Science.gov

Sample records for local two-photon couplings

  1. Two photon couplings of the lightest isoscalars from BELLE data

    SciTech Connect

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ππ and K¯K, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the σ/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  2. Two photon couplings of the lightest isoscalars from BELLE data

    DOE PAGES

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ππ and K¯K, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the σ/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  3. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain

    PubMed Central

    Shih, Andy Y; Driscoll, Jonathan D; Drew, Patrick J; Nishimura, Nozomi; Schaffer, Chris B; Kleinfeld, David

    2012-01-01

    The cerebral vascular system services the constant demand for energy during neuronal activity in the brain. Attempts to delineate the logic of neurovascular coupling have been greatly aided by the advent of two-photon laser scanning microscopy to image both blood flow and the activity of individual cells below the surface of the brain. Here we provide a technical guide to imaging cerebral blood flow in rodents. We describe in detail the surgical procedures required to generate cranial windows for optical access to the cortex of both rats and mice and the use of two-photon microscopy to accurately measure blood flow in individual cortical vessels concurrent with local cellular activity. We further provide examples on how these techniques can be applied to the study of local blood flow regulation and vascular pathologies such as small-scale stroke. PMID:22293983

  4. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    SciTech Connect

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Anokhin, K. V.; Kilin, S. Ya.; Sakoda, K.; Zheltikov, A. M.

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  5. Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system

    PubMed Central

    Li, C.; Song, Z.

    2016-01-01

    We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction. PMID:26877252

  6. Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system.

    PubMed

    Li, C; Song, Z

    2016-02-15

    We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction.

  7. Multiobjective adaptive feedback control of two-photon absorption coupled with propagation through a dispersive medium

    SciTech Connect

    Laforge, Francois O.; Roslund, Jonathan; Shir, Ofer M.; Rabitz, Herschel

    2011-07-15

    This work uses shaped femtosecond laser pulses to control the two-photon absorption (TPA) of coumarin 153 in a dispersive toluene medium. The dispersive medium reshapes the pulse along the optical path, and management of this effect is used to achieve spatial localization of TPA. Other control objectives were successfully implemented, including dual localization and high resolution local optimization of TPA. The solutions to these objectives were explored by means of evolutionary single- and multi-objective algorithms within a laboratory feedback loop.

  8. Two-photon transport in a waveguide coupled to a cavity in a two-level system

    SciTech Connect

    Shi, T.; Sun, C. P.; Fan Shanhui

    2011-12-15

    We study two-photon effects for a cavity quantum electrodynamics system where a waveguide is coupled to a cavity embedded in a two-level system. The wave function of two-photon scattering is exactly solved by using the Lehmann-Symanzik-Zimmermann reduction. Our results about quantum statistical properties of the outgoing photons explicitly exhibit the photon blockade effects in the strong-coupling regime. These results agree with the observations of recent experiments.

  9. Perpendicular coupling to in-plane photonics using arc waveguides fabricated via two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Lee, Chee-Wei; Pagliara, Stefano; Keyser, Ulrich; Baumberg, Jeremy J.

    2012-04-01

    We demonstrate the concept of vertically standing arc waveguides to couple normally incident light into the plane of a photonic circuit or sensor array. The simple one-step direct write fabrication uses a low power picosecond microchip laser for two-photon polymerization with high-speed and low-cost. Arc waveguides with different arc radii and waveguide port diameters are obtained, with insertion loss down to 1.5 dB. This demonstration of a distinctly different architecture employing unsupported arc waveguides adds another dimension to photonic integration and opens up applications for environmental sensors, integrated microfluidics, bio-assay chips, as well as offering an alternate way of input/output-coupling to planar waveguides.

  10. A two-photon laser induced fluorescence diagnostic with improved sensitivity, localization, and measurement rate

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-10-01

    A two-photon absorption laser induced fluorescence diagnostic has been developed for measuring neutrals in fusion plasmas. Implementation of this diagnostic on the HIT-SI3 spheromak has demonstrated the sensitivity of the diagnostic and shown that measurements taken over several plasma pulses are possible. These measurements yielded an unexpected loss of signal when complex collection optics were utilized. Simulations show that this loss of signal can be explained by chromatic aberrations caused by the disparate Kr and D emission. This loss of signal has been addressed with the development of a new calibration scheme involving xenon gas. The Xe calibration scheme emission occurs at 656.00 nm while the deuterium emission is 656.09 nm. This nearly identical emission allows for advanced optical techniques such as confocal collection/injection and spatial filtering to be employed without loss of signal. Spatial filtering has been demonstrated to decrease noise while improving measurement localization, while confocal collection/injection allows for probing and measuring to occur through one viewport. The Xe scheme also allows for a Doppler-free hydrogen measurement. Doppler-free measurements eliminate the need to scan the laser spectrally thus greatly increasing the rate of measurement.

