PubMed

    Gentry, Sommer E; Chow, Eric K H; Wickliffe, Corey E; Massie, Allan B; Leighton, Tabitha; Segev, Dorry L

    2014-10-01

    Recent allocation policy changes have increased the sharing of deceased donor livers across local boundaries, and sharing even broader than this has been proposed as a remedy for persistent geographic disparities in liver transplantation. It is possible that broader sharing may increase cold ischemia times (CITs) and thus harm recipients. We constructed a detailed model of transport modes (car, helicopter, and fixed-wing aircraft) and transport times between all hospitals, and we investigated the relationship between the transport time and the CIT for deceased donor liver transplants. The median estimated transport time was 2.0 hours for regionally shared livers and 1.0 hour for locally allocated livers. The model-predicted transport mode was flying for 90% of regionally shared livers but for only 22% of locally allocated livers. The median CIT was 7.0 hours for regionally shared livers and 6.0 hours for locally allocated livers. Variation in the transport time accounted for only 14.7% of the variation in the CIT, and the transport time on average composed only 21% of the CIT. In conclusion, nontransport factors play a substantially larger role in the CIT than the transport time. Broader sharing will have only a marginal impact on the CIT but will significantly increase the fraction of transplants that are transported by flying rather than driving. © 2014 American Association for the Study of Liver Diseases.

  2. How institutional theory speaks to changes in organizational populations.

    PubMed

    Wells, R

    2001-01-01

    In this issue, Begun and Luke note striking variation in organizational arrangements across local health care markets and probe how characteristics of those markets affect shifts in organizational populations over time. This article contributes to this FORUM by focusing on how institutional theory's emphasis on the culturally mediated nature of organizational change speaks to the evolution of local market structures over time.

  3. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  4. A space-time multiscale modelling of Earth's gravity field variations

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2017-04-01

    The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.

  5. Seasonal evolution of S q current system at sub-auroral latitude

    NASA Astrophysics Data System (ADS)

    Vichare, Geeta; Rawat, Rahul; Hanchinal, A.; Sinha, A. K.; Dhar, A.; Pathan, B. M.

    2012-11-01

    The quiet-time (Σ K p ≤ 3) daily variations of the geomagnetic field at the Indian Antarctic station, Maitri (Geographic Coord.: 70.75°S, 11.73°E; Geomagnetic Coord.: 66.84°S, 56.29°E) during two consecutive years of a solar minimum are considered in order to investigate the characteristics of the solar quiet ( S q) current system. The present work reports the signatures of the south limb of the S q current loop of the southern hemisphere over a sub-auroral station. It is observed that the seasonal variation of the S q current strength over Maitri is strongest during the summer months and weakest during the winter months. In spite of the total darkness during the winter months, an S q pattern is identified at Maitri. The range of the horizontal field variation in the daily S q pattern during summer is one order higher than that during winter. An interesting feature regarding the phase of the local time variation in the seasonal pattern is found here. A sharp shift in the time of the peak S q current to later local times (> 1 hour per month) is observed during January-February and July-August, which may correspond to the transition from the complete presence, or absence, of sunlight to partial sunlight. The differences in the incoming solar UV radiation during such transitions can cause a sudden change in the local ionospheric conductivity pattern, and can also trigger some unusual thermo-tidal activity, that might be responsible for modifying the global S q pattern.

  6. VO-ESD: a virtual observatory approach to describe the geomagnetic field temporal variations with application to Swarm data

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric

    2017-04-01

    A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.

  7. An atlas of low latitude 6300A (01) night airglow from OGO-4 observations

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Fowler, W. B.; Blamont, J. E.

    1972-01-01

    The atomic oxygen emission line at 6300 A, measured in the nadir direction by a photometer on the polar orbiting satellite OGO-4, was plotted between 40 deg N and 40 deg S latitude on a series of maps for the moon-free periods between 30 August 1967 and 10 January 1968 The longitudinal and local time variations which occur during the northern fall-winter season are indicated. The northern tropical arc is more widespread while the southern arc is not present at all longitudes. The conditions under which the observations were made are described, and four airglow maps were selected to show the local time variations.

  8. Temperature Variations of Saturn Rings with Viewing Geometries from Prime to Equinox Cassini Missions

    NASA Technical Reports Server (NTRS)

    Deau, E. A.; Spilker, L. J.; Morishima, R.; Brooks, S.; Pilorz, S.; Altobelli, N.

    2011-01-01

    After more than six years in orbit around Saturn, the Cassini Composite Infrared Spectrometer (CIRS) has acquired an extensive set of measurements of Saturn's main rings (A, B, C and Cassini Division) in the thermal infrared. Temperatures were retrieved for the lit and unlit rings over a variety of ring geometries that include phase angle, solar and spacecraft elevations and local time. We show that some of these parameters (solar and spacecraft elevations, phase angle) play a role in the temperature variations in the first order, while the others (ring and particle local time) produced second order effects. The results of this comparison will be presented.

  9. Temporal variations of the anomalous oxygen component

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Webber, W. R.

    1983-01-01

    Data from the cosmic ray experiment on Voyagers 1 and 2 was used to examine anomalous oxygen in the time period from launch in 1977 to the end of 1981. Several time periods were found where large periodic (typically 26 day) temporal variations of the oxygen intensity between approximately 5 - 15 MeV/nuc are present. Variations in intensity by up to a factor of 10 are observed during these periods. Several characteristics of these variations indicate that they are not higher energy extensions of the low energy particle (approximately 1 MeV/nuc) increases found in many corotating interaction regions (CIR's). Many of these periodic temporal variations are correlated with similar, but much smaller, recurrent variations in the 75 MeV proton rate. Voyager 1 and Voyager 2 counting rates were compared to estimate the local radial gradient for both the protons and the oxygen. The proton gradients during periods of both maximum and minumum fluxes are consistent with the overall positive radial gradients reported by others from Pioneer and near-Earth observations, supporting the view that these variations are due to local modulation of a source outside the radial range of project measurements. In contrast, the oxygen gradients during periods of maximum proton flux differ in sign from those during minimum proton fluxes, suggesting that the origin of the oxygen variations is different from that of the protons.

  10. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  11. Asynchronous variational integration using continuous assumed gradient elements.

    PubMed

    Wolff, Sebastian; Bucher, Christian

    2013-03-01

    Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.

  12. Chapter 11. Vegetative manipulation with prescribed burning

    Treesearch

    Steven G. Whisenant

    2004-01-01

    Plant responses to fire differ because of phenological variations at the time of burning, inherently different susceptibilities to heat damage, differing regenerative abilities, and different responses to the postfire environment. Individual plants of the same or different species may have different responses to fire because of local variations in fire temperature or...

  13. Spatiotemporal variation in resource selection: Insights from the American marten (Martes Americana)

    Treesearch

    Andrew J. Shirk; Martin G. Raphael; Samuel A. Cushman

    2014-01-01

    Behavioral and genetic adaptations to spatiotemporal variation in habitat conditions allow species to maximize their biogeographic range and persist over time in dynamic environments. An understanding of these local adaptations can be used to guide management and conservation of populations over broad extents encompassing diverse habitats. This understanding is often...

  14. Search for Local Variations of Atmospheric H2O and CO on Mars with PFS/Mars Express

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Encrenaz, T.; Fouchet, T.; Billebaud, F.; Formisano, V.; Atreya, S.; Ignatiev, N.; Moroz, V.; Maturilli, A.; Grassi, D.; Pfs Team

    Spectra recorded by the PFS instrument onboard Mars Express include clear spectral signatures due to CO at 4.7 and 2.3 micron, and H2O at 1.38, 2.6 and 30-50 micron. These features can be used to determine the horizontal distribution of these species on global and local scales and to monitor it with time. Here we investigate the local variations of H2O and CO, focussing on the regions of high-altitude volcanoes. Preliminary results suggest a significant decrease of the CO mixing ratio in these regions, as was found from ISM/Phobos observations (Rosenqvist et al. Icarus 98, 254, 1992).

  15. Detecting deviations from metronomic timing in music: effects of perceptual structure on the mental timekeeper.

    PubMed

    Repp, B H

    1999-04-01

    The detectability of a deviation from metronomic timing--of a small local increment in interonset interval (IOI) duration--in a musical excerpt is subject to positional biases, or "timing expectations," that are closely related to the expressive timing (sequence of IOI durations) typically produced by musicians in performance (Repp, 1992b, 1998c, 1998d). Experiment 1 replicated this finding with some changes in procedure and showed that the perception-performance correlation is not the result of formal musical training or availability of a musical score. Experiments 2 and 3 used a synchronization task to examine the hypothesis that participants' perceptual timing expectations are due to systematic modulations in the period of a mental timekeeper that also controls perceptual-motor coordination. Indeed, there was systematic variation in the asynchronies between taps and metronomically timed musical event onsets, and this variation was correlated both with the variations in IOI increment detectability (Experiment 1) and with the typical expressive timing pattern in performance. When the music contained local IOI increments (Experiment 2), they were almost perfectly compensated for on the next tap, regardless of their detectability in Experiment 1, which suggests a perceptual-motor feedback mechanism that is sensitive to subthreshold timing deviations. Overall, the results suggest that aspects of perceived musical structure influence the predictions of mental timekeeping mechanisms, thereby creating a subliminal warping of experienced time.

  16. Exospheric hydrogen above St-Santin /France/

    NASA Technical Reports Server (NTRS)

    Derieux, A.; Lejeune, G.; Bauer, P.

    1975-01-01

    The temperature and hydrogen concentration of the exosphere was determined using incoherent scatter measurements performed above St. Santin from 1969 to 1972. The hydrogen concentration was deduced from measurements of the number density of positive hydrogen and oxygen ions. A statistical analysis is given of the hydrogen concentration as a function of the exospheric temperature and the diurnal variation of the hydrogen concentration is investigated for a few selected days of good quality observation. The data averaged with respect to the exospheric temperature without consideration of the local time exhibits a distribution consistent with a constant effective Jeans escape flux of about 9 x 10 to the 7 cu cm/s. The local time variation exhibits a maximum to minimum concentration ratio of at least 3.5.

  17. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  18. Aircraft measurements of the atmospheric electrical global circuit during the period 1971-1984

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1985-01-01

    This report will update an investigation of the global circuit conducted over the last 14 years through aircraft measurements of the variation of ionospheric potential and associated parameters. The data base included electric field, conductivity, and air-earth current density profiles from the tropics (25 deg N) to the Arctic (79 deg N). Almost all of the data have been obtained over the ocean to reduce noise associated with local generators, aerosols, and convection. Recently, two aircraft have been utilized to obtain, for the first time, quasi-periodic sets of simultaneous ionospheric potential (VI) soundings at remote locations and extending over time spans sufficiently long so that the universal time diurnal variation (Carnegie curve) could be observed. In additon, these measurements provided the first detection of the modulation of electric fields in the troposphere caused by the double vortex ionospheric convection pattern. Besides summarizing these measurements and comparing them to similar data obtained by other groups, this report discusses meteorological sources of error and criteria for determining if the global circuit is being measured rather than variations caused by local meteorological processes.

  19. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod

    PubMed Central

    Wallace, Gemma T.; Kim, Tiffany L.; Neufeld, Christopher J.

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change. PMID:27293662

  20. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.

    PubMed

    Wallace, Gemma T; Kim, Tiffany L; Neufeld, Christopher J

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.

  1. Interrupted time series analysis of children’s blood lead levels: A case study of lead hazard control program in Syracuse, New York

    PubMed Central

    Shao, Liyang; Zhang, Lianjun; Zhen, Zhen

    2017-01-01

    Children’s blood lead concentrations have been closely monitored over the last two decades in the United States. The bio-monitoring surveillance data collected in local agencies reflected the local temporal trends of children’s blood lead levels (BLLs). However, the analysis and modeling of the long-term time series of BLLs have rarely been reported. We attempted to quantify the long-term trends of children’s BLLs in the city of Syracuse, New York and evaluate the impacts of local lead poisoning prevention programs and Lead Hazard Control Program on reducing the children’s BLLs. We applied interrupted time series analysis on the monthly time series of BLLs surveillance data and used ARMA (autoregressive and moving average) models to measure the average children’s blood lead level shift and detect the seasonal pattern change. Our results showed that there were three intervention stages over the past 20 years to reduce children’s BLLs in the city of Syracuse, NY. The average of children’s BLLs was significantly decreased after the interventions, declining from 8.77μg/dL to 3.94μg/dL during1992 to 2011. The seasonal variation diminished over the past decade, but more short term influences were in the variation. The lead hazard control treatment intervention proved effective in reducing the children’s blood lead levels in Syracuse, NY. Also, the reduction of the seasonal variation of children’s BLLs reflected the impacts of the local lead-based paint mitigation program. The replacement of window and door was the major cost of lead house abatement. However, soil lead was not considered a major source of lead hazard in our analysis. PMID:28182688

  2. Interrupted time series analysis of children's blood lead levels: A case study of lead hazard control program in Syracuse, New York.

    PubMed

    Shao, Liyang; Zhang, Lianjun; Zhen, Zhen

    2017-01-01

    Children's blood lead concentrations have been closely monitored over the last two decades in the United States. The bio-monitoring surveillance data collected in local agencies reflected the local temporal trends of children's blood lead levels (BLLs). However, the analysis and modeling of the long-term time series of BLLs have rarely been reported. We attempted to quantify the long-term trends of children's BLLs in the city of Syracuse, New York and evaluate the impacts of local lead poisoning prevention programs and Lead Hazard Control Program on reducing the children's BLLs. We applied interrupted time series analysis on the monthly time series of BLLs surveillance data and used ARMA (autoregressive and moving average) models to measure the average children's blood lead level shift and detect the seasonal pattern change. Our results showed that there were three intervention stages over the past 20 years to reduce children's BLLs in the city of Syracuse, NY. The average of children's BLLs was significantly decreased after the interventions, declining from 8.77μg/dL to 3.94μg/dL during1992 to 2011. The seasonal variation diminished over the past decade, but more short term influences were in the variation. The lead hazard control treatment intervention proved effective in reducing the children's blood lead levels in Syracuse, NY. Also, the reduction of the seasonal variation of children's BLLs reflected the impacts of the local lead-based paint mitigation program. The replacement of window and door was the major cost of lead house abatement. However, soil lead was not considered a major source of lead hazard in our analysis.

  3. Localized motion in random matrix decomposition of complex financial systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian

    2017-04-01

    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  4. Seismo-Geochemical Variations in SW Taiwan: Multi-Parameter Automatic Gas Monitoring Results

    NASA Astrophysics Data System (ADS)

    Yang, T. F.; Fu, C.-C.; Walia, V.; Chen, C.-H.; Chyi, L. L.; Liu, T.-K.; Song, S.-R.; Lee, M.; Lin, C.-W.; Lin, C.-C.

    2006-04-01

    Gas variations of many mud volcanoes and hot springs distributed along the tectonic sutures in southwestern Taiwan are considered to be sensitive to the earthquake activity. Therefore, a multi-parameter automatic gas station was built on the bank of one of the largest mud-pools at an active fault zone of southwestern Taiwan, for continuous monitoring of CO2, CH4, N2 and H2O, the major constituents of its bubbling gases. During the year round monitoring from October 2001 to October 2002, the gas composition, especially, CH4 and CO2, of the mud pool showed significant variations. Taking the CO2/CH4 ratio as the main indicator, anomalous variations can be recognized from a few days to a few weeks before earthquakes and correlated well with those with a local magnitude >4.0 and local intensities >2. It is concluded that the gas composition in the area is sensitive to the local crustal stress/strain and is worthy to conduct real-time monitoring for the seismo-geochemical precursors.

  5. Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.

    PubMed

    Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S

    2017-04-12

    Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI 3 ) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (V oc ) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

  6. A RSSI-based parameter tracking strategy for constrained position localization

    NASA Astrophysics Data System (ADS)

    Du, Jinze; Diouris, Jean-François; Wang, Yide

    2017-12-01

    In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.

  7. Storm-time variation of radiative cooling by Nitric Oxide as observed by TIMED-SABER and GUVI

    NASA Astrophysics Data System (ADS)

    Sunil Krishna, M. V.; Bharti, G.; Bag, T.

    2017-12-01

    The variation of O/N2 and nitric oxide radiative emission flux exiting thermosphere have been studied over northern hemisphere during the super-storm event of November 7-12, 2004. The data have been obtained from GUVI and SABER onboard the NASA's TIMED satellite. The NO radiative flux is observed to show an anti-correlation with O/N2 on a global scale. Both NO radiative flux and O/N2 ratio show equatorward motion with maximum penetration in western longitude sectors. A local variation of O, O2 and N2 densities have been calculated by using NRLMSISE-00 model over a mid-latitude location (55oN,180oE). On a local scale, model calculated O/O2 and O/N2 ratios are found to follow the observations made by GUVI. The SABER retrieved NO cooling rate (CR) at a local site suggests an enhancement during the storm period with the peak emission rate closely correlated to the progression of the storm. The peak emission altitude of NO CR moves upward during the main phase of the storm. The NO abundance has been calculated by using cooling rate and NOEM model. Both these suggest huge increase in NO density during the storm which is required to account the changes in NO radiative flux.

  8. Developing A Transdisciplinary Process and Community Partnerships to Anticipate Climate Change at the Local Level: The Role of Biophysical and Sociocultural Calendars

    NASA Astrophysics Data System (ADS)

    Kassam, K. A.; Samimi, C.; Trabucco, A.

    2017-12-01

    Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.

  9. Introduction and application of the multiscale coefficient of variation analysis.

    PubMed

    Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh

    2017-10-01

    Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.

  10. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    PubMed

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  11. A quantitative analysis of phenotypic variations of Metrosideros polymorpha within and across populations along environmental gradients on Mauna Loa, Hawaii.

    PubMed

    Tsujii, Yuki; Onoda, Yusuke; Izuno, Ayako; Isagi, Yuji; Kitayama, Kanehiro

    2016-04-01

    Metrosideros polymorpha, a dominant tree species in the Hawaiian Islands, shows an extreme phenotypic polymorphism both across gradients of climatic/edaphic conditions and within populations, making it a potentially useful model species for evolutionary study. In order to understand how the phenotypic diversity is maintained within populations as well as across populations, we examined the diversities of several leaf and stem functional traits across five elevations and two soil substrates on the volcanic mountain of Mauna Loa, on the island of Hawaii. Leaf dry mass per area (LMA), a key leaf functional trait, was particularly focused on and analyzed in relation to its underlying components-namely, tissue LMA and trichome LMA (LMA = tissue LMA + trichome LMA). Across populations, tissue LMA increased linearly with elevation while trichome LMA showed unimodal patterns with elevation, which were better correlated with temperature and rainfall, respectively. Substantial phenotypic variations were also found within populations. Interestingly, the variations of tissue LMA were often negatively correlated to trichome LMA within populations, which contrasts with the cross-populations pattern, where a strong positive correlation between tissue LMA and trichome LMA was found. This suggests that phenotypic variations within populations were substantially influenced by local ecological processes. Soil depth (an indicator of local water availability) and tree size (an indicator of colonized timing) modestly explained the within-population variations, implying other local environmental factors and/or random processes are also important in local phenotypic diversity. This study provides an insight about how phenotypic diversity of plant species is maintained from local to landscape levels.

  12. Dst and a map of average equivalent ring current: 1958-2007

    NASA Astrophysics Data System (ADS)

    Love, J. J.

    2008-12-01

    A new Dst index construction is made using the original hourly magnetic-observatory data collected over the years 1958-2007; stations: Hermanus South Africa, Kakioka Japan, Honolulu Hawaii, and San Juan Puerto Rico. The construction method we use is generally consistent with the algorithm defined by Sugiura (1964), and which forms the basis for the standard Kyoto Dst index. This involves corrections for observatory baseline shifts, subtraction of the main-field secular variation, and subtraction of specific harmonics that approximate the solar-quiet (Sq) variation. Fourier analysis of the observatory data reveals the nature of Sq: it consists primarily of periodic variation driven by the Earth's rotation, the Moon's orbit, the Earth's orbit, and, to some extent, the solar cycle. Cross coupling of the harmonics associated with each of the external periodic driving forces results in a seemingly complicated Sq time series that is sometimes considered to be relatively random and unpredictable, but which is, in fact, well described in terms of Fourier series. Working in the frequency domain, Sq can be filtered out, and, upon return to the time domain, the local disturbance time series (Dist) for each observatory can be recovered. After averaging the local disturbance time series from each observatory, the global magnetic disturbance time series Dst is obtained. Analysis of this new Dst index is compared with that produced by Kyoto, and various biases and differences are discussed. The combination of the Dist and Dst time series can be used to explore the local-time/universal-time symmetry of an equivalent ring current. Individual magnetic storms can have a complicated disturbance field that is asymmetrical in longitude, presumably due to partial ring currents. Using 50 years of data we map the average local-time magnetic disturbance, finding that it is very nearly proportional to Dst. To our surprise, the primary asymmetry in mean magnetic disturbance is not between midnight and noon, but rather between dawn and dusk, with greatest mean disturbance occurring at dusk. As a result, proposed corrections to Dst for magnetopause and tail currents might be reasonably reconsidered.

  13. Continuous-cyclic variations in the b-value of the earthquake frequency-magnitude distribution

    NASA Astrophysics Data System (ADS)

    El-Isa, Z. H.

    2013-10-01

    Seismicity of the Earth ( M ≥ 4.5) was compiled from NEIC, IRIS and ISC catalogues and used to compute b-value based on various time windows. It is found that continuous cyclic b-variations occur on both long and short time scales, the latter being of much higher value and sometimes in excess of 0.7 of the absolute b-value. These variations occur not only yearly or monthly, but also daily. Before the occurrence of large earthquakes, b-values start increasing with variable gradients that are affected by foreshocks. In some cases, the gradient is reduced to zero or to a negative value a few days before the earthquake occurrence. In general, calculated b-values attain maxima 1 day before large earthquakes and minima soon after their occurrence. Both linear regression and maximum likelihood methods give correlatable, but variable results. It is found that an expanding time window technique from a fixed starting point is more effective in the study of b-variations. The calculated b-variations for the whole Earth, its hemispheres, quadrants and the epicentral regions of some large earthquakes are of both local and regional character, which may indicate that in such cases, the geodynamic processes acting within a certain region have a much regional effect within the Earth. The b-variations have long been known to vary with a number of local and regional factors including tectonic stresses. The results reported here indicate that geotectonic stress remains the most significant factor that controls b-variations. It is found that for earthquakes with M w ≥ 7, an increase of about 0.20 in the b-value implies a stress increase that will result in an earthquake with a magnitude one unit higher.

  14. Assessment of local GNSS baselines at co-location sites

    NASA Astrophysics Data System (ADS)

    Herrera Pinzón, Iván; Rothacher, Markus

    2018-01-01

    As one of the major contributors to the realisation of the International Terrestrial Reference System (ITRS), the Global Navigation Satellite Systems (GNSS) are prone to suffer from irregularities and discontinuities in time series. While often associated with hardware/software changes and the influence of the local environment, these discrepancies constitute a major threat for ITRS realisations. Co-located GNSS at fundamental sites, with two or more available instruments, provide the opportunity to mitigate their influence while improving the accuracy of estimated positions by examining data breaks, local biases, deformations, time-dependent variations and the comparison of GNSS baselines with existing local tie measurements. With the use of co-located GNSS data from a subset sites of the International GNSS Service network, this paper discusses a global multi-year analysis with the aim of delivering homogeneous time series of coordinates to analyse system-specific error sources in the local baselines. Results based on the comparison of different GNSS-based solutions with the local survey ties show discrepancies of up to 10 mm despite GNSS coordinate repeatabilities at the sub-mm level. The discrepancies are especially large for the solutions using the ionosphere-free linear combination and estimating tropospheric zenith delays, thus corresponding to the processing strategy used for global solutions. Snow on the antennas causes further problems and seasonal variations of the station coordinates. These demonstrate the need for a permanent high-quality monitoring of the effects present in the short GNSS baselines at fundamental sites.

  15. Wide variation of prostate-specific antigen doubling time of untreated, clinically localized, low-to-intermediate grade, prostate carcinoma.

    PubMed

    Choo, Richard; Klotz, Laurence; Deboer, Gerrit; Danjoux, Cyril; Morton, Gerard C

    2004-08-01

    To assess the prostate specific antigen (PSA) doubling time of untreated, clinically localized, low-to-intermediate grade prostate carcinoma. A prospective single-arm cohort study has been in progress since November 1995 to assess the feasibility of a watchful-observation protocol with selective delayed intervention for clinically localized, low-to-intermediate grade prostate adenocarcinoma. The PSA doubling time was estimated from a linear regression of ln(PSA) against time, assuming a simple exponential growth model. As of March 2003, 231 patients had at least 6 months of follow-up (median 45) and at least three PSA measurements (median 8, range 3-21). The distribution of the doubling time was: < 2 years, 26 patients; 2-5 years, 65; 5-10 years, 42; 10-20 years, 26; 20-50 years, 16; >50 years, 56. The median doubling time was 7.0 years; 42% of men had a doubling time of >10 years. The doubling time of untreated clinically localized, low-to-intermediate grade prostate cancer varies widely.

  16. Geographic determinants of access to pediatric deceased donor kidney transplantation.

    PubMed

    Reese, Peter P; Hwang, Hojun; Potluri, Vishnu; Abt, Peter L; Shults, Justine; Amaral, Sandra

    2014-04-01

    Children receive priority in the allocation of deceased donor kidneys for transplantation in the United States, but because allocation begins locally, geographic differences in population and organ supply may enable variation in pediatric access to transplantation. We assembled a cohort of 3764 individual listings for pediatric kidney transplantation in 2005-2010. For each donor service area, we assigned a category of short (<180 days), medium (181-270 days), or long (>270 days) median waiting time and calculated the ratio of pediatric-quality kidneys to pediatric candidates and the percentage of these kidneys locally diverted to adults. We used multivariable Cox regression analyses to examine the association between donor service area characteristics and time to deceased donor kidney transplantation. The Kaplan-Meier estimate of median waiting time to transplantation was 284 days (95% confidence interval, 263 to 300 days) and varied from 14 to 1313 days across donor service areas. Overall, 29% of pediatric-quality kidneys were locally diverted to adults. Compared with areas with short waiting times, areas with long waiting times had a lower ratio of pediatric-quality kidneys to candidates (3.1 versus 5.9; P<0.001) and more diversions to adults (31% versus 27%; P<0.001). In multivariable regression, a lower kidney to candidate ratio remained associated with longer waiting time (hazard ratio, 0.56 for areas with <2:1 versus reference areas with ≥5:1 kidneys/candidates; P<0.01). Large geographic variation in waiting time for pediatric deceased donor kidney transplantation exists and is highly associated with local supply and demand factors. Future organ allocation policy should address this geographic inequity.

  17. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  18. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics.

    PubMed

    Lefèvre, Franck; Forget, François

    2009-08-06

    The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.

  19. Use of intraspecific variation in thermal responses for estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer.

    PubMed

    Ishizuka, W; Ono, K; Hara, T; Goto, S

    2015-01-01

    To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high-elevation populations developed cold hardiness earlier than low-elevation populations, representing significant genetic control. Because development occurred earlier at high-elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade-off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high-elevation population. These thermal responses may be one of the important factors driving the elevation-dependent adaptation of A. sachalinensis. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Taking advantage of inclination variation in resonant remote-sensing satellite orbits

    NASA Astrophysics Data System (ADS)

    Gopinath, N. S.; Ravindrababu, T.; Rao, S. V.; Daniel, D. A.; Goel, P. S.

    2004-08-01

    The inclination of remote-sensing satellites, which are generally placed in sun-synchronous orbits, varies as a function of the nominal equatorial crossing local mean solar time selected for a given mission. The Indian Remote-Sensing satellites will have an inclination reduction of about 0.034° per year and for most of the satellites, the local time chosen was around 10:30 hours at descending node. In practice, the initial inclination is biased appropriately so that the expensive out-of-plane maneuvers could be taken up after few years of mission operations, depending on the deviations permitted in the local time for a given mission. However, the scenario differs when the mission objectives require an almost exact repeat orbit of 14 or 15 per day. In such a situation, the satellite orbit, which passes through a 14th or 15th order resonance, undergoes a nearly secular increase in orbit inclination. This paper presents a detailed analysis carried out for such an orbit, based on Cowell's approach. Long-term predictions have been carried out by considering all major forces that perturbs the satellite orbit. Observed behavior of orbit, based on the daily definitive orbit determination is also presented. The variation in inclination and the cause is clearly brought out. Further, it is demonstrated that the selection of longitude for nominal ground track pattern has an impact on the inclination variation. A proposal is made to take advantage of such expected inclination variation so that initial inclination bias can be chosen appropriately. Ground track longitude can be chosen to take advantage, subject to the mission coverage requirements. The paper contains the results of an exhaustive analysis of the actually observed orbit resonance. It is felt that the work has both theoretical and operational importance for remote-sensing missions.

  1. Ion temperature of low-latitude and mid-latitude topside ionosphere for high solar activity

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Zhang, Donghe; Hao, Yongqiang; Xiao, Zuo

    The International Reference Ionosphere (IRI) describes the day and night latitudinal variation of ion temperature at 430 km with two functions using AEROS satellite measurements. The ion temperature at this height as one of the boundary parameters is used to make the ion temperature profile represented by a Booker-function. Since the low-latitude and mid-latitude topside ionospheric ion temperature has been measured with the Ionopsheric Plasma and Elec-trodynamics Instrument (IPEI) onboard Rocsat-1 satellite at about 600 km during the high solar activity years from 2000 to 2002, a new boundary at 600 km can be set for the ion temperature modeling. The latitudinal variation of ion temperature could be approximated by Epstein family of functions for different local time sectors. Furthermore, the longitudinal and seasonal variations are also taken into account to decide the fitting parameters. Only the magnetic quiet time data (Kp <3) are used for the statistical study. The results are compared with IRI-2007 model. In addition, events when Kp >4 are also analyzed to feature the ion temperature characteristic during the magnetic disturbance time condition. Combined with the IPEI field-aligned ion flow velocities and the plasma temperatures measured by the Special Sensors-Ions, Electrons, and Scintillation (SSIES) thermal plasma analysis package on board the DMSP F13 and F15 satellites, several feasible ion heating and heat loss mechanisms are summarized to interpret the ion temperature crests and toughs for different local time sectors, seasonal and longitudinal variations.

  2. The Cluster Variation Method: A Primer for Neuroscientists.

    PubMed

    Maren, Alianna J

    2016-09-30

    Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables , is defined in terms of a single interaction enthalpy parameter ( h ) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.

  3. The Cluster Variation Method: A Primer for Neuroscientists

    PubMed Central

    Maren, Alianna J.

    2016-01-01

    Effective Brain–Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found. PMID:27706022

  4. Empirical correction for earth sensor horizon radiance variation

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Sedlak, Joseph; Andrews, Daniel; Luquette, Richard

    1998-01-01

    A major limitation on the use of infrared horizon sensors for attitude determination is the variability of the height of the infrared Earth horizon. This variation includes a climatological component and a stochastic component of approximately equal importance. The climatological component shows regular variation with season and latitude. Models based on historical measurements have been used to compensate for these systematic changes. The stochastic component is analogous to tropospheric weather. It can cause extreme, localized changes that for a period of days, overwhelm the climatological variation. An algorithm has been developed to compensate partially for the climatological variation of horizon height and at least to mitigate the stochastic variation. This method uses attitude and horizon sensor data from spacecraft to update a horizon height history as a function of latitude. For spacecraft that depend on horizon sensors for their attitudes (such as the Total Ozone Mapping Spectrometer-Earth Probe-TOMS-EP) a batch least squares attitude determination system is used. It is assumed that minimizing the average sensor residual throughout a full orbit of data results in attitudes that are nearly independent of local horizon height variations. The method depends on the additional assumption that the mean horizon height over all latitudes is approximately independent of season. Using these assumptions, the method yields the latitude dependent portion of local horizon height variations. This paper describes the algorithm used to generate an empirical horizon height. Ideally, an international horizon height database could be established that would rapidly merge data from various spacecraft to provide timely corrections that could be used by all.

  5. Time-delayed feedback control of breathing localized structures in a three-component reaction-diffusion system.

    PubMed

    Gurevich, Svetlana V

    2014-10-28

    The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric

    2018-03-01

    A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to study sharp temporal variation features, such as geomagnetic jerks.

  7. The effect of the interplanetary magnetic field on sidereal variations observed at medium depth underground detectors

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Fenton, A. G.

    1985-01-01

    It has been known for some years that the intensity variations in sidereal time observed by muon detectors at moderate underground depths are sensitive to the polarity of the interplanetary magnetic field (ipmf) near the Earth. There are differences in the response to these anisotropies as observed in the Norhtern and southern hemispheres. When fully understood, the nature of the anisotropy seems likely to provide information on the 3-dimensional structure of the heliomagnetosphere, its time variations, and its linking with the local interstellar field. The summation harmonic dials for the sidereal diurnal variation during 1958 to 1982 show that there is a strong dependence on whether the ipmf near the Earth is directed outwards from the Sun or inwards it.

  8. Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes

    NASA Astrophysics Data System (ADS)

    Urban, Kevin D.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Weatherwax, Allan T.

    2016-09-01

    The day-to-day evolution and statistical features of Pc3-Pc7 band ultralow frequency (ULF) power throughout the southern polar cap suggest that the corrected geomagnetic (CGM) coordinates do not adequately organize the observed hydromagnetic spatial structure. It is shown that that the local-time distribution of ULF power at sites along CGM latitudinal parallels exhibit fundamental differences and that the CGM latitude of a site in general is not indicative of the site's projection into the magnetosphere. Thus, ULF characteristics observed at a single site in the polar cap cannot be freely generalized to other sites of similar CGM latitude but separated in magnetic local time, and the inadequacy of CGM coordinates in the polar cap has implications for conjugacy/mapping studies in general. In seeking alternative, observationally motivated systems of "polar cap latitudes," it is found that eccentric dipole (ED) coordinates have several strengths in organizing the hydromagnetic spatial structure in the polar cap region. ED latitudes appear to better classify the local-time ULF power in both magnitude and morphology and better differentiate the "deep polar cap" (where the ULF power is largely UT dependent and nearly free of local-time structure) from the "peripheral polar cap" (where near-magnetic noon pulsations dominate at lower and lower frequencies as one increases in ED latitude). Eccentric local time is shown to better align the local-time profiles in the magnetic east component over several PcX bands but worsen in the magnetic north component. It is suggested that a hybrid ED-CGM coordinate system might capture the strengths of both CGM and ED coordinates. It is shown that the local-time morphology of median ULF power at high-latitude sites is dominantly driven by where they project into the magnetosphere, which is best quantified by their proximity to the low-altitude cusp on the dayside (which is not necessarily quantified by a site's CGM latitude), and that variations in the local-time morphology at sites similar in ED latitude are due to both geographic local-time control (relative amplification or dampening by the diurnal variation in the local ionospheric conductivity) and geomagnetic coastal effects (enhanced power in a coastally mediated direction). Regardless of cause, it is emphasized that the application of CGM latitudes in the polar cap region is not entirely meaningful and likely should be dispensed with in favor of a scheme that is in better accord with the observed hydromagnetic spatial structure.

  9. On pressure measurement and seasonal pressure variations during the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim

    2010-03-01

    In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.

  10. Early to Rise? The Effect of Daily Start Times on Academic Performance

    ERIC Educational Resources Information Center

    Edwards, Finley

    2012-01-01

    Local school districts often stagger daily start times for their schools in order to reduce busing costs. This paper uses data on all middle school students in Wake County, NC from 1999 to 2006 to identify the causal effect of daily start times on academic performance. Using variation in start times within schools over time, the effect is a two…

  11. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can bemore » derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.« less

  12. Interplay of Anderson localization and quench dynamics

    NASA Astrophysics Data System (ADS)

    Rahmani, Armin; Vishveshwara, Smitha

    2018-06-01

    In the context of an isolated three-dimensional noninteracting fermionic lattice system, we study the effects of a sudden quantum quench between a disorder-free situation and one in which disorder results in a mobility edge and associated Anderson localization. Salient post-quench features hinge upon the overlap between momentum states and post-quench eigenstates and whether these latter states are extended or localized. We find that the post-quench momentum distribution directly reflects these overlaps. For the local density, we show that disorder generically prevents the equilibration of quantum expectation values to a steady state and that the persistent fluctuations have a nonmonotonic dependence on the strength of disorder. We identify two distinct types of fluctuations, namely, temporal fluctuations describing the time-dependent fluctuations of the local density around its time average and sample-to-sample fluctuations characterizing the variations of these time averages from one realization of disorder to another. We demonstrate that both of these fluctuations vanish for extremely extended as well as extremely localized states, peaking at some intermediate value.

  13. Does stability in local community composition depend on temporal variation in rates of dispersal and connectivity?

    NASA Astrophysics Data System (ADS)

    Valanko, Sebastian; Norkko, Joanna; Norkko, Alf

    2015-04-01

    In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.

  14. Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2

    NASA Astrophysics Data System (ADS)

    Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark

    2003-12-01

    Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.

  15. Variation with interplanetary sector of the total magnetic field measured at the OGO 2, 4, and 6 satellites

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1973-01-01

    Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.

  16. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India.

    PubMed

    Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex

    2013-03-02

    Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings.

  17. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India

    PubMed Central

    2013-01-01

    Background Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. Methods A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Results Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Conclusions Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings. PMID:23452620

  18. Variations of High-Latitude Geomagnetic Pulsation Frequencies: A Comparison of Time-of-Flight Estimates and IMAGE Magnetometer Observations

    NASA Astrophysics Data System (ADS)

    Sandhu, J. K.; Yeoman, T. K.; James, M. K.; Rae, I. J.; Fear, R. C.

    2018-01-01

    The fundamental eigenfrequencies of standing Alfvén waves on closed geomagnetic field lines are estimated for the region spanning 5.9≤L < 9.5 over all MLT (Magnetic Local Time). The T96 magnetic field model and a realistic empirical plasma mass density model are employed using the time-of-flight approximation, refining previous calculations that assumed a relatively simplistic mass density model. An assessment of the implications of using different mass density models in the time-of-flight calculations is presented. The calculated frequencies exhibit dependences on field line footprint magnetic latitude and MLT, which are attributed to both magnetic field configuration and spatial variations in mass density. In order to assess the validity of the time-of-flight calculated frequencies, the estimates are compared to observations of FLR (Field Line Resonance) frequencies. Using IMAGE (International Monitor for Auroral Geomagnetic Effects) ground magnetometer observations obtained between 2001 and 2012, an automated FLR identification method is developed, based on the cross-phase technique. The average FLR frequency is determined, including variations with footprint latitude and MLT, and compared to the time-of-flight analysis. The results show agreement in the latitudinal and local time dependences. Furthermore, with the use of the realistic mass density model in the time-of-flight calculations, closer agreement with the observed FLR frequencies is obtained. The study is limited by the latitudinal coverage of the IMAGE magnetometer array, and future work will aim to extend the ground magnetometer data used to include additional magnetometer arrays.

  19. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin Fong; Hwang, Cheinway; Hsieh, Wen-Chi

    2016-12-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explains the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 μGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  20. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin; Hwang, Cheinway; Hsieh, Wen-Chi

    2017-04-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explain the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 µGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  1. Multiparametric statistical investigation of seismicity occurred at El Hierro (Canary Islands) from 2011 to 2014

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Lovallo, Michele; Lopez, Carmen; Marti Molist, Joan

    2016-03-01

    A detailed statistical investigation of the seismicity occurred at El Hierro volcano (Canary Islands) from 2011 to 2014 has been performed by analysing the time variation of four parameters: the Gutenberg-Richter b-value, the local coefficient of variation, the scaling exponent of the magnitude distribution and the main periodicity of the earthquake sequence calculated by using the Schuster's test. These four parameters are good descriptors of the time and magnitude distributions of the seismic sequence, and their variation indicate dynamical changes in the volcanic system. These variations can be attributed to the causes and types of seismicity, thus allowing to distinguish between different host-rock fracturing processes caused by intrusions of magma at different depths and overpressures. The statistical patterns observed among the studied unrest episodes and between them and the eruptive episode of 2011-2012 indicate that the response of the host rock to the deformation imposed by magma intrusion did not differ significantly from one episode to the other, thus suggesting that no significant local stress changes induced by magma intrusion occurred when comparing between all them. Therefore, despite the studied unrest episodes were caused by intrusions of magma at different depths and locations below El Hierro island, the mechanical response of the lithosphere was similar in all cases. This suggests that the reason why the first unrest culminated in an eruption while the other did not, may be related to the role of the regional/local tectonics acting at that moment, rather than to the forceful of magma intrusion.

  2. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  3. Just-in-Time Teaching

    ERIC Educational Resources Information Center

    Novak, Gregor M.

    2011-01-01

    This chapter provides an overview and implementation guidelines of Just-in-Time Teaching (JiTT), an interactive engagement pedagogy used across disciplines and across the academy, now in its fourteenth year. The heart of JiTT pedagogy is Web-based pre-instruction assignments called warm-ups, with some colorful local variations, such as GeoBytes in…

  4. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.

    PubMed

    Lind, M I; Johansson, F

    2011-12-01

    Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  5. Global exospheric temperatures and densities under active solar conditions. [measured by OGO-6

    NASA Technical Reports Server (NTRS)

    Wydra, B. J.

    1975-01-01

    Temperatures measured by the OGO-6 satellite using the 6300 A airglow spectrum are compared with temperatures derived from total densities and N2 densities. It is shown that while the variation of the total densities with latitude and magnetic activity agree well with values used for CIRA (1972), the temperature behavior is very different. While the temperatures derived from the N2 density were in much better agreement there were several important differences which radically affect the pressure gradients. The variation of temperature with magnetic activity indicated a seasonal and local time effect and also a latitude and delay time variation different from previous density derived temperatures. A new magnetic index is proposed that is better correlated with the observed temperatures. The temperature variations at high latitudes were examined for three levels of magnetic activity for both solstices and equinox conditions. A temperature maximum in the pre-midnight sector and a minimum in the noon sector were noted and seasonal and geomagnetic time and latitude effects discussed. Neutral temperature, density, pressure and boundary oxygen variations for the great storm of March 8, 1970 are presented.

  6. Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

    PubMed

    Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru

    2015-09-01

    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Temporal Variations in Metabolic and Autotrophic Indices for Acropora digitifera and Acropora spicifera – Implications for Monitoring Projects

    PubMed Central

    Hinrichs, Saskia; Patten, Nicole L.; Waite, Anya M.

    2013-01-01

    Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition. PMID:23696848

  8. Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera--implications for monitoring projects.

    PubMed

    Hinrichs, Saskia; Patten, Nicole L; Waite, Anya M

    2013-01-01

    Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition.

  9. Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET

    NASA Astrophysics Data System (ADS)

    Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan

    2013-06-01

    TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.

  10. Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges

    NASA Astrophysics Data System (ADS)

    Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann

    2017-10-01

    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.

  11. Distinguishing modified gravity models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed inmore » both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.« less

  12. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.

  13. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    NASA Technical Reports Server (NTRS)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  14. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton

    PubMed Central

    Yampolsky, Lev Y.; Schaer, Tobias M. M.; Ebert, Dieter

    2014-01-01

    Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient. PMID:24352948

  15. Application of hierarchical clustering method to classify of space-time rainfall patterns

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  16. An extension of the local momentum theory to a distorted wake model of a hovering rotor

    NASA Technical Reports Server (NTRS)

    Kawachi, K.