  11. Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores

    SciTech Connect

    Tretiak, Sergei

    2009-01-01

    The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted

  12. Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo; Takeda, Daisuke; Sato, Takuya; Kinugasa, Yoshihiko; Nawata, Hideyuki

    2016-03-01

    Self-organized optical waveguides formed in a photopolymer using two-photon photochemistry is proposed for self-aligned optical couplings involving nano-scale optical devices with wide tolerances in lateral misalignments. Simulations based on the finite-difference time-domain method revealed that on introducing a 400-nm write beam and a 780-nm write beam into the two-photon photopolymer respectively from two 600-nm-wide waveguides facing each other with 32 μm gap a self-aligned coupling waveguide called a two-photon self-organized lightwave network (SOLNET) is formed between the two waveguides. The lateral misalignment tolerance was found to be 3000 nm, which is five times larger than the misalignment limit of ~600 nm in waveguides formed by conventional one-photon photochemistry. Preliminary experiments demonstrated that the two-photon SOLNETs are formed between multimode optical fibers by introducing a 448-nm write beam and a 780-nm (or 856-nm) write beam from the fibers into a photosensitive organic/inorganic hybrid material, SUNCONNECT®, with doped camphorquinone (or biacetyl).

  13. Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.

  14. Role of non-Condon vibronic coupling and conformation change on two-photon absorption spectra of green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Ai, Yuejie; Tian, Guangjun; Luo, Yi

    2013-07-01

    Two-photon absorption spectra of green fluorescent proteins (GFPs) often show a blue-shift band compared to their conventional one-photon absorption spectra, which is an intriguing feature that has not been well understood. We present here a systematic study on one- and two-photon spectra of GFP chromophore by means of the density functional response theory and complete active space self-consistent field (CASSCF) methods. It shows that the popular density functional fails to provide correct vibrational progression for the spectra. The non-Condon vibronic coupling, through the localised intrinsic vibrational modes of the chromophore, is responsible for the blue-shift in the TPA spectra. The cis to trans isomerisation can be identified in high-resolution TPA spectra. Our calculations demonstrate that the high level ab initio multiconfigurational CASSCF method, rather than the conventional density functional theory is required for investigating the essential excited-state properties of the GFP chromophore.

  15. Localization matters: a nuclear targeting two-photon absorption iridium complex in photodynamic therapy.

    PubMed

    Tian, Xiaohe; Zhu, Yingzhong; Zhang, Mingzhu; Luo, Lei; Wu, Jieying; Zhou, Hongping; Guan, Lijuan; Battaglia, Giuseppe; Tian, Yupeng

    2017-03-16

    We present a two-photon (2P, 800 nm) PDT cyclometalated Iridium(iii) complex (Ir-Es) that targets the intracellular nucleus. The complex is capable of migrating sequentially from the nucleus to mitochondria and inducing dual-damage under light exposure. This study suggests that with minor modification of the terminal moieties of complexes, their final intracellular destinations and PDT efficiency can be significantly impacted.

  16. 3D localized photoactivation of pa-GFP in living cells using two-photon interactions.

    PubMed

    Diaspro, Alberto; Testa, Ilaria; Faretta, Mario; Magrassi, Raffaella; Barozzi, Sara; Parazzoli, Dario; Vicidomini, Giuseppe

    2006-01-01

    We report about two-photon activation of a photoactivatable derivative of the Aequorea Victoria green fluorescent protein (paGFP). This special form of the molecule increases its fluorescence intensity when excited by 488 nm after irradiation with high intensity light at 413 nm. The aim in this work was to evaluate the use of two-photon interactions for confining the molecular switching of pa-GFP in the bright state. Therefore experiments were performed using fixed and living cells which were expressing the paGFP fluorophore and microspheres whose surface was modified by specific adsorption of the chromophores. The molecular switches were activated in a range of wavelength from 720 nm to 840 nm. The optimal wavelength for activation was then chosen for cell imaging. A comparison between the conventional activation and two-photon mode demonstrates clearly the better three- dimensional (3D) confinement and the possibility of selection of cell volumes of interest. This enables molecular trafficking studies at high signal to noise ratio.