    1981-01-01

    The local momentum theory is based on the instantaneous balance between the fluid momentum and the blade elemental lift at a local station in the rotor rotational plane. Therefore, the theory has the capability of evaluating time wise variations of air loading and induced velocity distributions along a helicopter blade span. Unlike a complex vortex theory, this theory was developed to analyze the instantaneous induced velocity distribution effectively. The boundaries of this theory and a computer program using this theory are discussed. A concept introduced into the theory is the effect of the rotor wake contraction in hovering flight. A comparison of this extended local momentum theory with a prescribed wake vortex theory is also presented. The results indicate that the extended local momentum theory has the capability of achieving a level of accuracy similar to that of the prescribed wake vortex theory over wide range variations of rotor geometrical parameters. It is also shown that the analytical results obtained using either theory are in reasonable agreement with experimental data.

  17. Radon emanation from the moon - Spatial and temporal variability.

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Golub, L.; Bjorkholm, P.

    1973-01-01

    Observations of Rn-222 and Po-210 on the lunar surface with the orbiting Apollo alpha particle spectrometer reveal a number of features in their spatial distribution and indicate the existence of time variations in lunar radon emission. Localized Rn-222 or Po-210 around the craters Aristarchus and Grimaldi and the edges of virtually all maria indicates time varying radon emission and suggests a correlation between alpha 'hot spots' and sites of transient optical events observed from the earth. In a gross sense, the slower variations of Rn-222 seem to correlate with the distribution of gamma activity.

  18. Local time, seasonal, and solar cycle dependency of longitudinal variations of TEC along the crest of EIA over India

    NASA Astrophysics Data System (ADS)

    Sunda, Surendra; Vyas, B. M.

    2013-10-01

    global wave number 4 structure in the Indian longitudinal region spanning from ~70 to 95°E forming the upward slope of the peak in the total electron content (TEC) are reported along the crest of equatorial ionization anomaly (EIA). The continuous and simultaneous measurements from five GPS stations of GPS Aided Geo Augmented Navigation (GAGAN) network are used in this study. The long-term database (2004-2012) is utilized for examining the local time, seasonal, and solar cycle dependency on the longitudinal variations of TEC. Our results confirm the existence of longitudinal variations of TEC in accordance with wave number 4 longitudinal structure including its strength. The results suggest that these variations, in general, start to develop at ~09 LT, achieve maximum strength at 12-15 LT, and decay thereafter, the decay rate depending on the season. They are more pronounced in equinoctial season followed by summer and winter. The longitudinal variations persist beyond midnight in equinox seasons, whereas in winter, they are conspicuously absent. Interestingly, they also exhibit significant solar cycle dependence in the solstices, whereas in the equinoxes, they are independent of solar activity. The comparison of crest-to-trough ratio (CTR) in the eastern (92°E) and western (72°E) extreme longitudes reveals higher CTR on the eastern side than over the western extreme, suggesting the role of nonmigrating tides in modulating the ExB vertical drift and the consequential EIA crest formation.

  19. TEC Longitude Difference Using GIMS and the IRI Model

    NASA Astrophysics Data System (ADS)

    Natali, Maria Paula; Meza, Amalia Margarita; Mendoza, Gastón

    2016-07-01

    The main geomagnetic field declination has a global distribution with positive and negative values showing maximum east-west differences over North America and Oceania and minimum differences over America and Asia. Several authors study one or more of these regions using TEC data derived from GNSS observations to describe variations in TEC. They reported a pronounced longitudinal variation respect to zero magnetic declination. One of the important factors that cause the longitude difference at mid-latitude is a combined effect of the longitude variations of magnetic declination and the variations of the zonal thermospheric winds with local time. We propose to study this effect using Global Ionospheric Maps (GIMs) and the respective TEC values generated from the International Reference Ionospheric (IRI) model, during a solar cycle, applying Principal Component Analysis (PCA). Our works is focused over different local times and regions at mid-latitude. PCA involves a mathematical procedure that transforms a number of correlated variables into a number of uncorrelated variables using the data itself. The spatial structure of the ionosphere variability and its temporal evolution, together are called modes, and there are ordered according to their percentage of the variability of data from highest to lowest. In this analysis the first mode has more than the 90 % of the variability, representing the nominal behavior of the ionosphere, and the second and third modes are the more important for our analysis, because they show the strong longitudinal variation in the different regions using either GIMs or the IRI model.

  20. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.

  1. Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model.

    PubMed

    Huang, Xiaodong; Clements, Archie C A; Williams, Gail; Mengersen, Kerrie; Tong, Shilu; Hu, Wenbiao

    2016-04-01

    A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7-December 31, 2009, at a postal area level in Queensland, Australia. We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space-time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: -0.341; 95% credible interval (CI): -0.370--0.311) and the socio-economic index for area (SEIFA) (posterior mean: -0.003; 95% CI: -0.004--0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007-0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2)more » FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.« less

  3. Cultural variations in global versus local processing: a developmental perspective.

    PubMed

    Oishi, Shigehiro; Jaswal, Vikram K; Lillard, Angeline S; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-12-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 (N = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 (N = 1,843) using a nationally representative sample of Japanese and American adults ages 20 to 69, and found further that adults in both cultures became more globally oriented with age. In Study 3 (N = 133), we investigated the developmental course of the cultural difference using Japanese and American children, and found it was evident by 4 years of age. Cultural variations in global versus local processing emerge by early childhood, and remain throughout adulthood. At the same time, both Japanese and Americans become increasingly global processors with age. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Identification and ranking of environmental threats with ecosystem vulnerability distributions.

    PubMed

    Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo

    2017-08-24

    Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We developed a method to address ecosystem vulnerability variation by quantifying ecosystem vulnerability distributions (EVDs) based on monitoring data of local species compositions and environmental conditions. The method incorporates spatial variation of both abiotic and biotic variables to quantify variation in responses among species and ecosystems. We show that EVDs can be derived based on a selection of locations, existing monitoring data and a selected impact boundary, and can be used in stressor identification and ranking for a region. A case study on Ohio's freshwater ecosystems, with freshwater fish as target species group, showed that physical habitat impairment and nutrient loads ranked highest as current stressors, with species losses higher than 5% for at least 6% of the locations. EVDs complement existing approaches of stressor assessment and management, which typically account only for variability in stressors, by accounting for variation in the vulnerability of the responding ecosystems.

  5. Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Sakata, M.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Utsugi, T.; Wang, B. S.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.; Tibet Asγ Collaboration

    2005-06-01

    We present the large-scale sidereal anisotropy of Galactic cosmic-ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003. The sidereal daily variation of cosmic rays observed in this experiment shows an excess of relative intensity around 4-7 hr local sidereal time as well as a deficit around 12 hr local sidereal time. While the amplitude of the excess is not significant when averaged over all declinations, the excess in individual declination bands becomes larger and clearer as the viewing direction moves toward the south. The maximum phase of the excess intensity changes from ~7 hr at the Northern Hemisphere to ~4 hr at the equatorial region. We also show that both the amplitude and the phase of the first harmonic vector of the daily variation are remarkably independent of primary energy in the multi-TeV region. This is the first result determining the energy and declination dependences of the full 24 hr profiles of the sidereal daily variation in the multi-TeV region with a single air shower experiment.

  6. Causality implies inflationary back-reaction

    NASA Astrophysics Data System (ADS)

    Basu, S.; Tsamis, N. C.; Woodard, R. P.

    2017-07-01

    There is a widespread belief among inflationary cosmologists that a local observer cannot sense super-horizon gravitons. The argument goes that a local observer would subsume super-horizon gravitons into a redefinition of his coordinate system. We show that adopting this view for pure gravity on de Sitter background leads to time variation in the Hubble parameter measured by a local observer. It also leads to a violation of the gravitational field equation R = 4Λ because that equation is obeyed by the full metric, rather than the one which has been cleansed of super-horizon modes.

  7. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  8. Spatial variations of the local density of states modified by CDWs in 1 T- TaS2- xSex

    NASA Astrophysics Data System (ADS)

    Hasegawa, T.; Yamaguchi, W.; Kim, J.-J.; Wei, W.; Nantoh, M.; Ikuta, H.; Kitazawa, K.; Manivannan, A.; Fujishima, A.; Uchinokura, K.

    1994-07-01

    Spatial variations of the local density of states (LDOS) near the Fermi level have been observed on the layered dichalcogenides 1 T- TaS2- xSex ( x = 0, 0.2, 2) for the first time. The tunneling spectra on the cleaved surfaces were measured by atomic-site tunneling (AST) spectroscopy technique at room temperature. In 1T-TaS 2, the LDOS was substantially different among the three inequivalent Ta atomic sites induced by the CDW formation. However, the surface electronic structure became homogeneous, as the Se content was increased. By substituting Se for S, the minimum position of the LDOS was systematically shifted to a higher energy side above the Fermi level.

  9. Music Tune Restoration Based on a Mother Wavelet Construction

    NASA Astrophysics Data System (ADS)

    Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.

    2017-01-01

    It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.

  10. Solar Influences on the Return Direction of High-Frequency Radar Backscatter

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.; Perry, Gareth W.; Yeoman, Timothy K.; Milan, Stephen E.; Stoneback, Russell

    2018-04-01

    Coherent-scatter, high-frequency, phased-array radars create narrow beams through the use of constructive and destructive interference patterns. This formation method leads to the creation of a secondary beam, or lobe, that is sent out behind the radar. This study investigates the relative importance of the beams in front of and behind the high-frequency radar located in Hankasalmi, Finland, using observations taken over a solar cycle, as well as coincident observations from Hankasalmi and the Enhanced Polar Outflow Probe Radio Receiver Instrument. These observations show that the relative strength of the front and rear beams is frequency dependent, with the relative amount of power sent to the front lobe increasing with increasing frequency. At the range of frequencies used by Hankasalmi, both front and rear beams are always present, though the main beam is always stronger than the rear lobe. Because signals are always transmitted to the front and rear of the radar, it is always possible to receive backscatter from both return directions. Examining the return direction as a function of local time, season, and solar cycle shows that the dominant return direction depends primarily on the local ionospheric structure. Diurnal changes in plasma density typically cause an increase in the amount of groundscatter returning from the rear lobe at night, though the strength of this variation has a seasonal dependence. Solar cycle variations are also seen in the groundscatter return direction, modifying the existing local time and seasonal variations.

  11. Evidence of Dynamic Crustal Deformation in Tohoku, Japan, From Time-Varying Receiver Functions

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Yoshioka, S.

    2017-10-01

    Temporal variation of crustal structure is key to our understanding of Earth processes on human timescales. Often, we expect that the most significant structural variations are caused by strong ground shaking associated with large earthquakes, and recent studies seem to confirm this. Here we test the possibility of using P receiver functions (PRF) to isolate structural variations over time. Synthetic receiver function tests indicate that structural variation could produce PRF changes on the same order of magnitude as random noise or contamination by local earthquakes. Nonetheless, we find significant variability in observed receiver functions over time at several stations located in northeastern Honshu. Immediately following the Tohoku-oki earthquake, we observe high PRF variation clustering spatially, especially in two regions near the beginning and end of the rupture plane. Due to the depth sensitivity of PRF and the timescales over which this variability is observed, we infer this effect is primarily due to fluid migration in volcanic regions and shear stress/strength reorganization. While the noise levels in PRF are high for this type of analysis, by sampling small data sets, the computational cost is lower than other methods, such as ambient noise, thereby making PRF a useful tool for estimating temporal variations in crustal structure.

  12. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration

    NASA Astrophysics Data System (ADS)

    Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J.

    2017-04-01

    It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.

  13. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration

    PubMed Central

    Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J.

    2017-01-01

    It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves. PMID:28429754

  14. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration.

    PubMed

    Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J

    2017-04-21

    It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.

  15. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  16. Concentration gradient along the scala tympani after local application of gentamicin to the round window membrane.

    PubMed

    Plontke, Stefan K; Mynatt, Robert; Gill, Ruth M; Borgmann, Stefan; Salt, Alec N

    2007-07-01

    The distribution of gentamicin along the fluid spaces of the cochlea after local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected, and histologic studies indicate that hair cell damage is greater at the base than at the apex after local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. A recently developed method of sampling perilymph from the cochlear apex of guinea pigs was used in which the samples represent fluid originating from different regions along the scala tympani. Gentamicin concentration was determined in sequential apical samples that were taken after up to 3 hours of local application to the round window niche. Substantial gradients of gentamicin along the length of the scala tympani were demonstrated and quantified, averaging more than 4,000 times greater concentration at the base compared with the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients.

  17. Concentration gradient along scala tympani following the local application of gentamicin to the round window membrane

    PubMed Central

    Plontke, Stefan K.; Mynatt, Robert; Gill, Ruth M.; Borgmann, Stefan; Salt, Alec N.

    2008-01-01

    Objectives The distribution of gentamicin along the fluid spaces of the cochlea following local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected and histological studies indicate that hair cell damage is greater at the base than at the apex following local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. Methods A recently-developed method of sampling perilymph from the cochlear apex of guinea pigs was used, in which the samples represent fluid originating from different regions along scala tympani. Gentamicin concentration was determined in sequential apical samples which were taken following up to three hours of local application to the round window niche. Results Substantial gradients of gentamicin along the length of scala tympani were demonstrated and quantified, averaging more than 4000 times greater concentration at the base compared to the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. Conclusions The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients. PMID:17603318

  18. Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy

    PubMed Central

    Devaux, Marie-Françoise; Jamme, Frédéric; André, William; Bouchet, Brigitte; Alvarado, Camille; Durand, Sylvie; Robert, Paul; Saulnier, Luc; Bonnin, Estelle; Guillon, Fabienne

    2018-01-01

    Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation. PMID:29515611

  19. Variations on a theme by chopin: relations between perception and production of timing in music.

    PubMed

    Repp, B H

    1998-06-01

    A note interonset interval (IOI) increment in mechanically timed music is more difficult to detect where expressive lengthening typically occurs in artistic performance. Experiment 1 showed this in an excerpt from a Chopin etude and extended the task to IOI decrement detection. A simple measure of variation in perceptual bias was derived that correlated highly with the average timing pattern of pianists' performances, more so than with acoustic surface properties of the music. Similar results, but decreasing correlations, were obtained in each of four subsequent experiments in which the music was simplified in stages. Although local psychoacoustic effects on time perception cannot be ruled out completely, the results suggest that musical structure (melodic-rhythmic grouping in particular) has temporal implications that are reflected not only in musicians' motor behavior but also in listeners' time-keeping abilities.

  20. Characterization of nonGaussian atmospheric turbulence for prediction of aircraft response statistics

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1977-01-01

    Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.

  1. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage

    PubMed Central

    Marshall, Kate L. A.; Philpot, Kate E.; Damas-Moreira, Isabel; Stevens, Martin

    2015-01-01

    Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation. PMID:26372454

  2. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage.

    PubMed

    Marshall, Kate L A; Philpot, Kate E; Damas-Moreira, Isabel; Stevens, Martin

    2015-01-01

    Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.

  3. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1991-01-01

    New methods were developed for efficient aeroservoelastic analysis and optimization. The main target was to develop a method for investigating large structural variations using a single set of modal coordinates. This task was accomplished by basing the structural modal coordinates on normal modes calculated with a set of fictitious masses loading the locations of anticipated structural changes. The following subject areas are covered: (1) modal coordinates for aeroelastic analysis with large local structural variations; and (2) time simulation of flutter with large stiffness changes.

  4. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  5. Genre-Specific Cultivation Effects: Lagged Associations between Overall TV Viewing, Local TV News Viewing, and Fatalistic Beliefs about Cancer Prevention

    PubMed Central

    Niederdeppe, Jeff

    2014-01-01

    Cultivation theory and research has been criticized for its failure to consider variation in effects by genre, employ appropriate third-variable controls, and determine causal direction. Recent studies, controlling for a variety of demographic characteristics and media use variables, have found that exposure to local television (TV) newscasts is associated with a variety of problematic “real-world” beliefs. However, many of these studies have not adequately assessed causal direction. Redressing this limitation, we analyzed data from a two-wave national representative survey which permitted tests of lagged association between overall TV viewing, local TV news viewing, and fatalistic beliefs about cancer prevention. We first replicated the original cultivation effect and found a positive association between overall TV viewing at time 1 and increased fatalistic beliefs about cancer prevention at time 2. Analyses also provided evidence that local TV news viewing at time 1 predicts increased fatalistic beliefs about cancer prevention at time 2. There was little evidence for reverse causation in predicting changes in overall TV viewing or local TV news viewing. The paper concludes with a discussion of theoretical and practical implications of these findings. PMID:25605981

  6. Variation in Payment Rates under Medicare's Inpatient Prospective Payment System.

    PubMed

    Krinsky, Sam; Ryan, Andrew M; Mijanovich, Tod; Blustein, Jan

    2017-04-01

    To measure variation in payment rates under Medicare's Inpatient Prospective Payment System (IPPS) and identify the main payment adjustments that drive variation. Medicare cost reports for all Medicare-certified hospitals, 1987-2013, and Dartmouth Atlas geographic files. We measure the Medicare payment rate as a hospital's total acute inpatient Medicare Part A payment, divided by the standard IPPS payment for its geographic area. We assess variation using several measures, both within local markets and nationally. We perform a factor decomposition to identify the share of variation attributable to specific adjustments. We also describe the characteristics of hospitals receiving different payment rates and evaluate changes in the magnitude of the main adjustments over time. Data downloaded from the Centers for Medicare and Medicaid Services, the National Bureau of Economic Research, and the Dartmouth Atlas. In 2013, Medicare paid for acute inpatient discharges at a rate 31 percent above the IPPS base. For the top 10 percent of discharges, the mean rate was double the IPPS base. Variations were driven by adjustments for medical education and care to low-income populations. The magnitude of variation has increased over time. Adjustments are a large and growing share of Medicare hospital payments, and they create significant variation in payment rates. © Health Research and Educational Trust.

  7. 2001 Mars Odyssey THEMIS: Thermophysics at a New Local Time

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Christensen, P. R.

    2017-12-01

    During its sixth extended mission, the 2001 Mars Odyssey transitioned to a new, rarely-seen, post-sunset (morning daylight) local time designed to reduce stress on the spacecraft. Since then, Thermal Emission Imaging System (THEMIS) observations have provided an unprecedented opportunity to investigate dynamic phenomena in the atmosphere and on the surface. In this new local time ( 6:45 am/pm) orbit, Odyssey's camera is acquiring expanded diurnal thermal imaging coverage, providing insight into surface texture, layering, and ice content, as well as dynamic, temperature-dependent surface, atmospheric, and polar processes. New THEMIS observations at dawn and dusk local times are filling major gaps in current knowledge about the diurnal variation of clouds, hazes and surface frost. In this presentation, we will highlight some of these data and discuss the unique scientific results that can be obtained from Mars Odyssey THEMIS observations, including: insights into potential past and present habitability of Mars, the processes and history of climate, the nature and evolution of geologic processes, and aspects of the environment relevant to future human exploration.

  8. Beat-to-Beat Variation in Periodicity of Local Calcium Releases Contributes to Intrinsic Variations of Spontaneous Cycle Length in Isolated Single Sinoatrial Node Cells

    PubMed Central

    Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.

    2013-01-01

    Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247

  9. Recharge signal identification based on groundwater level observations.

    PubMed

    Yu, Hwa-Lung; Chu, Hone-Jay

    2012-10-01

    This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.

  10. Strong variations in water vapor in the Asian Monsoon UTLS region observed during the 2017 StratoClim campaign

    NASA Astrophysics Data System (ADS)

    Moyer, E. J.; Clouser, B.; Sarkozy, L.; Gaeta, D. C.; Singer, C. E.

    2017-12-01

    The StratoClim campaign in July/August 2017 provided the first in-situ sampling in the UTLS region over the Asian monsoon. Preliminary results from high-precision water vapor measurements from a new instrument, the Chicago Water Isotope Spectrometer, imply substantial variation in water vapor above the local cold-point tropopause and above the 380 K potential temperature surface. Profiles across the cold-point tropopause and attendant variability appear to differ from those both in the Tropical Tropopause Layer in the deep tropics and in the North American Monsoon region. We discuss how these water vapor fluctuations relate to implied convective influence and variations in long-range transport. In at least some cases, enhanced water at high altitudes appears correlated with relative isotopic enhancement, suggesting convective influence. Although results at the time of writing are necessarily very preliminary, measurements suggest that the monsoon anticyclone region is characterized by dynamic transport and convective influence up to and beyond the local cold-point tropopause.

  11. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    NASA Astrophysics Data System (ADS)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  12. Commuting to work: RN travel time to employment in rural and urban areas.

    PubMed

    Rosenberg, Marie-Claire; Corcoran, Sean P; Kovner, Christine; Brewer, Carol

    2011-02-01

    To investigate the variation in average daily travel time to work among registered nurses (RNs) living in urban, suburban, and rural areas. We examine how travel time varies across RN characteristics, job setting, and availability of local employment opportunities. Descriptive statistics and linear regression using a 5% sample from the 2000 Census and a longitudinal survey of newly licensed RNs (NLRN). Travel time for NLRN respondents was estimated using geographic information systems (GIS) software. In the NLRN, rural nurses and those living in small towns had significantly longer average commute times. Young married RNs and RNs with children also tended to have longer commute times, as did RNs employed by hospitals. The findings indicate that travel time to work varies significantly across locale types. Further research is needed to understand whether and to what extent lengthy commute times impact RN workforce needs in rural and urban areas.

  13. Comparison of Nightside Midlatitude Ionospheric Flows from DMSP and SuperDARN During Stormtime Penetration Events

    NASA Astrophysics Data System (ADS)

    Hairston, M. R.; Coley, W. R.; Ruohoniemi, J. M.

    2016-12-01

    July through September 2015 was a relatively quiet period punctuated by nine small to moderate geomagnetic storms (Dst minima ranging from -25 to -98 nT). We are conducting a study of the subauroral midlatitude ionospheric zonal flows in the predawn morning sector (magnetic local times ranging from 2.2 to 5.6 hours) using satellite data from DMSP F15 and F16 along with the midlatitude SuperDARN radars. We will present an empirical model of the background quiettime flows based on these data and then compare those flows to the observed stormtimes flows. The stormtime data will be used to explore the extent of the penetration electric field in this predawn region. Additional satellite flow data from other local times (evening and dayside) will also be presented to check for any local time variation in the extent of the penetration electric field.

  14. Grow your own: case study of a capital alternative.

    PubMed

    Pulaski, M J

    1999-01-01

    The physician-administrator team can take all that is good from the physician practice management company (PPMC) model and apply a variation of self-financing called a "tithe" in order to facilitate their group's growth. Essentially, a group can create its own PPMC for local consolidation purposes, contracting with payers, spreading risk contracts over a larger base of providers, getting access to ancillary services, centralized business office services, bulk purchasing and many other of the advantages extolled by PPMCs. Organization has value, especially in times of specific industry consolidation. Although most everyone agrees that the medical industry is undergoing tremendous consolidation, consolidation will not likely occur "top-down." Rather, it will occur more slowly--one group at a time, one locale at a time. If a group positions itself as a local consolidation leader and amalgamates other groups onto its "token ring," then all participants--especially those who initiate this consolidation--will reap the benefits.

  15. Storm Time Variation of Radiative Cooling by Nitric Oxide as Observed by TIMED-SABER and GUVI

    NASA Astrophysics Data System (ADS)

    Bharti, Gaurav; Sunil Krishna, M. V.; Bag, T.; Jain, Puneet

    2018-02-01

    The variation of O/N2 (reference to N2 column density 1017 cm-2) and nitric oxide radiative emission flux exiting the thermosphere have been studied over the Northern Hemisphere during the superstorm event of 7-12 November 2004. The data have been obtained from Global Ultraviolet Imager (GUVI) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the National Aeronautics and Space Administration (NASA)'s Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite. The NO radiative flux is observed to show an anti-correlation with O/N2 on a global scale. Both NO radiative flux and O/N2 ratio show equatorward motion with maximum penetration in western longitude sectors. A local variation of O, O2, and N2 densities have been calculated using NRLMSISE-00 model over a midlatitude location (55°N,180°E). On a local scale, model calculated O/O2 and O/N2 ratios are found to follow the observations made by GUVI. The collisional excitation of NO with atomic oxygen is the most dominant process for the total cooling rate. The SABER-retrieved NO cooling rate (CR) at a local site suggests an enhancement during the storm period with the peak emission rate closely correlated to the progression of the storm. The peak emission altitude of NO CR moves upward during the main phase of the storm. The NO abundance has been calculated by using cooling rate and Nitric Oxide Empirical Model (NOEM) model. Both these suggest a vary large (3-15 times) increase in NO density during the storm, which is required to account the changes in NO radiative flux. A similar kind of enhancement in NO abundance is also noticed in Student Nitric Oxide Explorer observations during intense geomagnetic storms.

  16. Three-dimensional investigation of ozone pollution in the lower troposphere using an unmanned aerial vehicle platform.

    PubMed

    Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Lu, Si-Jia; Li, Bai; Li, Chao

    2017-05-01

    Potential utilities of instrumented lightweight unmanned aerial vehicles (UAVs) to quickly characterize tropospheric ozone pollution and meteorological factors including air temperature and relative humidity at three-dimensional scales are highlighted in this study. Both vertical and horizontal variations of ozone within the 1000 m lower troposphere at a local area of 4 × 4 km 2 are investigated during summer and autumn times. Results from field measurements show that the UAV platform has a sufficient reliability and precision in capturing spatiotemporal variations of ozone and meteorological factors. The results also reveal that ozone vertical variation is mainly linked to the vertical distribution patterns of air temperature and the horizontal transport of air masses from other regions. In addition, significant horizontal variations of ozone are also observed at different levels. Without major exhaust sources, ozone horizontal variation has a strong correlation with the vertical convection intensity of air masses within the lower troposphere. Higher air temperatures are usually related to lower ozone horizontal variations at the localized area, whereas underlying surface diversity has a week influence. Three-dimensional ozone maps are obtained using an interpolation method based on UAV collected samples, which are capable of clearly demonstrating the diurnal evolution processes of ozone within the 1000 m lower troposphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of a component of solar irradiance on radon signals at 1000 meter depth at the Gran Sasso Laboratory, Italy

    NASA Astrophysics Data System (ADS)

    Gazit-Yaari (Charit-Yaari), N.; Steinitz, G.; Piatibratova, O.

    2012-04-01

    Exploratory monitoring of radon is conducted at one site at the deep underground Gran Sasso National Laboratory (LNGS; 1,000m below the surface). Monitoring is performed in a small secluded space separated by a sealed partition from the entirety of the laboratory environment in air in contact with the exposed surrounding calcareous country rock. Overall radon levels are low (0.45 kBq/m3). Utilizing both alpha and gamma-ray detectors measurements (15-minute resolution) cover a time span of ca. 600 days. Systematic and recurring radon signals are recorded consisting of two primary signal types: a) non-periodic Multi-Day (MD) signals lasting 2-10 days, and b) Daily Radon (DR) signals - which are of a periodic nature exhibiting a primary 24-hour cycle. Temperature in the closed enclosure is stable (11.5±0.3 °C) and pressure reflects above surface barometric variations. Analysis and comparison in the time and frequency domains (FFT) of local environmental data (P, T) indicates that these do not drive radon variation in air at the site. The phenomenology of the MD and DR signals is similar to situations encountered at other locations where radon is monitored with a high time resolution in geogas at upper crustal levels. Using the Continuous Wavelet Transform analysis tool a different variation pattern is observed for time series consisting of day-time and night-time measurement of the gamma radiation from radon progeny. Applying the same analysis to the time series of local air pressure does not reveal a day-time and night-time difference. The observation of a differing day/night pattern in the gamma radiation from radon at LNGS is similar to further occurrences at other subsurface locations. Production of a day/night pattern must be related to rotation of Earth around its axis. This phenomenon is a further confirmation of the recent proposition as to the influence of a component of solar irradiance on the nuclear radiation from radon in air. The occurrence of these radon signals in the 1 km deep low radiation underground geological environment of LNGS provides new information on the time variation of the local radiation environment. The observations and results place the LNGS facility as a high priority location for performing advanced investigations of these geophysical phenomena, due to its location and its infrastructure. New multi disciplinary prospects for the research are indicated in terms of a) the radioactive behavior of radon in above and subsurface air, b) an above surface geophysical driver for this behavior and, c) the influence of a component of solar irradiation.

  18. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    PubMed Central

    Jia, Chaolong; Wei, Lili; Wang, Hanning; Yang, Jiulin

    2014-01-01

    Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described. PMID:25435869

  19. A comparison of random draw and locally neutral models for the avifauna of an English woodland.

    PubMed

    Dolman, Andrew M; Blackburn, Tim M

    2004-06-03

    Explanations for patterns observed in the structure of local assemblages are frequently sought with reference to interactions between species, and between species and their local environment. However, analyses of null models, where non-interactive local communities are assembled from regional species pools, have demonstrated that much of the structure of local assemblages remains in simulated assemblages where local interactions have been excluded. Here we compare the ability of two null models to reproduce the breeding bird community of Eastern Wood, a 16-hectare woodland in England, UK. A random draw model, in which there is complete annual replacement of the community by immigrants from the regional pool, is compared to a locally neutral community model, in which there are two additional parameters describing the proportion of the community replaced annually (per capita death rate) and the proportion of individuals recruited locally rather than as immigrants from the regional pool. Both the random draw and locally neutral model are capable of reproducing with significant accuracy several features of the observed structure of the annual Eastern Wood breeding bird community, including species relative abundances, species richness and species composition. The two additional parameters present in the neutral model result in a qualitatively more realistic representation of the Eastern Wood breeding bird community, particularly of its dynamics through time. The fact that these parameters can be varied, allows for a close quantitative fit between model and observed communities to be achieved, particularly with respect to annual species richness and species accumulation through time. The presence of additional free parameters does not detract from the qualitative improvement in the model and the neutral model remains a model of local community structure that is null with respect to species differences at the local scale. The ability of this locally neutral model to describe a larger number of woodland bird communities with either little variation in its parameters or with variation explained by features local to the woods themselves (such as the area and isolation of a wood) will be a key subsequent test of its relevance.

  20. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas

    2016-06-15

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were enteredmore » into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.« less

  1. From local perception to global perspective

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Stocker, Thomas F.

    2015-08-01

    Recent sociological studies show that over short time periods the large day-to-day, month-to-month or year-to-year variations in weather at a specific location can influence and potentially bias our perception of climate change, a more long-term and global phenomenon. By weighting local temperature anomalies with the number of people that experience them and considering longer time periods, we illustrate that the share of the world population exposed to warmer-than-normal temperatures has steadily increased during the past few decades. Therefore, warming is experienced by an increasing number of individuals, counter to what might be simply inferred from global mean temperature anomalies. This behaviour is well-captured by current climate models, offering an opportunity to increase confidence in future projections of climate change irrespective of the personal local perception of weather.

  2. Titan's highly variable plasma environment

    NASA Astrophysics Data System (ADS)

    Wolf, D. A.; Neubauer, F. M.

    1982-02-01

    It is noted that Titan's plasma environment is variable for two reasons. The variability of the solar wind is such that Titan may be located in the outer magnetosphere, the magnetosheath, or the interplanetary medium around noon Saturnian local time. What is more, there are local time variations in Saturn's magnetosphere. The location of the stagnation point of Saturn's magnetosphere is calculated, assuming a terrestrial type magnetosphere. Characteristic plasma parameters along the orbit of Titan are shown for high solar wind pressure. During crossings of the Saturnian magnetopause or bow shock by Titan, abrupt changes in the flow direction and stagnation pressure are expected, as are rapid associated changes in Titan's uppermost atmosphere.

  3. High-cadence nowcast of a proxy K-type index of the local magnetic activity for improved space weather monitoring applications

    NASA Astrophysics Data System (ADS)

    Stankov, S.; Verhulst, T. G. W.; Sapundjiev, D.

    2016-12-01

    The K index is a quasi-logarithmic index characterizing the 3-hourly range in the transient geomagnetic field activity at a certain location relative to its regular "quiet-day" variation. It is a popular choice among researchers; however, the 3-hour time scale is much larger than the characteristic time of various phenomena associated with an elevated geomagnetic activity. These include disturbances in the ionosphere that are of particular interest because of their (adverse) effects on present-day radio communications and navigation practices. From this aspect, there is an on-going demand for services providing real-time assessment of the (local and global) magnetic activity and alerting the users for the purpose of taking mitigating actions. An obstacle to the real-time estimation of the K index stems from the fact that the original definition of this index postulates the use of measurements from both sides of the abovementioned 3-hour interval. We offer a method for estimating, in real time, the local magnetic activity via a K-type index (K*) which closely resembles the "classical" K index. The main difference is in the way of determining the solar regular variation of the geomagnetic field - the new, real-time approach uses data from past measurements only. Another difference is that the concept of fixed 3-hour time periods (0-3, 3-6, …, 21-24), each characterized with a single K value, is abolished; instead, in the new approach, a K* value is derived at any time using data from the most recent 3 hours. Following this approach, a novel nowcast system was developed based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, establishing the field's regular variation, calculating the K* index, and issuing an alert if storm-level activity is indicated. The nominal cadence is envisaged to be as high as one K* value per minute. Another important feature of this nowcast system is the strict control on the data input and processing, allowing for an immediate assessment of the quality of output. The quality control employs the fact that a complete and sound dataset provides the ideal platform for reliable, closest-to-definite index production.

  4. Localization of a variational particle smoother

    NASA Astrophysics Data System (ADS)

    Morzfeld, M.; Hodyss, D.; Poterjoy, J.

    2017-12-01

    Given the success of 4D-variational methods (4D-Var) in numerical weather prediction,and recent efforts to merge ensemble Kalman filters with 4D-Var,we consider a method to merge particle methods and 4D-Var.This leads us to revisit variational particle smoothers (varPS).We study the collapse of varPS in high-dimensional problemsand show how it can be prevented by weight-localization.We test varPS on the Lorenz'96 model of dimensionsn=40, n=400, and n=2000.In our numerical experiments, weight localization prevents the collapse of the varPS,and we note that the varPS yields results comparable to ensemble formulations of 4D-variational methods,while it outperforms EnKF with tuned localization and inflation,and the localized standard particle filter.Additional numerical experiments suggest that using localized weights in varPS may not yield significant advantages over unweighted or linearizedsolutions in near-Gaussian problems.

  5. The role of predators in maintaining the geographic organization of aposematic signals.

    PubMed

    Chouteau, Mathieu; Angers, Bernard

    2011-12-01

    Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while these signals may be uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities who learn to avoid distinct signals while performing intense selection on others are thus expected to maintain such a geographic organization. We tested this assumption by placing clay frog models, representing distinct color morphs of the Peruvian poison dart frog Ranitomeya imitator and a nonconspicuous frog, reciprocally between adjacent localities. In each locality, avian predators were able to discriminate between warning signals; the adjacent exotic morph experienced up to four times more attacks than the local one and two times more than the nonconspicuous phenotype. Moreover, predation attempts on the exotic morph quickly decreased to almost nil, suggesting rapid learning. This experiment offers direct evidence for the existence of different predator communities performing localized homogenizing selection on distinct aposematic signals.

  6. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993-2012.

    PubMed

    Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f.  = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.

  7. Spatial and Temporal Patterns of Locally-Acquired Dengue Transmission in Northern Queensland, Australia, 1993–2012

    PubMed Central

    Naish, Suchithra; Dale, Pat; Mackenzie, John S.; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Background Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012. Methods Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Conclusions Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas. PMID:24691549

  8. Response of Volume Transport through the Taiwan and Tsushima Straits to the Wind Fields in the East China Sea

    NASA Astrophysics Data System (ADS)

    Matsuno, T.; Liu, C. T.; Fukudome, K.; Chen, H. W.; Ichikawa, K.; Doong, D. J.; Senjyu, T.

    2016-02-01

    Circulation in the shelf region of the East China Sea is strongly controlled by the volume transport (VT) through the Taiwan Strait (TwS). It is well known that the VT through TwS has a significant seasonal variation, large in summer and small in winter. Based on a time series of the current field obtained by ADCP installed on a ferry boat crossing the TwS, from Keelung to Matsu Island in Taiwan, it had been investigated that the seasonal variations have a good correlation with the local wind around the TwS. The VT through the TwS had been compared with that through Tsushima Strait (TsS), and the results using the data from 2009 to 2012 were presented in the last OSM. In this study the monitoring data were extended further to 2014 and the difference of VTs between TwS and TsS was compared with wind fields and Ekman transport for not only seasonal variation but also shorter time scale variations. Ekman transport across the shelf break with time scales shorter than one month has a good correlation with the difference of VTs between TwS and TsS, that is, net transport across the shelf break of the East China Sea. The correlation is much better with VT through TwS rather than through TsS. Onshoreward net transport due to the Ekman transport may decrease the VT through TwS, which means that the VT through TwS is not only related to the local wind but also wind field over the East China Sea.

  9. The Earth's Gravity and Its Geological Significance.

    ERIC Educational Resources Information Center

    Cook, A. H.

    1980-01-01

    Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)

  10. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  11. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral Model (NSM) reveals that there is qualitative agreement. The NSM generates the QBO extending from the stratosphere into the upper mesosphere, with temperature variations extending to mid latitudes, but the predicted amplitudes are smaller than those observed.

  12. The Impact of Proposed Changes in Liver Allocation Policy on Cold Ischemia Times and Organ Transportation Costs

    PubMed Central

    DuBay, D. A.; MacLennan, P. A.; Reed, R. D.; Fouad, M.; Martin, M.; Meeks, C. B.; Taylor, G.; Kilgore, M. L.; Tankersley, M.; Gray, S. H.; White, J. A.; Eckhoff, D. E.; Locke, J. E.

    2015-01-01

    Changes to the liver allocation system have been proposed to decrease regional variation in access to liver transplant. It is unclear what impact these changes will have on cold ischemia times (CITs) and donor transportation costs. Therefore, we performed a retrospective single center study (2008–2012) measuring liver procurement CIT and transportation costs. Four groups were defined: Local-within driving distance (Local-D, n = 262), Local-flight (Local-F, n = 105), Regional-flight <3 h (Regional <3h, n = 61) and Regional-Flight >3 h (Regional >3h, n = 53). The median travel distance increased in each group, varying from zero miles (Local-D), 196 miles (Local-F), 384 miles (Regional <3 h), to 1647 miles (Regional >3 h). Increasing travel distances did not significantly increase CIT until the flight time was >3 h. The average CIT ranged from 5.0 to 6.0 h for Local-D, Local-F and Regional <3h, but increased to 10 h for Regional >3h (p < 0.0001). Transportation costs increased with greater distance traveled: Local-D $101, Local-F $1993, Regional <3h $8324 and Regional >3 h $27 810 (p < 0.0001). With proposed redistricting, local financial modeling suggests that the average liver donor procurement transportation variable direct costs will increase from $2415 to $7547/liver donor, an increase of 313%. These findings suggest that further discussion among transplant centers and insurance providers is needed prior to policy implementation. PMID:25612501

  13. Local Hydrological effects in Membach, Belgium: influence on the long term gravity variation

    NASA Astrophysics Data System (ADS)

    van Camp, M.; Dassargues, A.; Vanneste, K.; Verbeeck, K.; Warnant, R.

    2003-04-01

    Absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996 at the underground Membach Station (Ardenne, eastern Belgium). Two effects can be distinguished: one seasonal-like and a long-term geophysical trend. The first effect is a 5 µGal seasonal-like term due most probably and mainly to hydrological variations. To determine the thickness of the porous unconsolidated layer covering the fissured bed-rock (low-porosity argillaceous sandstone with quartzitic beds) through which the tunnel was excavated, geophysical prospecting has been undertaken above the Membach station. This shows that the thickness of the weathered zone covering the bedrock can be highly variable between zero and 10 meters (possibly due to palaeo mudflows linked to periglacial conditions in the area). This leads to highly variable (in space) saturation capacity of the subsoil above the gallery. The extensive geological researches will allow us to correct the gravity variations induced by the variable mass of water stored in the shallow partially saturated soil. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field. The second effect is the detection of a very low geophysical trend in gravity of -0.5+/-0.1 µGal/year. The SG drift, the hydrological effects, and the origin of the low trend are discussed. In particular, we show a good correlation between the gravity measurements and the continuous GPS measurements being made since 1997 at 3 km from the station. Possible crustal deformations could be linked to active faults in the Ardenne and/or bordering the Roer Valley Graben, or perhaps linked to the Eifel plume.

  14. [Seasonal and interannual variations of sockeye salmon (Oncorhynchus nerka) microsatellite DNA in two Kamchatka lake-river systems].

    PubMed

    Khrustaleva, A M; Zelenina, D A

    2008-07-01

    Seasonal and interannual variations in the sockeye salmon populations from two lake-river systems of the East and West Kamchatka were studied. Stability of allele and genotypic frequencies of six microsatellite DNA loci in the adjacent generations and spawning populations of the sockeye salmon of the Bol'shaya River was confirmed experimentally. The pairwise intersample differentiation (F(st)) of the local sockeye salmon populations from the southwestern Kamchatka coast (Ozernaya and Bol'shaya Rivers)was almost 7 times higher than the corresponding values for the spawning populations of the Bol'shaya River sockeye salmon of the adjacent years; 15 times, for the adjacent Bol'shaya River sockeye salmon generations; and four times, for the seasonal races within the Kamchatka River.

  15. Processing Optimization of Deformed Plain Woven Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Vaidya, Uday K.

    2013-12-01

    This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.

  16. Causes of the mid-latitudinal daytime NmF2 semi-annual anomaly at solar minimum

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2018-04-01

    Ionospheric ionosonde and radar observations and theoretical calculations of the F2-layer peak altitude, hmF2, and number density, NmF2, over Millstone Hill during winter, spring, summer, and autumn geomagnetically quiet time periods at low solar activity are used to study the causes of the observed daytime NmF2 semi-annual anomaly. It follows from the model simulations that this anomalous phenomenon arises in the ionosphere mainly as a result of seasonal variations of the following atmospheric parameters: (1) the plasma drift along geomagnetic field lines due to corresponding changes in neutral wind components, (2) temperature and number densities of the neutral atmosphere, and (3) an optical thickness of the atmosphere caused by the dependence of the solar zenith angle on the day of the year for the same solar local time. Seasonal variations of the production rate unexcited O+ ions due to chemical reactions involving electronically excited O+ ions contribute to the formation of the NmF2 semi-annual anomaly during the predominant part of the existence time of this anomalous phenomenon. However, these seasonal variations are not significant, and this mechanism should be considered only as an additional source of the NmF2 semi-annual anomaly during its time of existence. The reactions of unexcited O+ ions with vibrationally excited N2 and O2 cause only weak changes of NmF2 and these changes are close in magnitude at a given solar local time during the winter, spring, summer, and autumn daytime conditions under consideration. Ignoring these reactions cannot produce a significant impact on the formation of the NmF2 semi-annual anomaly.

  17. Improvements in brain activation detection using time-resolved diffuse optical means

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  18. Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI

    NASA Astrophysics Data System (ADS)

    Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.

    2017-12-01

    The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.

  19. Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport

    DOE PAGES

    Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael

    2016-04-20

    Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their naturalmore » dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.« less

  20. Variation of the shower lateral spread with air temperature at the ground

    NASA Astrophysics Data System (ADS)

    Wilczyńska, B.; Engel, R.; Homola, P.; Keilhauer, B.; Klages, H.; Pękala, J.; Wilczyński, H.

    The vertical profile of air density at a given site varies considerably with time. Well understood seasonal differences are present, but sizeable effects on shorter time scales, like day to night or day to day variations, are also observed. In consequence, the Moliere radius changes, influencing the lateral distribution of particles in the air showers and therefore may influence the shower detection in surface detector arrays. In air shower reconstruction, usually seasonal average profiles of the atmosphere are used, because local daily measurements of the profile are rarely available. Therefore, the daily fluctuations of the atmosphere are not accounted for. This simplification increases the inaccuracies of shower reconstruction. We show that a universal correlation exists between the ground temperature and the shape of the atmospheric profile, up to altitudes of several kilometers, hence providing a method to reduce inaccuracies in shower reconstruction due to weather variation.

  1. Functional genomics of physiological plasticity and local adaptation in killifish.

    PubMed

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  2. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  3. Time scales of circulation and mixing processes of San Francisco Bay waters

    USGS Publications Warehouse

    Walters, R.A.; Cheng, R.T.; Conomos, T.J.

    1985-01-01

    Conceptual models for tidal period and low-frequency variations in sea level, currents, and mixing processes in the northern and southern reaches of San Francisco Bay describe the contrasting characteristics and dissimilar processes and rates in these embayments: The northern reach is a partially mixed estuary whereas the southern reach (South Bay) is a tidally oscillating lagoon with density-driven exchanges with the northern reach. The mixed semidiurnal tides are mixtures of progressive and standing waves. The relatively simple oscillations in South Bay are nearly standing waves, with energy propagating down the channels and dispersing into the broad shoal areas. The tides of the northern reach have the general properties of a progressive wave but are altered at the constriction of the embayments and gradually change in an upstream direction to a mixture of progressive and standing waves. The spring and neap variations of the tides are pronounced and cause fortnightly varying tidal currents that affect mixing and salinity stratification in the water column. Wind stress on the water surface, freshwater inflow, and tidal currents interacting with the complex bay configuration are the major local forcing mechanisms creating low-frequency variations in sea level and currents. These local forcing mechanisms drive the residual flows which, with tidal diffusion, control the water-replacement rates in the estuary. In the northern reach, the longitudinal density gradient drives an estuarine circulation in the channels, and the spatial variation in tidal amplitude creates a tidally-driven residual circulation. In contrast, South Bay exhibits a balance between wind-driven circulation and tidally-driven residual circulation for most of the year. During winter, however, there can be sufficient density variations to drive multilayer (2 to 3) flows in the channel of South Bay. Mixing models (that include both diffusive and dispersive processes) are based on time scales associated with salt variations at the boundaries and those associated with the local forcing mechanisms, while the spatial scales of variations are dependent upon the configuration of the embayments. In the northern reach, where the estuarine circulation is strong, the salt flux is carried by the mean advection of the mean salt field. Where large salinity gradients are present, the tidal correlation part of the salt flux is of the same order as the advective part. Our knowledge of mixing and exchange rates in South Bay is poor. As this embayment is nearly isohaline, the salt flux is dominated entirely by the mean advection of the mean salt field. During and after peaks in river discharge, water mixing becomes more dynamic, with a strong density-driven current creating a net exchange of both water mass and salt. These exchanges are stronger during neap tides. Residence times of the water masses vary seasonally and differ between reaches. In the northern reach, residence times are on the order of days for high winter river discharge and of months for summer periods. The residence times for South Bay are fairly long (on the order of several months) during summer, and typically shorter (less than a month) during winter when density-driven exchanges occur. ?? 1985 Dr W. Junk Publishers.

  4. Too Big, Too Small, or Just Right? Cost-Efficiency of Environmental Inspection Services in Connecticut.

    PubMed

    Cohen, Jeffrey P; Checko, Patricia J

    2017-12-01

    To assess optimal activity size/mix of Connecticut local public health jurisdictions, through estimating economies of scale/scope/specialization for environmental inspections/services. Connecticut's 74 local health jurisdictions (LHJs) must provide environmental health services, but their efficiency or reasons for wide cost variation are unknown. The public health system is decentralized, with variation in organizational structure/size. We develop/compile a longitudinal dataset covering all 74 LHJs, annually from 2005 to 2012. We estimate a public health services/inspections cost function, where inputs are translated into outputs. We consider separate estimates of economies of scale/scope/specialization for four mandated inspection types. We obtain data from Connecticut Department of Public Health databases, reports, and other publicly available sources. There has been no known previous utilization of this combined dataset. On average, regional districts, municipal departments, and part-time LHJs are performing fewer than the efficient number of inspections. The full-time municipal departments and regional districts are more efficient but still not at the minimum efficient scale. The regional districts' elasticities of scale are larger, implying they are more efficient than municipal health departments. Local health jurisdictions may enhance efficiency by increasing inspections and/or sharing some services. © Health Research and Educational Trust.

  5. The Effect of Local Violence on Children’s Attention and Impulse Control

    PubMed Central

    Tirado-Strayer, Nicole; Papachristos, Andrew V.; Raver, C. Cybele

    2012-01-01

    Objectives. We examined whether the burden of violence in a child’s community environment alters the child’s behavior and functioning in the classroom setting. Methods. To identify the effects of local violence, we exploited variation in the timing of local homicides, based on data from the Chicago Police Department, relative to the timing of interview assessments conducted as part of a randomized controlled trial conducted with preschoolers in Head Start programs from 2004–2006, the Chicago School Readiness Project. We compared children’s scores when exposed to recent local violence with scores when no recent violence had occurred to identify causal effects. Results. When children were assessed within a week of a homicide that occurred near their home, they exhibited lower levels of attention and impulse control and lower preacademic skills. The analysis showed strong positive effects of local violence on parental distress, providing suggestive evidence that parental responses may be a likely pathway by which local violence affects young children. Conclusions. Exposure to homicide generates acute psychological distress among caregivers and impairs children’s self-regulatory behavior and cognitive functioning. PMID:23078491

  6. Ground-water/surface-water responses to global climate simulations, Santa Clara-Calleguas basin, Ventura County, California, 1950-93

    USGS Publications Warehouse

    Hanson, Randall T.; Dettinger, Michael D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara-Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions.

  7. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    USGS Publications Warehouse

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  8. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Hartman, Gideon; Richards, Mike

    2014-02-01

    The relative contributions of bedrock and atmospheric sources to bioavailable strontium (Sr) pools in local soils was studied in Northern Israel and the Golan regions through intensive systematic sampling of modern plants and invertebrates, to produce a map of modern bioavailable strontium isotope ratios (87Sr/86Sr) for regional reconstructions of human and animal mobility patterns. The study investigates sources of variability in bioavailable 87Sr/86Sr ratios, in particular the intra-and inter-site range of variation in plant 87Sr/86Sr ratios, the range of 87Sr/86Sr ratios of plants growing on marine sedimentary versus volcanic geologies, the differences between ligneous and non-ligneous plants with varying growth and water utilization strategies, and the relative contribution of atmospheric Sr sources from different soil and vegetation types and climatic zones. Results indicate predictable variation in 87Sr/86Sr ratios. Inter- and intra-site differences in bioavailable 87Sr/86Sr ratios average of 0.00025, while the range of 87Sr/86Sr ratios measured regionally in plants and invertebrates is 0.7090 in Pleistocene calcareous sandstone and 0.7074 in mid-Pleistocene volcanic pyroclast. The 87Sr/86Sr ratios measured in plants growing on volcanic bedrock show time dependent increases in atmospheric deposition relative to bedrock weathering. The 87Sr/86Sr ratios measured in plants growing on renzina soils depends on precipitation. The spacing between bedrock 87Sr/86Sr ratios and plants is highest in wet conditions and decreases in dry conditions. The 87Sr/86Sr ratios measured in plants growing on terra rossa soils is relatively constant (0.7085) regardless of precipitation. Ligneous plants are typically closer to bedrock 87Sr/86Sr ratios than non-ligneous plants. Since the bioavailable 87Sr/86Sr ratios currently measured in the region reflect a mix of both exogenous and endogenous sources, changes in the relative contribution of exogenous sources can cause variation over time. Precipitation, the age of the bedrock and the overall Sr concentration must to be taken into consideration when interpreting geographical variation in strontium isotopes throughout a region. Because these factors can change through time, we recommend that Sr data from time periods older than the Holocene be interpreted with caution. What is the range of variation in the 87Sr/86Sr ratios of vegetation within individual sampling locales? Are there differences in the 87Sr/86Sr ratios of ligneous (woody plants) and non-ligneous (herbaceous plants) within a single sampling location? What is the range of variability in the 87Sr/86Sr ratios of plants growing on marine sedimentary and volcanic geologies? How do the relative contributions of atmospheric Sr sources vary with geology, precipitation, distance from the sea, soil type, and vegetation type. Outlining Sr variability will enable the prediction of the Sr ratio of herbivores in various ecological niches as well as the mapping of bioavailable Sr ratios for a range of pre-Holocene landscapes.In contrast to previous mapping efforts in the region (Shewan, 2004; Perry et al., 2009), this study takes a systematic approach that examines the relative contribution of atmospherically deposited Sr and local weathered bedrock Sr sources to local bioavailable 87Sr/86Sr pools. This is based on the intensive sampling of plants and herbivorous invertebrates primarily from volcanic landscapes and marine sedimentary landscapes composed by large of limestone, dolomite, chalk and marl. The repeated sampling of individual locales, and comparisons between distinct locales of the same geological outcrops were initially planned to detemine the degree of homogeneity of bioavailable 87Sr/86Sr ratios for the purpose of regional landscape mapping. This is important due to the current lack of data on microscale variation in bioavailable sources that might limit the degree of separation between different exposures.

  9. What drives the seasonal pattern of δ13C in the net land-atmosphere CO2 exchange across the United States?

    NASA Astrophysics Data System (ADS)

    Raczka, B. M.; Dlugokencky, E. J.; Ehleringer, J. R.; Lai, C. T.; Pataki, D. E.; Saleska, S. R.; Torn, M. S.; Vaughn, B. H.; Wehr, R. A.; Bowling, D. R.

    2016-12-01

    The seasonal pattern of δ13C of atmospheric CO2 depends upon both local and non-local land-atmosphere exchange and atmospheric transport. It has been suggested that the seasonal pattern is driven primarily from local variation in the δ13C of the net CO2 flux (exchange between vegetation and the atmosphere) as a result of variation of stomatal conductance of the vegetation. Here we study local variation of δ13C of the land-atmosphere exchange at 7 sites across the United States representing forests (Harvard, Howland, Niwot Ridge, Wind River), grasslands (Southern Great Plains, Rannell Prairie) and an urban center (Salt Lake City). Using a simple 2-part mixing model with background corrections we find that the δ13C of the net exchange of CO2 was most enriched at the grassland sites (-18.9 o/oo), and most depleted at the urban site (-29.6 o/oo) due to the contribution of C4 photosynthesis and fossil fuel emissions, respectively. The amplitude of the seasonal cycle was most pronounced at the C3/C4 grassland and the urban sites. In contrast, the forested sites have a reduced seasonal cycle, and remain almost constant during the growing season (0.49 o/oo change). Furthermore, by accounting for relatively fast δ13C variations in non-local sources at Niwot Ridge we find that the seasonal pattern in δ13C of net exchange is eliminated altogether. These results support the idea that a coherent, global seasonal pattern in δ13C of net exchange is influenced by seasonal transitions in C3/C4 grass, and the intensity and seasonal timing of fossil fuel emissions. This will have important implications for studies that use δ13C to constrain large-scale carbon fluxes.

  10. Near-field control and imaging of free charge carrier variations in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel

    2016-02-01

    Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.

  11. General constraints on sampling wildlife on FIA plots

    USGS Publications Warehouse

    Bailey, L.L.; Sauer, J.R.; Nichols, J.D.; Geissler, P.H.; McRoberts, Ronald E.; Reams, Gregory A.; Van Deusen, Paul C.; McWilliams, William H.; Cieszewski, Chris J.

    2005-01-01

    This paper reviews the constraints to sampling wildlife populations at FIA points. Wildlife sampling programs must have well-defined goals and provide information adequate to meet those goals. Investigators should choose a State variable based on information needs and the spatial sampling scale. We discuss estimation-based methods for three State variables: species richness, abundance, and patch occupancy. All methods incorporate two essential sources of variation: detectability estimation and spatial variation. FIA sampling imposes specific space and time criteria that may need to be adjusted to meet local wildlife objectives.

  12. More Solar Activities for Astro 101

    NASA Astrophysics Data System (ADS)

    West, M. L.

    2002-12-01

    For many astronomy students the sun is not only the brightest astronomical object they can observe but also the most interesting since it has an immediate effect on their daily lives. Students enjoy analyzing their own observations using a Sunspotter, or images from archives such as the RBSE CD-ROM (1999, 2000, T. Rector), or current images found on the Internet. They can measure each sunspot's latitude, longitude, and approximate surface area by transparent Stonyhurst grids and fine graph paper, or NIH Image or Scion Image tools. Graphing latitude vs. time shows its near constancy. Longitude increases linearly with time and allows a measure of the sun's rotation period. Area vs. time increases for some spot groups, decreases for others, and fades but revives for others. This behavior elicits a lot of questions, hypotheses, and plans for more observations. The variation of solar rotation period with latitude can be tested. Does the sun's rotation period change with month and year also? One of the oldest calendar markers is the sun's altitude at local noon. It can be measured easily with a paper scale attached to the cradle of a Sunspotter. Noticing the civil time at local noon allows one to understand the analemma. What do sunspots correlate with? Students have investigated the correlation of sunspot numbers or areas with radio bursts, visible light or x-ray flares, solar wind speed, density, or magnetic field, aurorae, geomagnetic storms, the Earth's ozone layer, aircraft flight safety, ultraviolet light, global average temperature, local daily temperature variations, power grid outages, disruptions of Earth orbiting satellites or interplanetary spacecraft, earthquakes, hurricanes, tornadoes, or other natural disasters,

  13. Elevational Gradients in β-Diversity Reflect Variation in the Strength of Local Community Assembly Mechanisms across Spatial Scales

    PubMed Central

    Tello, J. Sebastián; Myers, Jonathan A.; Macía, Manuel J.; Fuentes, Alfredo F.; Cayola, Leslie; Arellano, Gabriel; Loza, M. Isabel; Torrez, Vania; Cornejo, Maritza; Miranda, Tatiana B.; Jørgensen, Peter M.

    2015-01-01

    Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity. PMID:25803846

  14. How complexity science can inform scale-up and spread in health care: understanding the role of self-organization in variation across local contexts.

    PubMed

    Lanham, Holly Jordan; Leykum, Luci K; Taylor, Barbara S; McCannon, C Joseph; Lindberg, Curt; Lester, Richard T

    2013-09-01

    Health care systems struggle to scale-up and spread effective practices across diverse settings. Failures in scale-up and spread (SUS) are often attributed to a lack of consideration for variation in local contexts among different health care delivery settings. We argue that SUS occurs within complex systems and that self-organization plays an important role in the success, or failure, of SUS. Self-organization is a process whereby local interactions give rise to patterns of organizing. These patterns may be stable or unstable, and they evolve over time. Self-organization is a major contributor to local variations across health care delivery settings. Thus, better understanding of self-organization in the context of SUS is needed. We re-examine two cases of successful SUS: 1) the application of a mobile phone short message service intervention to improve adherence to medications during HIV treatment scale up in resource-limited settings, and 2) MRSA prevention in hospital inpatient settings in the United States. Based on insights from these cases, we discuss the role of interdependencies and sensemaking in leveraging self-organization in SUS initiatives. We argue that self-organization, while not completely controllable, can be influenced, and that improving interdependencies and sensemaking among SUS stakeholders is a strategy for facilitating self-organization processes that increase the probability of spreading effective practices across diverse settings. Published by Elsevier Ltd.

  15. Iterative Nonlocal Total Variation Regularization Method for Image Restoration

    PubMed Central

    Xu, Huanyu; Sun, Quansen; Luo, Nan; Cao, Guo; Xia, Deshen

    2013-01-01

    In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods. PMID:23776560

  16. Geographic Variation in the Use of Adjuvant Therapy among Elderly Patients with Resected Non-Small Cell Lung Cancer

    PubMed Central

    Tien, Yu-Yu; Wright, Kara; Halfdanarson, Thorvardur R.; Abu-Hejleh, Taher; Brooks, John M.

    2016-01-01

    Objectives The purpose of this study was to assess to what extent geographic variation in adjuvant treatment for non-small cell lung cancer (NSCLC) patients would remain, after controlling for patient and area-level characteristics. Materials and Methods A retrospective cohort of 18,410 Medicare beneficiaries with resected, stage I-IIIA NSCLC was identified from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Adjuvant therapies were classified as adjuvant chemotherapy (ACT), postoperative radiation therapy (PORT), or no adjuvant therapy. Predicted treatment probabilities were estimated for each patient given their clinical, demographic, and area-level characteristics with multivariate logistic regression. Area Treatment Ratios were used to estimate the propensity of patients in a local area to receive an adjuvant treatment, controlling for characteristics of patients in the area. Areas were categorized as low-, mid- and high-use and mapped for two representative SEER registries. Results Overall, 10%, 12%, and 78% of patients received ACT, PORT and no adjuvant therapy, respectively. Age, sex, stage, type and year of surgery, and comorbidity were associated with adjuvant treatment use. Even after adjusting for patient characteristics, substantial geographic treatment variation remained. High- and low-use areas were tightly juxtaposed within and across SEER registries, often within the same county. In some local areas, patients were up to eight times more likely to receive adjuvant therapy than expected, given their characteristics. On the other hand, almost a quarter of patients lived in local areas in which patients were more than three times less likely to receive ACT than would be predicted. Conclusion Controlling for patient and area-level covariates did not remove geographic variation in adjuvant therapies for resected NSCLC patients. A greater proportion of patients were treated less than expected, rather than more than expected. Further research is needed to better understand its causes and potential impact on outcomes. PMID:27040848

  17. Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback

    NASA Astrophysics Data System (ADS)

    Gurevich, Svetlana V.

    2013-05-01

    We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.

  18. First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.

    2012-05-01

    Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.

  19. Poa secunda local collections and commercial releases: A genotypic evaluation

    PubMed Central

    Shaw, Alanna N.; Mummey, Daniel L.

    2017-01-01

    The genetics of native plants influence the success of ecological restoration, yet genetic variability of local seed collections and commercial seed releases remains unclear for most taxa. Poa secunda, a common native grass species in Intermountain West grasslands and a frequent component of restoration seed mixes, is one such species. Here, we evaluate the genetic variation of local Poa secunda collections in the context of wild populations and commercial seed releases. We evaluated AFLP markers for seven Poa secunda collections made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportunity, and Sherman). We compare the genetic distance and distribution of genetic variation within and between local collections and commercial releases. The extent and patterns of genetic variation in our local collections indicate subtle site differences with most variation occurring within rather than between collections. Identical genetic matches were usually, but not always, found within 5 m2 collection sites. Our results suggest that the genetic variation in two Poa secunda releases (High Plains and MT-1) is similar to our local collections. Our results affirm that guidelines for Poa secunda seed collection should follow recommendations for selfing species, by collecting from many sites over large individual sites. PMID:28369130

  20. Poa secunda local collections and commercial releases: A genotypic evaluation.

    PubMed

    Shaw, Alanna N; Mummey, Daniel L

    2017-01-01

    The genetics of native plants influence the success of ecological restoration, yet genetic variability of local seed collections and commercial seed releases remains unclear for most taxa. Poa secunda, a common native grass species in Intermountain West grasslands and a frequent component of restoration seed mixes, is one such species. Here, we evaluate the genetic variation of local Poa secunda collections in the context of wild populations and commercial seed releases. We evaluated AFLP markers for seven Poa secunda collections made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportunity, and Sherman). We compare the genetic distance and distribution of genetic variation within and between local collections and commercial releases. The extent and patterns of genetic variation in our local collections indicate subtle site differences with most variation occurring within rather than between collections. Identical genetic matches were usually, but not always, found within 5 m2 collection sites. Our results suggest that the genetic variation in two Poa secunda releases (High Plains and MT-1) is similar to our local collections. Our results affirm that guidelines for Poa secunda seed collection should follow recommendations for selfing species, by collecting from many sites over large individual sites.

  1. A procedure for damage detection and localization of framed buildings based on curvature variation

    NASA Astrophysics Data System (ADS)

    Ditommaso, Rocco; Carlo Ponzo, Felice; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Domenico; Nigro, Antonella

    2014-05-01

    Structural Health Monitoring and Damage Detection are topics of current interest in civil, mechanical and aerospace engineering. Damage Detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature of the last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Structural damage exhibits its main effects in terms of stiffness and damping variation. As a consequence, a permanent dynamic monitoring system makes it possible to detect and, if suitably concentrated on the structure, to localize structural and non-structural damage occurred on the structure during a strong earthquake. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation (NDE) based on the variation of the dynamic behaviour of structures under seismic loads. Pandey et al. (1991) highlighted on the possibility to use the structural mode shapes to extract useful information for structural damage localization. In this paper a new procedure for damage detection on framed structures based on changes in modal curvature is proposed. The proposed approach is based on the use of Stockwell Transform, a special kind of integral transformation that become a powerful tool for nonlinear signal analysis and then to analyse the nonlinear behaviour of a general structure. Using this kind of approach, it is possible to use a band-variable filter (Ditommaso et al., 2012) to extract from a signal recorded on a structure (excited by an earthquake) the response related to a single mode of vibration for which the related frequency changes over time (if the structure is being damaged). İn general, by acting simultaneously in both frequency and time domain, it is possible to use the band-variable filter to extract the dynamic characteristics of a system that evolves over time. Aim of this paper is to show, through practical examples, how it is possible to identify and to localize damage on a structure comparing mode shapes and the related curvature variations over time. It is possible to demonstrate that mode curvature variation is strongly related with the damage occurred on a structure. This paper resumes the main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by different geometric configurations and designed for gravity loads only. The numerical campaign was conducted using both natural and artificial accelerograms compatible with the Italian code. The main results of experimental shaking table tests carried out on a steel framed model are also showed to confirm the effectiveness of the proposed procedure. REFERENCES Ditommaso R., Mucciarelli M., Ponzo F. C. (2012). Analysis of non-stationary structural systems by using a band-variable filter. Bulletin of Earthquake Engineering. Volume 10, Number 3, pp. 895-911. DOI: 10.1007/s10518-012-9338-y. Pandey AK, Biswas M, Samman MM (1991) "Damage detection from changes in curvature mode shapes", Journal of Sound and Vibration, Vol. 145: Issue 2, pp. 321-332.

  2. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin.

    PubMed

    Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L

    2018-06-01

    The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome-wide association mapping, in combination with the analysis of major phenology loci, revealed a three-component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd-D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd-B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small-effect quantitative trait loci that facilitate fine-tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd-1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally. © 2018 John Wiley & Sons Ltd.

  3. The economic, institutional, and political determinants of public health delivery system structures.

    PubMed

    Ingram, Richard C; Scutchfield, F Douglas; Mays, Glen P; Bhandari, Michelyn W

    2012-01-01

    A typology of local public health systems was recently introduced, and a large degree of structural transformation over time was discovered in the systems analyzed. We present a qualitative exploration of the factors that determine variation and change in the seven structural configurations that comprise the local public health delivery system typology. We applied a 10-item semistructured telephone interview protocol to representatives from the local health agency in two randomly selected systems from each configuration--one that had maintained configuration over time and one that had changed configuration over time. We assessed the interviews for patterns of variation between the configurations. Four key determinants of structural change emerged: availability of financial resources, interorganizational relationships, public health agency organization, and political relationships. Systems that had changed were more likely to experience strengthened partnerships between public health agencies and other community organizations and enjoy support from policy makers, while stable systems were more likely to be characterized by strong partnerships between public health agencies and other governmental bodies and less supportive relationships with policy makers. This research provides information regarding the determinants of system change, and may help public health leaders to better prepare for the impacts of change in the areas discussed. It may also help those who are seeking to implement change to determine the contextual factors that need to be in place before change can happen, or how best to implement change in the face of contextual factors that are beyond their control.

  4. Determining Chronic Disease Prevalence in Local Populations Using Emergency Department Surveillance

    PubMed Central

    Long, Judith A.; Wall, Stephen P.; Carr, Brendan G.; Satchell, Samantha N.; Braithwaite, R. Scott; Elbel, Brian

    2015-01-01

    Objectives. We sought to improve public health surveillance by using a geographic analysis of emergency department (ED) visits to determine local chronic disease prevalence. Methods. Using an all-payer administrative database, we determined the proportion of unique ED patients with diabetes, hypertension, or asthma. We compared these rates to those determined by the New York City Community Health Survey. For diabetes prevalence, we also analyzed the fidelity of longitudinal estimates using logistic regression and determined disease burden within census tracts using geocoded addresses. Results. We identified 4.4 million unique New York City adults visiting an ED between 2009 and 2012. When we compared our emergency sample to survey data, rates of neighborhood diabetes, hypertension, and asthma prevalence were similar (correlation coefficient = 0.86, 0.88, and 0.77, respectively). In addition, our method demonstrated less year-to-year scatter and identified significant variation of disease burden within neighborhoods among census tracts. Conclusions. Our method for determining chronic disease prevalence correlates with a validated health survey and may have higher reliability over time and greater granularity at a local level. Our findings can improve public health surveillance by identifying local variation of disease prevalence. PMID:26180983

  5. Determining Chronic Disease Prevalence in Local Populations Using Emergency Department Surveillance.

    PubMed

    Lee, David C; Long, Judith A; Wall, Stephen P; Carr, Brendan G; Satchell, Samantha N; Braithwaite, R Scott; Elbel, Brian

    2015-09-01

    We sought to improve public health surveillance by using a geographic analysis of emergency department (ED) visits to determine local chronic disease prevalence. Using an all-payer administrative database, we determined the proportion of unique ED patients with diabetes, hypertension, or asthma. We compared these rates to those determined by the New York City Community Health Survey. For diabetes prevalence, we also analyzed the fidelity of longitudinal estimates using logistic regression and determined disease burden within census tracts using geocoded addresses. We identified 4.4 million unique New York City adults visiting an ED between 2009 and 2012. When we compared our emergency sample to survey data, rates of neighborhood diabetes, hypertension, and asthma prevalence were similar (correlation coefficient = 0.86, 0.88, and 0.77, respectively). In addition, our method demonstrated less year-to-year scatter and identified significant variation of disease burden within neighborhoods among census tracts. Our method for determining chronic disease prevalence correlates with a validated health survey and may have higher reliability over time and greater granularity at a local level. Our findings can improve public health surveillance by identifying local variation of disease prevalence.

  6. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  7. Chemical Variations in a Granitic Pluton and Its Surrounding Rocks.

    PubMed

    Baird, A K; McIntyre, D B; Welday, E E; Madlem, K W

    1964-10-09

    New techniques of x-ray fluorescence spectrography have provided, for the first time, abundant data regarding chemical variability of granitic rocks on different scales. The results suggest that current designs of sampling plans for trend surface analysis should be modified; in particular several specimens, preferably drillcores, may be required at each locality.

  8. Local reduction of certain wave operators to one-dimensional form

    NASA Technical Reports Server (NTRS)

    Roe, Philip

    1994-01-01

    It is noted that certain common linear wave operators have the property that linear variation of the initial data gives rise to one-dimensional evolution in a plane defined by time and some direction in space. The analysis is given For operators arising in acoustics, electromagnetics, elastodynamics, and an abstract system.

  9. The Growth Periods Responses of Double-season Paddy Rice to Climate Change in Hunan Province, China over the Past Two Decades

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, Y.; Yi, M.; Ye, T.

    2015-12-01

    The shifts of timing and length of the growing season (TLGS) are important indicators of crop response to climate change. With the help of satellite image data, it becomes feasible to retrieve the TLGS in a spatially continuous manner, which also accommodates local variation of TGSs. In this article, the TGSs of paddy rice in Hunan Province, China since 1995 was retrieved using times-series curves of MODIS Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI). The change in TLGS and its connection to regional climate change was discussed. The results showed the advance of TGSs of double-season paddy rice and the reduction of GSL in the past 20 years, which is believed to be linked to the rise in the temperature and precipitation in the growth periods. Understanding the local variation and trend of TLGS influenced by climate change is essential for making agricultural adaptive policies to reduce the risk of crop damaged, also can provide key information for studying how multi-hazards affect crop exposure.

  10. IBEX: The Evolving Global View and Synergies with In Situ Voyager Observations

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2015-12-01

    The Interstellar Boundary Explorer (IBEX) has now returned nearly seven years of observations, which comprise 14 full sets of energy resolved all-sky maps and provide the global view of our Sun's interaction with very local part of the galaxy. With such a long baseline of observations, we are able to examine time variations in the outer heliosphere as it responds to both 11-year solar cycle variations and longer term secular evolution of the three dimensional solar wind. Now that we have collected over half a solar cycle of observations, IBEX is beginning to show us how the heliosphere - our home in the galaxy - varies in time as well as space. In this talk we present the most recent observations and review some other recent discoveries from IBEX. We also examine the synergy between the global view provided by IBEX and the in situ observations form the Voyager 1 and 2 spacecraft. Finally, we discuss the incredible improvement in interstellar observations - and our understanding of the local interstellar medium - that the Interstellar Mapping and Acceleration Probe (IMAP) will provide.

  11. Understanding and monitoring the consequences of human impacts on intraspecific variation.

    PubMed

    Mimura, Makiko; Yahara, Tetsukazu; Faith, Daniel P; Vázquez-Domínguez, Ella; Colautti, Robert I; Araki, Hitoshi; Javadi, Firouzeh; Núñez-Farfán, Juan; Mori, Akira S; Zhou, Shiliang; Hollingsworth, Peter M; Neaves, Linda E; Fukano, Yuya; Smith, Gideon F; Sato, Yo-Ichiro; Tachida, Hidenori; Hendry, Andrew P

    2017-02-01

    Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.

  12. Influence of Sub-Daily Variation on Multi-Fractal Detrended Fluctuation Analysis of Wind Speed Time Series

    PubMed Central

    Li, Weinan; Kong, Yanjun; Cong, Xiangyu

    2016-01-01

    Using multi-fractal detrended fluctuation analysis (MF-DFA), the scaling features of wind speed time series (WSTS) could be explored. In this paper, we discuss the influence of sub-daily variation, which is a natural feature of wind, in MF-DFA of WSTS. First, the choice of the lower bound of the segment length, a significant parameter of MF-DFA, was studied. The results of expanding the lower bound into sub-daily scope shows that an abrupt declination and discrepancy of scaling exponents is caused by the inability to keep the whole diel process of wind in one single segment. Additionally, the specific value, which is effected by the sub-daily feature of local meteo-climatic, might be different. Second, the intra-day temporal order of wind was shuffled to determine the impact of diel variation on scaling exponents of MF-DFA. The results illustrate that disregarding diel variation leads to errors in scaling. We propose that during the MF-DFA of WSTS, the segment length should be longer than 1 day and the diel variation of wind should be maintained to avoid abnormal phenomena and discrepancy in scaling exponents. PMID:26741491

  13. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Separating spatial search and efficiency rates as components of predation risk

    PubMed Central

    DeCesare, Nicholas J.

    2012-01-01

    Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk. PMID:22977145

  15. [Geographical variation in the species Montivagum dihumerale and speciation in chigger mites (Acari: Trombiculidae)].

    PubMed

    Stekol'nikov, A A

    2006-01-01

    Intraspecific morphological variation of the chigger mite species Montivagum dihumerale (Traub et Nadchatram, 1967) is studied. Eco-geographic rules of the variation are revealed. General size of mites is found to be increased along with the rise of the high-mountain character of the landscape in the collection localities. The numbers of idiosomal setae are varied independently from the size parameters and geographically close populations are proved to be the most similar by these characters. At the same time, numbers of the setae of different types play the leading role in the discrimination of closely related Montivagum species, while the eco-geographical rules have not been found in this genus at the level of interspecific differences. As a result, the hypothesis is set up, that a significant degree of isolation of local populations separated from each other by high mountain ranges of the Central Asia is the main factor of speciation in the genus Montivagum. Regional character of this speciation mode is confirmed by the comparison with other chigger mites taxa.

  16. Phase and amplitude Variation of Weddell Sea Anomaly at King Sejong Station in Antarctic between 2005 and 2009

    NASA Astrophysics Data System (ADS)

    Chung, J.; Lee, C.; Jee, G.

    2011-12-01

    The Weddell Sea Anomaly (WSA) in ionosphere has been defined by higher electron density at nighttime than during the daytime on summer season near the region of the Weddell Sea.Recent studies show the WSA is an extreme case of longitudinal variation and occurrs all of season except for winter when F10.7 is high. We examine the temporal variation of the WSA using the ground-based GPS TEC measured King Sejong station (geographic latitude 62.2°S, longitude 58.5°W, corrected geomagnetic latitude 48°S) in Antarctic between 2005 and 2009 in condition of solar minimum. We analyze the characteristics of diurnal and semi-diurnal variation for all of years and examine the yearly and seasonal variation of phase and amplitude of the WSA. Our results of local time GPS TEC variation show the amplitudes of the WSA are significant in the summer and its phases appear to be changed according to the season.

  17. Diurnal observations of HCl altitude variation in the 70-100 km mesosphere of Venus

    NASA Astrophysics Data System (ADS)

    Sandor, Brad J.; Todd Clancy, R.

    2017-07-01

    First submm spectroscopic observations of the 625.9 GHz H35Cl absorption lines of the Venus dayside atmosphere were obtained with the James Clerk Maxwell Telescope (JCMT) on March 2, 2013. These data, which support retrieval of HCl altitude distributions in the Venus mesosphere (70-100 km), are presented here and compared with previously reported JCMT observations of Venus nightside HCl (Sandor et al., 2012). The measured dayside profile agrees with that of the nightside, indicating no diurnal variation is present. More specifically, the nightside spectra revealed a secular decrease of upper mesospheric HCl between observations one month apart, at fixed latitude and local time. The dayside profile reported here presents upper mesospheric abundances that are bracketed by the two previously measured nightside profiles, indicating that if diurnal variation is present, it must be weaker than the secular variations occurring at fixed local time. The previous study, which measured nightside HCl abundances above 85 km to be much smaller than predicted from photochemical modeling, suggested a dynamical explanation for the disagreement wherein nightside downwelling associated with the SubSolar to AntiSolar (SSAS) atmospheric circulation might suppress upper mesospheric abundances predicted purely from photochemistry. However a straightforward prediction from the proposed mechanism is that HCl abundance on the dayside, where the SSAS drives upward rather than downward transport should at least agree with, and perhaps exceed that of the photochemical model. The finding that dayside HCl abundance agrees with that of the nightside, hence also is much smaller than that of the model shows the SSAS hypothesis to be incorrect.

  18. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    NASA Technical Reports Server (NTRS)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  19. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  20. Queueing for healthcare.

    PubMed

    Palvannan, R Kannapiran; Teow, Kiok Liang

    2012-04-01

    Patient queues are prevalent in healthcare and wait time is one measure of access to care. We illustrate Queueing Theory-an analytical tool that has provided many insights to service providers when designing new service systems and managing existing ones. This established theory helps us to quantify the appropriate service capacity to meet the patient demand, balancing system utilization and the patient's wait time. It considers four key factors that affect the patient's wait time: average patient demand, average service rate and the variation in both. We illustrate four basic insights that will be useful for managers and doctors who manage healthcare delivery systems, at hospital or department level. Two examples from local hospitals are shown where we have used queueing models to estimate the service capacity and analyze the impact of capacity configurations, while considering the inherent variation in healthcare.

  1. Equatorial ionization anomaly development as studied by GPS TEC and foF2 over Brazil: A comparison of observations with model results from SUPIM and IRI-2012

    NASA Astrophysics Data System (ADS)

    Nogueira, P. A. B.; Abdu, M. A.; Souza, J. R.; Batista, I. S.; Bailey, G. J.; Santos, A. M.; Takahashi, H.

    2013-11-01

    The equatorial ionization anomaly (EIA) development is studied using the total electron content (TEC) observed by the Global Positioning System (GPS) satellites, the F2-layer critical frequency (foF2) as measured by digisondes operated in the Brazilian sector, and by model simulation using the SUPIM (Sheffield University Plasmasphere Ionosphere Model). We have used two indices based on foF2 and TEC to represent the strength of the EIA Southern Anomaly Crest (SAC), which are denoted, respectively, by SAC(foF2) and SAC(TEC). Significant differences in the local time variations of the EIA intensity, as represented by these two indices, are investigated. The observed SAC indices are compared with their values modeled by the SUPIM and also by the International Reference Ionosphere (IRI)-2012. The SUPIM simulations that use the standard E×B plasma drift and neutral air wind models are found to provide acceptable representations of the observed foF2 and TEC, and hence the indices SAC(foF2) and SAC(TEC) during daytime, whereas the IRI-2012 model is not, except during the post-midnight/sunrise hours. It is found that the differences in the local time variations between the SAC(foF2) and SAC(TEC) can be reduced by limiting the TEC integrations in height up to an altitude of 630 km in the SUPIM calculations. It is also found that when the EIA intensity is calculated for an intermediate dip latitude (12°S) the difference between the local time variation patterns of the two corresponding indices in the experimental data and in the SUPIM results is reduced. For the IRI-2012 values, the subequatorial station modification does not appear to have any effect.

  2. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.

  3. Phytogeographical Analysis of Seed Plant Genera in China

    PubMed Central

    QIAN, HONG; WANG, SILONG; HE, JIN-SHENG; ZHANG, JUNLI; WANG, LISONG; WANG, XIANLI; GUO, KE

    2006-01-01

    • Background and Aims A central goal of biogeography and ecology is to uncover and understand distributional patterns of organisms. China has long been a focus of attention because of its rich biota, especially with respect to plants. Using 290 floras from across China, this paper quantitatively characterizes the composition of floristic elements at multiple scales (i.e. national, provincial and local), and explores the extent to which climatic and geographical factors associated with each flora can jointly and independently explain the variation in floristic elements in local floras. • Methods A study was made of 261 local floras, 28 province-level floras and one national-level flora across China. Genera of seed plants in each flora were assigned to 14 floristic elements according to their worldwide geographical distributions. The composition of floristic elements was related to climatic and geographical factors. • Key Results and Conclusions Variations in percentages of cosmopolitan, tropical and temperate genera among local floras tend to be greater at higher latitudes than at lower latitudes. Latitude is strongly correlated with the proportions of 13 of the 14 floristic elements. Correlations of the proportions of floristic elements with longitude are much weaker than those with latitude. Climate represented by the first principal component of a principal component analysis was strongly correlated with the proportions of floristic elements in local floras (|r| = 0·75 ± 0·18). Geographical coordinates independently explained about four times as much variation in floristic elements as did climate. Further research is necessary to examine the roles of water–energy dynamics, geology, soils, biotic interactions, and historical factors such as land connections between continents in the past and at present in creating observed floristic patterns. PMID:16945946

  4. Localized Principal Component Analysis based Curve Evolution: A Divide and Conquer Approach

    PubMed Central

    Appia, Vikram; Ganapathy, Balaji; Yezzi, Anthony; Faber, Tracy

    2014-01-01

    We propose a novel localized principal component analysis (PCA) based curve evolution approach which evolves the segmenting curve semi-locally within various target regions (divisions) in an image and then combines these locally accurate segmentation curves to obtain a global segmentation. The training data for our approach consists of training shapes and associated auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly correlated variations locally which may be rather independent of the variations in the distant parts of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data set. We then use a parametric model to implicitly represent each localized segmentation curve as a combination of the local shape priors obtained by representing the training shapes and the masks as a collection of signed distance functions. We also propose a parametric model to combine the locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we combine the evolution of these semilocal and global parameters to minimize an objective energy function. The resulting algorithm thus provides a globally accurate solution, which retains the local variations in shape. We present some results to illustrate how our approach performs better than the traditional approach with fully global PCA. PMID:25520901

  5. Weather-Driven Variation in Dengue Activity in Australia Examined Using a Process-Based Modeling Approach

    PubMed Central

    Bannister-Tyrrell, Melanie; Williams, Craig; Ritchie, Scott A.; Rau, Gina; Lindesay, Janette; Mercer, Geoff; Harley, David

    2013-01-01

    The impact of weather variation on dengue transmission in Cairns, Australia, was determined by applying a process-based dengue simulation model (DENSiM) that incorporated local meteorologic, entomologic, and demographic data. Analysis showed that inter-annual weather variation is one of the significant determinants of dengue outbreak receptivity. Cross-correlation analyses showed that DENSiM simulated epidemics of similar relative magnitude and timing to those historically recorded in reported dengue cases in Cairns during 1991–2009, (r = 0.372, P < 0.01). The DENSiM model can now be used to study the potential impacts of future climate change on dengue transmission. Understanding the impact of climate variation on the geographic range, seasonality, and magnitude of dengue transmission will enhance development of adaptation strategies to minimize future disease burden in Australia. PMID:23166197

  6. Background levels of methane in Mars’ atmosphere show strong seasonal variations

    NASA Astrophysics Data System (ADS)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Moores, John E.; Flesch, Gregory J.; Malespin, Charles; McKay, Christopher P.; Martinez, German; Smith, Christina L.; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H.; Trainer, Melissa G.; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J.; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V.; House, Christopher H.; Pavlov, Alexander; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Pearson, John C.; Keymeulen, Didier; Christensen, Lance E.; Schwenzer, Susanne P.; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C. R.; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D.; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M.; Lemmon, Mark; Crisp, Joy; Sander, Stanley P.; Zurek, Richard W.; Vasavada, Ashwin R.

    2018-06-01

    Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

  7. Variations of Luzon Undercurrent from observations and numerical model simulations

    NASA Astrophysics Data System (ADS)

    Wang, Qingye; Zhai, Fangguo; Hu, Dunxin

    2014-06-01

    Significant intraseasonal variability (ISV) of about 45-80 days and seasonal variation of the Luzon Undercurrent (LUC) at 18°N are studied using direct current measurements and a high-resolution global Hybrid Coordinate Ocean Model. The variations of the LUC are vertically coherent with those of Kuroshio Current both on intraseasonal and seasonal time scales. The ISV of the LUC is dominated by eddies with diameters of about 200-300 km and extending from sea surface to intermediate layer east of Luzon Island. The LUC becomes strong (weak) when cyclonic (anticyclonic) eddies occur. The eddies east of Luzon Island mainly originate from the bifurcation point (˜13°N) of the North Equatorial Current. These eddies propagate northwestward at a typical propagation speed of about 0.16 m s-1 along the east coast of Philippines, gradually strengthen and pass the Luzon coast, and continue northward to Luzon strait. On seasonal time scale, the LUC is strong (weak) in boreal winter (summer), and this variation is related to the seasonal evolution of large-scale ocean circulation east of Philippines mainly controlled by local wind forcing.

  8. Line profile variations in M giants - Clues to mass-loss and chromospheric heating mechanisms

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Luttermoser, D. G.; Neff, D. H.; Cuntz, M.; Stencel, R. E.

    1993-01-01

    Analysis is presented of time-series, high dispersion spectra of the Mg II, k, Ca II H, and K lines of the semiregular giants Rho Per (M4 II-III, periodicity of about 50 days), R Lyr (M5 III, period of about 46 days), and g Her (M6 III, period of about 90 days). The fine error sensor on the IUE satellite and ground based UBV photometry was used to relate line profile variations to photospheric variations. The above mentioned stars were selected to study the relative importance of convective motions and global stellar pulsations in determining the structure of the outer atmospheres. Small amplitude changes, but substantial changes in the profiles of Mg II and Ca II lines were detected. It is contended that the observed variability is due to changes in chromospheric conditions and not variations within the circumstellar shell. The picture of a steady state chromosphere, which is modulated on long time scales, is corroborated by these observations. Localized heating is found in g Her.