  17. Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy.

    PubMed

    Huang, Huaiyi; Yu, Bole; Zhang, Pingyu; Huang, Juanjuan; Chen, Yu; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-11-16

    Photodynamic therapy (PDT) is a noninvasive medical technique that has received increasing attention over the last years and been applied for the treatment of certain types of cancer. However, the currently clinically used PDT agents have several limitations, such as low water solubility, poor photostability, and limited selectivity towards cancer cells, aside from having very low two-photon cross-sections around 800 nm, which limits their potential use in TP-PDT. To tackle these drawbacks, three highly positively charged ruthenium(II) polypyridyl complexes were synthesized. These complexes selectively localize in the lysosomes, an ideal localization for PDT purposes. One of these complexes showed an impressive phototoxicity index upon irradiation at 800 nm in 3D HeLa multicellular tumor spheroids and thus holds great promise for applications in two-photon photodynamic therapy.

  18. Fano interference in two-photon transport

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Fan, Shanhui

    2016-10-01

    We present a general input-output formalism for the few-photon transport in multiple waveguide channels coupled to a local cavity. Using this formalism, we study the effect of Fano interference in two-photon quantum transport. We show that the physics of Fano interference can manifest as an asymmetric spectral line shape in the frequency dependence of the two-photon correlation function. The two-photon fluorescence spectrum, on the other hand, does not exhibit the physics of Fano interference.

  19. One- and two-photon induced fluorescence spectroscopy enabling the detection of localized aflatoxin contamination in individual maize kernels

    NASA Astrophysics Data System (ADS)

    Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.

    2016-04-01

    The presence of carcinogenic aflatoxins in food and feed products is a major worldwide problem. To date, the aflatoxin contamination can only be detected by the use of destructive sample-based chemical analyses. Therefore, we developed an optical setup able to detect the localized aflatoxin contamination in individual maize kernels, on the basis of one- and two- photon induced fluorescence spectroscopy. Our developed optical configuration comprises a tunable titanium-sapphire laser (710nm-830nm) in combination with second harmonic wavelength generation (355nm-415nm), enabling the measurement of both one- and two-photon induced fluorescence spectra. Moreover, an accurate scanning of the kernel's surface was induced by the use of automated translation stages, allowing to study the localized maize contamination. First, the operation of the setup is validated by the characterization of pure aflatoxin B1 powder. Second, the fluorescence spectra of healthy (< 1ppb aflatoxin B1) and contaminated maize kernels (>70ppb aflatoxin B1) were measured, after excitation with 365nm, 730nm, 750nm and 780nm. For both the one- and two- photon induced fluorescence processes, the presence of the aflatoxin inside the contaminated maize kernels influenced the intrinsic fluorescence signals. Based on the fluorescence spectrum between 400nm and 550nm, we defined a detection criterion to identify the contaminated maize kernels. Furthermore, we demonstrate the sensing of the localized contamination level, indicating both contaminated maize kernels with a high contamination level in a limited surface area (as small as 1mm2) as with a lower contamination spread over a large surface area (up to 20mm2). As a result, our developed measurement methodology allows the identification of the localized aflatoxin contamination, paving the way to the non-destructive, real-time and high-sensitive industrial scanning-based detection of aflatoxins in food products.

  20. Loophole-free Bell's experiments and two-photon all-versus-nothing violations of local realism

    SciTech Connect

    Cabello, Adan

    2005-11-15

    We introduce an extended version of a previous all-versus-nothing proof of impossibility of Einstein-Podolsky-Rosen's local elements of reality for two photons entangled both in polarization and path degrees of freedom (A. Cabello, quant-ph/0507259), which leads to a Bell's inequality where the classical bound is 8 and the quantum prediction is 16. A simple estimation of the detection efficiency required to close the detection loophole using this extended version gives {eta}>0.69. This efficiency is lower than that required for previous proposals.

  1. Two-photon luminescence contrast by tip-sample coupling in femtosecond near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Horneber, Anke; Wackenhut, Frank; Braun, Kai; Wang, Xiao; Wang, Jiyong; Zhang, Dai; Meixner, Alfred J.