  9. Variation of nitric oxide concentration before the Kobe earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Ikeya, Motoji

    The variation and spatial distribution of the atmospheric concentration of nitric oxide (NO) near the epicenter of the Kobe earthquake at local time 5:46, 17 January 1995 have been studied using data at monitoring stations of the local environmental protection agencies. The concentration of NO 8 days before the earthquake was 199 ppb, about ten times larger than the average peak level of 19 ppb, accompanying the retrospectively reported precursory earthquake lightning, increase of radon concentration in well water and of the counts of electromagnetic (EM) signals. The reported thunderstorm over the Japan Sea about 150 km away was too far for the thunder-generated NO to reach the epicenter area. The concentration of NO was also found to have increased before other major earthquakes (Magnitude>5.0) in Japan. Atmospheric discharges by electric charges or EM waves before earthquakes may have generated NO. However, the generation of NO by human activities of fuel combustion soon after holidays is enormously high every year, which makes it difficult to clearly link the increase with the earthquakes. The increase soon after the earthquake due to traffic jams is clear. The concentration of NO should be monitored at a several sites away from human activities as background data of natural variation and to study its generation at a seismic area before a large earthquake.

  10. Concentration fluctuations and dilution in aquifers

    NASA Astrophysics Data System (ADS)

    Kapoor, Vivek; Kitanidis, Peter K.

    1998-05-01

    The concentration of solute undergoing advection and local dispersion in a random hydraulic conductivity field is analyzed to quantify its variability and dilution. Detailed numerical evaluations of the concentration variance σc2 are compared to an approximate analytical description, which is based on a characteristic variance residence time (VRT), over which local dispersion destroys concentration fluctuations, and effective dispersion coefficients that quantify solute spreading rates. Key features of the analytical description for a finite size impulse input of solute are (1) initially, the concentration fields become more irregular with time, i.e., coefficient of variation, CV=σc/, increases with time ( being the mean concentration); (2) owing to the action of local dispersion, at large times (t > VRT), σc2 is a linear combination of 2 and (∂/∂xi)2, and the CV decreases with time (at the center, CV ≅ (N)1/2 VRT/t, N being the macroscopic dimensionality of the plume); (3) at early time, dilution and spreading can be severely disconnected; however, at large time the volume occupied by solute approaches that apparent from its spatial second moments; and (4) in contrast to the advection-local dispersion case, under advection alone, the CV grows unboundedly with time (at the center, CV ∝ tN/4), and spatial second moment is increasingly disconnected from dilution, as time progresses. The predicted large time evolution of dilution and concentration fluctuation measures is observed in the numerical simulations.

  11. Vertical, meridional, seasonal, and local time dependence of non-LTE effects in stratospheric NO and implications for infrared remote sensing

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.

    1989-01-01

    Calculations have been carried out on possible nonlocal thermodynamic equilibrium (non-LTE) effects previously suggested for stratospheric nitric oxide (NO) associated with the direct photochemical production of vibrationally excited NO by the processes NO2 + hv yields NO(v) + O and O + NO2 yields NO(v) + O2. The calculations, which make use of improved calculations of the NO vibrational state distribution from NO2 photolysis, are carried out as a function of altitude and latitude for a variety of seasons and local times. Non-LTE effects on the order of 30 percent for v = 1 are obtained, maximizing in the middle stratosphere over the equator. The results of the calculations suggest that incorporation of the non-LTE effect into the retrieval algorithm for NO from infrared thermal emission measuring instruments on the Upper Atmosphere Research Satellite will need to be done carefully if correct distributions and variations of NO with altitude, latitude, season, and local time are to be obtained.

  12. Variation in Maltese English: The Interplay of the Local and the Global in an Emerging Postcolonial Variety

    ERIC Educational Resources Information Center

    Bonnici, Lisa Marie

    2010-01-01

    In our current era of increased globalization, constraints on language variation in postcolonial English varieties are multifaceted. Local and global language ideologies collide and multiple sources of influence converge in present-day patterns of linguistic variation in emerging English varieties. While research into the structure and…

  13. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, P.F.

    1979-07-17

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  14. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, Patrick F.

    1981-01-01

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  15. Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall

    NASA Astrophysics Data System (ADS)

    Medan, Ilija; Andersson, B.-G.

    2018-01-01

    Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.

  16. Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Jae; Song, Sung-Jin

    2000-05-01

    A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.

  17. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    PubMed

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  18. Effect of topography-dependent light coupling through a near-field aperture on the local photocurrent of a solar cell.

    PubMed

    Cao, Zhao; Ermes, Markus; Lehnen, Stephan; Carius, Reinhard; Bittkau, Karsten

    2018-01-03

    An aperture-type scanning near-field optical microscope (a-SNOM) is readily used for the optical and optoelectronic characterizations of a wide variety of chemical, biological and optoelectronic samples with sub-wavelength optical resolution. These samples mostly exhibit nanoscale topographic variations, which are related to local material inhomogeneity probed either by an optical contrast or by secondary effects such as photoconductivity or photoluminescence. To date, in the interpretation and evaluation of the measurement results from a-SNOM or derived methods, often only the local material inhomogeneity is taken into account. A possible influence of the optical interaction between the scanning probe and the surface topography is rarely discussed. In this paper, we present experimental and theoretical investigation of the effects of nanoscale topographic features on a-SNOM measurement results. We conduct local photocurrent measurements on a thin-film solar cell with an a-SNOM as the illumination source. A clear correlation between the photocurrent response and local topography is observed in all measurements with a signal contrast of up to ∼30%, although the sample features homogeneous permittivity and electrical properties. With the help of finite-difference time-domain (FDTD) simulations, this correlation is reproduced and local light coupling is identified as the mechanism which determines the local photocurrent response. Our results suggest that a-SNOM-based measurements of any sample with material inhomogeneity will be superimposed by the local light-coupling effect if surface topography variation exists. This effect should always be taken into consideration for an accurate interpretation of the measurement results.

  19. Diurnal Variations of Dust from Mars Climate Sounder Observations: Initial Results

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.

    2017-12-01

    Over the recent years, research on the Martian atmosphere has been focusing increasingly on aerosols. One recent focus has been on detached dust layers (DDL) as they have a significant radiative impact on the atmosphere. The dust distribution in the Martian atmosphere is affected by transport processes like lifting, advection, and sedimentation. However, lifting and sedimentation processes are only poorly understood, and the formation mechanism of DDLs is unclear. Significant variations in the occurrence of DDLs have been observed in comparisons of nearly co-located daytime and nighttime dust extinction measurements by the Mars Climate Sounder (MCS). However, the detailed behavior of changes in the vertical profile of dust over the course of a day has largely been unexplored. To date, aerosol studies by MCS have been limited to observations around 3 am and 3 pm local time due to the sun-synchronous orbit of the Mars Reconnaissance Orbiter (MRO), from which MCS is operated. MCS nominally observes in the direction of the MRO orbit track. Since Sep. 2010 the MCS instrument has been performing frequent sideways scans to obtain measurements at various local times. These special measurements yield nearly global coverage while sampling local times within a few hours of the nominal local time determined by the MRO orbit track. Of particular interest is the behavior at latitudes where cross-track measurements intersect with in-track measurements such that the same airmass is sampled 3 times in intervals of 2 hours at mid-latitudes. Here I present initial analyses of dust vertical profiles retrieved from these MCS observations during the dusty season of the Martian year. Dust opacities tend to be highest within 25 km of the surface and decreasing above. Numerous sets of profiles have been identified in the southern mid-latitudes in which this dust opacity slope is lofted by several kilometers in altitude between 4 pm and 6 pm local time. The behavior is largely restricted to ice-free conditions and suggestive of convective lofting of dust to higher altitudes due to absorption of incoming sunlight by dust particles. Most of these events are located in the vicinity of the Hellas basin, suggesting that topographic features may also play a role in their formation.

  20. On Quasi-biennial Oscillations in Chromospheric Macrospicules and Their Potential Relation to the Global Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kiss, T. S.; Erdélyi, R.

    2018-04-01

    This study aims to provide further evidence for the potential influence of the global solar magnetic field on localized chromospheric jets, the macrospicules (MS). To find a connection between the long-term variation of properties of MS and other solar activity proxies, including, e.g., the temporal variation of the frequency shift of solar global oscillations, sunspot area, etc., a database overarching seven years of observations was compiled. This database contains 362 MS, based on observations at the 30.4 nm of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Three of the five investigated physical properties of MS show a clear long-term temporal variation after smoothing the raw data. Wavelet analysis of the temporal variation of maximum length, maximum area, and average velocity is carried out. The results reveal a strong pattern of periodicities at around 2 years (also referred to as quasi-biennial oscillations—QBOs). A comparison with solar activity proxies that also possess the properties of QBOs provides some interesting features: the minima and maxima of QBOs of MS properties occur at around the same epoch as the minima and maxima of these activity proxies. For most of the time span investigated, the oscillations are out of phase. This out-of-phase behavior was also corroborated by a cross-correlation analysis. These results suggest that the physical processes that generate and drive the long-term evolution of the global solar activity proxies may be coupled to the short-term local physical processes driving the macrospicules, and, therefore modulate the properties of local dynamics.

  1. Mining geographic variations of Plasmodium vivax for active surveillance: a case study in China.

    PubMed

    Shi, Benyun; Tan, Qi; Zhou, Xiao-Nong; Liu, Jiming

    2015-05-27

    Geographic variations of an infectious disease characterize the spatial differentiation of disease incidences caused by various impact factors, such as environmental, demographic, and socioeconomic factors. Some factors may directly determine the force of infection of the disease (namely, explicit factors), while many other factors may indirectly affect the number of disease incidences via certain unmeasurable processes (namely, implicit factors). In this study, the impact of heterogeneous factors on geographic variations of Plasmodium vivax incidences is systematically investigate in Tengchong, Yunnan province, China. A space-time model that resembles a P. vivax transmission model and a hidden time-dependent process, is presented by taking into consideration both explicit and implicit factors. Specifically, the transmission model is built upon relevant demographic, environmental, and biophysical factors to describe the local infections of P. vivax. While the hidden time-dependent process is assessed by several socioeconomic factors to account for the imported cases of P. vivax. To quantitatively assess the impact of heterogeneous factors on geographic variations of P. vivax infections, a Markov chain Monte Carlo (MCMC) simulation method is developed to estimate the model parameters by fitting the space-time model to the reported spatial-temporal disease incidences. Since there is no ground-truth information available, the performance of the MCMC method is first evaluated against a synthetic dataset. The results show that the model parameters can be well estimated using the proposed MCMC method. Then, the proposed model is applied to investigate the geographic variations of P. vivax incidences among all 18 towns in Tengchong, Yunnan province, China. Based on the geographic variations, the 18 towns can be further classify into five groups with similar socioeconomic causality for P. vivax incidences. Although this study focuses mainly on the transmission of P. vivax, the proposed space-time model is general and can readily be extended to investigate geographic variations of other diseases. Practically, such a computational model will offer new insights into active surveillance and strategic planning for disease surveillance and control.

  2. Small-scale drivers: the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea.

    PubMed

    Little, Chelsea J; Wheeler, Julia A; Sedlacek, Janosch; Cortés, Andrés J; Rixen, Christian

    2016-04-01

    Alpine plant communities are predicted to face range shifts and possibly extinctions with climate change. Fine-scale environmental variation such as nutrient availability or snowmelt timing may contribute to the ability of plant species to persist locally; however, variation in nutrient availability in alpine landscapes is largely unmeasured. On three mountains around Davos, Switzerland, we deployed Plant Root Simulator probes around 58 Salix herbacea plants along an elevational and microhabitat gradient to measure nutrient availability during the first 5 weeks of the summer growing season, and used in situ temperature loggers and observational data to determine date of spring snowmelt. We also visited the plants weekly to assess performance, as measured by stem number, fruiting, and herbivory damage. We found a wide snowmelt gradient which determined growing season length, as well as variations of an order of magnitude or more in the accumulation of 12 nutrients between different microhabitats. Higher nutrient availability had negative effects on most shrub performance metrics, for instance decreasing stem number and the proportion of stems producing fruits. High nutrient availability was associated with increased herbivory damage in early-melting microhabitats, but among late-emerging plants this pattern was reversed. We demonstrate that nutrient availability is highly variable in alpine settings, and that it strongly influences performance in an alpine dwarf shrub, sometimes modifying the response of shrubs to snowmelt timing. As the climate warms and human-induced nitrogen deposition continues in the Alps, these factors may contribute to patterns of local plants persistence.

  3. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats

    PubMed Central

    Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.

    2014-01-01

    Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877

  4. Korea Integrated Seismic System tool(KISStool) for seismic monitoring and data sharing at the local data center

    NASA Astrophysics Data System (ADS)

    Park, J.; Chi, H. C.; Lim, I.; Jeong, B.

    2011-12-01

    The Korea Integrated Seismic System(KISS) is a back-bone seismic network which distributes seismic data to different organizations in near-real time at Korea. The association of earthquake monitoring institutes has shared their seismic data through the KISS from 2003. Local data centers operating remote several stations need to send their free field seismic data to NEMA(National Emergency Management Agency) by the law of countermeasure against earthquake hazard in Korea. It is very important the efficient tool for local data centers which want to rapidly detect local seismic intensity and to transfer seismic event information toward national wide data center including PGA, PGV, dominant frequency of P-wave, raw data, and etc. We developed the KISStool(Korea Integrated Seismic System tool) for easy and convenient operation seismic network in local data center. The KISStool has the function of monitoring real time waveforms by clicking station icon on the Google map and real time variation of PGA, PGV, and other data by opening the bar type monitoring section. If they use the KISStool, any local data center can transfer event information to NEMA(National Emergency Management Agency), KMA(Korea Meteorological Agency) or other institutes through the KISS using UDP or TCP/IP protocols. The KISStool is one of the most efficient methods to monitor and transfer earthquake event at local data center in Korea. KIGAM will support this KISStool not only to the member of the monitoring association but also local governments.

  5. Climate and local abundance in freshwater fishes

    PubMed Central

    Knouft, Jason H.; Anthony, Melissa M.

    2016-01-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  6. Global markets and the differential effects of climate and weather on conflict

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit that conflict reacts to climate and not weather because climatic events trigger not only local agricultural losses but also increased food prices as a result of an aggregate decline in output. This is because in an open economy, idiosyncratic weather variation alone would not lead to higher prices. These results are informative in understanding the impacts of anthropogenic global change, which would yield variation exhibiting spatial coherence beyond the extent of existing markets.

  7. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Sara; Sparrenbom, Charlotte; Fiandaca, Gianluca; Lindskog, Anders; Olsson, Per-Ivar; Dahlin, Torleif; Rosqvist, Håkan

    2017-02-01

    Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra of the time decays and inversion for Cole-Cole parameters. The aims of this study is to investigate if large-scale geoelectrical variations as well as small-scale structural and compositional variations exist within the Kristianstad limestone, and to evaluate the usefulness of Cole-Cole inverted IP data in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy, and the results showed that varying amounts of pyrite, glauconite and clay matrix were present at different levels in the limestone. The local high IP anomalies in the limestone could be caused by these minerals otherwise the IP responses were generally weak. There were also differences in the texture of the limestone at different levels, governed by fossil shapes and composition, proportions of calcareous cement and matrix as well as amount of silicate grains. Textural variations may have implications on the variation in Cole-Cole relaxation time and frequency factor. However, more research is needed in order to directly connect microgeometrical properties in limestone to spectral IP responses. The results from this study show that it is possible to recover useable spectral information from early decay times. We also show that under certain conditions (e.g. relatively short relaxation times in the subsurface), it is possible to extract spectral information from time domain IP data measured with on-off times as short as 1 s.

  8. Magnetic Activity Dependence of the Electric Drift Below L = 3

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2018-05-01

    More than 2 years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L = 3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the nightside. The amplitude of the slowdown is a function of L, magnetic local time, and Kp, in a pattern consistent with the storm time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L = 3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and magnetic local time. It is the first time that the signature of the ionospheric disturbance dynamo is observed in near-equatorial electric drift measurements.

  9. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puscas, R.; Feurdean, V.; Simon, V.

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviatedmore » from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.« less

  10. A method to incorporate leakage and head scatter corrections into a tomotherapy inverse treatment planning algorithm

    NASA Astrophysics Data System (ADS)

    Holmes, Timothy W.

    2001-01-01

    A detailed tomotherapy inverse treatment planning method is described which incorporates leakage and head scatter corrections during each iteration of the optimization process, allowing these effects to be directly accounted for in the optimized dose distribution. It is shown that the conventional inverse planning method for optimizing incident intensity can be extended to include a `concurrent' leaf sequencing operation from which the leakage and head scatter corrections are determined. The method is demonstrated using the steepest-descent optimization technique with constant step size and a least-squared error objective. The method was implemented using the MATLAB scientific programming environment and its feasibility demonstrated for 2D test cases simulating treatment delivery using a single coplanar rotation. The results indicate that this modification does not significantly affect convergence of the intensity optimization method when exposure times of individual leaves are stratified to a large number of levels (>100) during leaf sequencing. In general, the addition of aperture dependent corrections, especially `head scatter', reduces incident fluence in local regions of the modulated fan beam, resulting in increased exposure times for individual collimator leaves. These local variations can result in 5% or greater local variation in the optimized dose distribution compared to the uncorrected case. The overall efficiency of the modified intensity optimization algorithm is comparable to that of the original unmodified case.

  11. Measurement of carotid blood pressure and local pulse wave velocity changes during cuff induced hyperemia.

    PubMed

    Nabeel, P M; Karthik, Srinivasa; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2017-07-01

    We present a prototype design of dual element photoplethysmograph (PPG) probe along with associated measurement system for carotid local pulse wave velocity (PWV) evaluation in a non-invasive and continuous manner. The PPG probe consists of two identical sensing modules placed 23 mm apart. Simultaneously measured blood pulse waveforms from these arterial sites were processed and the pulse transit time delay was resolved using the developed application-specific software. The ability of developed PPG probe and associated measurement system to detect acute changes in carotid local PWV due to blood pressure (BP) variations was experimentally validated by an in-vivo study. Intra-subject carotid BP elevation was achieved by an upper arm cuff based occlusion, which offered a controlled way of local PWV escalation. The elevated carotid BP values were also recorded by a calibrated pressure tonometer prior to the study, and was used as a reference. A significant increment (1.0 - 2.6 m/s) in local PWV was observed and was proportional to the BP increment induced by the occlusive reactive hyperemia. Study results demonstrated the feasibility of real-time signal acquisition and reliable local PWV evaluation under normal and elevated BP conditions using the developed measurement system.

  12. 1H and 13C NMR studies of molecular dynamics in the biocopolymer of glycolide and epsilon-caprolactone.

    PubMed

    Nozirov, Farhod; Szczesniak, Eugeniusz; Fojud, Zbigniew; Dobrzynski, Piotr; Klinowski, Jacek; Jurga, Stefan

    2002-08-01

    Copolymers of glycolide and epsilon-caprolactone were studied using differential scanning calorimetry and solid-state NMR. The variation of the T1 relaxation time with temperature reflects local disorder and can be quantified in terms of the distribution of correlation times predicted by the Davidson-Cole model. T, relaxation is dominated by trans-gauche isomerisation, with an activation energy of 34-35 kJ mol(-1).

  13. Local-scale projections of coral reef futures and implications of the Paris Agreement

    NASA Astrophysics Data System (ADS)

    van Hooidonk, Ruben; Maynard, Jeffrey; Tamelander, Jerker; Gove, Jamison; Ahmadia, Gabby; Raymundo, Laurie; Williams, Gareth; Heron, Scott F.; Planes, Serge

    2016-12-01

    Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.

  14. Local-scale projections of coral reef futures and implications of the Paris Agreement.

    PubMed

    van Hooidonk, Ruben; Maynard, Jeffrey; Tamelander, Jerker; Gove, Jamison; Ahmadia, Gabby; Raymundo, Laurie; Williams, Gareth; Heron, Scott F; Planes, Serge

    2016-12-21

    Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km 2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.

  15. Equity and service innovation: the implementation of a bibliotherapy scheme in Wales.

    PubMed

    Porter, Alison; Peconi, Julie; Evans, Angela; Snooks, Helen; Lloyd, Keith; Russell, Ian

    2008-04-01

    Book Prescription Wales (BPW) is a pilot bibiliotherapy scheme launched in July 2005 as a primary care treatment option for people with mild to moderate mental health problems. In an innovative model, patients are prescribed self-help books from a list, to borrow from local libraries. Our objective was to evaluate its implementation, focusing on the issue of equity of service delivery. Data were gathered from Welsh Assembly Government concerning project set-up and borrowing rates. Mailed questionnaires were completed by 21/22 (95.4%) Local Health Boards and 44/64 (68.8%) Community Mental Health Teams. In addition, 327 out of 497 (66%) primary care practices were surveyed by telephone, 20 prescribers took part in in-depth telephone interviews and three focus groups were conducted with library staff. From July 2005-March 2006, books were borrowed 15,236 times. There was a 10-fold variation in borrowing rates across local authorities (1.07 to 10.18 loans/1000 people). The priority which Local Health Board staff reported giving to the scheme varied. Uptake among prescribers was mixed: in 35% of general practices (n = 116) no-one participated. Prescribers reported different ways of using the bibliotherapy scheme. Library staff reported issues of patchy uptake. Variation in usage of bibliotherapy raises questions about equity; it is unlikely to reflect the distribution of people who could potentially benefit. Factors influencing variation existed all along the implementation chain. It is not always possibly to separate demand-side and supply-side factors when considering equity and service innovation in health care.

  16. Multi-event study of high-latitude thermospheric wind variations at substorm onset with a Fabry-Perot interferometer at Tromsoe, Norway

    NASA Astrophysics Data System (ADS)

    Xu, H.; Shiokawa, K.; Oyama, S. I.; Otsuka, Y.

    2017-12-01

    We studied the high-latitude thermospheric wind variations near the onset time of isolated substorms. Substorm-related energy input from the magnetosphere to the polar ionosphere modifies the high-latitude ionosphere and thermosphere. For the first time, this study showed the characteristics of high-latitude thermospheric wind variations at the substorm onset. We also investigated the possibility of these wind variations as a potential trigger of substorm onset by modifying the ionospheric current system (Kan, 1993). A Fabry-Perot interferometer (FPI) at Tromsoe, Norway provided wind measurements estimated from Doppler shift of both red-line (630.0 nm for the F region) and green-line (557.7 nm for the E region) emissions of aurora and airglow. We used seven-year data sets obtained from 2009 to 2015 with a time resolution of 13 min. We first identified the onset times of local isolated substorms using ground-based magnetometer data obtained at the Tromsoe and Bear Island stations, which belongs to the IMAGE magnetometer chain. We obtained 4 red-line events and 5 green-line events taken place at different local times. For all these events, the peak locations of westward ionospheric currents identified by the ground-based magnetometer chain were located at the poleward side of Tromsoe. Then, we calculated two weighted averages of wind velocities for 30 min around the onset time and 30 min after the onset time of substorms. We evaluated differences between these two weighted averages to estimate the strength of wind changes. The observed wind changes at these substorm onsets were less than 49 m/s (26 m/s) for red-line (green-line) events, which are much smaller than the typical plasma convection speed. This indicates that the plasma motion caused by substorm-induced thermospheric winds through ion-neutral collisions is a minor effect as the driver of high-latitude plasma convection, as well as the triggering of substorm onset. We discuss possible causes of these observed wind changes at the onset of substorms based on the mechanisms of thermospheric diurnal tides, arc-induced electric field and Joule heating caused by the auroral activities that were identified by the cross sections of all-sky images, as well as the IMF-associated plasma convection model.

  17. Geographic variation in the response of Culex pipiens life history traits to temperature.

    PubMed

    Ruybal, Jordan E; Kramer, Laura D; Kilpatrick, A Marm

    2016-02-29

    Climate change is predicted to alter the transmission of many vector-borne pathogens. The quantitative impact of climate change is usually estimated by measuring the temperature-performance relationships for a single population of vectors, and then mapping this relationship across a range of temperatures or locations. However, life history traits of different populations often differ significantly. Specifically, performance across a range of temperatures is likely to vary due to local adaptation to temperature and other factors. This variation can cause spatial variation in pathogen transmission and will influence the impact of climate change on the transmission of vector-borne pathogens. We quantified variation in life history traits for four populations of Culex pipiens (Linnaeus) mosquitoes. The populations were distributed along altitudinal and latitudinal gradients in the eastern United States that spanned ~3 °C in mean summer temperature, which is similar to the magnitude of global warming expected in the next 3-5 decades. We measured larval and adult survival, development rate, and biting rate at six temperatures between 16 and 35 °C, in a common garden experiment. Temperature had strong and consistent non-linear effects on all four life history traits for all four populations. Adult female development time decreased monotonically with increasing temperature, with the largest decrease at cold temperatures. Daily juvenile and adult female survival also decreased with increasing temperature, but the largest decrease occurred at higher temperatures. There was significant among-population variation in the thermal response curves for the four life history traits across the four populations, with larval survival, adult survival, and development rate varying up to 45, 79, and 84 % among populations, respectively. However, variation was not correlated with local temperatures and thus did not support the local thermal adaptation hypothesis. These results suggest that the impact of climate change on vector-borne disease will be more variable than previous predictions, and our data provide an estimate of this uncertainty. In addition, the variation among populations that we observed will shape the response of vectors to changing climates.

  18. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels.

    PubMed

    Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros

    2017-01-01

    Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from further control efforts. Citation: Schwartz J, Bind MA, Koutrakis P. 2017. Estimating causal effects of local air pollution on daily deaths: effect of low levels. Environ Health Perspect 125:23-29; http://dx.doi.org/10.1289/EHP232.

  19. Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface

    NASA Astrophysics Data System (ADS)

    Cutler, B. B.; Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.

  20. Quantum decay model with exact explicit analytical solution

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  1. Local oscillator induced degradation of medium-term stability in passive atomic frequency standards

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Prestage, John D.; Greenhall, Charles A.; Maleki, Lute

    1990-01-01

    As the performance of passive atomic frequency standards improves, a new limitation is encountered due to frequency fluctuations in an ancillary local oscillator (L.O.). The effect is due to time variation in the gain of the feedback which compensates L.O. frequency fluctuations. The high performance promised by new microwave and optical trapped ion standards may be severely compromised by this effect. Researchers present an analysis of this performance limitation for the case of sequentially interrogated standards. The time dependence of the sensitivity of the interrogation process to L.O. frequency fluctuations is evaluated for single-pulse and double-pulse Ramsey RF interrogation and for amplitude modulated pulses. The effect of these various time dependencies on performance of the standard is calculated for an L.O. with frequency fluctuations showing a typical 1/f spectral density. A limiting 1/sq. root gamma dependent deviation of frequency fluctuations is calculated as a function of pulse lengths, dead time, and pulse overlap. Researchers also present conceptual and hardware-oriented solutions to this problem which achieve a much more nearly constant sensitivity to L.O. fluctuations. Solutions involve use of double-pulse interrogation; alternate interrogation of multiple traps so that the dead time of one trap can be covered by operation of the other; and the use of double-pulse interrogation for two traps, so that during the time of the RF pulses, the increasing sensitivity of one trap tends to compensate for the decreasing sensitivity of the other. A solution making use of amplified-modulated pulses is also presented which shows nominally zero time variation.

  2. Relationship Between Maximum Tsunami Amplitude and Duration of Signal

    NASA Astrophysics Data System (ADS)

    Kim, Yoo Yin; Whitmore, Paul M.

    2014-12-01

    All available tsunami observations at tide gauges situated along the North American coast were examined to determine if there is any clear relationship between maximum amplitude and signal duration. In total, 89 historical tsunami recordings generated by 13 major earthquakes between 1952 and 2011 were investigated. Tidal variations were filtered out of the signal and the duration between the arrival time and the time at which the signals drops and stays below 0.3 m amplitude was computed. The processed tsunami time series were evaluated and a linear least-squares fit with a 95 % confidence interval was examined to compare tsunami durations with maximum tsunami amplitude in the study region. The confidence interval is roughly 20 h over the range of maximum tsunami amplitudes in which we are interested. This relatively large confidence interval likely results from variations in local resonance effects, late-arriving reflections, and other effects.

  3. Tool Wear Monitoring Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  4. TIME EVOLUTION OF PLASMA PARAMETERS DURING THE RISE OF A SOLAR PROMINENCE INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.

    We present high-spatial resolution spectropolarimetric observations of a quiescent hedgerow prominence taken in the He I 1083.0 nm triplet. The observation consisted of a time series in sit-and-stare mode of ∼36 minutes duration. The spectrograph's slit crossed the prominence body and we recorded the time evolution of individual vertical threads. Eventually, we observed the development of a dark Rayleigh-Taylor plume that propagated upward with a velocity, projected onto the plane of the sky, of 17 km s{sup –1}. Interestingly, the plume apex collided with the prominence threads pushing them aside. We inferred Doppler shifts, Doppler widths, and magnetic field strength variations bymore » interpreting the He I Stokes profiles with the HAZEL code. The Doppler shifts show that clusters of threads move coherently while individual threads have oscillatory patterns. Regarding the plume we found strong redshifts (∼9-12 km s{sup –1}) and large Doppler widths (∼10 km s{sup –1}) at the plume apex when it passed through the prominence body and before it disintegrated. We associate the redshifts with perspective effects while the Doppler widths are more likely due to an increase in the local temperature. No local variations of the magnetic field strength associated with the passage of the plume were found; this leads us to conclude that the plumes are no more magnetized than the surroundings. Finally, we found that some of the threads' oscillations are locally damped, what allowed us to apply prominence seismology techniques to infer additional prominence physical parameters.« less

  5. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2016-09-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  6. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  7. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  8. Variational calculation of macrostate transition rates

    NASA Astrophysics Data System (ADS)

    Ulitsky, Alex; Shalloway, David

    1998-08-01

    We develop the macrostate variational method (MVM) for computing reaction rates of diffusive conformational transitions in multidimensional systems by a variational coarse-grained "macrostate" decomposition of the Smoluchowski equation. MVM uses multidimensional Gaussian packets to identify and focus computational effort on the "transition region," a localized, self-consistently determined region in conformational space positioned roughly between the macrostates. It also determines the "transition direction" which optimally specifies the projected potential of mean force for mean first-passage time calculations. MVM is complementary to variational transition state theory in that it can efficiently solve multidimensional problems but does not accommodate memory-friction effects. It has been tested on model 1- and 2-dimensional potentials and on the 12-dimensional conformational transition between the isoforms of a microcluster of six-atoms having only van der Waals interactions. Comparison with Brownian dynamics calculations shows that MVM obtains equivalent results at a fraction of the computational cost.

  9. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    NASA Astrophysics Data System (ADS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  10. Patterns of variations in large pelagic fish: A comparative approach between the Indian and the Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.

    2010-07-01

    Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.

  11. The impact of proposed changes in liver allocation policy on cold ischemia times and organ transportation costs.

    PubMed

    DuBay, D A; MacLennan, P A; Reed, R D; Fouad, M; Martin, M; Meeks, C B; Taylor, G; Kilgore, M L; Tankersley, M; Gray, S H; White, J A; Eckhoff, D E; Locke, J E

    2015-02-01

    Changes to the liver allocation system have been proposed to decrease regional variation in access to liver transplant. It is unclear what impact these changes will have on cold ischemia times (CITs) and donor transportation costs. Therefore, we performed a retrospective single center study (2008-2012) measuring liver procurement CIT and transportation costs. Four groups were defined: Local-within driving distance (Local-D, n = 262), Local-flight (Local-F, n = 105), Regional-flight <3 h (Regional <3 h, n = 61) and Regional-Flight >3 h (Regional >3 h, n = 53). The median travel distance increased in each group, varying from zero miles (Local-D), 196 miles (Local-F), 384 miles (Regional <3 h), to 1647 miles (Regional >3 h). Increasing travel distances did not significantly increase CIT until the flight time was >3 h. The average CIT ranged from 5.0 to 6.0 h for Local-D, Local-F and Regional <3 h, but increased to 10 h for Regional >3 h (p < 0.0001). Transportation costs increased with greater distance traveled: Local-D $101, Local-F $1993, Regional <3 h $8324 and Regional >3 h $27 810 (p < 0.0001). With proposed redistricting, local financial modeling suggests that the average liver donor procurement transportation variable direct costs will increase from $2415 to $7547/liver donor, an increase of 313%. These findings suggest that further discussion among transplant centers and insurance providers is needed prior to policy implementation. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. How wide in magnetic local time is the cusp? An event study

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Weber, E. J.; Weimer, D. R.; Moen, J.; Onsager, T.; Heelis, R. A.; Egeland, A.

    1997-03-01

    A unique pass of the DMSP F11 satellite, longitudinally cutting through the cusp and mantle, combined with simultaneous optical measurements of the dayside cusp from Svalbard has been used to determine the width in local time of the cusp. We have shown from this event study that the cusp was at least 3.7 hours wide in magnetic local time. These measurements provide a lower limit for the cusp width. The observed cusp optical emissions are relatively constant, considering the processes which lead to the 630.0 nm emissions, and require precipitating electron flux to be added each minute during the DMSP pass throughout the local time extent observed by the imaging photometer and probably over the whole extent of the cusp defined by DMSP data. We conclude that the electron fluxes which produce the cusp aurora are from a process which must have been operable sometime during each minute but could have had both temporal and spatial variations. The measured width along with models of cusp precipitation provide the rationale to conclude that the region of flux tube opening in the dayside merging process involves the whole frontside magnetopause and can extend beyond the dawn-dusk terminator. The merging process for this event was found to be continuous, although spatially and temporally variable.

  13. Gravel road paving guidelines.

    DOT National Transportation Integrated Search

    2016-11-01

    The percentage of gravel roads in rural areas in Kansas is higher than most states. A wide variation of traffic volumes : across different regions and variations of local conditions and scenarios present a great challenge for local agencies to determ...

  14. Utterance rate and linguistic properties as determinants of lexical dysfluencies in children who stutter

    PubMed Central

    Howell, Peter; Au-Yeung, James; Pilgrim, Lesley

    2007-01-01

    Two important determinants of variation in stuttering frequency are utterance rate and the linguistic properties of the words being spoken. Little is known how these determinants interrelate. It is hypothesized that those linguistic factors that lead to change in word duration, alter utterance rate locally within an utterance that then gives rise to an increase in stuttering frequency. According to the hypothesis, utterance rate variation should occur locally within the linguistic segments in an utterance that is known to increase the likelihood of stuttering. The hypothesis is tested using length of tone unit as the linguistic factor. Three predictions are confirmed: Utterance rate varies locally within the tone units and this local variation affects stuttering frequency; stuttering frequency is positively related to the length of tone units; variations in utterance rate are correlated with tone unit length. Alternative theoretical formulations of these findings are considered. PMID:9921672

  15. A Study of Local Time Variations of Jupiter's Ultraviolet Aurora using Juno-UVS

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, R.; Versteeg, M. H.; Hue, V.; Kammer, J.; Davis, M. W.; Bolton, S. J.; Levin, S.; Connerney, J. E. P.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bunce, E. J.

    2017-12-01

    Juno's Ultraviolet Spectrograph (Juno-UVS) offers unique views of Jupiter's auroras never before obtained in the UV, observing at all local times (unlike HST observations, limited to the illuminated disk). With Juno's 2-rpm spin period, the UVS long slit rapidly scans across Jupiter observing narrow stripes or swaths of Jupiter's poles, from 5 hours prior to perijove until 5 hours after perijove. By rotating a mirror interior to the instrument, UVS can view objects from 60 to 120 degrees off the spacecraft spin axis. This allows UVS to map out the entire auroral oval over multiple spins, even when Juno is very close to Jupiter. Using the first 8 perijove passes, we take a first look for local time effects in Jupiter's northern and southern auroras. We focus on the strength of auroral oval emissions and polar emissions found poleward of the main oval. Some unique polar emissions of interest include newly discovered polar flare emissions that start off as small localized points of emission but quickly (10's of sec) evolve into rings. These emissions evolve in such a way as to be reminiscent of raindrops striking a pond.

  16. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The frequency selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a large number of practical applications to further demonstrate the utility of proposed PDE transform. PMID:22207904

  17. Invariance of visual operations at the level of receptive fields

    PubMed Central

    Lindeberg, Tony

    2013-01-01

    The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment. PMID:23894283

  18. Climate fails to predict wood decomposition at regional scales

    NASA Astrophysics Data System (ADS)

    Bradford, Mark A.; Warren, Robert J., II; Baldrian, Petr; Crowther, Thomas W.; Maynard, Daniel S.; Oldfield, Emily E.; Wieder, William R.; Wood, Stephen A.; King, Joshua R.

    2014-07-01

    Decomposition of organic matter strongly influences ecosystem carbon storage. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on mean responses can be irrelevant and misleading. We test whether climate controls on the decomposition rate of dead wood--a carbon stock estimated to represent 73 +/- 6 Pg carbon globally--are sensitive to the spatial scale from which they are inferred. We show that the common assumption that climate is a predominant control on decomposition is supported only when local-scale variation is aggregated into mean values. Disaggregated data instead reveal that local-scale factors explain 73% of the variation in wood decomposition, and climate only 28%. Further, the temperature sensitivity of decomposition estimated from local versus mean analyses is 1.3-times greater. Fundamental issues with mean correlations were highlighted decades ago, yet mean climate-decomposition relationships are used to generate simulations that inform management and adaptation under environmental change. Our results suggest that to predict accurately how decomposition will respond to climate change, models must account for local-scale factors that control regional dynamics.

  19. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.

    PubMed

    Razavi, Payam; Ravicz, Michael E; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2016-10-01

    The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results

    PubMed Central

    Razavi, Payam; Ravicz, Michael E.; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. PMID:26880098

  1. Primary health-care teams as adaptive organizations: exploring and explaining work variation using case studies in rural and urban Scotland.

    PubMed

    Farmer, Jane; West, Christina; Whyte, Bruce; Maclean, Margaret

    2005-08-01

    It is acknowledged, internationally, that health-care practitioners' work differs between and urban areas. While several factors affect individual teams' activities, there is little understanding about how patterns of work evolve. Consideration of work in relation to local circumstances is important for training, devising contracts and redesigning services. Six case studies centred on Scottish rural and urban general practices were used to examine, in-depth, the activity of primary health-care teams. Quantitative workload data about patient contacts were collected over 24 months. Interviews and diaries revealed insightful qualitative data. Findings revealed that rural general practitioners and district nurses tended to conduct more consultations per practice patient compared with their urban counterparts. Conditions seen and work tasks varied between case study teams. Qualitative data suggested that the key reasons for variation were: local needs and circumstances; choices made about deployment of available time, team composition and the extent of access to other services. Primary care teams might be viewed as adaptive organization, with co-evolution of services produced by health professionals and local people. The study highlights limitations in the application of workload data and suggests that understanding the nature of work in relation to local circumstances is important in service redesign.

  2. The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris.

    PubMed

    Raine, Nigel E; Chittka, Lars

    2007-06-20

    Innate sensory biases could play an important role in helping naïve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-naïve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases.

  3. The Adaptive Significance of Sensory Bias in a Foraging Context: Floral Colour Preferences in the Bumblebee Bombus terrestris

    PubMed Central

    Raine, Nigel E.; Chittka, Lars

    2007-01-01

    Innate sensory biases could play an important role in helping naïve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-naïve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases. PMID:17579727

  4. Global gene expression analysis provides insight into local adaptation to geothermal streams in tadpoles of the Andean toad Rhinella spinulosa.

    PubMed

    Pastenes, Luis; Valdivieso, Camilo; Di Genova, Alex; Travisany, Dante; Hart, Andrew; Montecino, Martín; Orellana, Ariel; Gonzalez, Mauricio; Gutiérrez, Rodrigo A; Allende, Miguel L; Maass, Alejandro; Méndez, Marco A

    2017-05-16

    The anuran Rhinella spinulosa is distributed along the Andes Range at altitudes that undergo wide daily and seasonal variation in temperature. One of the populations inhabits geothermal streams, a stable environment that influences life history traits such as the timing of metamorphosis. To investigate whether this population has undergone local adaptation to this unique habitat, we carried out transcriptome analyses in animals from two localities in two developmental stages (prometamorphic and metamorphic) and exposed them to two temperatures (20 and 25 °C). RNA-Seq, de novo assembly and annotation defined a transcriptome revealing 194,469 high quality SNPs, with 1,507 genes under positive selection. Comparisons among the experimental conditions yielded 1,593 differentially expressed genes. A bioinformatics search for candidates revealed a total of 70 genes that are highly likely to be implicated in the adaptive response of the population living in a stable environment, compared to those living in an environment with variable temperatures. Most importantly, the population inhabiting the geothermal environment showed decreased transcriptional plasticity and reduced genetic variation compared to its counterpart from the non-stable environment. This analysis will help to advance the understanding of the molecular mechanisms that account for the local adaptation to geothermal streams in anurans.

  5. On valuing patches: Estimating contributions to metapopulation growth with reverse-time capture-recapture modelling

    USGS Publications Warehouse

    Sanderlin, J.S.; Waser, P.M.; Hines, J.E.; Nichols, J.D.

    2012-01-01

    Metapopulation ecology has historically been rich in theory, yet analytical approaches for inferring demographic relationships among local populations have been few. We show how reverse-time multi-state capture-recapture models can be used to estimate the importance of local recruitment and interpopulation dispersal to metapopulation growth. We use 'contribution metrics' to infer demographic connectedness among eight local populations of banner-tailed kangaroo rats, to assess their demographic closure, and to investigate sources of variation in these contributions. Using a 7 year dataset, we show that: (i) local populations are relatively independent demographically, and contributions to local population growth via dispersal within the system decline with distance; (ii) growth contributions via local survival and recruitment are greater for adults than juveniles, while contributions involving dispersal are greater for juveniles; (iii) central populations rely more on local recruitment and survival than peripheral populations; (iv) contributions involving dispersal are not clearly related to overall metapopulation density; and (v) estimated contributions from outside the system are unexpectedly large. Our analytical framework can classify metapopulations on a continuum between demographic independence and panmixia, detect hidden population growth contributions, and make inference about other population linkage forms, including rescue effects and source-sink structures. Finally, we discuss differences between demographic and genetic population linkage patterns for our system. ?? 2011 The Royal Society.

  6. Global surface mass time variations by using a two-step inversion for cumulating daily satellite gravity information

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume; Frappart, Frappart; Seoane, Lucia

    2015-04-01

    We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission (2002 - 2012), these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrology is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources consists of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics less than 5-6). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~40,000 km x km are imposed to be identical and homogeneously-distributed over the terrestrial sphere, however they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting simulated hydrology-related geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of reaching better time and space resolutions for hydrology, that would be hopefully brought by future low altitude geodetic missions.

  7. Ionospheric variation observed in Oregon Real-time GNSS network during the total eclipse of 21 August 2017

    NASA Astrophysics Data System (ADS)

    Shahbazi, A.; Park, J.; Kim, S.; Oberg, R.

    2017-12-01

    As the ionospheric behavior is highly related to the solar activity, the total eclipse passing across the North America on 21 August 2017 is expected to significantly affect the electron density in the ionosphere along the path. Taking advantage of GNSS capability for observing total electron content (TEC), this study demonstrates the impact of the total eclipse not only on the TEC variation during the period of the event but also on GNSS positioning. Oregon Department of Transportation (ODOT) runs a dense real time GNSS network, referred to as Oregon Real-time GNSS network (ORGN). From the dual frequency GPS and GLONASS observations in ORGN, the TEC over the network area can be extracted. We observe the vertical TEC (VTEC) from the ORGN for analyzing the ionospheric condition in the local area affected by the eclipse. To observe the temporal variation, we also observe the slant TEC (STEC) in each ray path and analyze the short term variation in different geometry of each ray path. Although the STEC is dependent quantity upon the changing geometry of a satellite, this approach provides insight to the ionospheric behavior of the total eclipse because the STEC does not involve the projection error, which is generated by VTEC computation. During the period of eclipse, the abnormal variations on VTEC and STEC are expected. The experimental results will be presented in time series plots for selected stations as well as the regional TEC map in Oregon. In addition to the TEC monitoring, we also test the positioning result of ORGN stations through Precise Point Positioning (PPP) and relative positioning. The expected result is that the both positioning results are degraded during the solar eclipse due to the instable ionospheric condition over short time.

  8. Spatial variation in the climatic predictors of species compositional turnover and endemism.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-08-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.

  9. Recent variations in seasonality of temperature and precipitation in Canada, 1976-95

    NASA Astrophysics Data System (ADS)

    Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.

    2002-11-01

    A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.

  10. Localization of the lumbar discs using machine learning and exact probabilistic inference.

    PubMed

    Oktay, Ayse Betul; Akgul, Yusuf Sinan

    2011-01-01

    We propose a novel fully automatic approach to localize the lumbar intervertebral discs in MR images with PHOG based SVM and a probabilistic graphical model. At the local level, our method assigns a score to each pixel in target image that indicates whether it is a disc center or not. At the global level, we define a chain-like graphical model that represents the lumbar intervertebral discs and we use an exact inference algorithm to localize the discs. Our main contributions are the employment of the SVM with the PHOG based descriptor which is robust against variations of the discs and a graphical model that reflects the linear nature of the vertebral column. Our inference algorithm runs in polynomial time and produces globally optimal results. The developed system is validated on a real spine MRI dataset and the final localization results are favorable compared to the results reported in the literature.

  11. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  12. The physiological basis of geographic variation in rates of embryonic development within a widespread lizard species.

    PubMed

    Du, Wei-Guo; Warner, Daniel A; Langkilde, Tracy; Robbins, Travis; Shine, Richard

    2010-10-01

    The duration of embryonic development (e.g., egg incubation period) is a critical life-history variable because it affects both the amount of time that an embryo is exposed to conditions within the nest and the seasonal timing of hatching. Variation in incubation periods among oviparous reptiles might result from variation in either the amount of embryogenesis completed before laying or the subsequent developmental rates of embryos. Selection on incubation duration could change either of those traits. We examined embryonic development of fence lizards (Sceloporus undulatus) from three populations (Indiana, Mississippi, and Florida) that occur at different latitudes and therefore experience different temperatures and season lengths. These data reveal countergradient variation: at identical temperatures in the laboratory, incubation periods were shorter for lizards from cooler areas. This variation was not related to stage at oviposition; eggs of all populations were laid at similar developmental stages. Instead, embryonic development proceeded more rapidly in cooler-climate populations, compensating for the delayed development caused by lower incubation temperatures in the field. The accelerated development appears to occur via an increase in heart mass (and, thus, stroke volume) in one population and an increase in heart rate in the other. Hence, superficially similar adaptations of embryonic developmental rate to local conditions may be generated by dissimilar proximate mechanisms.

  13. NMR fingerprinting as a tool to evaluate post-harvest time-related changes of peaches, tomatoes and plums.

    PubMed

    Santucci, Claudio; Tenori, Leonardo; Luchinat, Claudio

    2015-09-01

    The time-related changes of three agricultural products, coming from two distribution routes, have been followed using NMR fingerprinting to monitor metabolic variations occurring during several days of cold storage. An NMR profiling approach was employed to evaluate the variations in metabolic profile and metabolite content in three different agricultural products highly consumed in Italy (peaches, tomatoes and plums) coming from Tuscanian farms and how they change with time after collection. For each product, we followed the time-related changes during cold storage along three different collection periods. We monitored the variations in metabolic fingerprint and the trend of a set of metabolites, focusing our attention on nutritive and health-promoting metabolites (mainly, essential amino acids and antioxidants) as well as metabolites that contribute to the taste. Concurrently, for comparison, the time-dependent changes of the same kind of products coming from large-scale distribution have been also analyzed under the same conditions. In this second category, only slight variations in the metabolic fingerprint and metabolite levels were seen during cold storage. Unsupervised and supervised multivariate statistics was also employed to enlighten the differences between the three collections. In particular it seems that the metabolic fingerprint of large-scale distribution products is quite similar in the early, middle and late collection, while peaches and plums locally collected are markedly different among the three periods. The metabolic profiles of the agricultural products belonging to these two different distribution routes are intrinsically different, and they show different changes during the time of cold storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Gravel road paving guidelines, technical summary.

    DOT National Transportation Integrated Search

    2016-11-01

    The percentage of gravel roads in rural areas in Kansas is higher than most states. A wide variation of traffic volumes across different regions and variations of local conditions and scenarios present a great challenge for local agencies to determin...

  15. An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs

    NASA Astrophysics Data System (ADS)

    Zachiu, C.; Papadakis, N.; Ries, M.; Moonen, C.; de Senneville, B. Denis

    2015-12-01

    Magnetic resonance (MR) guided high intensity focused ultrasound and external beam radiotherapy interventions, which we shall refer to as beam therapies/interventions, are promising techniques for the non-invasive ablation of tumours in abdominal organs. However, therapeutic energy delivery in these areas becomes challenging due to the continuous displacement of the organs with respiration. Previous studies have addressed this problem by coupling high-framerate MR-imaging with a tracking technique based on the algorithm proposed by Horn and Schunck (H and S), which was chosen due to its fast convergence rate and highly parallelisable numerical scheme. Such characteristics were shown to be indispensable for the real-time guidance of beam therapies. In its original form, however, the algorithm is sensitive to local grey-level intensity variations not attributed to motion such as those that occur, for example, in the proximity of pulsating arteries. In this study, an improved motion estimation strategy which reduces the impact of such effects is proposed. Displacements are estimated through the minimisation of a variation of the H and S functional for which the quadratic data fidelity term was replaced with a term based on the linear L1norm, resulting in what we have called an L2-L1 functional. The proposed method was tested in the livers and kidneys of two healthy volunteers under free-breathing conditions, on a data set comprising 3000 images equally divided between the volunteers. The results show that, compared to the existing approaches, our method demonstrates a greater robustness to local grey-level intensity variations introduced by arterial pulsations. Additionally, the computational time required by our implementation make it compatible with the work-flow of real-time MR-guided beam interventions. To the best of our knowledge this study was the first to analyse the behaviour of an L1-based optical flow functional in an applicative context: real-time MR-guidance of beam therapies in moving organs.

  16. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    DTIC Science & Technology

    2015-11-05

    the SMF is superior when it comes to remote sensing in far and deep ocean. As an initial test , the real-time temperature structure within the water...4 ℃. The high resolution guarantees the visualization of subtle variation in the local water. To test the response time of the proposed sensor, the... Honey , "Optical trubulence in the sea," in Underwater Photo-optical Instrumentation Applications SPIE, 49-55 (1972). [6] J. D. Nash, D. R. Caldwell, M

  17. Evidence for Holocenic uplift at Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana; Fedele, Lorenzo; Grifa, Celestino; Morra, Vincenzo; Berg, Ria; Varone, Antonio

    2009-07-01

    Detailed stratigraphical, archaeological, micropalaeontological, archaeometrical and petrochemical analyses of samples from trenches and boreholes at insula of Casti Amanti, in Pompeii, allowed a faithful reconstruction of the recent environmental evolution of the site. The present data clearly indicate the alternation of both subaerial and shallow marine conditions during Holocene times. Taking into account the relative local sea level variations, a ~ 30 m ground uplift event in the last 6 kyr (with an average vertical uplift rate of ~ 5 mm/yr) was inferred for the first time.

  18. Nightglow emissions of OH/X 2 pi/ - Comparison of theory and measurements in the /9-3/ band

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Rusch, D. W.; Liu, S. C.

    1978-01-01

    The visible airglow experiments on the Atmosphere Explorer C and E satellites have viewed the (9-3) band nightglow emission of the excited hydroxyl radical in the lower thermosphere at tropical latitudes. The surface brightnesses observed at similar local times vary by approximately a factor of 2. Comparison of the measurements with time-dependent photochemical calculations shows reasonable agreement and indicates that temporal changes in atmospheric transport processes are the most likely explanation of the nightglow variations.

  19. New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Dou, Xiankang; Luan, Xiaoli; Solomon, Stanley C.; Liu, Yong C.-M.

    2014-03-01

    The total electron content (TEC) data measured by the Jason, CHAMP, GRACE, and SAC-C satellites, the in situ electron densities from CHAMP and GRACE, and the vertical E × B drifts from the ROCSAT, have been utilized to examine the ionospheric response to the October 2003 superstorms. The combination of observations from multiple satellites provides a unique global view of ionospheric storm effects, especially over the Pacific Ocean and American regions, which were under sunlit conditions during the main phases of the October 2003 superstorms. The main results of this study are as follows: (1) There were substantial increases in TEC in the daytime at low and middle latitudes during both superstorms. (2) The enhancements were greater during the 30 October superstorm and occurred over a wider range of local times. (3) They also tended to peak at earlier local times during this second event. (4) These TEC enhancement events occurred at the local times when there were enhancements in the upward vertical drift. (5) The strong upward vertical drifts are attributed to penetration electric fields, suggesting that these penetration electric fields played a significant role in the electron density enhancements during these superstorms. Overall, the main contribution of this study is the simultaneous view of the storm time ionospheric response from multiple satellites, and the association of local time differences in ionospheric plasma response with measured vertical drift variations.

  20. Investigation of firebrand generation from an experimental fire: Development of a reliable data collection methodology

    Treesearch

    Jan C. Thomas; Eric V. Mueller; Simon Santamaria; Michael Gallagher; Mohamad El Houssami; Alexander Filkov; Kenneth Clark; Nicholas Skowronski; Rory M. Hadden; William Mell; Albert Simeoni

    2017-01-01

    An experimental approach has been developed to quantify the characteristics and flux of firebrands during a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related to the fire behavior for the first time. This...

  1. Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts

    PubMed Central

    Sugihara, George; Casdagli, Martin; Habjan, Edward; Hess, Dale; Dixon, Paul; Holland, Greg

    1999-01-01

    We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems. PMID:10588685

  2. Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two case studies

    NASA Technical Reports Server (NTRS)

    Craven, J. D.; Frank, L. A.; Russell, C. T.; Smith, E. J.; Lepping, R. P.

    1985-01-01

    The global auroral responses to shocks in the solar wind at Earth were studied. The z-component of the interplanetary magnetic field, Bz, is negative ahead and behind the first shock and positive for the second case. A sudden-commencement geomagnetic storm develops in each case, with maximum D sub st 190 nT. An immediate auroral response is detected at all longitudes around the auroral oval, in which auroral luminosities increase by a factor of 2 to 3 with the first samples after each sudden commencement. The time delay in obtaining the first sample varies with local time from approx. 1 to 18 mins. No other significant variations in the aurora are associated with the immediate response. Beginning approx. 30 mins after each sudden commencement, the aurora becomes active and displays significant variations in its luminosity and spatial distribution. For Bz 0 an intense substorm develops. A sun-aligned transpolar arc forms when Bz 0, appearing first at local midnight as a polar arc and then lengthening sunward from the auroral oval across the polar cap to noon at an average speed of approx. 1 km/sec.

  3. An ISEE/Whistler model of equatorial electron density in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Anderson, R. R.

    1992-01-01

    Attention is given to an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8. Although the model is primarily intended for application to the local time interval 00-15 MLT, a way to extend the model to the 15-24-MLT period is presented. The model describes, in piecewise fashion, the 'saturated' plasmasphere, the region of steep plasmapause gradients, and the plasma trough. Within the plasmasphere the model profile can be expressed as logne - Sigma-xi, where x1 = -0.3145L + 3.9043 is the principal or 'reference' term, and additional terms account for: a solar cycle variation with a peak at solar maximum; an annual variation with a December maximum; and a semiannual variation with equinoctial maxima.

  4. Observation and modeling of compressional Pi 3 magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Matsuoka, Hitoshi; Takahashi, K.; Yumoto, K.; Anderson, B. J.; Sibeck, D. G.

    1995-01-01

    Compressional magnetic pulsations with irregular waveforms and periods longer than 150 s (here termed Pi 3) have been studied by using data from Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) and GOES 5 and 6 in the dayside magnetosphere and compared with signatures on the ground at low latitudes by using data from Kakioka station (L = 1.25). On the ground, the pulsations appear in the horizontal component. A study of 17 such concurrent events during a 2-month period in 1986 reveals the following pulsation characteristics. (1) The peak-to-peak amplitudes in space (delta B(sub T)) and on the ground (delta H) are comparable and are in the range of 0.5-7 nT. (2) On the ground the pulsations can be seen at all local times, even at midnight, while at geostationary orbit they are observed only on the dayside with a clear amplitude maximum at noon. (3) The pulsations on the ground lag those observed by CCE near local noon, and the lag increases as the local time separation between CCE and the ground station increases. The time lag is 1-2 min longer when the ground station is on the nightside than when it is on the dayside. (4) The time lag between pulsations observed at geostationary orbit and near noon by CCE varies systematically with local time and is about 2 min per 6 hours of local time separation. These observations indicate that some nightside pulsations in the Pi 3 band have dayside origins. The position dependence of the pulsation amplitude can be explained well by changes in the magnetopause current, which are in turn presumably caused by changes in the solar wind dynamic pressure. The time lags observed in space are consistent with signal propagation in the MHD fast mode, but the variation in space-ground time lags with ground station local time must be attributed to another mechanism.

  5. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.

    PubMed

    Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi

    2010-02-01

    In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S.; Domowicz, Miriam

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflectmore » local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.« less

  7. Variational Assimilation of GOME Total-Column Ozone Satellite Data in a 2D Latitude-Longitude Tracer-Transport Model.

    NASA Astrophysics Data System (ADS)

    Eskes, H. J.; Piters, A. J. M.; Levelt, P. F.; Allaart, M. A. F.; Kelder, H. M.

    1999-10-01

    A four-dimensional data-assimilation method is described to derive synoptic ozone fields from total-column ozone satellite measurements. The ozone columns are advected by a 2D tracer-transport model, using ECMWF wind fields at a single pressure level. Special attention is paid to the modeling of the forecast error covariance and quality control. The temporal and spatial dependence of the forecast error is taken into account, resulting in a global error field at any instant in time that provides a local estimate of the accuracy of the assimilated field. The authors discuss the advantages of the 4D-variational (4D-Var) approach over sequential assimilation schemes. One of the attractive features of the 4D-Var technique is its ability to incorporate measurements at later times t > t0 in the analysis at time t0, in a way consistent with the time evolution as described by the model. This significantly improves the offline analyzed ozone fields.

  8. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  9. Importance of Local and Regional Scales in Shaping Mycobacterial Abundance in Freshwater Lakes.

    PubMed

    Roguet, Adélaïde; Therial, Claire; Catherine, Arnaud; Bressy, Adèle; Varrault, Gilles; Bouhdamane, Lila; Tran, Viet; Lemaire, Bruno J; Vincon-Leite, Brigitte; Saad, Mohamed; Moulin, Laurent; Lucas, Françoise S

    2018-05-01

    Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 10 3 to 1.9 × 10 8 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.

  10. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  11. Local climatic adaptation in a widespread microorganism.

    PubMed

    Leducq, Jean-Baptiste; Charron, Guillaume; Samani, Pedram; Dubé, Alexandre K; Sylvester, Kayla; James, Brielle; Almeida, Pedro; Sampaio, José Paulo; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2014-02-22

    Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.

  12. A new short-term forecasting model for the total electron content storm time disturbances

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Koutroumbas, Konstantinos; Elias, Panagiotis

    2018-06-01

    This paper aims to introduce a new model for the short-term forecast of the vertical Total Electron Content (vTEC). The basic idea of the proposed model lies on the concept of the Solar Wind driven autoregressive model for Ionospheric short-term Forecast (SWIF). In its original version, the model is operationally implemented in the DIAS system (http://dias.space.noa.gr) and provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 critical frequency over Europe up to 24 h in advance. The forecasts are driven by the real time assessment of the solar wind conditions at ACE location. The comparative analysis of the variations in foF2 and vTEC during eleven geomagnetic storm events that occurred in the present solar cycle 24 reveals similarities but also differences in the storm-time response of the two characteristics with respect to the local time and the latitude of the observation point. Since the aforementioned dependences drive the storm-time forecasts of the SWIF model, the results obtained here support the upgrade of the SWIF's modeling technique in forecasting the storm-time vTEC variation from its onset to full development and recovery. According to the proposed approach, the vTEC storm-time response can be forecasted from 1 to 12-13 h before its onset, depending on the local time of the observation point at storm onset at L1. Preliminary results on the assessment of the performance of the proposed model and further considerations on its potential implementation in operational mode are also discussed.

  13. Genetic Architecture of Local Adaptation in Lunar and Diurnal Emergence Times of the Marine Midge Clunio marinus (Chironomidae, Diptera)

    PubMed Central

    Kaiser, Tobias S.; Heckel, David G.

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167–193 centimorgans based on a linkage map using 344 markers, and a physical size of 95–140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock. PMID:22384150

  14. Genetic architecture of local adaptation in lunar and diurnal emergence times of the marine midge Clunio marinus (Chironomidae, Diptera).

    PubMed

    Kaiser, Tobias S; Heckel, David G

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167-193 centimorgans based on a linkage map using 344 markers, and a physical size of 95-140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.

  15. Localized variations in electronic structure of AlGaN/GaN heterostructures grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Smith, K. V.; Yu, E. T.; Elsass, C. R.; Heying, B.; Speck, J. S.

    2001-10-01

    Local electronic properties in a molecular-beam-epitaxy-grown AlxGa1-xN/GaN heterostructure field-effect transistor epitaxial layer structure are probed using depth-resolved scanning capacitance microscopy. Theoretical analysis of contrast observed in scanning capacitance images acquired over a range of bias voltages is used to assess the possible structural origins of local inhomogeneities in electronic structure, which are shown to be concentrated in areas where Ga droplets had formed on the surface during growth. Within these regions, there are significant variations in the local electronic structure that are attributed to variations in both AlxGa1-xN layer thickness and Al composition. Increased charge trapping is also observed in these regions.

  16. Variation in reproductive life history traits between two populations of Blackbanded Darters (Percina nigrofasciata)

    USGS Publications Warehouse

    Hughey, Myra C.; Heins, David C.; Jelks, Howard L.; Ory, Bridget A.; Jordan, Frank

    2012-01-01

    We examined the life history of Blackbanded Darters (Percina nigrofasciata) from two streams in the Choctawhatchee River drainage, Florida, over a three-year study period. Blackbanded Darters from Turkey Creek were longer than fish from Ten Mile Creek; however, size-adjusted clutch and egg sizes were similar between populations. Larger females produced larger clutches, whereas egg size did not vary with female body size. Seasonally, clutch sizes were greater in May than in August. When contrasted with previous studies of Blackbanded Darters in Alabama and Louisiana, the reproductive season of Blackbanded Darters in Florida was unusually long, ceasing for only a few months in late fall. The reproductive season was longer in Turkey Creek than in Ten Mile Creek. Differences in thermal regime among streams may explain differences in life history traits among local and distant populations of Blackbanded Darters. This research, alone and in combination with previous studies of this species, emphasizes two main points. First, it reaffirms that life history studies based on a single locality or conducted at a single point in time may fail to capture the full range of variation in life history traits. Second, it highlights the extensive phenotypic variation found in species with broad geographic ranges. Such species lend themselves to comparative and experimental research on patterns and causes of life history variation.

  17. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection

    PubMed Central

    Kulldorff, Martin; Heffernan, Richard; Hartman, Jessica; Assunção, Renato; Mostashari, Farzad

    2005-01-01

    Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066

  18. COMDYN: Software to study the dynamics of animal communities using a capture-recapture approach

    USGS Publications Warehouse

    Hines, J.E.; Boulinier, T.; Nichols, J.D.; Sauer, J.R.; Pollock, K.H.

    1999-01-01

    COMDYN is a set of programs developed for estimation of parameters associated with community dynamics using count data from two locations or time periods. It is Internet-based, allowing remote users either to input their own data, or to use data from the North American Breeding Bird Survey for analysis. COMDYN allows probability of detection to vary among species and among locations and time periods. The basic estimator for species richness underlying all estimators is the jackknife estimator proposed by Burnham and Overton. Estimators are presented for quantities associated with temporal change in species richness, including rate of change in species richness over time, local extinction probability, local species turnover and number of local colonizing species. Estimators are also presented for quantities associated with spatial variation in species richness, including relative richness at two locations and proportion of species present in one location that are also present at a second location. Application of the estimators to species richness estimation has been previously described and justified. The potential applications of these programs are discussed.

  19. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    NASA Astrophysics Data System (ADS)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  20. An algorithm for synchronizing a clock when the data are received over a network with an unstable delay

    PubMed Central

    Levine, Judah

    2016-01-01

    A method is presented for synchronizing the time of a clock to a remote time standard when the channel connecting the two has significant delay variation that can be described only statistically. The method compares the Allan deviation of the channel fluctuations to the free-running stability of the local clock, and computes the optimum interval between requests based on one of three selectable requirements: (1) choosing the highest possible accuracy, (2) choosing the best tradeoff of cost vs. accuracy, or (3) minimizing the number of requests to realize a specific accuracy. Once the interval between requests is chosen, the final step is to steer the local clock based on the received data. A typical adjustment algorithm, which supports both the statistical considerations based on the Allan deviation comparison and the timely detection of errors is included as an example. PMID:26529759

  1. Ethnic variation in localized prostate cancer: a pilot study of preferences, optimism, and quality of life among black and white veterans.

    PubMed

    Knight, Sara J; Siston, Amy K; Chmiel, Joan S; Slimack, Nicholas; Elstein, Arthur S; Chapman, Gretchen B; Nadler, Robert B; Bennett, Charles L

    2004-06-01

    Ethnic variations that may influence the preferences and outcomes associated with prostate cancer treatment are not well delineated. Our objective was to evaluate prospectively preferences, optimism, involvement in care, and quality of life (QOL) in black and white veterans newly diagnosed with localized prostate cancer. A total of 95 men who identified themselves as black/African-American or white who had newly diagnosed, localized prostate cancer completed a "time trade-off" task to assess utilities for current health and mild, moderate, and severe functional impairment; importance rankings for attributes associated with prostate cancer (eg, urinary function); and baseline and follow-up measures of optimism, involvement in care, and QOL. Interviews were scheduled before treatment, and at 3 and 12 months after treatment. At baseline, both blacks and whites ranked pain, bowel, and bladder function as their most important concerns. Optimism, involvement in care, and QOL were similar. Utilities for mild impairment were lower for blacks than whites, but were similar for moderate and severe problems. Decline in QOL at 3 and 12 months compared to baseline occurred for both groups. However, even with adjustment for marital status, education level, and treatment, blacks had less increase in nausea and vomiting and more increase in difficulty with sexual interest and weight gain compared with whites. Black and white veterans entered localized prostate cancer treatment with similar priorities, optimism, and involvement in care. Quality-of-life declines were common to both groups during the first year after diagnosis, but ethnic variation occurred with respect to nausea and vomiting, sexual interest, and weight gain.

  2. Electrodiffusive Model for Astrocytic and Neuronal Ion Concentration Dynamics

    PubMed Central

    Halnes, Geir; Østby, Ivar; Pettersen, Klas H.; Omholt, Stig W.; Einevoll, Gaute T.

    2013-01-01

    The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K+-concentration to increase by several millimolars. The clearance of this excess K+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering) within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i) increases the local astrocytic uptake of K+, (ii) suppresses extracellular transport of K+, (iii) increases axial transport of K+ within astrocytes, and (iv) facilitates astrocytic relase of K+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K+. PMID:24367247

  3. Variation in Management of Fever and Neutropenia Among Pediatric Patients with Cancer: A Survey of Providers in Michigan

    PubMed Central

    Mueller, Emily L.; Walkovich, Kelly J.; Yanik, Gregory A.; Clark, Sarah J.

    2016-01-01

    Considerable variation in the management of fever and neutropenia (FN) exists, with factors associated with treatment variation not well described. An on-line survey of 90 pediatric cancer providers in Michigan was performed in Spring 2014. The survey frame was pediatric patients with cancer receiving treatment, with a Port-a-cath, who were clinically stable. Criteria for “Decreased” and “Increased” risk groups were defined by respondents. Survey questions addressed FN definitions, risk groups conceptualization, routine clinical practice, and management guidelines, in the context of risk groups and distance to treating institution. Fifty providers responded (56%), the majority defined a febrile event as temperature >38.3°C and/or two events > 38.0°C within a 24-hour period. Neutropenia was defined as current or anticipated absolute neutrophil count (ANC) <500/μL. Majority of respondents recommended “Decreased” and “Increased” patients present to a local emergency department (ED) if they live >2 hours away. Respondents were significantly more likely to have a “Decreased Risk” patient travel over 2 hours if they rated the local ED as “Poor to Fair” on ability to access Port-a-caths (p 0.048). Most respondents would discharge patients who are afebrile for 24 hours, blood cultures negative for 48 hours, and neutrophil count of greater than 200/μL. 40% preferred discharge on oral antibiotics when the ANC<500/μL. Triaging for febrile pediatric patients with cancer is significantly influenced by the providers’ perceptions of local EDs. Future investigation of local hospitals’ ability to provide urgent evaluation, combined with parental perspectives could lead to improvements in timely and effective management. PMID:26086779

  4. Variation in Management of Fever and Neutropenia Among Pediatric Patients With Cancer: A Survey of Providers in Michigan.

    PubMed

    Mueller, Emily L; Walkovich, Kelly J; Yanik, Gregory A; Clark, Sarah J

    2015-01-01

    Considerable variation in the management of fever and neutropenia (FN) exists, with factors associated with treatment variation not well described. An online survey of 90 pediatric cancer providers in Michigan was performed in Spring 2014. The survey frame was pediatric patients with cancer receiving treatment, with a Port-a-cath, who were clinically stable. Criteria for "Decreased" and "Increased" risk groups were defined by respondents. Survey questions addressed FN definitions, risk groups conceptualization, routine clinical practice, and management guidelines, in the context of risk groups and distance to treating institution. Fifty providers responded (56%); the majority defined a febrile event as temperature >38.3°C and/or 2 events >38.0°C within a 24-hour period. Neutropenia was defined as current or anticipated absolute neutrophil count (ANC) <500/μL. Majority of respondents recommended "Decreased" and "Increased" patients present to a local emergency department (ED) if they live >2 hours away. Respondents were significantly more likely to have a "Decreased Risk" patient travel over 2 hours if they rated the local ED as "Poor to Fair" on ability to access Port-a-caths (P = .048). Most respondents would discharge patients who are afebrile for 24 hours, blood cultures negative for 48 hours, and neutrophil count of greater than 200/μL; 40% preferred discharge on oral antibiotics when the ANC <500/μL. Triaging for febrile pediatric patients with cancer is significantly influenced by the providers' perceptions of local EDs. Future investigation of local hospitals' ability to provide urgent evaluation, combined with parental perspectives, could lead to improvements in timely and effective management.

  5. Modeling photo-bleaching kinetics to map local variations in rod rhodopsin density

    NASA Astrophysics Data System (ADS)

    Ehler, M.; Dobrosotskaya, J.; King, E. J.; Czaja, W.; Bonner, R. F.

    2011-03-01

    Localized rod photoreceptor and rhodopsin losses have been observed in post mortem histology both in normal aging and in age-related maculopathy. We propose to noninvasively map local rod rhodopsin density through analysis of the brightening of the underlying lipofuscin autofluorescence (LAF) in confocal scanning laser ophthalmoscopy (cSLO) imaging sequences starting in the dark adapted eye. The detected LAF increases as rhodopsin is bleached (time constant ~ 25sec) by the average retinal irradiance of the cSLO 488nm laser beam. We fit parameters of analytical expressions for the kinetics of rhodopsin bleaching that Lamb validated using electroretinogram recordings in human. By performing localized (~ 100μm) kinetic analysis, we create high resolution maps of the rhodopsin density. This new noninvasive imaging and analysis approach appears well-suited for measuring localized changes in the rod photoreceptors and correlating them at high spatial resolution with localized pathological changes of the retinal pigment epithelium (RPE) seen in steady-state LAF images.

  6. Where does the plasmasphere begin? Revisit to topside ionospheric profiles in comparison with plasmaspheric TEC from Jason-1

    NASA Astrophysics Data System (ADS)

    Lee, Han-Byul; Kim, Yong Ha; Kim, Eunsol; Hong, Junseok; Kwak, Young-Sil

    2016-10-01

    Topside ionospheric profiles have been measured by Alouette 1 and ISIS 1/2 in the periods of 1962-1972 and 1972-1979, respectively. The profiles cover from the orbital altitude of 1000 km to the F2 peak and show large variations over local time, latitude, and seasons. We here analyze these variations in comparison with plasmaspheric total electron contents (pTECs) that were measured by Jason-1 satellite from the altitude of 1336 km to 20,200 km (GPS orbit). The scale heights of the profiles are generally smaller in the daytime than nighttime but show large day-to-day variations, implying that the ionospheric profiles at 1000 km are changing dynamically, rather than being in diffusive equilibrium. We also derived transition heights between O+ and H+, which show a clear minimum at dawn for low-latitude profiles due to decreasing O+ density at night. To compare with pTEC, we compute topside ionospheric total electron content (tiTEC) by integrating over 800-1336 km using the slope of the profiles. The tiTEC varies in a clear diurnal pattern from 0.3 to 1 and 3 total electron content unit (TECU, 1 TECU = 1016 el m-2) for low and high solar activity, respectively, whereas Jason-1 pTEC values are distributed over 2-6 TECU and 4-8 TECU for low and high solar activity, respectively, with no apparent diurnal modulation. Latitudinal variations of tiTEC show distinctive hemispheric asymmetry while that of Jason-1 pTEC is closely symmetric about the magnetic equator. The local time and latitudinal variations of tiTEC basically resemble those of the ionosphere but are characteristically different from those of Jason-1 pTEC. Based on the difference between tiTEC and pTEC variations, we propose that the region above 1300 km should be considered as the plasmasphere. Lower altitudes for the base of "plasmaspheric TEC," as used in some studies, would cause contamination of ionospheric influence.

  7. Observational investigation of ionospheric turbulent spectral content in relation to geomagnetic field variations and local seismicity

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arambelos, D.; Asteriadis, G.; Pikridas, Ch.; Spatalas, S.; Chatzinikos, M.

    2006-04-01

    Atmospheric and underground explosions as well as shallow earthquakes producing strong vertical ground displacement, are known to produce pressure waves that propagates at infrasonic speeds in the atmosphere. At ionospheric altitudes these waves are coupled to ionospheric gravity waves and induce variations in the ionospheric electron density. On the other hand local lithospheric density, ion inhalation, temperature or electromagnetic field variations, produced by the local tectonic activity during the earthquake preparation period, induces near surface atmospheric variations and affect the ionospheric density through the Lithospher-Atmosphere- Ionosphere Coupling. That is the lithospheric near surface tectonic activity results to local pre- co- and post seismic disturbances on the ionospheric Total Electron Content (TEC). Nevertheless these disturbances are mixed with disturbances induced to the ionospher by a number of agents such as tropospheric jets, magnetic storms and sub-storms, solar activity, ionosphere-magnetosphere coupling etc, and a major problem is to discriminate the influence of those agents from the influence of the local tectonic activity. In this paper we present the results of the wavelet analysis of TVEC variations over a network of 4 GPS stations, depicted from EUREF-EPN network, covering the whole area of Greece. Our results indicate that 1) Disturbances with period higher than 3 hours have a Universal origin i.e. earth-tides, Aurora or Equatorial anomaly. 2) Disturbances with periods equal or smaller than 3 hours are of local origin. 3) Strong Variations of geomagnetic field affect the disturbances of all periods. 4) Disturbances with period 3 hours present a good coherency in the measurements of more than one GPS stations. In concluding disturbances with period equal or less than 3 hours are suitable for de

  8. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  9. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1985-01-01

    Data from Magsat analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The Magsat data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  10. Packing microstructure and local density variations of experimental and computational pebble beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less

  11. Thermospheric O/N2 ratio observations obtained over more than four years with the GUVI instrument in the TIMED spacecraft mission

    NASA Astrophysics Data System (ADS)

    Craven, J. D.; Christensen, A. B.; Paxton, L. J.; Strickland, D. J.

    2006-12-01

    GUVI observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made continuously from about Day 50 of 2002 to the present as part of the TIMED spacecraft mission. From these observations have been created organized databases to be used in the creation of analytic models for this parameter. Undesirable attributes within the GUVI data are being eliminated; sun glint at particular solar orientations and penetrating radiation from the South Atlantic magnetic anomaly. The large-scale basic spatial structure includes variations with local time (greater values before local noon), Universal Time (modulation at high latitudes as the dayside auroral oval varies in solar zenith angle due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). Superposed on this well- behaved background structure are the complex, transient perturbations of auroral substorm and geomagnetic storm driven heating events at the high latitudes. These are more difficult to analyze, but are of great interest, as changes in neutral composition, for example, drive changes in ionospheric electron density. The current state of these efforts is to be presented.

  12. Analysis of nonlocal phonon thermal conductivity simulations showing the ballistic to diffusive crossover

    NASA Astrophysics Data System (ADS)

    Allen, Philip B.

    2018-04-01

    Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .

  13. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  14. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments.

    PubMed

    Gričar, Jožica; Prislan, Peter; Gryc, Vladimír; Vavrčík, Hanuš; de Luis, Martin; Cufar, Katarina

    2014-08-01

    Despite its major economic importance and the vulnerability of Picea abies (L.) H. Karst. to climate change, how its radial growth at intra-annual resolution is influenced by weather conditions in forest stands with a high production capacity has scarcely been explored. Between 2009 and 2011, phenological variation in seasonal cambial cell production (CP) was analysed in adult P. abies trees from three contrasting sites, differing in altitude and latitude. The results indicate that the timing of cambial CP is a highly synchronic process within populations since in all cases the cambium simultaneously started and stopped producing xylem and phloem cells. Our results also demonstrate that the phenology of cambial CP is highly variable and plastic between years, depending on seasonal temperature and precipitation variation. Differences among sites, however, are only partially explained by different environmental (elevation and altitude) and climatic conditions, suggesting that local adaptation may also play a decisive role in the strategy of P. abies for adapting wood and phloem increments to function optimally under local conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Recent progress in distributed fiber optic sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  16. Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai

    NASA Astrophysics Data System (ADS)

    Shafizadeh-Moghadam, Hossein; Helbich, Marco

    2015-03-01

    The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.

  17. Recent Progress in Distributed Fiber Optic Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  18. Terrestrial biomarker records in Seomjin Estuary in the South Sea of Korea: Implication for terrestrial flux and environmental changes

    NASA Astrophysics Data System (ADS)

    kim, Songyi; hyun, Sangmin; Kim, Wonnyon; Hyeong, Kiseong

    2016-04-01

    High-resolution records of terrestrial biomarkers, n-alkane compounds, were investigated in two gravity cores (SJP-2 and SJP-4) to evaluate variations in terrestrial organic matter influx. Based on 14C dating, sediments in both cores were deposited during the mid-Holocene; the ages of the bottom sediments of SJP-2 and SJP-4 reached 5,500 Cal yr BP and 5,000 Cal yr BP, respectively. High concentrations of total n-alkanes (nC25-35) in the two cores showed an increasing tendency from 4,500 yr to ca. 2,000 yr. The composition changed at the boundary of 2,500 yr in both cores, suggesting a variation in terrestrial biomarker influx at this time. Several indices including average chain length (ACL), carbon preference index (ICP), and paleo-vegetation index (Paq) showed coincident variations in both cores; ACL exhibited a narrow range of variations with a slight shift at 2,500 yr, CPI showed a decreasing tendency from 4,000 yr to 2,500 yr, and Paq increased during these intervals. Furthermore, the ratios of C23/C31 and C25/C31, indicate a relative abundance of epicuticular wax from vascular plants with coincident variations in both cores, and this also marched well with Paq. CPI excursions suggested that the total n-alkane proxy of the two cores might not only be linked to local climatic variability but also to local oceanographic conditions due to the different sedimentation rates. Variations in paleovegetation and paleoclimate around the study area might be strongly associated with the influx of terrestrial organic compounds derived from vascular plants. Additional 14C dating and isotope study of individual n-alkane biomarkers will provide detailed information on paleoclimatic and paleovegetation changes.

  19. Land-use intensification effects on functional properties in tropical plant communities.

    PubMed

    Carreño-Rocabado, Geovana; Peña-Claros, Marielos; Bongers, Frans; Díaz, Sandra; Quetier, Fabien; Chuviña, José; Poorter, Lourens

    2016-01-01

    There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive trait values or with less functional variation. Instead of the widely expected negative impacts of LUI on plant diversity, we found varying responses of functional variation, with possible repercussions on many ecosystem services. These findings provide a background for actively mitigating negative effects of LUI while meeting the needs of local communities that rely mainly on provisioning ecosystem services for their livelihoods.

  20. The role of standing variation in geographic convergent adaptation

    PubMed Central

    Ralph, Peter L.; Coop, Graham

    2016-01-01

    The extent to which populations experiencing shared selective pressures adapt through a shared genetic response is relevant to many questions in evolutionary biology. In a number of well studied traits and species, it appears that convergent evolution within species is common. In this paper, we explore how standing, genetic variation contributes to convergent genetic responses in a geographically spread population, extending our previous work on the topic. Geographically limited dispersal slows the spread of each selected allele, hence allowing other alleles – newly arisen mutants or present as standing variation – to spread before any one comes to dominate the population. When such alleles meet, their progress is substantially slowed – if the alleles are selectively equivalent, they mix slowly, dividing the species range into a random tessellation, which can be well understood by analogy to a Poisson process model of crystallization. In this framework, we derive the geographic scale over which a typical allele is expected to dominate, the time it takes the species to adapt as a whole, and the proportion of adaptive alleles that arise from standing variation. Finally, we explore how negative pleiotropic effects of alleles before an environment change can bias the subset of alleles that contribute to the species’ adaptive response. We apply the results to the many geographically localized G6PD deficiency alleles thought to confer resistance to malaria, where the large mutational target size makes it a likely candidate for adaptation from standing variation, despite the selective cost of G6PD deficiency alleles in the absence of malaria. We find the numbers and geographic spread of these alleles matches our predictions reasonably well, consistent with the view that they arose from a combination of standing variation and new mutations since the advent of malaria. Our results suggest that much of adaptation may be geographically local even when selection pressures are homogeneous. Therefore, we argue that caution must be exercised when arguing that strongly geographically restricted alleles are necessarily the outcome of local adaptation. We close by discussing the implications of these results for ideas of species coherence and the nature of divergence between species. PMID:26656217

  1. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted by regression of weather variables. In addition amplitude of spatial variations were most dependent on temperature, north winds, and high level lapse rate and the temporal variations were most dependent on temperature and lapse rates.

  2. Temporal Structure of the Southern Oscillation as Revealed by Waveform and Wavelet Analysis.

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wang, Yan

    1996-07-01

    Wavelet transforms (WLT) and waveform transforms (WFT) are effective tools that reveal temporal structure of nonstationary time series. The authors discuss principles and practical aspects of their geophysical applications. The WLT can display variance as a continuous function of time and frequency, but the frequency (time) locality reduces at the high (low) frequency bands. The WFT, on the other hand, provides a sharp view of the locality in both time and frequency, but presents variance by discrete base functions. The two techniques are complementary. The authors use both Morlet WLT and Gabor WFT to analyze temporal structure of the Southern Oscillation (50).The principal period of the SO has experienced two rapid changes since 1872, one in the early 1910s and the other in the mid-1960s. The dominant period was 3-4 years in the earliest four decades (1872-1910), 5-7 years in the ensuing five decades (1911-1960. except the 1920s), and about 5 years in the last two decades (1970-1992). Ale SO also exhibits noticeable amplitude changes. It was most energetic during two periods. 1872-1892 and 1970-1992, but powerless during the 1920s, 1930s. and 1960s. The powerless period is dominated by quasi-biennial oscillation. Excessively strong cold phases of the El Niño-Southern Oscillation cycle enhance annual variation of SST in the Equatorial eastern and central Pacific. The enhancement, however, appears to be modulated by an interdecadal variation.

  3. Temporal Variations of Magnetic Field Associated with Seismic Activity at Cerro Machin Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Londono, J. M.; Serna, J. P.; Guzman, J.

    2011-12-01

    A study of magnetic variations was carried out at Cerro Machin Volcano, Colombia for the period 2009 -2010, with two permanent magnetometers located at South and North of the central dome, separated about 2.5 km each other. After corrections, we found that there is no clear correlation between volcanic seismicity and temporal changes of magnetic field for each magnetometer station, if they are analyzed individually. On the contrary, when we calculated the residual Magnetic field (RMF), for each magnetometer, and then we made the subtraction between them, and plot it vs time, we found a clear correlation of changes in local magnetic field with the occurrence of volcanic seismicity (ML >1.6). We found a change in the RMF between 1584 nT and 1608 nT, each time that a volcano-tectonic earthquake occurred. The máximum lapse time between the previous change in RMF and the further occurrence of the earthquake is 24 days, with an average of 11 days. This pattern occurred more than 9 times during the studied period. Based on the results, we believed that the simple methodology proposed here, is a good tool for monitoring changes in seismicity associated with activity at Cerro Machín volcano. We suggest that the temporal changes of RMF at Cerro Machín Volcano, are associated with piezo-magnetic effects, due to changes in strain-stress inside the volcano, produced by the interaction between local faulting and magma movement.