    2017-01-01

    We investigate the role of tip-sample interaction in nonlinear optical scanning near-field microscopy. The experiment was performed by tightly focusing femtosecond laser pulses onto a sharp gold tip that was positioned in close proximity to the surface of a sample with gold nanostructures on a Si-substrate by shear force feedback. The nonlinear optical signal consists of two-photon photoluminescence and second harmonic signal from the gold tip and the gold nanostructures. These signals can be used to characterize different coupling parameters such as geometry, material and width of the tip-sample gap and enable to reveal the mechanism responsible for the image contrast. Under the excitation with 776-nm and 110-fs laser pulses nonlinear imaging is almost background free and yields super resolution showing features with dimensions significantly below the diffraction limit with a signal intensity following quadratic excitation power law.

  2. In vivo stoichiometry monitoring of G protein coupled receptor oligomers using spectrally resolved two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Stoneman, M. R.; Singh, D. R.; Raicu, V.

    2010-02-01

    Resonance Energy Transfer (RET) between a donor molecule in an electronically excited state and an acceptor molecule in close proximity has been frequently utilized for studies of protein-protein interactions in living cells. Typically, the cell under study is scanned a number of times in order to accumulate enough spectral information to accurately determine the RET efficiency for each region of interest within the cell. However, the composition of these regions may change during the course of the acquisition period, limiting the spatial determination of the RET efficiency to an average over entire cells. By means of a novel spectrally resolved two-photon microscope, we were able to obtain a full set of spectrally resolved images after only one complete excitation scan of the sample of interest. From this pixel-level spectral data, a map of RET efficiencies throughout the cell is calculated. By applying a simple theory of RET in oligomeric complexes to the experimentally obtained distribution of RET efficiencies throughout the cell, a single spectrally resolved scan reveals stoichiometric and structural information about the oligomer complex under study. This presentation will describe our experimental setup and data analysis procedure, as well as an application of the method to the determination of RET efficiencies throughout yeast cells (S. cerevisiae) expressing a G-protein-coupled receptor, Sterile 2 α factor protein (Ste2p), in the presence and absence of α-factor - a yeast mating pheromone.

  3. Multimodal second harmonic generation and two photon fluorescence imaging of microdomain calcium contraction coupling in single cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Chan, James; Awasthi, Samir; Izu, Leighton; Mao, Ziliang; Jian, Zhong; Landas, Trevor; Lerner, Aaron; Shimkunas, Rafael; Woldeyesus, Rahwa; Bossuyt, Julie; Wood, Brittani; Chen, Yi-Je; Matthews, Dennis; Lieu, Deborah; Chiamvimonvat, Nipavan; Lam, Kit; Chen-Izu, Ye

    2016-11-01

    The objective of this study was to develop a method for simultaneously measuring the calcium and contraction dynamics of single, live cardiomyocytes at high spatial resolutions. Such measurements are important to investigate local calcium release and the mechanical response at the sarcomere level (i.e. the basic unit of contraction), which have important implications in cardiac dysfunction and arrhythmias in conditions such as hypertension, atrial fibrillation, and myocardial infarction. Here, we describe a multimodal second harmonic generation (SHG) and two photon fluorescence (2PF) microscopy technique that is used to simultaneously measure subsarcomere calcium and contraction events at high spatial and temporal resolutions. The method takes advantage of the label-free nature of SHG for imaging the sarcomeres and the high spatial colocalization of the SHG signal and the fluorescence signal excited from calcium indicators. This microscope was used to measure calcium sparks and waves and associated contractions in subcellular microdomains, leading to the generation of subcellular strain. We anticipate this new imaging tool will play an important role in studying mechanical stress-induced heart disease.

  4. Bipolar and fixable probe targeting mitochondria to trace local depolarization via two-photon fluorescence lifetime imaging.

    PubMed

    Wang, Benlei; Zhang, Xinfu; Wang, Chao; Chen, Lingcheng; Xiao, Yi; Pang, Yi

    2015-08-21

    Polarization/depolarization levels of different single mitochondria in a cell are inhomogeneous, and always varying. Because depolarization is an indicator of mitochondrial dysfunction, tracing local depolarization is highly desirable. The existing fluorescent probes, however, are not well suited for this task, although they are applicable to assess the average polarization extents of whole cells. A multifunctional and bipolar probe MITFPS is thus developed, which includes a positively charged hydrophilic group and an environment sensitive fluorophore. In the probe design, the hydrophilic anchoring unit is chemically immobilized on a membrane protein, while the lipophilic fluorophore can be inserted deep into the phospholipid layer. The probe exhibits a sensitive response to the local variation in polarization by changing its fluorescence lifetime. MITFPS's applicability is confirmed by real-time in situ imaging of the complete process of an uncoupler-induced depolarization under a two-photon fluorescence lifetime microscope. The imaging result reveals that one mitochondrion could have quite different polarization than the other, even though they are in the same cell.

  5. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  6. Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy

    PubMed Central

    Ding, Yu; Li, Chunqiang

    2016-01-01

    Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724

  7. Anomalous photon-gauge boson coupling contribution to the exclusive vector boson pair production from two photon exchange in pp collisions at 13 TeV

    NASA Astrophysics Data System (ADS)

    Martins, D. E.; Rebello Teles, P.; Vilela Pereira, A.; Sá Borges, J.

    2015-04-01

    We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W+ W- exclusive production (pp → pW+W- p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W+W- exclusive production to present the pT distribution of the lepton pair corresponding to the SM signal with pT (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W+W- from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb-1 at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb-1 at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.

  8. Anomalous photon-gauge boson coupling contribution to the exclusive vector boson pair production from two photon exchange in pp collisions at 13 TeV

    SciTech Connect

    Martins, D. E.; Vilela Pereira, A.; Sá Borges, J.; Rebello Teles, P.

    2015-04-10

    We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.

  9. Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in the nuclease assay

    NASA Astrophysics Data System (ADS)

    Yuan, Peiyan; Ma, Rizhao; Gao, Nengyue; Garai, Monalisa; Xu, Qing-Hua

    2015-05-01

    Au and Ag nanoparticles (NPs) have been known to display significantly enhanced two-photon photoluminescence (2PPL) upon the formation of nanoparticle aggregates. The enhancement effect of the core-shell nanoparticles has not been explored so far. Here we have prepared Au@Ag bimetallic core-shell nanoparticles with different thicknesses (1.1, 2.1, 3.5, 4.5, and 5.5 nm) of silver coating on 19 nm Au NPs to investigate the composition effects on plasmon coupling-enhanced 2PPL. A maximum 2PPL enhancement factor (IcoupledNPs/IisolatedNPs) of up to 840-fold was obtained for Au@Ag NPs with ~3.5 nm Ag nanoshells. These Au@Ag NPs were subsequently utilized in two-photon detection of S1 nuclease as a photoluminescence turn on probe. This method displayed high sensitivity with the limit of detection of 1.4 × 10-6 U μL-1 and an excellent selectivity.Au and Ag nanoparticles (NPs) have been known to display significantly enhanced two-photon photoluminescence (2PPL) upon the formation of nanoparticle aggregates. The enhancement effect of the core-shell nanoparticles has not been explored so far. Here we have prepared Au@Ag bimetallic core-shell nanoparticles with different thicknesses (1.1, 2.1, 3.5, 4.5, and 5.5 nm) of silver coating on 19 nm Au NPs to investigate the composition effects on plasmon coupling-enhanced 2PPL. A maximum 2PPL enhancement factor (IcoupledNPs/IisolatedNPs) of up to 840-fold was obtained for Au@Ag NPs with ~3.5 nm Ag nanoshells. These Au@Ag NPs were subsequently utilized in two-photon detection of S1 nuclease as a photoluminescence turn on probe. This method displayed high sensitivity with the limit of detection of 1.4 × 10-6 U μL-1 and an excellent selectivity. Electronic supplementary information (ESI) available: TEM images, histograms of the sizes of Au@Ag NPs; extinction, 2PPL spectra of aggregated NPs, cysteamine, ssDNA and S1 nuclease; 2-photon action cross section of aggregated NPs; lengths of ssDNA and [NaCl] effect; excitation power

  10. Two-photon excitation fluorescence microscopy.

    PubMed

    So, P T; Dong, C Y; Masters, B R; Berland, K M

    2000-01-01

    Two-photon fluorescence microscopy is one of the most important recent inventions in biological imaging. This technology enables noninvasive study of biological specimens in three dimensions with submicrometer resolution. Two-photon excitation of fluorophores results from the simultaneous absorption of two photons. This excitation process has a number of unique advantages, such as reduced specimen photodamage and enhanced penetration depth. It also produces higher-contrast images and is a novel method to trigger localized photochemical reactions. Two-photon microscopy continues to find an increasing number of applications in biology and medicine.

  11. Two-photon cryomicroscope

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  12. Erasing nonlocal like two photon interference

    NASA Astrophysics Data System (ADS)

    Olindo, C.; Sagioro, M. A.; Pádua, S.; Monken, C. H.