  4. Intracultural variation of knowledge about wild plant uses in the Biosphere Reserve Grosses Walsertal (Austria)

    PubMed Central

    2012-01-01

    Background Leading scholars in ethnobiology and ethnomedicine continuously stress the need for moving beyond the bare description of local knowledge and to additionally analyse and theorise about the characteristics and dynamics of human interactions with plants and related local knowledge. Analyses of the variation of local knowledge are thereby perceived as minimal standard. In this study we investigate the distribution and variation of wild plant knowledge in five domains: food, drinks, human medicine, veterinary medicine and customs. We assess relations between the wild plant knowledge of informants and their socio-demographic as well as geographic background. Method Research was conducted in the Biosphere Reserve Grosses Walsertal, Austria. Structured questionnaires were used to inquire wild plant knowledge from 433 informants with varying socio-demographic and geographic background. Children assisted in the data collection. Data was analysed using descriptive statistics and generalized linear models. Results and discussion A majority of respondents is familiar with wild plant uses, however to varying degrees. Knowledge variations depend on the socio-demographic and geographic background of the informants as well as on the domains of knowledge under investigation: women, older informants and homegardeners report more human medicinal applications and applications in drinks than men, younger informants and non-homegardeners; farmers know a greater variety of veterinary medicinal applications than non-farmers; the place of residence relates significantly to food and veterinary uses. Customs are difficult to investigate in standardized matrices. The household-related distribution of work and the general socio-cultural context are especially helpful in order to explain intracultural variation of knowledge in the Grosses Walsertal. Conclusions Research on the intracultural variation of local knowledge exposes cultural characteristics and highlights the cultural embeddedness of local knowledge. The impact of socio-cultural developments on local knowledge may be anticipated from understanding the intracultural variation of knowledge. PMID:22770375

  5. Local variability in long-term care services: local autonomy, exogenous influences and policy spillovers.

    PubMed

    Fernandez, José-Luis; Forder, Julien

    2015-03-01

    In many countries, public responsibility over the funding and provision of long-term care services is held at the local level. In such systems, long-term care provision is often characterised by significant local variability. Using a panel dataset of local authorities over the period 2002-2012, the paper investigates the underlying causes of variation in gross social care expenditure for older people in England. The analysis distinguishes between factors outside the direct control of policy makers, local preferences and local policy spillovers. The results indicate that local demand and supply factors, and to a much lesser extent local political preferences and spatial policy spillovers, explain a large majority of the observed variation in expenditure. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  7. Interannual variation in land-use intensity enhances grassland multidiversity

    PubMed Central

    Allan, Eric; Bossdorf, Oliver; Dormann, Carsten F.; Prati, Daniel; Gossner, Martin M.; Tscharntke, Teja; Blüthgen, Nico; Bellach, Michaela; Birkhofer, Klaus; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Chatzinotas, Antonis; Christ, Sabina; Daniel, Rolf; Diekötter, Tim; Fischer, Christiane; Friedl, Thomas; Glaser, Karin; Hallmann, Christine; Hodac, Ladislav; Hölzel, Norbert; Jung, Kirsten; Klein, Alexandra Maria; Klaus, Valentin H.; Kleinebecker, Till; Krauss, Jochen; Lange, Markus; Morris, E. Kathryn; Müller, Jörg; Nacke, Heiko; Pašalić, Esther; Rillig, Matthias C.; Rothenwöhrer, Christoph; Schall, Peter; Scherber, Christoph; Schulze, Waltraud; Socher, Stephanie A.; Steckel, Juliane; Steffan-Dewenter, Ingolf; Türke, Manfred; Weiner, Christiane N.; Werner, Michael; Westphal, Catrin; Wolters, Volkmar; Wubet, Tesfaye; Gockel, Sonja; Gorke, Martin; Hemp, Andreas; Renner, Swen C.; Schöning, Ingo; Pfeiffer, Simone; König-Ries, Birgitta; Buscot, François; Linsenmair, Karl Eduard; Schulze, Ernst-Detlef; Weisser, Wolfgang W.; Fischer, Markus

    2014-01-01

    Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. PMID:24368852

  8. Magma flow between summit and Pu`u `Ō`ō at K¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Montagna, C. P.; Gonnermann, H. M.

    2013-07-01

    Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K¯lauea Volcano, Hawai`i, caused by magma withdrawal during the early eruptive episodes (1983-1985) of the ongoing Pu`u `Ō`ō-Kupaianaha eruption. Eruptive activity at the Pu`u `Ō`ō vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K¯lauea's summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K¯lauea's ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway.

  9. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    NASA Astrophysics Data System (ADS)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.; Carrivick, Jonathan L.; Hasholt, Bent; Ingeman-Nielsen, Thomas; Kronborg, Christian; Larsen, Nicolaj K.; Mernild, Sebastian H.; Oerter, Hans; Roberts, David H.; Russell, Andrew J.

    2016-03-01

    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68 ± 0.18 ‰ during the peak flow period. A hydrograph separation analysis revealed that the ice melt component constituted 82 ± 5 % of the total run-off and dominated the observed variations during peak flow in August 2004. The snowmelt component peaked between 10:00 and 13:00 local time, reflecting the long travel time and an inefficient distributed subglacial drainage network in the upper part of the glacier. At the Kuannersuit Glacier river on the island Qeqertarsuaq in west Greenland, the δ18O characteristics were examined after the major 1995-1998 glacier surge event. The mean annual δ18O was -19.47 ± 0.55 ‰. Despite large spatial variations in the δ18O values of glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk meltwater emanating from the glacier in the post-surge years. This is likely a consequence of a tortuous subglacial drainage system consisting of linked cavities, which formed during the surge event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used to obtain important information on water sources and the subglacial drainage system structure that is highly desired for understanding glacier hydrology.

  10. Hydrogen And Deuterium In The Local Interstellar Medium.

    NASA Astrophysics Data System (ADS)

    Murthy, Jayant

    2016-03-01

    In this work we report on the results of a series of IUE observations of interstellar HI and DI Ly alpha absorption against the chromospheric Lyalpha emission of the nearby late -type stars alpha Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). From these observations we have derived the density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars. We have also placed lower limits on the deuterium to hydrogen (D/H) ratio towards the same stars. Our IUE results are generally consistent with previous observations of the same stars with the Copernicus satellite showing that our modelling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighbourhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus. In particular, we confirm the strong lower limit of 1.9 times 10^{-5} on the D/H ratio found towards Capella and we also place a lower limit of 1.5 times 10 ^{-5} on the D/H ratio towards alpha Cen B. Although an interstellar D/H ratio of 2 times 10^ {-5} is consistent with all the observations of late-type stars, the lower D/H ratios found towards several hot stars may indicate real variations in the D/H ratio in the local interstellar medium. Finally, we discuss the reality of a step in the cosmic background and of several galactic emission lines found by Auriemma et al. (1984) and show that, in fact, they are both artifacts of the data and of the analysis.

  11. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa

    NASA Astrophysics Data System (ADS)

    Kuechler, Rony R.; Dupont, Lydie M.; Schefuß, Enno

    2018-01-01

    The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0-4.6 Ma, 3.6-3.0 Ma), which we compare with records from the last glacial cycle (Kuechler et al., 2013). Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.

  12. Solar activity, the QBO, and tropospheric responses

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.

    1989-01-01

    The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.

  13. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    PubMed

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  14. Spatial variation in the climatic predictors of species compositional turnover and endemism

    PubMed Central

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-01-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species–environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile–climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r2 = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r2 = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses. PMID:25473479

  15. Local population density and group composition influence the signal-preference relationship in Enchenopa treehoppers (Hemiptera: Membracidae).

    PubMed

    Fowler-Finn, K D; Cruz, D C; Rodríguez, R L

    2017-01-01

    Many animals exhibit social plasticity - changes in phenotype or behaviour in response to experience with conspecifics that change how evolutionary processes like sexual selection play out. Here, we asked whether social plasticity arising from variation in local population density in male advertisement signals and female mate preferences influences the form of sexual selection. We manipulated local density and determined whether this changed how the distribution of male signals overlapped with female preferences - the signal preference relationship. We specifically look at the shape of female mate preference functions, which, when compared to signal distributions, provide hypotheses about the form of sexual selection. We used Enchenopa binotata treehoppers, a group of plant-feeding insects that exhibit natural variation in local densities across individual host plants, populations, species and years. We measured male signal frequency and female preference functions across the density treatments. We found that male signals varied across local social groups, but not according to local density. By contrast, female preferences varied with local density - favouring higher signal frequencies in denser environments. Thus, local density changes the signal-preference relationship and, consequently, the expected form of sexual selection. We found no influence of sex ratio on the signal-preference relationship. Our findings suggest that plasticity arising from variation in local group density and composition can alter the form of sexual selection with potentially important consequences both for the maintenance of variation and for speciation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. Variation in prostate cancer treatment associated with population density of the county of residence.

    PubMed

    Cary, C; Odisho, A Y; Cooperberg, M R

    2016-06-01

    We sought to assess variation in the primary treatment of prostate cancer by examining the effect of population density of the county of residence on treatment for clinically localized prostate cancer and quantify variation in primary treatment attributable to the county and state level. A total 138 226 men with clinically localized prostate cancer in the Surveillance, Epidemiology and End Result (SEER) database in 2005 through 2008 were analyzed. The main association of interest was between prostate cancer treatment and population density using multilevel hierarchical logit models while accounting for the random effects of counties nested within SEER regions. To quantify the effect of county and SEER region on individual treatment, the percent of total variance in treatment attributable to county of residence and SEER site was estimated with residual intraclass correlation coefficients. Men with localized prostate cancer in metropolitan counties had 23% higher odds of being treated with surgery or radiation compared with men in rural counties, controlling for number of urologists per county as well as clinical and sociodemographic characteristics. Three percent (95% confidence interval (CI): 1.2-6.2%) of the total variation in treatment was attributable to SEER site, while 6% (95% CI: 4.3-9.0%) of variation was attributable to county of residence, adjusting for clinical and sociodemographic characteristics. Variation in treatment for localized prostate cancer exists for men living in different population-dense counties of the country. These findings highlight the importance of comparative effectiveness research to improve understanding of this variation and lead to a reduction in unwarranted variation.

  17. Quasistatic elastoplasticity via Peridynamics: existence and localization

    NASA Astrophysics Data System (ADS)

    Kružík, Martin; Mora-Corral, Carlos; Stefanelli, Ulisse

    2018-04-01

    Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive Γ -convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.

  18. The acute effect of local homicides on children's cognitive performance

    PubMed Central

    Sharkey, Patrick

    2010-01-01

    This study estimates the acute effect of exposure to a local homicide on the cognitive performance of children across a community. Data are from a sample of children age 5–17 y in the Project on Human Development in Chicago Neighborhoods. The effect of local homicides on vocabulary and reading assessments is identified by exploiting exogenous variation in the relative timing of homicides and interview assessments among children in the same neighborhood but assessed at different times. Among African-Americans, the strongest results show that exposure to a homicide in the block group that occurs less than a week before the assessment reduces performance on vocabulary and reading assessments by between ∼0.5 and ∼0.66 SD, respectively. Main results are replicated using a second independent dataset from Chicago. Findings suggest the need for broader recognition of the impact that extreme acts of violence have on children across a neighborhood, regardless of whether the violence is witnessed directly. PMID:20547862

  19. Use of synthetic sonic logs derived from seismic data in interpretation of stratigraphic variation in cretaceous carbonates of North field area, Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aves, H.S.; Tappmeyer, D.M.

    This study uses geologic and synthetic sonic sections to evaluate the hydrocarbon potential of the Lower and middle Cretaceous Thamama Group carbonates of the Mishrif, Nahr, Umr, Shuaiba, and Kharaib Formations in the North Field, Qatar. The North field area, a regional high throughout Lower and middle Cretaceous time, is document by depositional thinning and by higher energy carbonate facies development. Oil and gas accumulations are found on the crestal portions of this paleohigh in structural/stratigraphic traps. Three factors affect the interval velocities on both a regional and local basis. These are (1) variation of carbonate facies-higher energy wackestone/packstone andmore » possibly grainstones flanked by predominantly mudstones, (2) secondary porosity developed near the top of unconformity surfaces, and (3) the existence of hydrocarbons in the reservoir. Many local lateral and vertical variations in interval velocities were noted on the synthetic sonic sections that would have otherwise been undetected, such as areas of tight or porous reservoir development, permeability barriers, and subtle faulting. In these studied formations, there are many examples of low interval velocity zones that are known to contain hydrocarbons whereas equivalent higher interval velocity zones on the seismic sections at other well site locations do not contain hydrocarbons. In many places, these variations are of sufficient magnitude to be mapped as intraformational permeability barriers. These variations were useful in explaining the occurrence of different oil-water and gas-water contacts within the same formation that could not be explained solely on structural criteria.« less

  20. Dynamics of landslide model with time delay and periodic parameter perturbations

    NASA Astrophysics Data System (ADS)

    Kostić, Srđan; Vasović, Nebojša; Franović, Igor; Jevremović, Dragutin; Mitrinovic, David; Todorović, Kristina

    2014-09-01

    In present paper, we analyze the dynamics of a single-block model on an inclined slope with Dieterich-Ruina friction law under the variation of two new introduced parameters: time delay Td and initial shear stress μ. It is assumed that this phenomenological model qualitatively simulates the motion along the infinite creeping slope. The introduction of time delay is proposed to mimic the memory effect of the sliding surface and it is generally considered as a function of history of sliding. On the other hand, periodic perturbation of initial shear stress emulates external triggering effect of long-distant earthquakes or some non-natural vibration source. The effects of variation of a single observed parameter, Td or μ, as well as their co-action, are estimated for three different sliding regimes: β < 1, β = 1 and β > 1, where β stands for the ratio of long-term to short-term stress changes. The results of standard local bifurcation analysis indicate the onset of complex dynamics for very low values of time delay. On the other side, numerical approach confirms an additional complexity that was not observed by local analysis, due to the possible effect of global bifurcations. The most complex dynamics is detected for β < 1, with a complete Ruelle-Takens-Newhouse route to chaos under the variation of Td, or the co-action of both parameters Td and μ. These results correspond well with the previous experimental observations on clay and siltstone with low clay fraction. In the same regime, the perturbation of only a single parameter, μ, renders the oscillatory motion of the block. Within the velocity-independent regime, β = 1, the inclusion and variation of Td generates a transition to equilibrium state, whereas the small oscillations of μ induce oscillatory motion with decreasing amplitude. The co-action of both parameters, in the same regime, causes the decrease of block's velocity. As for β > 1, highly-frequent, limit-amplitude oscillations of initial stress give rise to oscillatory motion. Also for β > 1, in case of perturbing only the initial shear stress, with smaller amplitude, velocity of the block changes exponentially fast. If the time delay is introduced, besides the stress perturbation, within the same regime, the co-action of Td (Td < 0.1) and small oscillations of μ induce the onset of deterministic chaos.

  1. Relative velocity change measurement based on seismic noise analysis in exploration geophysics

    NASA Astrophysics Data System (ADS)

    Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.

    2011-12-01

    Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.

  2. Revised Dst and the epicycles of magnetic disturbance: 1958-2007

    USGS Publications Warehouse

    Love, J.J.; Gannon, J.L.

    2009-01-01

    A revised version of the storm-time disturbance index Dst is calculated using hourly-mean magnetic-observatory data from four standard observatories and collected over the years 1958-2007. The calculation algorithm is a revision of that established by Sugiura et al., and which is now used by the Kyoto World Data Center for routine production of Dst. The most important new development is for the removal of solar-quiet variation. This is done through time and frequency-domain band-stop filtering - selectively removing specific Fourier terms approximating stationary periodic variation driven by the Earth's rotation, the Moon's orbit, the Earth's orbit around the Sun, and their mutual coupling. The resulting non-stationary disturbance time series are weighted by observatory-site geomagnetic latitude and then averaged together across longitudes to give what we call Dst5807-4SH. Comparisons are made with the standard Kyoto D st. Various biases, especially for residual solar-quiet variation, are identified in the Kyoto Dst, and occasional storm-time errors in the Kyoto Dst are noted. Using Dst5807-4SH, storms are ranked for maximum storm-time intensity, and we show that storm-occurrence frequency follows a power-law distribution with an exponential cutoff. The epicycles of magnetic disturbance are explored: we (1) map low-latitude local-time disturbance asymmetry, (2) confirm the 27-day storm-recurrence phenomenon using autocorrelation, (3) investigate the coupled semi-annual-diurnal variation of magnetic activity and the proposed explanatory equinoctial and Russell-McPherron hypotheses, and (4) illustrate the well-known solar-cycle modulation of storm-occurrence likelihood. Since Dst5807-4SH is useful for a variety of space physics and solid-Earth applications, it is made freely available to the scientific community.

  3. Variational energy principle for compressible, baroclinic flow. 1: First and second variations of total kinetic action

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1977-01-01

    The case of a cold gas in the absence of external force fields is considered. Since the only energy involved is kinetic energy, the total kinetic action (i.e., the space-time integral of the kinetic energy density) should serve as the total free-energy functional in this case, and as such should be a local minimum for all possible fluctuations about stable flow. This conjecture is tested by calculating explicit, manifestly covariant expressions for the first and second variations of the total kinetic action in the context of Lagrangian kinematics. The general question of the correlation between physical stability and the convexity of any action integral that can be interpreted as the total free-energy functional of the flow is discussed and illustrated for the cases of rectillinear and rotating shearing flows.

  4. Multi-instrument observations of a failed flare eruption associated with MHD waves in a loop bundle

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Polito, V.; Nakariakov, V. M.; Del Zanna, G.

    2017-04-01

    Context. We present observations of a B7.9-class flare that occurred on the 24th January, 2015, using the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO), the EUV Imaging Spectrometer (EIS) and the X-Ray Telescope of Hinode. The flare triggers the eruption of a dense cool plasma blob as seen in AIA 171 Å, which is unable to completely break out and remains confined within a local bundle of active region loops. During this process, transverse oscillations of the threads are observed. The cool plasma is then observed to descend back to the chromosphere along each loop strand. At the same time, a larger diffuse co-spatial loop observed in the hot wavebands of SDO/AIA and Hinode/XRT is formed, exhibiting periodic intensity variations along its length. Aims: The formation and evolution of magnetohydrodynamic (MHD) waves depend upon the values of the local plasma parameters (e.g. density, temperature and magnetic field), which can hence be inferred by coronal seismology. In this study we aim to assess how the observed MHD modes are affected by the variation of density and temperature. Methods: We combined analysis of EUV/X-ray imaging and spectroscopy using SDO/AIA, Hinode/EIS and XRT. Results: The transverse oscillations of the cool loop threads are interpreted in terms of vertically polarised kink oscillations. The fitting procedure applied to the loop displacement time series gives a period of 3.5 to 4 min, and an amplitude of 5 Mm. The oscillations are strongly damped showing very low quality factor (1.5-2), which is defined as the ratio of the damping time and the oscillation period. The weak variation of the period of the kink wave, which is estimated from the fitting analysis, is in agreement with the density variations due to the presence of the plasma blob inferred from the intensity light curve at 171 Å. The coexisting intensity oscillations along the hot loop are interpreted as a slow MHD wave with a period of 10 min and phase speed of approximately 436 km s-1. Comparison between the fast and slow modes allows for the determination of the Alfvén speed, and consequently magnetic field values. The plasma-β inferred from the analysis is estimated to be approximately 0.1-0.3. Conclusions: We show that the evolution of the detected waves is determined by the temporal variations of the local plasma parameters, caused by the flare heating and the consequent cooling. We apply coronal seismology to both waves obtaining estimates of the background plasma parameters. Movies are available at http://www.aanda.org

  5. Heritable stress response dynamics revealed by single-cell genealogy

    PubMed Central

    2018-01-01

    Cells often respond to environmental stimuli by activating specific transcription factors. Upon exposure to glucose limitation stress, it is known that yeast Saccharomyces cerevisiae cells dephosphorylate the general stress response factor Msn2, leading to its nuclear localization, which in turn activates the expression of many genes. However, the precise dynamics of Msn2 nucleocytoplasmic translocations and whether they are inherited over multiple generations in a stress-dependent manner are not well understood. Tracking Msn2 localization events in yeast lineages grown on a microfluidic chip, here we report how cells modulate the amplitude, duration, frequency, and dynamic pattern of the localization events in response to glucose limitation stress. Single yeast cells were found to modulate the amplitude and frequency of Msn2 nuclear localization, but not its duration. Moreover, the Msn2 localization frequency was epigenetically inherited in descendants of mother cells, leading to a decrease in cell-to-cell variation in localization frequency. An analysis of the time dynamic patterns of nuclear localizations between genealogically related cell pairs using an information theory approach found that the magnitude of pattern similarity increased with stress intensity and was strongly inherited by the descendant cells at the highest stress level. By dissecting how general stress response dynamics is contributed by different modulation schemes over long time scales, our work provides insight into which scheme evolution might have acted on to optimize fitness in stressful environments. PMID:29675464

  6. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  7. Attribution of the Main Sources of Biomass Burning in South East Asia that Impact on Air Quality in Singapore

    NASA Astrophysics Data System (ADS)

    Hansen, A. B.; Kendall, E.; Chew, B. N.; Chong, W. M.; Gan, C.; Hort, M. C.; Shaw, F.; Witham, C. S.

    2017-12-01

    Biomass burning in South East Asia causes intense haze episodes in Singapore, these are of major concern to the local government and the population exposed to the haze. Using a Lagrangian dispersion model we have studied haze in the seven most recent years (2010 - 2016) to gain a deeper understanding of intense haze in Singapore. In this study, modelled haze time-series at one eastern and one western monitoring station in Singapore are compared to local observed PM10 and PM2.5 air concentrations. The haze time-series are broken down by season or month, source region, and monitoring location.The analysis, presented as time series and pie charts, illustrates the relative contribution to haze in Singapore from different regions, variations between seasons and the correlation of impact to the combined timing of burning activity and meteorological patterns. Air history maps, showing where air arriving in Singapore originates from and/or has travelled through, are used to isolate the meteorological dependence of impacts. These show a strong monsoonal variation and help explain the inter-annual differences between sources and actual concentrations of biomass burning PM in Singapore. For example, there is a strong correlation in 2013 between burning in Riau and haze in Singapore, but a weak correlation in other years when a significant part of haze originates from, e.g., Peninsula Malaysia, but emissions are seemingly negligible. We see that, in spite of the size of Singapore, there is significant difference in concentrations and major contributing source regions between the two monitoring stations, annually and seasonally. The differences at the two monitoring stations are seen in varying degrees in the years 2011, 2012, 2014, and 2015, throughout different seasons. Although only biomass burning is considered in the simulations, our modelled results are in good agreement with local observations. We have identified the source regions with the biggest contributions to haze in Singapore as Riau and Peninsula Malaysia, with secondary contributions from South Sumatra, Jambi, Central and West Kalimantan, Riau Islands, and Bangka-Belitung. We show that both regional burning and regional weather has significant impact on local haze conditions in Singapore.

  8. Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis.

    PubMed

    Usui, Takuji; Butchart, Stuart H M; Phillimore, Albert B

    2017-03-01

    There are wide reports of advances in the timing of spring migration of birds over time and in relation to rising temperatures, though phenological responses vary substantially within and among species. An understanding of the ecological, life-history and geographic variables that predict this intra- and interspecific variation can guide our projections of how populations and species are likely to respond to future climate change. Here, we conduct phylogenetic meta-analyses addressing slope estimates of the timing of avian spring migration regressed on (i) year and (ii) temperature, representing a total of 413 species across five continents. We take into account slope estimation error and examine phylogenetic, ecological and geographic predictors of intra- and interspecific variation. We confirm earlier findings that on average birds have significantly advanced their spring migration time by 2·1 days per decade and 1·2 days °C -1 . We find that over time and in response to warmer spring conditions, short-distance migrants have advanced spring migratory phenology by more than long-distance migrants. We also find that larger bodied species show greater advance over time compared to smaller bodied species. Our results did not reveal any evidence that interspecific variation in migration response is predictable on the basis of species' habitat or diet. We detected a substantial phylogenetic signal in migration time in response to both year and temperature, suggesting that some of the shifts in migratory phenological response to climate are predictable on the basis of phylogeny. However, we estimate high levels of species and spatial variance relative to phylogenetic variance, which is consistent with plasticity in response to climate evolving fairly rapidly and being more influenced by adaptation to current local climate than by common descent. On average, avian spring migration times have advanced over time and as spring has become warmer. While we are able to identify predictors that explain some of the true among-species variation in response, substantial intra- and interspecific variation in migratory response remains to be explained. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  9. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    PubMed

    Sobral, Mar; Veiga, Tania; Domínguez, Paula; Guitián, Javier A; Guitián, Pablo; Guitián, José M

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  10. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations

    PubMed Central

    Domínguez, Paula; Guitián, Javier A.; Guitián, Pablo; Guitián, José M.

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation. PMID:26172378

  11. Diurnal variation climatology of short-lived at atmospheric compositions (ClO, BrO, HO2 and HOCl) derived from SMILES NICT data

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Sagawa, Hideo; Kasai, Yasuko

    2013-04-01

    We present a diurnal variation climatology for short-lived at atmospheric compositions, such as ClO, BrO, HO2 and HOCl, as well as for longer life time species, like O3 and HCl from observations of unprecedented sensitivity with the Superconducting SubMIllimeter wave Limb-Emission Sounder (SMILES), which is installed on the Japanese Experiment Module (JEM) at the International Space Station (ISS). With its non sun synchronous orbit, SMILES measurements comprise observations at all local times. The target altitude range is between lower stratosphere and mesopause. Differences in diurnal variation chemistry of strato-, and mesospheric BrO and ClO of the diurnal climatology are presented. The data employed is produced by the SMILES level 2 retrieval algorithm version 2.1.5 at the National Institute of Information and Communications Technology (NICT). The SMILES climatology data sets are available via the SMILES data distribution homepage in NICT at https://smiles-p6.nict.go.jp/products/research_latitude-longitude.jsf

  12. Spectral characteristics of geomagnetic field variations at low and equatorial latitudes

    USGS Publications Warehouse

    Campbell, W.H.

    1977-01-01

    Geomagnetic field spectra from eight standard observations at geomagnetic latitudes below 30?? were studied to determine the field characteristics unique to the equatorial region. Emphasis was placed upon those variations having periods between 5 min and 4 hr for a selection of magnetically quiet, average, and active days in 1965. The power spectral density at the equator was about ten times that the near 30?? latitude. The initial manifestation of the equatorial electrojet as evidenced by the east-west alignment of the horizontal field or the change in vertical amplitudes occurred below about 20?? latitude. Induced current effects upon the vertical component from which the Earth conductivity might be inferred could best be obtained at times and latitudes unaffected by the electrojet current. Values of about 1.6 ?? 103 mhos/m for an effective skin depth of 500-600 km were determined. The spectral amplitudes increased linearly with geomagnetic activity index, Ap. The spectral slope had a similar behavior at all latitudes. The slope changed systematically with Ap-index and showed a diurnal variation, centered on local noon, that changed form with geomagnetic activity.

  13. Heterochrony underpins natural variation in Cardamine hirsuta leaf form

    PubMed Central

    Cartolano, Maria; Pieper, Bjorn; Lempe, Janne; Tattersall, Alex; Huijser, Peter; Tresch, Achim; Darrah, Peter R.; Hay, Angela; Tsiantis, Miltos

    2015-01-01

    A key problem in biology is whether the same processes underlie morphological variation between and within species. Here, by using plant leaves as an example, we show that the causes of diversity at these two evolutionary scales can be divergent. Some species like the model plant Arabidopsis thaliana have simple leaves, whereas others like the A. thaliana relative Cardamine hirsuta bear complex leaves comprising leaflets. Previous work has shown that these interspecific differences result mostly from variation in local tissue growth and patterning. Now, by cloning and characterizing a quantitative trait locus (QTL) for C. hirsuta leaf shape, we find that a different process, age-dependent progression of leaf form, underlies variation in this trait within species. This QTL effect is caused by cis-regulatory variation in the floral repressor ChFLC, such that genotypes with low-expressing ChFLC alleles show both early flowering and accelerated age-dependent changes in leaf form, including faster leaflet production. We provide evidence that this mechanism coordinates leaf development with reproductive timing and may help to optimize resource allocation to the next generation. PMID:26243877

  14. Modeling spatially localized photonic nanojets from phase diffraction gratings

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-04-01

    We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffraction grating rulings.

  15. Improved distorted wave theory with the localized virial conditions

    NASA Astrophysics Data System (ADS)

    Hahn, Y. K.; Zerrad, E.

    2009-12-01

    The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.

  16. Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?

    PubMed

    Sides, Colby B; Enquist, Brian J; Ebersole, James J; Smith, Marielle N; Henderson, Amanda N; Sloat, Lindsey L

    2014-01-01

    Darwin first proposed that species with larger ecological breadth have greater phenotypic variation. We tested this hypothesis by comparing intraspecific variation in specific leaf area (SLA) to species' local elevational range and by assessing how external (abiotic) filters may influence observed differences in ecological breadth among species. Understanding the patterns of individual variation within and between populations will help evaluate differing hypotheses for structuring of communities and distribution of species. We selected 21 species with varying elevational ranges and compared the coefficient of variation of SLA for each species against its local elevational range. We examined the influence of external filters on local trait composition by determining if intraspecific changes in SLA with elevation have the same direction and similar rates of change as the change in community mean SLA value. In support of Darwin's hypothesis, we found a positive relationship between species' coefficient of variation for SLA with species' local elevational range. Intraspecific changes in SLA had the same sign, but generally lower magnitude than the community mean SLA. The results indicate that wide-ranging species are indeed characterized by greater intraspecific variation and that species' phenotypes shift along environmental gradients in the same direction as the community phenotypes. However, across species, the rate of intraspecific trait change, reflecting plastic and/or adaptive changes across populations, is limited and prevents species from adjusting to environmental gradients as quickly as interspecific changes resulting from community assembly.

  17. Does the Newtonian Gravity "Constant" G Vary?

    NASA Astrophysics Data System (ADS)

    Noerdlinger, Peter D.

    2015-08-01

    A series of measurements of Newton's gravity constant, G, dating back as far as 1893, yielded widely varying values, the variation greatly exceeding the stated error estimates (Gillies, 1997; Quinn, 2000, Mohr et al 2008). The value of G is usually said to be unrelated to other physics, but we point out that the 8B Solar Neutrino Rate ought to be very sensitive. Improved pulsar timing could also help settle the issue as to whether G really varies. We claim that the variation in measured values over time (1893-2014 C.E.) is a more serious problem than the failure of the error bars to overlap; it appears that challenging or adjusting the error bars hardly masks the underlying disagreement in central values. We have assessed whether variations in the gravitational potential due to (for example) local dark matter (DM) could explain the variations. We find that the required potential fluctuations could transiently accelerate the Solar System and nearby stars to speeds in excess of the Galactic escape speed. Previous theories for the variation in G generally deal with supposed secular variation on a cosmological timescale, or very rapid oscillations whose envelope changes on that scale (Steinhardt and Will 1995). Therefore, these analyses fail to support variations on the timescale of years or spatial scales of order parsecs, which would be required by the data for G. We note that true variations in G would be associated with variations in clock rates (Derevianko and Pospelov 2014; Loeb and Maoz 2015), which could mask changes in orbital dynamics. Geringer-Sameth et al (2014) studied γ-ray emission from the nearby Reticulum dwarf galaxy, which is expected to be free of "ordinary" (stellar, black hole) γ-ray sources and found evidence for DM decay. Bernabei et al (2003) also found evidence for DM penetrating deep underground at Gran Sasso. If, indeed, variations in G can be tied to variations in gravitational potential, we have a new tool to assess the DM density.

  18. Regulation of coronary blood flow

    PubMed Central

    Gorlin, Richard

    1971-01-01

    Coronary blood flow is dependent upon arterial pressure, diastolic time, and small vessel resistance. The system is regulated to achieve a low flow high oxygen extraction and low myocardial Po2. This setting is sensitive to change in oxygen needs. Regulation of blood flow occurs primarily through local intrinsic regulation, most likely through production of vasodilating metabolites in response to minimal degrees of ischaemia. Local regulation appears to dominate over remote regulation in most circumstances. Blood flow distribution to the myocardium is depth dependent as well as regional in variation. Both types of distribution of blood flow are profoundly disturbed in the presence of obstructive coronary atherosclerosis. This results in either concentric myocardial shells or patchy transmural zones of selective ischaemia with clear-cut but local abnormalities in metabolism and performance. Images PMID:4929442

  19. Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Charlotte Anne

    We can measure changes in gravity from place to place on the earth. These measurements require careful recording of location, elevation and time for each reading. These readings must be adjusted for known effects (such as elevation, latitude, tides) that can bias our data and mask the signal of interest. After making corrections to our data, we can remove regional trends to obtain local Bouguer anomalies. The Bouguer anomalies arise from variations in the subsurface density structure. We can build models to explain our observations, but these models must be consistent with what is known about the local geology. Combiningmore » gravity models with other information – geologic, seismic, electromagnetic, will improve confidence in the results.« less

  20. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  1. Atomic oxygen between 80 and 120 km - Evidence for a latitudinal variation in vertical transport near the mesopause

    NASA Technical Reports Server (NTRS)

    Wasser, B.; Donahue, T. M.

    1979-01-01

    Analysis of the OGO 6 OI green line nightglow photometer experiment has been carried out for eight cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. The results obtained show that the vertical gradient of the emission rate between 95 and 80 km alternates between regions of very rapid variation and very slow variation spaced on a scale of 5-10 deg of latitude. Maps showing isoemissivity contours and isodensity contours for atomic oxygen concentration in vertical meridional planes are presented. The densities are computed under three assumptions concerning excitation mechanisms. Comparisons of the vertical variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate in latitude with regions of weak transport near 90 km. In the first case, conversion of O to O3 at night appears to be overwhelmed by downward transport of O.

  2. Background levels of methane in Mars' atmosphere show strong seasonal variations.

    PubMed

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Moores, John E; Flesch, Gregory J; Malespin, Charles; McKay, Christopher P; Martinez, German; Smith, Christina L; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H; Trainer, Melissa G; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V; House, Christopher H; Pavlov, Alexander; Eigenbrode, Jennifer L; Glavin, Daniel P; Pearson, John C; Keymeulen, Didier; Christensen, Lance E; Schwenzer, Susanne P; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C R; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M; Lemmon, Mark; Crisp, Joy; Sander, Stanley P; Zurek, Richard W; Vasavada, Ashwin R

    2018-06-08

    Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Analysis of tropospheric ozone concentration on a Western Mediterranean site: Castellon (Spain).

    PubMed

    Castell, Nuria; Mantilla, Enrique; Millan, Millan M

    2008-01-01

    Ozone dynamics in our study area (Castellon, Spain) is both strongly bound to the mesoscale circulations that develop under the effect of high insolation (especially in summer) and conditioned by the morphological characteristics of the Western Mediterranean Basin. In this work we present a preliminary analysis of ozone time series on five locations in Castellon for the period 1997-2003. We study their temporal and spatial variations at different scales: daily, weekly, seasonally and interannually. Because both the O3 concentration and its temporal variation depend on the topographic location of the observing station, they can show large differences within tens of kilometer. We also contrast the variation in the ozone concentration with the variations found for meteorological variables such as radiation, temperature, relative humidity and recirculation of the air mass. The link between elevated ozone concentrations and high values of the recirculation factor (r=0.7-0.9) shown the importance of recirculating flows on the local air pollution episodes.

  4. Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010.

    PubMed

    Zulu, Leo C; Kalipeni, Ezekiel; Johannes, Eliza

    2014-05-23

    Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi's estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across 'sub-epidemics' while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV "hotspots" clustered among eleven southern districts/cities while a "coldspot" captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale.

  5. Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010

    PubMed Central

    2014-01-01

    Background Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi’s estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Methods Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Results Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across ‘sub-epidemics’ while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV “hotspots” clustered among eleven southern districts/cities while a “coldspot” captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Conclusions Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale. PMID:24886573

  6. [Localized scleroderma (morphea) in childhood].

    PubMed

    Weibel, L

    2012-02-01

    Localized scleroderma or morphea is a sclerosing connective tissue disease of the skin, which may affect underlying tissues such as subcutis, muscle and bone. Many patients show extracutaneous symptoms and antinuclear antibodies, however, secondary transformation into systemic sclerosis does not occur. Localized scleroderma usually begins in childhood with a wide variation in its clinical spectrum. The linear variant is the most common subtype in children, associated with a progressive course and increased risk of complications. The disease may progress over years and result in severe functional and cosmetic disability. The etiology of localized scleroderma remains unknown. A genetic background is suspected, while triggers such as trauma, vaccinations and infections may lead to secondary immunologic phenomena. Localized scleroderma often remains unrecognized for a long time, resulting in substantial delay in treatment. The combination of systemic corticosteroids and methotrexate has been established as first-line therapy for progressive (usually linear) disease, whereas phototherapy (UVA-1 or UVB-narrow band) is suitable for adolescents with superficial circumscribed subtypes.

  7. Mining claim activity on federal land in the contiguous United States, 1976 through 2004

    USGS Publications Warehouse

    Causey, J. Douglas; Frank, David G.

    2006-01-01

    The data show how mining claim activity has changed in intensity, space, and time. Variations can be examined on a state, as well as a national level. The data are tied to a section of land, approximately 640 acres, which allows it to be used at regional, as well as local scale. It is restricted in that it only encompasses Federal land.

  8. Generation of long waves in a fluid flowing over a localized topography at a periodically varying velocity

    NASA Astrophysics Data System (ADS)

    Ohsugi, Yasuo; Funakoshi, Mitsuaki

    2000-05-01

    The generation of long waves in a fluid flowing over a localized topography is examined numerically using the forced KdV equation under the assumption that the velocity U of the fluid far from the topography is close to the phase speed of a linear long wave and varies periodically with period T. For T within a few regions, we observe the 1: n entrainment of the wave motion near the topography to period T, in which n upstream-advancing waves are generated in period T. These regions extend and shift to larger T as the average value or amplitude of the variation of U increases. Furthermore, when the entrainment occurs, the spatial region where time-periodic evolution is almost attained extends toward both upstream and downstream directions with increasing time.

  9. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.

    PubMed

    Xia, Yingcun; Bjørnstad, Ottar N; Grenfell, Bryan T

    2004-08-01

    Infectious diseases provide a particularly clear illustration of the spatiotemporal underpinnings of consumer-resource dynamics. The paradigm is provided by extremely contagious, acute, immunizing childhood infections. Partially synchronized, unstable oscillations are punctuated by local extinctions. This, in turn, can result in spatial differentiation in the timing of epidemics and, depending on the nature of spatial contagion, may result in traveling waves. Measles epidemics are one of a few systems documented well enough to reveal all of these properties and how they are affected by spatiotemporal variations in population structure and demography. On the basis of a gravity coupling model and a time series susceptible-infected-recovered (TSIR) model for local dynamics, we propose a metapopulation model for regional measles dynamics. The model can capture all the major spatiotemporal properties in prevaccination epidemics of measles in England and Wales.

  10. Secular trends, race, and geographic disparity of early-stage breast cancer incidence: 25 years of surveillance in Connecticut.

    PubMed

    Crabbe, J Christopher F; Gregorio, David I; Samociuk, Holly; Swede, Helen

    2015-07-01

    We considered changes in the geographic distribution of early stage breast cancer among White and non-White women while secular trends in lifestyle and health care were under way. We aggregated tumor registry and census data by age, race, place of residence, and year of diagnosis to evaluate rate variation across Connecticut census tracts between 1985 and 2009. Global and local cluster detection tests were completed. Age-adjusted incidence rates increased by 2.71% and 0.44% per year for White and non-White women, respectively. Significant global clustering was identified during surveillance of these populations, but the elements of clustering differed between groups. Among White women, fewer local clusters were detected after 1985 to 1989, whereas clustering increased over time among non-White women. Small-area variation of breast cancer incidence rates across time periods proved to be dynamic and race-specific. Incidence rates might have been affected by secular trends in lifestyle or health care. Single cross-sectional analyses might have confused our understanding of disease occurrence by not accounting for the social context in which patient preferences or provider capacity influence the numbers and locations of diagnosed cases. Serial analyses are recommended to identify "hot spots" where persistent geographic disparities in incidence occur.

  11. The EDGE-CALIFA Survey: Variations in the Molecular Gas Depletion Time in Local Galaxies

    NASA Astrophysics Data System (ADS)

    Utomo, Dyas; Bolatto, Alberto D.; Wong, Tony; Ostriker, Eve C.; Blitz, Leo; Sanchez, Sebastian F.; Colombo, Dario; Leroy, Adam K.; Cao, Yixian; Dannerbauer, Helmut; Garcia-Benito, Ruben; Husemann, Bernd; Kalinova, Veselina; Levy, Rebecca C.; Mast, Damian; Rosolowsky, Erik; Vogel, Stuart N.

    2017-11-01

    We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas depletion time (τ dep) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: the center, defined as the region within 0.1 {R}25, and the disk, defined as the region between 0.1 and 0.7 {R}25. We find that 14 galaxies show a shorter τ dep (˜1 Gyr) in the center relative to that in the disk (τ dep ˜ 2.4 Gyr), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter τ dep resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in τ dep is correlated with a central increase in the stellar surface density, suggesting that a shorter τ dep is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-to-H2 conversion factor only exaggerates the central drop of τ dep.

  12. Total variation regularization for seismic waveform inversion using an adaptive primal dual hybrid gradient method

    NASA Astrophysics Data System (ADS)

    Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan

    2018-04-01

    Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.

  13. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  14. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  15. Hydrology or biology? Modeling simplistic physical constraints on lake carbon biogeochemistry to identify when and where biology is likely to matter

    NASA Astrophysics Data System (ADS)

    Jones, S.; Zwart, J. A.; Solomon, C.; Kelly, P. T.

    2017-12-01

    Current efforts to scale lake carbon biogeochemistry rely heavily on empirical observations and rarely consider physical or biological inter-lake heterogeneity that is likely to regulate terrestrial dissolved organic carbon (tDOC) decomposition in lakes. This may in part result from a traditional focus of lake ecologists on in-lake biological processes OR physical-chemical pattern across lake regions, rather than on process AND pattern across scales. To explore the relative importance of local biological processes and physical processes driven by lake hydrologic setting, we created a simple, analytical model of tDOC decomposition in lakes that focuses on the regulating roles of lake size and catchment hydrologic export. Our simplistic model can generally recreate patterns consistent with both local- and regional-scale patterns in tDOC concentration and decomposition. We also see that variation in lake hydrologic setting, including the importance of evaporation as a hydrologic export, generates significant, emergent variation in tDOC decomposition at a given hydrologic residence time, and creates patterns that have been historically attributed to variation in tDOC quality. Comparing predictions of this `biologically null model' to field observations and more biologically complex models could indicate when and where biology is likely to matter most.

  16. Limited potential for adaptation to climate change in a broadly distributed marine crustacean.

    PubMed

    Kelly, Morgan W; Sanford, Eric; Grosberg, Richard K

    2012-01-22

    The extent to which acclimation and genetic adaptation might buffer natural populations against climate change is largely unknown. Most models predicting biological responses to environmental change assume that species' climatic envelopes are homogeneous both in space and time. Although recent discussions have questioned this assumption, few empirical studies have characterized intraspecific patterns of genetic variation in traits directly related to environmental tolerance limits. We test the extent of such variation in the broadly distributed tidepool copepod Tigriopus californicus using laboratory rearing and selection experiments to quantify thermal tolerance and scope for adaptation in eight populations spanning more than 17° of latitude. Tigriopus californicus exhibit striking local adaptation to temperature, with less than 1 per cent of the total quantitative variance for thermal tolerance partitioned within populations. Moreover, heat-tolerant phenotypes observed in low-latitude populations cannot be achieved in high-latitude populations, either through acclimation or 10 generations of strong selection. Finally, in four populations there was no increase in thermal tolerance between generations 5 and 10 of selection, suggesting that standing variation had already been depleted. Thus, plasticity and adaptation appear to have limited capacity to buffer these isolated populations against further increases in temperature. Our results suggest that models assuming a uniform climatic envelope may greatly underestimate extinction risk in species with strong local adaptation.

  17. Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.

    PubMed

    Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H

    2016-11-01

    Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.

  18. Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-endemic urban setting, Chennai in India.

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala; Asokan, Aswin; Kalsingh, T Maria Jusler; Mathai, Manu Thomas; Valecha, Neena; Montgomery, Jacqui; Thomas, Matthew B; Eapen, Alex

    2018-05-16

    Environmental factors such as temperature, relative humidity and their daily variation influence a range of mosquito life history traits and hence, malaria transmission. The standard way of characterizing environmental factors with meteorological station data need not be the actual microclimates experienced by mosquitoes within local transmission settings. A year-long study was conducted in Chennai, India to characterize local temperature and relative humidity (RH). Data loggers (Hobos) were placed in a range of probable indoor and outdoor resting sites of Anopheles stephensi. Recordings were taken hourly to estimate mean temperature and RH, together with daily temperature range (DTR) and daily relative humidity range. The temperature data were used to explore the predicted variation in extrinsic incubation period (EIP) of Plasmodium falciparum and Plasmodium vivax between microhabitats and across the year. Mean daily temperatures within the indoor settings were significantly warmer than those recorded outdoors. DTR in indoor environments was observed to be modest and ranged from 2 to 6 °C. Differences in EIP between microhabitats were most notable during the hottest summer months of April-June, with parasite development predicted to be impaired for tiled houses and overhead tanks. Overall, the prevailing warm and stable conditions suggest rapid parasite development rate regardless of where mosquitoes might rest. Taking account of seasonal and local environmental variation, the predicted EIP of P. falciparum varied from a minimum of 9.1 days to a maximum of 15.3 days, while the EIP of P. vivax varied from 8.0 to 24.3 days. This study provides a detailed picture of the actual microclimates experienced by mosquitoes in an urban slum malaria setting. The data indicate differences between microhabitats that could impact mosquito and parasite life history traits. The predicted effects for EIP are often relatively subtle, but variation between minimum and maximum EIPs can play a role in disease transmission, depending on the time of year and where mosquitoes rest. Appropriate characterization of the local microclimate conditions would be the key to fully understand the effects of environment on local transmission ecology.

  19. Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium

    PubMed Central

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-01-01

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851

  20. Tests of Mach's Principle With a Mechanical Oscillator

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Cramer, John G.; Fey, Curran W.; Casissi, Damon V.

    2004-01-01

    James F. Woodward has made a prediction, based on Sciama's formulation of Mach's Principle in the framework of general relativity, that in the presence of an energy flow the inertial mass of an object may undergo sizable variations, changing as the second time derivative of the energy. We describe an attempt to test for the predicted effect with a charging capacitor, using a technique that does not require an unbalanced force or any local violation of Newton s 3rd law of motion. We attempt to observe: (1) the gravitational effect of the varying mass and (2) the effect of the mass variation on a driven harmonic oscillator with the charging capacitor as the oscillating mass. We report on the predicted effect, the design and implementation of the measurement apparatus, and initial experience with the apparatus. At this time, however, we will not report on observations of the presence or absence of the Woodward effect.

  1. Digital FMCW for ultrawideband spectrum sensing

    NASA Astrophysics Data System (ADS)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  2. Local richness along gradients in the Siskiyou herb flora: R.H. Whittaker revisited

    USGS Publications Warehouse

    Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2011-01-01

    In his classic study in the Siskiyou Mountains (Oregon, USA), one of the most botanically rich forested regions in North America, R. H. Whittaker (1960) foreshadowed many modern ideas on the multivariate control of local species richness along environmental gradients related to productivity. Using a structural equation model to analyze his data, which were never previously statistically analyzed, we demonstrate that Whittaker was remarkably accurate in concluding that local herb richness in these late-seral forests is explained to a large extent by three major abiotic gradients (soils, topography, and elevation), and in turn, by the effects of these gradients on tree densities and the numbers of individual herbs. However, while Whittaker also clearly appreciated the significance of large-scale evolutionary and biogeographic influences on community composition, he did not fully articulate the more recent concept that variation in the species richness of local communities could be explained in part by variation in the sizes of regional species pools. Our model of his data is among the first to use estimates of regional species pool size to explain variation in local community richness along productivity-related gradients. We find that regional pool size, combined with a modest number of other interacting abiotic and biotic factors, explains most of the variation in local herb richness in the Siskiyou biodiversity hotspot.

  3. Mesoscale to Synoptic Scale Cloud Variability

    NASA Technical Reports Server (NTRS)

    Rossow, William B.

    1998-01-01

    The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of clouds, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, clouds and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite Cloud Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the clouds, atmosphere and ocean vary. A nearly 15-yr dataset is now available that covers the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) cloud variations at the smallest scales and how they may influence radiation-cloud interactions, and (2) cloud variations at "moderate" scales and how they may cause natural climate variability, and (3) cloud variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of cloud-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.

  4. Response to Comment on "Does the Earth Have an Adaptive Infrared Iris?"

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.

    2001-01-01

    In his comment on Lindzen et al., Harrison found that the amount of high-level clouds, A, and the sea-surface temperature beneath clouds, T, averaged over a large oceanic domain in the western Pacific have secular linear trends of opposite signs over a period of 20 months. He found that when the linear trends are subtracted from the data, the correlation between the residual A and T is much reduced. His estimates of the confidence levels for the correlation indicate, moreover, that this correlation is not statistically significant. The domain-averaged A and, to a lesser degree, T, have distinct intra-seasonal and seasonal variations. These variations are influenced by the large-scale wind and temperature distributions and by the seasonal variation of insolation. To separate the local effect from the effect of slowly changing large-scale conditions, rather than subtracting 20-month linear trends from the series, which has the potential to spuriously extrapolate intra-seasonal and seasonal variations to even longer time scales, we subtracted 30-day running means of A and T from each time series; in effect, the data were high-pass filtered. The number of points (days), N, is reduced by this process from the original value of 510 to 480.

  5. A New Global Empirical Model of the Electron Temperature with the Inclusion of the Solar Activity Variations for IRI

    NASA Technical Reports Server (NTRS)

    Truhlik, V.; Triskova, L.

    2012-01-01

    A data-base of electron temperature (T(sub e)) comprising of most of the available LEO satellite measurements in the altitude range from 350 to 2000 km has been used for the development of a new global empirical model of T(sub e) for the International Reference Ionosphere (IRI). For the first time this will include variations with solar activity. Variations at five fixed altitude ranges centered at 350, 550, 850, 1400, and 2000 km and three seasons (summer, winter, and equinox) were represented by a system of associated Legendre polynomials (up to the 8th order) in terms of magnetic local time and the earlier introduced in vdip latitude. The solar activity variations of T(sub e) are represented by a correction term of the T(sub e) global pattern and it has been derived from the empirical latitudinal profiles of T(sub e) for day and night (Truhlik et al., 2009a). Comparisons of the new T(sub e) model with data and with the IRI 2007 Te model show that the new model agrees well with the data generally within standard deviation limits and that the model performs better than the current IRI T(sub e) model.

  6. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  7. Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.

    PubMed

    Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna

    2011-05-20

    We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

  8. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  9. Variational mixed quantum/semiclassical simulation of dihalogen guest and rare-gas solid host dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolu; Cina, Jeffrey A.

    2014-07-01

    A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.

  10. A space-time scan statistic for detecting emerging outbreaks.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko; Kohriyama, Kazuaki

    2011-03-01

    As a major analytical method for outbreak detection, Kulldorff's space-time scan statistic (2001, Journal of the Royal Statistical Society, Series A 164, 61-72) has been implemented in many syndromic surveillance systems. Since, however, it is based on circular windows in space, it has difficulty correctly detecting actual noncircular clusters. Takahashi et al. (2008, International Journal of Health Geographics 7, 14) proposed a flexible space-time scan statistic with the capability of detecting noncircular areas. It seems to us, however, that the detection of the most likely cluster defined in these space-time scan statistics is not the same as the detection of localized emerging disease outbreaks because the former compares the observed number of cases with the conditional expected number of cases. In this article, we propose a new space-time scan statistic which compares the observed number of cases with the unconditional expected number of cases, takes a time-to-time variation of Poisson mean into account, and implements an outbreak model to capture localized emerging disease outbreaks more timely and correctly. The proposed models are illustrated with data from weekly surveillance of the number of absentees in primary schools in Kitakyushu-shi, Japan, 2006. © 2010, The International Biometric Society.

  11. Analysis of continuous GPS measurements from southern Victoria Land, Antarctica

    USGS Publications Warehouse

    Willis, Michael J.

    2007-01-01

    Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.

  12. Local spatiotemporal time-frequency peak filtering method for seismic random noise reduction

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Dang, Bo; Li, Yue; Lin, Hongbo

    2014-12-01

    To achieve a higher level of seismic random noise suppression, the Radon transform has been adopted to implement spatiotemporal time-frequency peak filtering (TFPF) in our previous studies. Those studies involved performing TFPF in full-aperture Radon domain, including linear Radon and parabolic Radon. Although the superiority of this method to the conventional TFPF has been tested through processing on synthetic seismic models and field seismic data, there are still some limitations in the method. Both full-aperture linear Radon and parabolic Radon are applicable and effective for some relatively simple situations (e.g., curve reflection events with regular geometry) but inapplicable for complicated situations such as reflection events with irregular shapes, or interlaced events with quite different slope or curvature parameters. Therefore, a localized approach to the application of the Radon transform must be applied. It would serve the filter method better by adapting the transform to the local character of the data variations. In this article, we propose an idea that adopts the local Radon transform referred to as piecewise full-aperture Radon to realize spatiotemporal TFPF, called local spatiotemporal TFPF. Through experiments on synthetic seismic models and field seismic data, this study demonstrates the advantage of our method in seismic random noise reduction and reflection event recovery for relatively complicated situations of seismic data.

  13. Heterogeneity and anisotropy in the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Vauchez, Alain

    2015-10-01

    The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.

  14. Intraspecific variation in body size and shape in an andean highland anole species, Anolis ventrimaculatus (Squamata: Dactyloidae).

    PubMed

    Calderón-Espinosa, Martha L; Ortega-León, Angela M; Zamora-Abrego, Joan G

    2013-03-01

    Variation in body characteristics related to lizard locomotion has been poorly studied at the intraspecific level in Anolis species. Local adaptation due to habitat heterogeneity has been reported in some island species. However, studies of mainland species are particularly scarce and suggest different patterns: high variability among highland lizards and poorly differentiated populations in one Amazonian species. We characterized inter population variation of body size and shape in the highland Andean Anolis ventrimaculatus, an endemic species from Western Colombia. A total of 15 morphometric variables were measured in specimens from the reptile collection of the Instituto de Ciencias Naturales, Universidad Nacional, Colombia. The study included individuals from seven different highland localities. We found size and shape sexual dimorphism, both of which varied among localities. Patterns of variation in body proportions among populations were different in both males and females, suggesting that either sexual or natural selective factors are different in each locality and between sexes. Since this species exhibits a fragmented distribution in highlands, genetic divergence may also be a causal factor of the observed variation. Ecological, behavioral, additional morphological as well as phylogenetic data, may help to understand the evolutionary processes behind the geographic patterns found in this species.

  15. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.

    2013-02-01

    Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.

  16. Regional isolation in the Balkan region: an analysis of craniofacial variation.

    PubMed

    Ross, Ann H

    2004-05-01

    Biological variation is investigated among contemporary Croatians, Bosnians, American whites, and other multitemporal Balkan populations (World War II Croatians, Macedonians, and Greeks) via multivariate statistics and distance measures of the craniofacial complex. This study demonstrates that there is considerable variation among groups of European ancestry. Bosnians and Croatians who are thought to be relatively homogenous and historically to originate from the same Slav ancestry show local variations. While environmental plasticity has been used to explain cranial changes among human groups, it does not adequately explain the variation observed between Bosnians and Croatians. It is an oversimplification to exclusively attribute the vast range of variability observed among local as well as geographic populations to environmental adaptations. Copyright 2003 Wiley-Liss, Inc.

  17. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  18. Midlatitude D region variations measured from broadband radio atmospherics

    NASA Astrophysics Data System (ADS)

    Han, Feng

    The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.

  19. Whole-body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil.

    PubMed

    Murbach, Manuel; Neufeld, Esra; Kainz, Wolfgang; Pruessmann, Klaas P; Kuster, Niels

    2014-02-01

    Radiofrequency energy deposition in magnetic resonance imaging must be limited to prevent excessive heating of the patient. Correlations of radiofrequency absorption with large-scale anatomical features (e.g., height) are investigated in this article. The specific absorption rate (SAR), as the pivotal parameter for quantifying absorbed radiofrequency, increases with the radial dimension of the patient and therefore with the large-scale anatomical properties. The absorbed energy in six human models has been modeled in different Z-positions (head to knees) within a 1.5T bodycoil. For a fixed B1+ incident field, the whole-body SAR can be up to 2.5 times higher (local SAR up to seven times) in obese adult models compared to children. If the exposure is normalized to 4 W/kg whole-body SAR, the local SAR can well-exceed the limits for local transmit coils and shows intersubject variations of up to a factor of three. The correlations between anatomy and induced local SAR are weak for normalized exposure, but strong for a fixed B1+ field, suggesting that anatomical properties could be used for fast SAR predictions. This study demonstrates that a representative virtual human population is indispensable for the investigation of local SAR levels. Copyright © 2013 Wiley Periodicals, Inc.

  20. Spatial Distribution and Secular Variation of Geomagnetic Filed in China Described by the CHAOS-6 Model and its Error Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gu, Z.; Chen, B.; Yuan, J.; Wang, C.

    2016-12-01

    The CHAOS-6 geomagnetic field model, presented in 2016 by the Denmark's national space institute (DTU Space), is a model of the near-Earth magnetic field. According the CHAOS-6 model, seven component data of geomagnetic filed at 30 observatories in China in 2015 and at 3 observatories in China spanning the time interval 2008.0-2016.5 were calculated. Also seven component data of geomagnetic filed from the geomagnetic data of practical observations in China was obtained. Based on the model calculated data and the practical data, we have compared and analyzed the spatial distribution and the secular variation of the geomagnetic field in China. There is obvious difference between the two type data. The CHAOS-6 model cannot describe the spatial distribution and the secular variation of the geomagnetic field in China with comparative precision because of the regional and local magnetic anomalies in China.

  1. Second shock ejecta measurements with an explosively driven two-shockwave drive

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Oró, D. M.; Olson, R. T.; Cherne, F. J.; Hammerberg, J. E.; Hixson, R. S.; Monfared, S. K.; Pack, C. L.; Rigg, P. A.; Stone, J. B.; Terrones, G.

    2014-09-01

    We develop and apply an explosively driven two-shockwave tool in material damage experiments on Sn. The two shockwave tool allows the variation of the first shockwave amplitude over range 18.5 to 26.4 GPa, with a time interval variation between the first and second shock of 5 to 7 μs. Simulations imply that the second shock amplitude can be varied as well and we briefly describe how to achieve such a variation. Our interest is to measure ejecta masses from twice shocked metals. In our application of the two-shockwave tool, we observed second shock ejected areal masses of about 4 ± 1 mg/cm2, a value we attribute to unstable Richtmyer-Meshkov impulse phenomena. We also observed an additional mass ejection process caused by the abrupt recompression of the local spallation or cavitation of the twice shocked Sn.

  2. Monitoring tropical vegetation succession with LANDSAT data

    NASA Technical Reports Server (NTRS)

    Robinson, V. B. (Principal Investigator)

    1983-01-01

    The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.

  3. Seamless variation of isometric and anisometric dynamical integrity measures in basins's erosion

    NASA Astrophysics Data System (ADS)

    Belardinelli, P.; Lenci, S.; Rega, G.

    2018-03-01

    Anisometric integrity measures defined as improvement and generalization of two existing measures (LIM, local integrity measure, and IF, integrity factor) of the extent and compactness of basins of attraction are introduced. Non-equidistant measures make it possible to account for inhomogeneous sensitivities of the state space variables to perturbations, thus permitting a more confident and targeted identification of the safe regions. All four measures are used for a global dynamics analysis of the twin-well Duffing oscillator, which is performed by considering a nearly continuous variation of a governing control parameter, thanks to the use of parallel computation allowing reasonable CPU time. This improves literature results based on finite (and commonly large) variations of the parameter, due to computational constraints. The seamless evolution of key integrity measures highlights the fine aspects of the erosion of the safe domain with respect to the increasing forcing amplitude.

  4. Role of thermal history in atomic dynamics of chalcogenide glass: A case study on Ge{sub 20}Te{sub 80} glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Yashika; Kalra, Geetanjali; Murugavel, Sevi, E-mail: murug@physics.du.ac.in

    The non-existence of thermodynamic equilibrium in glasses, their thermal history plays a very crucial role in explaining the relaxation behavior in various time scales and its configurational states. More importantly, the associated relaxation behavior is related mainly to the structural phenomenon of the glasses. Here, we report the dependence of quenching rate on the variation of structural units. The local structures of these glasses are monitored by recording the Raman spectroscopy and related to the different configurational states. The observed variations in structural differences are reflected in the measured density of the corresponding glasses. The quenching rate dependent of themore » relative fractions of edge-shared and corner-shared GeTe{sub 4} tetrahedral units are shown to be consistent with the corresponding variations in the measured density values.« less

  5. An information theory approach for evaluating earth radiation budget (ERB) measurements - Nonuniform sampling of diurnal longwave flux variations

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Direskeneli, Haldun; Barkstrom, Bruce R.

    1991-01-01

    Satellite measurements are subject to a wide range of uncertainties due to their temporal, spatial, and directional sampling characteristics. An information-theory approach is suggested to examine the nonuniform temporal sampling of ERB measurements. The information (i.e., its entropy or uncertainty) before and after the measurements is determined, and information gain (IG) is defined as a reduction in the uncertainties involved. A stochastic model for the diurnal outgoing flux variations that affect the ERB is developed. Using Gaussian distributions for the a priori and measured radiant exitance fields, the IG is obtained by computing the a posteriori covariance. The IG for the monthly outgoing flux measurements is examined for different orbital parameters and orbital tracks, using the Earth Observing System orbital parameters as specific examples. Variations in IG due to changes in the orbit's inclination angle and the initial ascending node local time are investigated.

  6. Prediction of ppm level electrical failure by using physical variation analysis

    NASA Astrophysics Data System (ADS)

    Hou, Hsin-Ming; Kung, Ji-Fu; Hsu, Y.-B.; Yamazaki, Y.; Maruyama, Kotaro; Toyoshima, Yuya; Chen, Chu-en

    2016-03-01

    The quality of patterns printed on wafer may be attributed to factors such as process window control, pattern fidelity, overlay performance, and metrology. Each of these factors play an important role in making the process more effective by ensuring that certain design- and process-specific parameters are kept within acceptable variation. Since chip size and pattern density are increasing accordingly, in-line real time catching the in-chip weak patterns/defects per million opportunities (WP-DPMO) plays more and more significant role for product yield with high density memory. However, the current in-line inspection tools focus on single layer defect inspection, not effectively and efficiently to catch multi-layer weak patterns/defects even through voltage contrast and/or special test structure design [1]-[2]. In general, the multi-layer weak patterns/defects are escaped easily by using in-line inspection and cause ignorance of product dysfunction until off-line time-consuming final PFA/EFA will be used. To effectively and efficiently in-line real time monitor the potential multi-layer weak patterns, we quantify the bridge electrical metric between contact and gate electrodes into CD physical metric via big data from the larger field of view (FOV: 8k x 16k with 3 nm pixel equalizes to image main field size 34 um x 34 um @ 3 nm pixel) e-beam quality image contour compared to layout GDS database (D2DB) as shown in Fig. 1. Hadoop-based distributed parallel computing is implemented to improve the performance of big data architectures, Fig. 2. Therefore, the state of art in-line real time catching in-chip potential multi-layer weak patterns can be proven and achieved by following some studying cases [3]. Therefore, manufacturing sources of variations can be partitioned to systematic and random variations by applying statistical techniques based on the big data fundamental infrastructures. After big data handling, the in-chip CD and AA variations are distinguished by their spatial correlation distance. For local variations (LV) there is no correlation, whereas for global variations (GV) the correlation distance is very large [7]-[9]. This is the first time to certificate the validation of spatial distribution from the affordable bias contour big data fundamental infrastructures. And then apply statistical techniques to dig out the variation sources. The GV come from systematic issue, which could be compensated by adaptive LT condition or OPC correction. But LV comes from random issue, which being considered as intrinsic problem such as structure, material, tool capability… etc. In this paper studying, we can find out the advanced technology node SRAM contact CD local variation (LV) dominates in total variation, about 70%. It often plays significant in-line real time catching WP-DPMO role of the product yield loss, especially for wafer edge is the worst loss within wafer distribution and causes serious reliability concern. The major root cause of variations comes from the PR material induced burr defect (LV), the second one comes from GV enhanced wafer edge short opportunity, which being attributed to three factors, first one factor is wafer edge CD deliberated enlargement for yield improvement as shown in Fig. 10. Second factor is overlaps/AA shifts due to tool capability dealing with incoming wafer's war page issue and optical periphery layout dependent working pitch issue as shown in Fig. 9 (1)., the last factor comes from wafer edge burr enhanced by wafer edge larger Photo Resistance (PR) spin centrifugal force. After implementing KPIs such as GV related AA/CD indexes as shown in Fig. 9 (1) and 10, respectively, and LV related burr index as shown in Fig. 11., we can construct the parts per million (PPM) level short probability model via multi-variables regression, canonical correlation analysis and logistic transformation. The model provides prediction of PPM level electrical failure by using in-line real time physical variation analysis. However in order to achieve Total Quality Management (TQM), the adaptive Statistical Process Control (SPC) charts can be implemented to in-line real time catch PPM level product malfunction at manufacturing stage. Applying for early stage monitor likes incoming raw material, Photo Resistance (PR) … etc., the LV related burr KPI SPC charts could be a powerful quality inspection vehicle. To sum up the paper's contributions, the state of art in-line real time catching in-chip potential multi-layer physical weak patterns can be proven and achieved effectively and efficiently to associate with PPM level product dysfunction.

  7. Variations in the reproductive cycle of Dreissena polymorpha in Europe, Russia, and North America

    USGS Publications Warehouse

    Nichols, Susan Jerrine

    1996-01-01

    The reproductive cycle of the zebra mussel (Dreissena polymorpha) is highly variable throughout its range in Europe, Russia, and North America. The environmental factors influencing this variation are poorly understood, but successful reproduction is occurring in areas where it was initially believed that adult zebra mussels could not survive (i.e., southern United States). The differences in mussel reproduction occurring from site-to-site make it difficult to predict timing of specific events, such as the start of larval production, that are important in initiating containment or control procedures. For example, the amount of time required for a fertilized egg to develop into a juvenile mussel can be as short as 8 days, or as long as 240 days. Release of gametes by adults can be a highly synchronized event, focused over a 1-2 week period, or it can be completely non-synchronized, occurring throughout the year. Zebra mussels in some localities start spawning at water temperatures of 12-13A?C, but do not start until water temperatures reaches 22A?C at other sites. While some of this variability in reproductive behavior stems from mussel adaptation to local conditions, part is due to difficulties in sampling these events. It is difficult to determine reproductive success of a specific population because of the problems in separating locally produced larvae from larvae drifting in from other areas. Further research is needed not only on the relationship between reproduction and environment at the community level, but also on the variability in response of individual mussels.

  8. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  9. Sources, sinks, and spatial ecology of cotton mice in longleaf pine stands undergoing restoration

    USGS Publications Warehouse

    Sharp, N.W.; Mitchell, M.S.; Grand, J.B.

    2009-01-01

    The Fire and Fire Surrogate studya replicated, manipulative experimentsought the most economically and ecologically efficient way to restore the nation's fire-maintained ecosystems. As part of this study, we conducted a 3-year markrecapture study, comprising 105,000 trap-nights, to assess demographic responses of cotton mice (Peromyscus gossypinus) to Fire and Fire Surrogate treatments at the Gulf Coastal Plain site, where longleaf pine was the ecosystem to be restored. We compared competing models to evaluate restoration effects on variation in apparent survival and recruitment over time, space, and treatment, and incorporated measures of available source habitat for cotton mice with reverse-time modeling to infer immigration from outside the study area. The top-ranked survival model contained only variation over time, but the closely ranked 2nd and 3rd models included variation over space and treatment, respectively. The top 4 recruitment models all included effects for availability of source habitat and treatments. Burning appeared to degrade habitat quality for cotton mice, showing demographic characteristics of a sink, but treatments combining fire with thinning of trees or application of herbicide to the understory appeared to improve habitat quality, possibly creating sources. Bottomland hardwoods outside the study also acted as sources by providing immigrants to experimental units. Models suggested that population dynamics operated over multiple spatial scales. Treatments applied to 15-ha stands probably only caused local variation in vital rates within the larger population. ?? 2009 American Society of Mammalogists.

  10. Characteristics of Sudden Commencements Observed by Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Kim, K.-H.; Park, J.-S.; Jin, H.; Kletzing, C.; Wygant, J. R.; Ghamry, E.

    2018-02-01

    We have statistically studied sudden commencement (SC) by using the data acquired from Van Allen Probes (VAP) in the inner magnetosphere (L = 3.0-6.5) and GOES spacecraft at geosynchronous orbit (L =˜ 6.7) from October 2012 to September 2017. During the time period, we identified 85 SCs in the inner magnetosphere and 90 SCs at geosynchronous orbit. Statistical results of the SC events reveal the following characteristics. (1) There is strong seasonal dependence of the geosynchronous SC amplitude in the radial BV component at all local times. However, BV shows weak seasonal variation on the dayside in the inner magnetosphere. (2) The local time dependence of the SC amplitude in the compressional BH component at geosynchronous orbit is similar to that in the inner magnetosphere. (3) In a nightside region of L = 5.0-6.5, ˜19% of BH events are negative, while ˜58% of BH events are negative at geosynchronous orbit. (4) The amplitude of the SC-associated Ey perturbations varies systematically with local time with a morning-afternoon asymmetry near noon. These observations can be explained by spatial and/or temporal changes in the magnetopause and cross-tail currents, which are caused by changes in the solar wind dynamic pressure, with respect to spacecraft positions.

  11. Localization noise in deep subwavelength plasmonic devices

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  12. Population biology of Avena : IX. Gene flow and neighborhood size in relation to microgeographic variation in Avena barbata.

    PubMed

    Rai, Kedar N; Jain, Subodh K

    1982-06-01

    Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.

  13. Spatial variations of sea level along the coast of Thailand: Impacts of extreme land subsidence, earthquakes and the seasonal monsoon

    NASA Astrophysics Data System (ADS)

    Saramul, Suriyan; Ezer, Tal

    2014-11-01

    The study addresses two important issues associated with sea level along the coasts of Thailand: first, the fast sea level rise and its spatial variation, and second, the monsoonal-driven seasonal variations in sea level. Tide gauge data that are more extensive than in past studies were obtained from several different local and global sources, and relative sea level rise (RSLR) rates were obtained from two different methods, linear regressions and non-linear Empirical Mode Decomposition/Hilbert-Huang Transform (EMD/HHT) analysis. The results show extremely large spatial variations in RSLR, with rates varying from ~ 1 mm y-1 to ~ 20 mm y-1; the maximum RSLR is found in the upper Gulf of Thailand (GOT) near Bangkok, where local land subsidence due to groundwater extraction dominates the trend. Furthermore, there are indications that RSLR rates increased significantly in all locations after the 2004 Sumatra-Andaman Earthquake and the Indian Ocean tsunami that followed, so that recent RSLR rates seem to have less spatial differences than in the past, but with high rates of ~ 20-30 mm y-1 almost everywhere. The seasonal sea level cycle was found to be very different between stations in the GOT, which have minimum sea level in June-July, and stations in the Andaman Sea, which have minimum sea level in February. The seasonal sea-level variations in the GOT are driven mostly by large-scale wind-driven set-up/set-down processes associated with the seasonal monsoon and have amplitudes about ten times larger than either typical steric changes at those latitudes or astronomical annual tides.

  14. Intraspecific Variation in Physiological Condition of Reef-Building Corals Associated with Differential Levels of Chronic Disturbance

    PubMed Central

    Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S.

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B =  −121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B =  −7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching. PMID:24626395

  15. Intraspecific variation in physiological condition of reef-building corals associated with differential levels of chronic disturbance.

    PubMed

    Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B =  -121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B =  -7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching.

  16. Hospital staffing and local pay: an investigation into the impact of local variations in the competitiveness of nurses' pay on the staffing of hospitals in France.

    PubMed

    Combes, Jean-Baptiste; Delattre, Eric; Elliott, Bob; Skåtun, Diane

    2015-09-01

    Spatial wage theory suggests that employers in different regions may offer different pay rates to reflect local amenities and cost of living. Higher wages may be required to compensate for a less pleasant environment or a higher cost of living. If wages in a competing sector within an area are less flexible and therefore less competitive this may lead to an inability to employ staff. This paper considers the market for nursing staff in France where there is general regulation of wages and public hospitals compete for staff with the private hospital and non-hospital sectors. We consider two types of nursing staff, registered and assistant nurses and first establish the degree of spatial variation in the competitiveness of pay of nurses in public hospitals. We then consider whether these spatial variations are associated with variation in the employment of nursing staff. We find that despite regulation of pay in the public and private sector, there are substantial local variations in the competitiveness of nurses' pay. We find evidence that the spatial variations in the competitiveness of pay are associated with relative numbers of assistant nurses but not registered nurses. While we find the influence of the competitiveness of pay is small, it suggests that nonpay conditions may be an important factor in adjusting the labour market as might be expected in such a regulated market.

  17. Spatial and temporal Teleconnections of Sea Surface Temperature and Ocean Indices to regional Climate Variations across Thailand - a Pathway to understanding the Impact of Climate Change on Water Resources

    NASA Astrophysics Data System (ADS)

    Bejranonda, Werapol; Koch, Manfred

    2010-05-01

    Thailand has a long coastline with the Pacific Ocean, as part of the Gulf of Thailand, as well as with the Indian Ocean, as part of the Andaman Sea. Because of this peculiar location, Thailand's local climate and, in particular, its water resources are strongly influenced by the mix of tropical wet, tropical dry and tropical monsoon seasons. Because of the large seasonal and interannual variations and irregularities of these, mainly ocean-driven weather patterns, particularly in recent times, large-scale water storage in huge river-fed reservoirs has a long tradition in Thailand, providing water for urban, industrial and agricultural use during long dry seasonal periods. These reservoirs which are located all over Thailand gather water primarily from monsoon-driven rainfall during the wet season which, usually, lasts from May to October. During the dry season, November to April, when the monsoon winds move northward, the air masses are drier in central and northern Thailand, with rain falling here only a few days in a month. Southern Thailand, on the other hand, which is constituted mostly by the isthmus between the two oceans, stays even hot and humid during that time period. Because of this tropical climate pattern, the surface water resources in most of Thailand strongly hinge on the monsoon movements which, in turn, depend themselves upon the thermal states of the Pacific and Indian Oceans. Therefore, the understanding of the recent strong seasonal and interannual climate variations with their detrimental effects on the availability of hydrological water resources in most parts of Thailand, must include the analysis of changes of various sea-state indices in the adjacent oceans and of their possible teleconnections with regional climate indices across this country. With the modern coupled atmospheric-ocean models being able to predict the variations of many ocean indices over a period of several months, namely, those driven by El Nino- Southern Oscillations (ENSO) events in the Pacific Ocean, if such teleconnections exist, one would have would have a powerful tool at hand to forecast extreme seasonal climate pattern across Thailand over a limited time period. Eventually, such a predictive tool would help to better manage the availability and adequate supply of surface water resources to the various water users in this country. In the present study the spatial and temporal relationships between the global climate circulation system and the regional weather in Thailand are assessed by various techniques of stochastic time series analysis. More specifically, the time series of the sea surface temperature (SST) and various ocean indices of the Pacific and the Indian Oceans, as well as the time series of 121 meteorological stations from 5 regions across Thailand which include humidity, evaporation, temperature and rainfall during 1950-2007 are examined using autocorrelation, ARIMA, Wavelet Transform methods. Possible teleconnections between the behaviour of the ocean states and the climate variations at meteorological stations in eastern Thailand which frequently suffers from water shortage problems are analyzed using regression, cross-correlation and the Wavelet cross-correlation method. In addition to the time series of the observed ocean and meteorological variables, 1961-2000 CGCM3 predictors of the macro-scale regional climate variations for this study area are analyzed by the methods above and correlated with the ocean indices as well. Rainfall and temperatures at selected stations are forecasted up to year 2007 using the teleconnection- relationships found by multiple linear regression with the CGCM3 predictors. In addition, autoregressive integrated moving average (ARIMA) models of these climate variable are set up that are eventually extended to include the ocean indices as external regressors. The results of these various statistical techniques show that the El-Niño 1.2 SST anomaly indice of the Pacific Ocean, which refers to the most eastern section of the Pacific, correlates the strongest with the Thai local climate. Through cross-correlation, the most sensitive parameters to the ocean indices are the minimum temperature at stations in the northern and northeastern, inland regions of Thailand and the number of rainy days in the eastern, central and southern, coastal regions. In the southern region the amount of rainfall at the coast of Gulf of Thailand varies positively with El-Niño, but negatively for stations along the Andaman Sea coast in the west of the isthmus, with maximal correlation lag.-times of 4 months. Surprisingly the corresponding connections of the local climate variables with the Indian Ocean indices are less well established, with an optimal lag-time of only 3 months. Using the results of the teleconnection regression relationships, the forecast of the local climate variables could be improved significantly, as indicated by the Nash-Sutcliffe-coefficient of the prediction model's which increased from originally 0.30, 0.72 and 0.26 to 0.51, 0.82 and 0.46 for the rainfall, minimum and maximum temperatures, respectively. The results of our analysis indicate the possibility of a better forecast of extreme seasonal climate variations across some regions of Thailand over a limited time period by using short-term expected variations of the Pacific and Indian ocean indices.

  18. Local variations in the timing of RSV epidemics.

    PubMed

    Noveroske, Douglas B; Warren, Joshua L; Pitzer, Virginia E; Weinberger, Daniel M

    2016-11-11

    Respiratory syncytial virus (RSV) is a primary cause of hospitalizations in children worldwide. The timing of seasonal RSV epidemics needs to be known in order to administer prophylaxis to high-risk infants at the appropriate time. We used data from the Connecticut State Inpatient Database to identify RSV hospitalizations based on ICD-9 diagnostic codes. Harmonic regression analyses were used to evaluate RSV epidemic timing at the county level and ZIP code levels. Linear regression was used to investigate associations between the socioeconomic status of a locality and RSV epidemic timing. 9,740 hospitalizations coded as RSV occurred among children less than 2 years old between July 1, 1997 and June 30, 2013. The earliest ZIP code had a seasonal RSV epidemic that peaked, on average, 4.64 weeks earlier than the latest ZIP code. Earlier epidemic timing was significantly associated with demographic characteristics (higher population density and larger fraction of the population that was black). Seasonal RSV epidemics in Connecticut occurred earlier in areas that were more urban (higher population density and larger fraction of the population that was). These findings could be used to better time the administration of prophylaxis to high-risk infants.

  19. Data Quality Control Tools Applied to Seismo-Acoustic Arrays in Korea

    NASA Astrophysics Data System (ADS)

    Park, J.; Hayward, C.; Stump, B. W.

    2017-12-01

    We assess data quality (data gap, seismometer orientation, timing error, noise level and coherence between co-located sensors) for seismic and infrasound data in South Korea using six seismo-acoustic arrays, BRDAR, CHNAR, KSGAR, KMPAR, TJIAR, and YPDAR, cooperatively operated by Southern Methodist University and Korea Institute for Geosciences and Mineral Resources. Timing errors associated with seismometers can be found based on estimated changes in instrument orientation calculated from RMS errors between the reference array and each array seismometer using waveforms filtered from 0.1 to 0.35 Hz. Noise levels of seismic and infrasound data are analyzed to investigate local environmental effects and seasonal noise variation. In order to examine the spectral properties of the noise, the waveform are analyzed using Welch's method (Welch, 1967) that produces a single power spectral estimate from an average of spectra taken at regular intervals over a specific time period. This analysis quantifies the range of noise conditions found at each of the arrays over the given time period. We take an advantage of the fact that infrasound sensors are co-located or closely located to one another, which allows for a direct comparison of sensors, following the method by Ringler et al. (2010). The power level differences between two sensors at the same array in the frequency band of interest are used to monitor temporal changes in data quality and instrument conditions. A data quality factor is assigned to stations based on the average values of temporal changes estimated in the frequency and time domains. These monitoring tools enable us to automatically assess technical issue related to the instruments and data quality at each seismo-acoustic array as well as to investigate local environmental effects and seasonal variations in both seismic and infrasound data.

  20. What impact did the creation of Local Health Care Co-operatives have on indicators of practice resources and activity?

    PubMed

    McLean, Gary; Sutton, Matt

    2008-05-16

    The creation of Local Health Care Cooperatives (LHCCs) in Scotland in 1999 was typical of attempts to encourage voluntary integration and co-operation between health care providers. One of the three stated objectives of their introduction was to tackle inequalities and improve access to care. We used administrative data on all general practices in 1999 and 2003 to examine whether LHCCs had any measurable impact on six indicators of practice resources and activity. We compare three groups (participant, non-participant, and ineligible practices) through regression analysis of changes over time in group means and within-group inequality (measured using Gini coefficients). In addition, for participants we measure changes in the variation between and within LHCCs. Despite having similar registered populations to participants, non-participants had lower levels of resources at the start of the period and this differential widened over time. The changes over time in the activity indicators were similar across the three groups. There was little evidence that inequality between LHCC practices narrowed more than in the other two groups. Practices within LHCCs appear to be become more homogenous while variation increased between LHCCs. The mixed messages from our examination of resources and activity indicators demonstrates that there are likely to be important lessons to be learned from the brief experiment with LHCCs. Clear objectives that are evaluated using a battery of simple performance indicators may help to ensure demonstrable change in future initiatives to foster integration and co-operation.

  1. Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents.

    PubMed

    Krasnov, Boris R; Shenbrot, Georgy I; van der Mescht, Luther; Warburton, Elizabeth M; Khokhlova, Irina S

    2018-04-12

    To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.

  2. Ambient neutrons of natural origin

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. Neutron flux in the energy range of 0.02 eV - 10 MeV is registered with two sets of proportional ^{3}He tubes placed into cylindrical paraffin thermalizers: an {bf outdoor detector }of 250 cm² area and {bf indoor detector }of 70 cm² area located on the second floor of a concrete building. The counter efficiency for thermal neutrons is 80%. The characteristics of the observed flux variation are quite different from those inherent to the neutrons of the cosmic ray origin. {bf Four types of the outdoor flux variations }are observed: 1) {bf seasonal }with a maxima in wet seasons; 2) {bf diurnal }with maximum at about 6 h local time and an amplitude up to several dozens; 3) {bf abrupt transient} ( 1 min) increases with magnitudes up to two orders higher than the mean daily flux; 4) short (several days) {bf quasi-periodic enhancements }with amplitudes up to several times higher than the mean daily flux. A large variation of the outdoor flux and its phase synchronism with that of the radon decay products means with a high probability their common origin. An apparent source of the neutrons observed is nuclear reactions of decay α-particles with the ground matter. In this case the dynamics of the outdoor flux variations of the first two types is controlled by those of the meteorological parameters in the locality. The third type events correlate with lightning strokes in the vicinity (<200 m) of the detector. The more rare fourth type correlate neither with geomagnetic disturbances nor with meteorological phenomena and are probably a result of natural radon release from the Earth's crust triggered by minor seismological activity. The indoor flux is quite stable with a possible weak maximum at16 h not exceeding 0.1.

  3. Altitudinal variation at 20 years in ponderosa and jeffrey pines

    Treesearch

    R. Z. Callaham; A. R. Liddicoet

    1961-01-01

    Early returns from a study of altitudinal variation of pines along an elevational transect in California indicated middle elevation sources grew best regardless of the elevation of planting, seeming to contradict the old maxim, "Local seed source is best" (6). Later returns bring some support for the maxim as local seed sources assert them selves after 20...

  4. Measurement of Great Salt Lake Loading by the BARGEN Continuous GPS Network

    NASA Astrophysics Data System (ADS)

    Elósegui, P.; Davis, J. L.; Mitrovica, J. X.; Wernicke, B. P.; Bennett, R. A.

    2002-12-01

    The northernmost segment of the Basin and Range Geodetic network (BARGEN) forms an east-west transect from western Utah to eastern California between the latitudes of N~40° and N~41°. Two of our GPS sites, COON and CEDA, are located within 20~km south of the Great Salt Lake (GSL), which extends NNW for a length of ~100~km. Lake level records for GSL during the period of the operation of BARGEN (mid-1996 to present) indicate seasonal elevation variations of ~0.5~m amplitude superimposed on a roughly ``decadal'' feature of amplitude ~1~m. Using an elastic Green's function based on PREM and a simplified load geometry for GSL, we calculate that these elevation variations translate into vertical crustal loading signals of +/-0.5~mm (seasonal) and +/- 1~mm (decadal). The calculated maximum horizontal loading signals are roughly a factor of two smaller. Despite the small size of the expected loading signals, we conclude that we can observe them using time series for the three-dimensional coordinates of COON and CEDA. For CEDA, the variations in the time series are in phase with, and the same magnitude as, both the predicted seasonal and decadal variations. For COON, we obtain a similar match for the decadal variations, but the observed seasonal variations, although in-phase with the predicted variations, are a factor of 3--4 larger. We speculate that this difference may be caused by some combination of local precipitation-induced site motion, unmodeled loading from other nearby sources, errors in the GSL load geometry, and atmospheric errors. We will present these results, and also discuss the loading effect as an error source for estimates of long-term site velocity.

  5. Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Meade, Brendan J.

    2013-06-01

    observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 MW = 7.6 Manyi and 2001 MW = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤1018.5 Paṡs) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales.

  6. Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis.

    PubMed

    Kujala, S T; Knürr, T; Kärkkäinen, K; Neale, D B; Sillanpää, M J; Savolainen, O

    2017-05-01

    Local adaptation is a common feature of plant and animal populations. Adaptive phenotypic traits are genetically differentiated along environmental gradients, but the genetic basis of such adaptation is still poorly known. Genetic association studies of local adaptation combine data over populations. Correcting for population structure in these studies can be problematic since both selection and neutral demographic events can create similar allele frequency differences between populations. Correcting for demography with traditional methods may lead to eliminating some true associations. We developed a new Bayesian approach for identifying the loci underlying an adaptive trait in a multipopulation situation in the presence of possible double confounding due to population stratification and adaptation. With this method we studied the genetic basis of timing of bud set, a surrogate trait for timing of yearly growth cessation that confers local adaptation to the populations of Scots pine (Pinus sylvestris). Population means of timing of bud set were highly correlated with latitude. Most effects at individual loci were small. Interestingly, we found genetic heterogeneity (that is, different sets of loci associated with the trait) between the northern and central European parts of the cline. We also found indications of stronger stabilizing selection toward the northern part of the range. The harsh northern conditions may impose greater selective pressure on timing of growth cessation, and the relative importance of different environmental cues used for tracking the seasons might differ depending on latitude of origin.

  7. Genetics and variation

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  8. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-07-06

    in the soundscape over time. This study did not address difference in detection area as a result of transient sources such as passing vessels...Island in the Pacific Ocean and highlights the need to take changing soundscape characteristics into account during passive acoustic monitoring or...were joined to better understand the contribution and variation in distant shipping noise to local soundscapes (Ainslie & Miksis-Olds, 2013). Results

  9. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth.

    PubMed

    Forzieri, Giovanni; Alkama, Ramdane; Miralles, Diego G; Cescatti, Alessandro

    2017-06-16

    Changes in vegetation cover associated with the observed greening may affect several biophysical processes, whose net effects on climate are unclear. We analyzed remotely sensed dynamics in leaf area index (LAI) and energy fluxes in order to explore the associated variation in local climate. We show that the increasing trend in LAI contributed to the warming of boreal zones through a reduction of surface albedo and to an evaporation-driven cooling in arid regions. The interplay between LAI and surface biophysics is amplified up to five times under extreme warm-dry and cold-wet years. Altogether, these signals reveal that the recent dynamics in global vegetation have had relevant biophysical impacts on the local climates and should be considered in the design of local mitigation and adaptation plans. Copyright © 2017, American Association for the Advancement of Science.

  10. Predictability of weather and climate in a coupled ocean-atmosphere model: A dynamical systems approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.

    1989-01-01

    A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.

  11. Local Analysis Approach for Short Wavelength Geopotential Variations

    NASA Astrophysics Data System (ADS)

    Bender, P. L.

    2009-12-01

    The value of global spherical harmonic analyses for determining 15 day to 30 day changes in the Earth's gravity field has been demonstrated extensively using data from the GRACE mission and previous missions. However, additional useful information appears to be obtainable from local analyses of the data. A number of such analyses have been carried out by various groups. In the energy approximation, the changes in the height of the satellite altitude geopotential can be determined from the post-fit changes in the satellite separation during individual one-revolution arcs of data from a GRACE-type pair of satellites in a given orbit. For a particular region, it is assumed that short wavelength spatial variations for the arcs crossing that region during a time T of interest would be used to determine corrections to the spherical harmonic results. The main issue in considering higher measurement accuracy in future missions is how much improvement in spatial resolution can be achieved. For this, the shortest wavelengths that can be determined are the most important. And, while the longer wavelength variations are affected by mass distribution changes over much of the globe, the shorter wavelength ones hopefully will be determined mainly by more local changes in the mass distribution. Future missions are expected to have much higher accuracy for measuring changes in the satellite separation than GRACE. However, how large an improvement in the derived results in hydrology will be achieved is still very much a matter of study, particularly because of the effects of uncertainty in the time variations in the atmospheric and oceanic mass distributions. To be specific, it will be assumed that improving the spatial resolution in continental regions away from the coastlines is the objective, and that the satellite altitude is in the range of roughly 290 to 360 km made possible for long missions by drag-free operation. The advantages of putting together the short wavelength results from different arcs crossing the region can be seen most easily for an orbit with moderate inclination, such as 50 to 65 deg., so that the crossing angle between south-to-north (S-N) and N-S passes is fairly large over most regions well away from the poles. In that case, after filtering to pass the shorter wavelengths, the results for a given time interval can be combined to give the short wavelength W-E variations in the geopotential efficiently. For continents with extensive meteorological measurements available, like Europe and North America, a very rough guess at the surface mass density variation uncertainties is about 3 kg/m^2. This is based on the apparent accuracy of carefully calibrated surface pressure measurements. If a substantial part of the resulting uncertainties in the geopotential height at satellite altitude are at wavelengths less than about 1,500 km, they will dominate the measurement uncertainty at short spatial wavelengths for a GRACE-type mission with laser interferometry. This would be the case, even if the uncertainty in the atmospheric and oceanic mass distribution at large distances has a fairly small effect. However, the geopotential accuracy would still be substantially better than for the results achievable with a microwave ranging system.

  12. Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC Radio Occultation observations during the ascending phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sai Gowtam, V.; Tulasi Ram, S.

    2017-10-01

    Ionospheric winter and annual anomalies have been investigated during the ascending phase of solar cycle 24 using high-resolution global 3D - data of the FORMOSAT - 3/COSMIC (Formosa satellite - 3/Constellation Observing System for Meterology, Ionosphere and Climate) radio occultation observations. Our detailed analysis shows that the occurrence of winter anomaly at low-latitudes is confined only to the early morning to afternoon hours, whereas, the winter anomaly at mid-latitudes is almost absent at all local times during the ascending phase of solar cycle 24. Further, in the topside ionosphere (altitudes of 400 km and above), the winter anomaly is completely absent at all local times. In contrast, the ionospheric annual anomaly is consistently observed at all local times and altitudes during this ascending phase of solar cycle 24. The annual anomaly exhibits strong enhancements over southern EIA crest latitudes during day time and around Weddle Sea Anomaly (WSA) region during night times. The global mean annual asymmetry index is also computed to understand the altitudinal variation. The global mean AI maximizes around 300-500 km altitudes during the low solar active periods (2008-10), whereas it extends up to 600 km during moderate to high (2011) solar activity period. These findings from our study provide new insights to the current understanding of the annual anomaly.

  13. Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems.

    PubMed

    Ruhí, Albert; Datry, Thibault; Sabo, John L

    2017-12-01

    The concept of metacommunity (i.e., a set of local communities linked by dispersal) has gained great popularity among community ecologists. However, metacommunity research mostly addresses questions on spatial patterns of biodiversity at the regional scale, whereas conservation planning requires quantifying temporal variation in those metacommunities and the contributions that individual (local) sites make to regional dynamics. We propose that recent advances in diversity-partitioning methods may allow for a better understanding of metacommunity dynamics and the identification of keystone sites. We used time series of the 2 components of beta diversity (richness and replacement) and the contributions of local sites to these components to examine which sites controlled source-sink dynamics in a highly dynamic model system (an intermittent river). The relative importance of the richness and replacement components of beta diversity fluctuated over time, and sample aggregation led to underestimation of beta diversity by up to 35%. Our literature review revealed that research on intermittent rivers would benefit greatly from examination of beta-diversity components over time. Adequately appraising spatiotemporal variability in community composition and identifying sites that are pivotal for maintaining biodiversity at the landscape scale are key needs for conservation prioritization and planning. Thus, our framework may be used to guide conservation actions in highly dynamic ecosystems when time-series data describing biodiversity across sites connected by dispersal are available. © 2017 Society for Conservation Biology.

  14. Global surface density of water mass variations by using a two-step inversion by cumulating daily satellite gravity information

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia

    2016-04-01

    We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.

  15. Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions

    NASA Astrophysics Data System (ADS)

    Das, Rabin; Mukhopadhyay, Sagarika; Singh, Ravi Kant; Baidya, Pushap R.

    2018-07-01

    Attenuation of seismic wave energy of Delhi and its surrounding regions has been estimated using coda of local earthquakes. Estimated quality factor (Qc) values are strongly dependent on frequency and lapse time. Frequency dependence of Qc has been estimated from the relationship Qc(f) = Q0fn for different lapse time window lengths. Q0 and n values vary from 73 to 453 and 0.97 to 0.63 for lapse time window lengths of 15 s to 90 s respectively. Average estimated frequency dependent relation is, Qc(f) = 135 ± 8f0.96±0.02 for the entire region for a window length of 30 s, where the average Qc value varies from 200 at 1.5 Hz to 1962 at 16 Hz. These values show that the region is seismically active and highly heterogeneous. The entire study region is divided into two sub-regions according to the geology of the area to investigate if there is a spatial variation in attenuation characteristics in this region. It is observed that at smaller lapse time both regions have similar Qc values. However, at larger lapse times the rate of increase of Qc with frequency is larger for Region 2 compared to Region 1. This is understandable, as it is closer to the tectonically more active Himalayan ranges and seismically more active compared to Region 1. The difference in variation of Qc with frequencies for the two regions is such that at larger lapse time and higher frequencies Region 2 shows higher Qc compared to Region 1. For lower frequencies the opposite situation is true. This indicates that there is a systematic variation in attenuation characteristics from the south (Region 1) to the north (Region 2) in the deeper part of the study area. This variation can be explained in terms of an increase in heat flow and a decrease in the age of the rocks from south to north.

  16. Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.

    PubMed

    Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X

    2018-01-01

    To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. What is the effect of local controls on the temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.

    2012-04-01

    Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to relate variations of MRD of measured SWC time series to spatial variations of Ks. TS of SWC can provide information on Ks variability at ungauged watersheds if the effect of non-local controls of SWC on TS is not significant. Using the spatiotemporal statistics to convert the information about the temporal variability of soil moisture into information about the spatial variability of soil hydraulic properties presents an interesting avenue for further exploration.

  18. Spatial correlation of auroral zone geomagnetic variations

    NASA Astrophysics Data System (ADS)

    Jackel, B. J.; Davalos, A.

    2016-12-01

    Magnetic field perturbations in the auroral zone are produced by a combination of distant ionospheric and local ground induced currents. Spatial and temporal structure of these currents is scientifically interesting and can also have a significant influence on critical infrastructure.Ground-based magnetometer networks are an essential tool for studying these phenomena, with the existing complement of instruments in Canada providing extended local time coverage. In this study we examine the spatial correlation between magnetic field observations over a range of scale lengths. Principal component and canonical correlation analysis are used to quantify relationships between multiple sites. Results could be used to optimize network configurations, validate computational models, and improve methods for empirical interpolation.

  19. Modeling spatially localized photonic nanojets from phase diffraction gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geints, Yu. E., E-mail: ygeints@iao.ru; Tomsk State University, 36, Lenina Avenue, Tomsk 634050; Zemlyanov, A. A.

    2016-04-21

    We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffractionmore » grating rulings.« less

  20. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae).

    PubMed

    Guitián, Javier A; Sobral, Mar; Veiga, Tania; Losada, María; Guitián, Pablo; Guitián, José M

    2017-01-01

    The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea -which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)-is locally adapted to the pollinator community. We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum , B. soroensis ancaricus and B. lapidarius decipiens ) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris ) consistently preferred the foreign morph. We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition.

  1. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae)

    PubMed Central

    Sobral, Mar; Veiga, Tania; Guitián, Pablo; Guitián, José M.

    2017-01-01

    Background The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea—which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)—is locally adapted to the pollinator community. Methods We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Results Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum, B. soroensis ancaricus and B. lapidarius decipiens) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris) consistently preferred the foreign morph. Discussion We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition. PMID:28194308

  2. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  3. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-11-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  4. Regional and Local Variations in Atmospheric Aerosols Using Ground-Based Sun Photometry During Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Technical Reports Server (NTRS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-01-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON).We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  5. Forest carbon in lowland Papua New Guinea: Local variation and the importance of small trees

    PubMed Central

    Vincent, John B; Henning, Bridget; Saulei, Simon; Sosanika, Gibson; Weiblen, George D

    2015-01-01

    Efforts to incentivize the reduction of carbon emissions from deforestation and forest degradation require accurate carbon accounting. The extensive tropical forest of Papua New Guinea (PNG) is a target for such efforts and yet local carbon estimates are few. Previous estimates, based on models of neotropical vegetation applied to PNG forest plots, did not consider such factors as the unique species composition of New Guinea vegetation, local variation in forest biomass, or the contribution of small trees. We analysed all trees >1 cm in diameter at breast height (DBH) in Melanesia's largest forest plot (Wanang) to assess local spatial variation and the role of small trees in carbon storage. Above-ground living biomass (AGLB) of trees averaged 210.72 Mg  ha−1 at Wanang. Carbon storage at Wanang was somewhat lower than in other lowland tropical forests, whereas local variation among 1-ha subplots and the contribution of small trees to total AGLB were substantially higher. We speculate that these differences may be attributed to the dynamics of Wanang forest where erosion of a recently uplifted and unstable terrain appears to be a major source of natural disturbance. These findings emphasize the need for locally calibrated forest carbon estimates if accurate landscape level valuation and monetization of carbon is to be achieved. Such estimates aim to situate PNG forests in the global carbon context and provide baseline information needed to improve the accuracy of PNG carbon monitoring schemes. PMID:26074730

  6. Post-modelling of images from a laser-induced wavy boiling front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    2015-12-01

    Processes like laser keyhole welding, remote fusion laser cutting or laser drilling are governed by a highly dynamic wavy boiling front that was recently recorded by ultra-high speed imaging. A new approach has now been established by post-modelling of the high speed images. Based on the image greyscale and on a cavity model the three-dimensional front topology is reconstructed. As a second step the Fresnel absorptivity modulation across the wavy front is calculated, combined with the local projection of the laser beam. Frequency polygons enable additional analysis of the statistical variations of the properties across the front. Trends like shadow formation and time dependency can be studied, locally and for the whole front. Despite strong topology modulation in space and time, for lasers with 1 μm wavelength and steel the absorptivity is bounded to a narrow range of 35-43%, owing to its Fresnel characteristics.

  7. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode`s and pde`s. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  8. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode's and pde's. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  9. Rupture process of a multiple main shock sequence: analysis of teleseismic, local and field observations of the Tennant Creek, Australia, earthquakes of January 22, 1988

    USGS Publications Warehouse

    Choy, G.L.; Bowman, J.R.

    1990-01-01

    On January 22, 1988, three large intraplate earthquakes (with MS 6.3, 6.4 and 6.7) occurred within a 12-hour period near Tennant Creek, Australia. Broadband displacement and velocity records of body waves from teleseismically recorded data are analyzed to determine source mechanisms, depths, and complexity of rupture of each of the three main shocks. Hypocenters of an additional 150 foreshocks and aftershocks constrained by local arrival time data and field observations of surface rupture are used to complement the source characteristics of the main shocks. The interpretation of the combined data sets suggests that the overall rupture process involved unusually complicated stress release. Rupture characteristics suggest that substantial slow slip occurred on each of the three fault interfaces that was not accompanied by major energy release. Variation of focal depth and the strong increase of moment and radiated energy with each main shock imply that lateral variations of strength were more important than vertical gradients of shear stress in controlling the progression of rupture. -from Authors

  10. Regional and Global Aspects of Aerosols in Western Africa: From Air Quality to Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Kucsera, Tom; Spinhime, Jim; Palm, Stephen; Holben, Brent; Ginoux, Paul

    2006-01-01

    Western Africa is one of the most important aerosol source regions in the world. Major aerosol sources include dust from the world's largest desert Sahara, biomass burning from the Sahel, pollution aerosols from local sources and long-range transport from Europe, and biogenic sources from vegetation. Because these sources have large seasonal variations, the aerosol composition over the western Africa changes significantly with time. These aerosols exert large influences on local air quality and regional climate. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze satellite lidar data from the GLAS instrument on the ICESat and the sunphotometer data from the ground-based network AERONET taken in both the wet (September - October 2003) and dry (February - March 2004) seasons over western Africa. We will quantify the seasonal variations of aerosol sources and compositions and aerosol spatial (horizontal and vertical) distributions over western Africa. We will also assess the climate impact of western African aerosols. Such studies will be applied to support the international project, Africa Monsoon Multidisciplinary Analysis (AMMA) and to analyze the AMMA data.

  11. Sensitive imaging of magnetization structure and dynamics using picosecond laser heating

    NASA Astrophysics Data System (ADS)

    Bartell, Jason; Jermain, Colin; Aradhya, Sriharsha; Brangham, Jack; Yang, Fengyuan; Ralph, Daniel; Fuchs, Gregory

    We demonstrate the time-resolved longitudinal spin Seebeck effect (TRLSSE) as the basis for an ultrafast, high-resolution, and sensitive microscope for imaging ferromagnetic insulator/normal metal spintronic devices. By focusing a picosecond laser to 0.7 μm, we generate a sub-100 ps electrical signal from the combination of the TRLSSE and the inverse spin Hall effect in yittrium iron garnet (YIG)/platinum (Pt) bilayers. This signal is a spatiotemporal measurement of the local, in-plane magnetic orientation of YIG with outstanding sensitivity better than 0.3° /√{ Hz } in samples with 20 nm of YIG. Static imaging of YIG/Pt devices reveals variations in the local magnetic anisotropy on a few micron scale. Phase-sensitive ferromagnetic resonance imaging reveals corresponding variations in the resonance field, amplitude, phase, and linewidth. These results show the TRLSSE is a powerful tool for static and dynamic studies of spintronic devices made with ferromagnetic insulators. This research was supported by the AFOSR (FA9550-14-1-0243) and by NSF (DMR-1406333, DMR-1507274, and DMR-1120296).

  12. SequenceLDhot: detecting recombination hotspots.

    PubMed

    Fearnhead, Paul

    2006-12-15

    There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (< 1/kb). Program, data sets, and full details of results are available at: http://www.maths.lancs.ac.uk/~fearnhea/Hotspot.

  13. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    USGS Publications Warehouse

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  14. Observation and modeling of energetic particles at synchronous orbit on July 29, 1977

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Higbie, P. R.; Fritz, T. A.; Wilken, B.; Stuedemann, W.; Kaye, S. M.; Kivelson, M. G.; Moore, T. E.; Masley, A. J.; Smith, P. H.

    1982-01-01

    In the 12 hours immediately after a worldwide storm sudden commencement at 0027 UT on July 29, there was a series of at least four magnetospheric substorms, the last and largest of which exhibited an expansion phase onset at approximately 1200 UT. Data from six spacecraft in three general local time groupings (0300, 0700, and 1300 LT) are examined, and vector magnetic field data and energetic electron and ion data from approximately 15 keV to more than 2MeV are employed. Four primary types of studies are carried out: (1) timing and morphology of energetic particle injections; (2) variation of particle phase space densities, using local magnetic field and particle flux data; (3) measurement of boundary motions, using high-energy ion gradient anisotropies; and (4) adiabatic modeling, which included injection, large-scale convection, corotation, and gradient drifts. For the 1200 UT substorms, it is concluded that there was a substantial flux dropout in a broad sector near local midnight because of a large-scale boundary motion, followed by a recovery to a predropout configuration.

  15. Exploration of momentum evolution and three-dimensional localization in recombined electron wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeibel, J. G.; Jones, R. R.

    2003-08-01

    Picosecond ''half-cycle'' pulses (HCPs) have been used to produce electronic wave packets by recombining photoelectrons with their parent ions. The time-dependent momentum distributions of the bound wave packets are probed using a second HCP and the impulsive momentum retrieval (IMR) method. For a given delay between the initial photoionization event and the HCP recombination, classical trajectory simulations predict pronounced periodic wave packet motion for a restricted range of recombining HCP amplitudes. This motion is characterized by the repeated formation and collapse of a highly localized spike in the three-dimensional electron probability density at a large distance from the nucleus. Ourmore » experiments confirm that oscillatory wave packet motion occurs only for certain recombination ''kick'' strengths. Moreover, the measured time-dependent momentum distributions are consistent with the predicted formation of a highly localized electron packet. We demonstrate a variation of the IMR in which amplitude modulation of the HCP probe field is employed to suppress noise and allow for a more direct recovery of electron momentum from experimental ionization data.« less

  16. Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Scheiblauer, Claus; Jeschke, Stefan; Wimmer, Michael

    2014-09-01

    In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets.

  17. Identification and Characterization of Sites Where Persistent Atrial Fibrillation Is Terminated by Localized Ablation.

    PubMed

    Zaman, Junaid A B; Sauer, William H; Alhusseini, Mahmood I; Baykaner, Tina; Borne, Ryan T; Kowalewski, Christopher A B; Busch, Sonia; Zei, Paul C; Park, Shirley; Viswanathan, Mohan N; Wang, Paul J; Brachmann, Johannes; Krummen, David E; Miller, John M; Rappel, Wouter Jan; Narayan, Sanjiv M; Peters, Nicholas S

    2018-01-01

    The mechanisms by which persistent atrial fibrillation (AF) terminates via localized ablation are not well understood. To address the hypothesis that sites where localized ablation terminates persistent AF have characteristics identifiable with activation mapping during AF, we systematically examined activation patterns acquired only in cases of unequivocal termination by ablation. We recruited 57 patients with persistent AF undergoing ablation, in whom localized ablation terminated AF to sinus rhythm or organized tachycardia. For each site, we performed an offline analysis of unprocessed unipolar electrograms collected during AF from multipolar basket catheters using the maximum -dV/dt assignment to construct isochronal activation maps for multiple cycles. Additional computational modeling and phase analysis were used to study mechanisms of map variability. At all sites of AF termination, localized repetitive activation patterns were observed. Partial rotational circuits were observed in 26 of 57 (46%) cases, focal patterns in 19 of 57 (33%), and complete rotational activity in 12 of 57 (21%) cases. In computer simulations, incomplete segments of partial rotations coincided with areas of slow conduction characterized by complex, multicomponent electrograms, and variations in assigning activation times at such sites substantially altered mapped mechanisms. Local activation mapping at sites of termination of persistent AF showed repetitive patterns of rotational or focal activity. In computer simulations, complete rotational activation sequence was observed but was sensitive to assignment of activation timing particularly in segments of slow conduction. The observed phenomena of repetitive localized activation and the mechanism by which local ablation terminates putative AF drivers require further investigation. © 2018 American Heart Association, Inc.

  18. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.

    PubMed

    Pespeni, M H; Chan, F; Menge, B A; Palumbi, S R

    2013-11-01

    Little is known about the potential for rapid evolution in natural populations in response to the high rate of contemporary climatic change. Organisms that have evolved in environments that experience high variability across space and time are of particular interest as they may harbor genetic variation that can facilitate evolutionary response to changing conditions. Here we review what is known about genetic capacity for adaptation in the purple sea urchin, Strongylocentrotus purpuratus, a species that has evolved in the upwelling ecosystem of the Northeast Pacific Ocean. We also present new results testing for adaptation to local pH conditions in six populations from Oregon to southern California. We integrate data on 19,493 genetic polymorphisms with data on local pH conditions. We find correlations between allele frequency and rank average time spent at pH <7.8 in 318 single-nucleotide polymorphisms in 275 genes. Two of the genes most correlated with local pH are a protein associated with the cytoskeleton and a proton pump, with functional roles in maintenance of cell volume and with internal regulation of pH, respectively. Across all loci tested, high correlations with local pH were concentrated in genes related to transport of ions, biomineralization, lipid metabolism, and cell-cell adhesion, functional pathways important for maintaining homeostasis at low pH. We identify a set of seven genes as top candidates for rapid evolutionary response to acidification of the ocean. In these genes, the putative low-pH-adapted allele, based on allele frequencies in natural populations, rapidly increases in frequency in purple sea urchin larvae raised at low pH. We also found that populations from localities with high pH show a greater change in allele frequency toward putative low-pH-adapted alleles under experimental acidification, compared with low-pH populations, suggesting that both natural and artificial selection favor the same alleles for response to low pH. These results illustrate that purple sea urchins may be adapted to local pH and suggest that this species may possess the genetic capacity for rapid evolution in response to acidification. This adaptive capacity likely comes from standing genetic variation maintained in nature by balancing selection across the spatial and temporal environmental mosaic that characterizes the California Current Ecosystem.

  19. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus)

    USGS Publications Warehouse

    Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.

    2016-01-01

    The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.

  20. Flood risk reduction and flow buffering as ecosystem services - Part 1: Theory on flow persistence, flashiness and base flow

    NASA Astrophysics Data System (ADS)

    van Noordwijk, Meine; Tanika, Lisa; Lusiana, Betha

    2017-05-01

    Flood damage reflects insufficient adaptation of human presence and activity to location and variability of river flow in a given climate. Flood risk increases when landscapes degrade, counteracted or aggravated by engineering solutions. Efforts to maintain and restore buffering as an ecosystem function may help adaptation to climate change, but this require quantification of effectiveness in their specific social-ecological context. However, the specific role of forests, trees, soil and drainage pathways in flow buffering, given geology, land form and climate, remains controversial. When complementing the scarce heavily instrumented catchments with reliable long-term data, especially in the tropics, there is a need for metrics for data-sparse conditions. We present and discuss a flow persistence metric that relates transmission to river flow of peak rainfall events to the base-flow component of the water balance. The dimensionless flow persistence parameter Fp is defined in a recursive flow model and can be estimated from limited time series of observed daily flow, without requiring knowledge of spatially distributed rainfall upstream. The Fp metric (or its change over time from what appears to be the local norm) matches local knowledge concepts. Inter-annual variation in the Fp metric in sample watersheds correlates with variation in the flashiness index used in existing watershed health monitoring programmes, but the relationship between these metrics varies with context. Inter-annual variation in Fp also correlates with common base-flow indicators, but again in a way that varies between watersheds. Further exploration of the responsiveness of Fp in watersheds with different characteristics to the interaction of land cover and the specific realisation of space-time patterns of rainfall in a limited observation period is needed to evaluate interpretation of Fp as an indicator of anthropogenic changes in watershed conditions.

  1. Analysis of frequency shifting in seismic signals using Gabor-Wigner transform

    NASA Astrophysics Data System (ADS)

    Kumar, Roshan; Sumathi, P.; Kumar, Ashok

    2015-12-01

    A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.

  2. Potential roughness near lithographically fabricated atom chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, P.; Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 Rue Lhomond, F-75005 Paris; Andersson, L. M.

    2007-12-15

    Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-{mu}m-wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough edges. A technique for further reduction of potential roughnessmore » by several orders of magnitude based on time-orbiting magnetic fields is outlined.« less

  3. The character and mechanism of glacial variation in the peripheral Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yi, S.; Wang, Q.; Sun, W.

    2016-12-01

    Global warming has accelerated glacier retreat in the peripheral Tibetan Plateau. Our study demonstrates consistent glacier variation in time series constructed by laser altimetry and space gravimetry in these regions. It largely enhances reliability of glacier changes and narrows down significant inconsistent in previous studies. The glacial melt is roughly weakening from southeast to northwest: from Nyenchen Tanglha to Himalaya then to Pamir even a positive gain in the Western Kunlun. A sharp melt of glacier on Nyenchen Tanglha is primarily caused by high temperature and rapid rise rather than decreasing in annual precipitation as previously thought. Glaciers on Hindu Kush, Karakoram and Western Kun even Pamir are less affect by slow rise of local temperature.

  4. Robust energy-absorbing compensators for the ACTEX II test article

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.; Nye, Ted

    1995-05-01

    The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.

  5. Different effects of variation in Xanthium strumarium L. (Compositae) on two insect seed predators.

    PubMed

    Hare, J Daniel; Futuyma, Douglas J

    1978-01-01

    To determine the relative importance of variation in several plant characters on susceptibility to herbivores, we examined patterns of seed predation by two monophagous insect species and patterns of variation in ten populations of the cocklebur, Xanthium strumarium. Multiple regression analysis disclosed that one seed predator was most influenced by plant chemical variation, the other was significantly influenced by both chemical and morphological variation, but variation in yet another character, general burr size, was most important in conferring resistance to both insects simultaneously. The plant populations differed most in this character. Although many of the plant characters were correlated with each other, those important in determining susceptibility to each insect species were uncorrelated and independent of those conferring resistance to both insects simultaneously.These results imply that ecological similar herbivores may be influenced by different aspects of plant variation, and that predictions of evolutionary responses of local plant populations to herbivory may require knowledge of the structure of local herbivore communities and the dynamics of their establishment.

  6. Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation.

    PubMed

    Ibrahim, Michael; Kukadia, Punam; Siedlecka, Urszula; Cartledge, James E; Navaratnarajah, Manoraj; Tokar, Sergiy; Van Doorn, Carin; Tsang, Victor T; Gorelik, Julia; Yacoub, Magdi H; Terracciano, Cesare M

    2012-12-01

    Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca(2+)-induced Ca(2+) release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart-lung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca(2+) release synchronicity was reduced at 8 weeks moderate unloading only. Ca(2+) sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca(2+) transient, increased Ca(2+) spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Structure of the middle atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila

    Middle atmosphere of Venus (55-100 km), its mesosphere, is the important layer of atmosphere, where 70 % of the solar energy is absorbed. Most of this absorption takes place in the upper clouds in the altitude range 58-68 km in the spectral range 0.32-0.5 µm. It leads to generation of the thermal tides, playing important role in support of the superrotation. In the frame of COSPAR model VIRA (ASR, 11,1985) the model of the thermal structure of the middle atmosphere was constructed for 5 latitude ranges, based mainly on the Pioneer Venus ORO and OIR data. Using Venera-15 Fourier Spectrometry data, which allow to retrieve the temperature and aerosol profiles in a self consistent way from each spectrum, we enable to update the model of the middle atmosphere, including the local time variation of the temperature for VIRA latitude ranges (Cosmic Research, 44, 4, 2006). From Venera-15 data it was shown that variation of temperature in the middle atmosphere is well described by thermal tides with harmonics 1, 1/2, 1/3, 1/4 Venusian day, the amplitudes and phases of which depend on latitude and altitude. The model of the upper clouds (VIRA) may also be updated using Venera-15 data. It was shown that the main latitude trend is the decreasing of the upper cloud boundary from 68 km at low latitudes to 60-62 km at high latitudes. Local time variation has a solar related dependence: 1 and 1/2 day components were revealed. Venus Express continues to obtain a lot of data, which may be used for the improvement of the model of the middle atmosphere and the clouds.

  8. Solar cycle variation of the electron density in the topside ionosphere at local nighttime observed by DEMETER during 2006-2008

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Qian, Jiadong; Shen, Xuhui

    2014-05-01

    The solar cycle variations of electron density (Ne) in the topside ionosphere are presented by observations around local time 22:30 from Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite during 2006-2008 in the low solar activity, in which the revisited orbits are selected to construct Ne time sequences at different points. The results show that electron density (Ne) reduced 50-100% since 2006 to 2008 at equatorial area and middle latitudes, with much bigger maximal Ne in 2006 but even no yearly peak in 2007 and 2008 around 30° latitude. The seasonal asymmetry is revealed by the yearly maxima of Ne in December over Southern Hemisphere always being larger than those in June over Northern Hemisphere. Furthermore, the equinoctial asymmetry is found around the magnetic equator and high northern latitudes under the low solar activity, and the latter one has not been revealed in other research. Ne from IRI2012 is close to the actual observation by DEMETER in 2008, even better than those in 2006 and 2007, indicating the great improvement of this empirical ionospheric model in this extremely low solar minimum. After comparison with the fitted results by indices of F10.7 and EUV combined with the first five periods in Ne, EUV is a little better to describe the variations in Ne during this solar minimum. By discussing the relationship among nighttime Ne and molecules in upper atmosphere, the [O/N2] density ratio is the key factor at high latitude, while [O] density plays a certain role to electron density around the equator.

  9. Long‐term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Bilham, Roger; Ponce, David A.; Boatwright, John; Caskey, S. John

    2012-01-01

    The Hayward fault (HF) in California exhibits large (Mw 6.5–7.1) earthquakes with short recurrence times (161±65 yr), probably kept short by a 26%–78% aseismic release rate (including postseismic). Its interseismic release rate varies locally over time, as we infer from many decades of surface creep data. Earliest estimates of creep rate, primarily from infrequent surveys of offset cultural features, revealed distinct spatial variation in rates along the fault, but no detectable temporal variation. Since the 1989 Mw 6.9 Loma Prieta earthquake (LPE), monitoring on 32 alinement arrays and 5 creepmeters has greatly improved the spatial and temporal resolution of creep rate. We now identify significant temporal variations, mostly associated with local and regional earthquakes. The largest rate change was a 6‐yr cessation of creep along a 5‐km length near the south end of the HF, attributed to a regional stress drop from the LPE, ending in 1996 with a 2‐cm creep event. North of there near Union City starting in 1991, rates apparently increased by 25% above pre‐LPE levels on a 16‐km‐long reach of the fault. Near Oakland in 2007 an Mw 4.2 earthquake initiated a 1–2 cm creep event extending 10–15 km along the fault. Using new better‐constrained long‐term creep rates, we updated earlier estimates of depth to locking along the HF. The locking depths outline a single, ∼50‐km‐long locked or retarded patch with the potential for an Mw∼6.8 event equaling the 1868 HF earthquake. We propose that this inferred patch regulates the size and frequency of large earthquakes on HF.

  10. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  11. Local Modelling of Groundwater Flow Using Analytic Element Method Three-dimensional Transient Unconfined Groundwater Flow With Partially Penetrating Wells and Ellipsoidal Inhomogeneites

    NASA Astrophysics Data System (ADS)

    Jankovic, I.; Barnes, R. J.; Soule, R.

    2001-12-01

    The analytic element method is used to model local three-dimensional flow in the vicinity of partially penetrating wells. The flow domain is bounded by an impermeable horizontal base, a phreatic surface with recharge and a cylindrical lateral boundary. The analytic element solution for this problem contains (1) a fictitious source technique to satisfy the head and the discharge conditions along the phreatic surface, (2) a fictitious source technique to satisfy specified head conditions along the cylindrical boundary, (3) a method of imaging to satisfy the no-flow condition across the impermeable base, (4) the classical analytic solution for a well and (5) spheroidal harmonics to account for the influence of the inhomogeneities in hydraulic conductivity. Temporal variations of the flow system due to time-dependent recharge and pumping are represented by combining the analytic element method with a finite difference method: analytic element method is used to represent spatial changes in head and discharge, while the finite difference method represents temporal variations. The solution provides a very detailed description of local groundwater flow with an arbitrary number of wells of any orientation and an arbitrary number of ellipsoidal inhomogeneities of any size and conductivity. These inhomogeneities may be used to model local hydrogeologic features (such as gravel packs and clay lenses) that significantly influence the flow in the vicinity of partially penetrating wells. Several options for specifying head values along the lateral domain boundary are available. These options allow for inclusion of the model into steady and transient regional groundwater models. The head values along the lateral domain boundary may be specified directly (as time series). The head values along the lateral boundary may also be assigned by specifying the water-table gradient and a head value at a single point (as time series). A case study is included to demonstrate the application of the model in local modeling of the groundwater flow. Transient three-dimensional capture zones are delineated for a site on Prairie Island, MN. Prairie Island is located on the Mississippi River 40 miles south of the Twin Cities metropolitan area. The case study focuses on a well that has been known to contain viral DNA. The objective of the study was to assess the potential for pathogen migration toward the well.

  12. Cosmogenic isotope beryllium-7 in the atmosphere: Production versus transport

    NASA Astrophysics Data System (ADS)

    Pacini, Alessandra; Usoskin, Ilya; Evangelista, Heitor; Echer, Ezequiel; Mursula, Kalevi; Leppanen, Ari-Pekka

    Cosmogenic isotope 7 Be measured near the ground can provide information about its produc-tion (that occurs in the atmosphere due to the interaction of cosmic rays and atmospheric constituents) and its deposition processes (that involves air mass dynamics, stratosphere-troposphere coupling and local climatic conditions). We present the results of an investigation of the atmospheric 7 Be temporal variations at different geographic locations (Finland and Brazil). This study was based on an analysis of three time series of 7 Be concentration measured in near-surface air samples from Rovaniemi and Loviisa (Finland) and Rio de Janeiro (Brazil) for the last decades. We made use of the wavelet spectral method to identify the frequency-temporal features of the 7 Be temporal variations that allowed us to determine the relative importance of production and deposition process for the observed data. By comparing these time series with climatic indices and the values of 7 Be concentration expected from the model for the same period, we found that the climate system is the main driver of the surface isotopic modulation, while the imprints of the production variations are geographically dependent. Thus,7 Be can be considered a good tool to monitor the large-scale air mass dynamics.

  13. The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Simon D. P.

    2010-10-01

    We investigate spatial variations in the shape of the spectrum of sea level variability based on a homogeneously sampled 12 year gridded altimeter data set. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a fifth-order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times of what would be calculated assuming "white" noise and that the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes over this period.

  14. Longitudinal and latitudinal variations in dynamic characteristics of the MLT (70-95km): a study involving the CUJO network

    NASA Astrophysics Data System (ADS)

    Manson, A.; Meek, C.; Chshyolkova, T.; Avery, S.; Thorsen, D.; MacDougall, J.; Hocking, W.; Murayama, Y.; Igarashi, K.; Namboothiri, S.; Kishore, P.

    2004-02-01

    . The newly-installed MFR (medium frequency radar) at Platteville (40N, 105W) has provided the opportunity and impetus to create an operational network of middle- latitude MFRs stretching from W-E. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (N, 81W), Platteville (40N, 105W), Saskatoon (52N, 107W), Wakkanai (45N, 142E) and Yamagawa (31N, 131E). It offers a significant 7000km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14) at two longitudes. Annual climatologies involving both height and frequency versus time contour plots for periods from 8h to 30 days, show that the changes with longitude are very significant and distinctive, often exceeding the local latitudinal variations. Comparisons with models and the recent UARS-HRDI global analysis of tides are discussed. The fits of the horizontal wave numbers of the longer period oscillations are provided in unique frequency versus time contour plots and shown to be consistent with the expected dominant modes. Annual climatologies of planetary waves (16 day, 2 day) and gravity waves reveal strong seasonal and longitudinal variations.

  15. Geographic variation in the black bear (Ursus americanus) in the eastern United States and Canada

    USGS Publications Warehouse

    Kennedy, M.L.; Kennedy, P.K.; Bogan, M.A.; Waits, J.L.

    2002-01-01

    The pattern of geographic variation in morphologic characters of the black bear (Ursus americanus) was assessed at 13 sites in the eastern United States and Canada. Thirty measurements from 206 males and 207 females were recorded to the nearest 0.01 mm using digital calipers and subjected to principal components analysis. A matrix of correlations among skull characters was computed, and the first 3 principal components were extracted. These accounted for 90.5% of the variation in the character set for males and 87.1% for females. Three-dimensional projection of localities onto principal components showed that, for males and females, largest individuals occurred in the more southern localities (e.g., males--Louisiana-Mississippi, eastern Texas; females--Louisiana-eastern Texas) and the smallest animals occurred in the northernmost locality (Quebec). Generally, bears were similar morphologically to those in nearby geographic areas. For males, correlations between morphologic variation and environmental factors indicated a significant relationship between size variation and mean January temperature, mean July temperature, mean annual precipitation, latitude, and actual evapotranspiration; for females, a significant relationship was observed between morphologic variation and mean annual temperature, mean January temperature, mean July temperature, latitude, and actual evapotranspiration. There was no significant correlation for either sex between environmental factors and projections onto components II and III.

  16. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord

    NASA Astrophysics Data System (ADS)

    Kerrigan, Elizabeth A.; Kienast, Markus; Thomas, Helmuth; Wallace, Douglas W. R.

    2017-12-01

    A weekly time-series of oxygen isotope (δ18O) measurements was collected over a 16-month period from near-surface (1 m) and near-bottom (60 m) waters of Bedford Basin, a coastal fjord adjacent to the Scotian Shelf, off eastern Canada. The time-series was complemented with δ18O measurements of local precipitation (rain and snow), river, and wastewater runoff. The isotopic composition of precipitation displayed strong seasonality with an average (volume-weighted) δ18O value of -5.39‰ (±0.96) for summer and a depleted value of -10.37‰ (±2.96) over winter. Winter precipitation exhibited more depleted and variable δ18O of solid precipitation relative to rainfall. The annual, amount-weighted average δ18O of Sackville River discharge (-6.49‰ ± 0.82) was not statistically different from precipitation (-7.24‰ ± 0.92), but exhibited less seasonal variation. Freshwater end-members (zero-salinity intercepts) estimated from annual and seasonal regressions of δ18O versus salinity (S) for Bedford Basin near-surface samples were consistent with the δ18O of summer precipitation and the annual, amount-weighted average for the Sackville River. However, the isotopically depleted signature of winter precipitation was not observed clearly in near-surface waters of Bedford Basin, which might reflect isotope enrichment during sublimation from accumulated snowfall prior to melting and discharge, or retention and mixing within the drainage basin. In near bottom waters, most of the δ18O-S variation (average freshwater end-member: 7.47‰ ± 2.17) could be explained by vertical mixing with near-surface waters (average freshwater end-member: -6.23‰ ± 0.34) and hence with locally-derived freshwater. However the near-bottom δ18O-S variation suggested an additional contribution of a freshwater end-member with a δ18O of -15.55‰ ± 2.3, consistent with a remotely-derived freshwater end-member identified previously for the Scotian Shelf. Residuals from a long-term regression of δ18O-S were generally within the range expected due to analytical uncertainty (±0.05); however near-surface waters exhibited seasonal variability of small amplitude, which was consistent with the timing and δ18O variability of local freshwater inputs.

  17. Solar cycle variation of Mars exospheric temperatures: Critical review of available dayside measurements and recent model simulations

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen; Huestis, David

    The responses of the Martian dayside thermosphere to solar flux variations (on both solar rotation and solar cycle timescales) have been the subject of considerable debate and study for many years. Available datasets include: Mariner 6,7,9 (UVS dayglow), Viking Lander 1-2 (UAMS densities upon descent), several aerobraking campaigns (MGS, Odyssey, MRO densities), and Mars Express (SPICAM dayglow). Radio Science derived plasma scale heights near the ionospheric peak can be used to derive neutral temperatures in this region (only); such values are not applicable to exobase heights (e.g. Forbes et al. 2008; Bougher et al. 2009). Recently, densities and temperatures derived from precise orbit determination of the MGS spacecraft (1999-2005) have been used to establish the responses of Mars' exosphere to long-term solar flux variations (Forbes et al., 2008). From this multi-year dataset, dayside exospheric temperatures weighted toward moderate southern latitudes are found to change by about 120 K over the solar cycle. However, the applicability of these drag derived exospheric temperatures to near solar minimum conditions is suspect (e.g Bruinsma and Lemoine, 2002). Finally, re-evaluation of production mechanisms for UV dayglow emissions implies revised values for exospheric temperatures (e.g. Simon et al., 2009; Huestis et al. 2010). Several processes are known to influence Mars' exospheric temperatures and their variability (Bougher et al., 1999; 2000; 2009). Solar EUV heating and its variations with solar fluxes received at Mars, CO2 15-micron cooling, molecular thermal conduction, and hydrodynamic heating/cooling associated with global dynamics all contribute to regulate dayside thermo-spheric temperatures. Poorly measured dayside atomic oxygen abundances render CO2 cooling rates uncertain at the present time. However, global thermospheric circulation models can be exercised for conditions spanning the solar cycle and Mars seasons to address the relative roles of these processes in driving observed variations in dayside exospheric temperatures. Mars Thermospheric General Circulation Model (MTGCM) simulations and resulting exo-spheric temperatures will be presented and compared with assimilated temperatures collected from all these available measurements over the solar cycle. It is important to match measure-ments at dayside local times and latitudes for specific seasons with corresponding MTGCM simulated outputs. Calculated local heat budgets and their variations illustrate the changes required to reproduce solar cycle variations in exospheric temperatures. The ability to success-fully predict solar cycle responses of the Martian upper atmosphere is important for simulations of present-day Mars volatile escape rates.

  18. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.

    PubMed

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-11-05

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.

    PubMed

    Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C

    2015-11-01

    Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation could broaden the scale and scope of studies exploring phenological synchrony between organisms and their environment.

  20. Examining spectral variations in localized lunar dark mantle deposits

    USGS Publications Warehouse

    Jawin, Erica; Besse, Sebastien; Gaddis, Lisa R.; Sunshine, Jessica; Head, James W.; Mazrouei, Sara

    2015-01-01

    The localized lunar dark mantle deposits (DMDs) in Alphonsus, J. Herschel, and Oppenheimer craters were analyzed using visible-near-infrared spectroscopy data from the Moon Mineralogy Mapper. Spectra of these localized DMDs were analyzed for compositional and mineralogical variations within the deposits and were compared with nearby mare basalt units. Spectra of the three localized DMDs exhibited mafic absorption features indicating iron-rich compositions, although the DMDs were spectrally distinct from nearby mare basalts. All of the DMDs contained spectral signatures of glassy materials, suggesting the presence of volcanic glass in varying concentrations across the individual deposits. In addition, the albedo and spectral signatures were variable within the Alphonsus and Oppenheimer crater DMDs, suggesting variable deposit thickness and/or variations in the amount of mixing with the local substrate. Two previously unidentified localized DMDs were discovered to the northeast of Oppenheimer crater. The identification of high concentrations of volcanic glass in multiple localized DMDs in different locations suggests that the distribution of volcanic glass across the lunar surface is much more widespread than has been previously documented. The presence of volcanic glass implies an explosive, vulcanian eruption style for localized DMDs, as this allows volcanic glass to rapidly quench, inhibiting crystallization, compared to the larger hawaiian-style eruptions typical of regional DMD emplacement where black beads indicate a higher degree of crystallization. Improved understanding of the local and global distributions of volcanic glass in lunar DMDs will further constrain lunar degassing and compositional evolution throughout lunar volcanic history.

Top