    2015-12-01

    Over the years, since the 1980s, various two photon interference experiments have been reported with photon pairs generated by parametric down conversion. Some of them have shown local interference features and non-local ones. An experiment is shown here which joins the two features at the same time in a Hong-Ou-Mandel interferometer. However, the non-local effects are lost if the photons' arrival time difference at the beam splitter is much larger than the pulse length of the pump beam that generates the photon pair.

  13. Two-Photon Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  14. Two photon physics at RHIC

    SciTech Connect

    Klein, S.

    1995-05-01

    Because the two photon cross section is proportional to Z{sup 4}, heavy ion colliders offer an unmatched luminosity. However, because nuclei have finite sizes, the photon spectrum is gradually cut off by a nuclear form factor. For RHIC, this cutoff occurs at a few GeV; below this energy, RHIC will have the highest {gamma}{gamma} luminosity in the world when it turns on. In addition to the high rates, because Z{alpha} {approximately} 0.6, the nuclear environment provides a window to strong field QED and new phenomena like multiple pair production. To study {gamma}{gamma} physics, regions where the nuclei interact hadronically must be avoided; this leads to roughly a factor of two loss in usable luminosity. The rates expected by the Solenoidal Tracker at RHIC (STAR) collaboration will be given. Backgrounds will be discussed, along with several rejection techniques.

  15. Interaction-induced two-photon edge states in an extended Hubbard model realized in a cavity array

    NASA Astrophysics Data System (ADS)

    Gorlach, Maxim A.; Poddubny, Alexander N.

    2017-03-01

    We study theoretically two-photon states in a periodic array of coupled cavities with both on-site and nonlocal Kerr-type nonlinearities. In the absence of nonlinearity the structure is topologically trivial and possesses no edge states. The interplay of two nonlinear interaction mechanisms described by the extended Hubbard model facilitates the formation of edge states of bound photon pairs. Numerical and exact analytical results for the two-photon wave functions are presented. Our findings thus shed light onto the edge states of composite particles and their localization properties.

  16. Light-Sheet Confined Super-Resolution Using Two-Photon Photoactivation

    PubMed Central

    Cella Zanacchi, Francesca; Lavagnino, Zeno; Faretta, Mario; Furia, Laura; Diaspro, Alberto

    2013-01-01

    Light-sheet microscopy is a useful tool for performing biological investigations of thick samples and it has recently been demonstrated that it can also act as a suitable architecture for super-resolution imaging of thick biological samples by means of individual molecule localization. However, imaging in depth is still limited since it suffers from a reduction in image quality caused by scattering effects. This paper sets out to investigate the advantages of non-linear photoactivation implemented in a selective plane illumination configuration when imaging scattering samples. In particular, two-photon excitation is proven to improve imaging capabilities in terms of imaging depth and is expected to reduce light-sample interactions and sample photo-damage. Here, two-photon photoactivation is coupled to individual molecule localization methods based on light-sheet illumination (IML-SPIM), allowing super-resolution imaging of nuclear pH2AX in NB4 cells. PMID:23844052

  17. Two-photon microscopy of cells and tissue.

    PubMed

    Rubart, Michael

    2004-12-10

    Two-photon excitation fluorescence imaging provides thin optical sections from deep within thick, scattering specimens by way of restricting fluorophore excitation (and thus emission) to the focal plane of the microscope. Spatial confinement of two-photon excitation gives rise to several advantages over single-photon confocal microscopy. First, penetration depth of the excitation beam is increased. Second, because out-of-focus fluorescence is never generated, no pinhole is necessary in the detection path of the microscope, resulting in increased fluorescence collection efficiency. Third, two-photon excitation markedly reduces overall photobleaching and photodamage, resulting in extended viability of biological specimens during long-term imaging. Finally, localized excitation can be used for photolysis of caged compounds in femtoliter volumes and for diffusion measurements by two-photon fluorescence photobleaching recovery. This review aims to provide an overview of the use of two-photon excitation microscopy. Selected applications of this technique will illustrate its excellent suitability to assess cellular and subcellular events in intact, strongly scattering tissue. In particular, its capability to resolve differences in calcium dynamics between individual cardiomyocytes deep within intact, buffer-perfused hearts is demonstrated. Potential applications of two-photon laser scanning microscopy as applied to integrative cardiac physiology are pointed out.

  18. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-01

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  19. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks.

    PubMed

    Nanda, Kaushik D; Krylov, Anna I

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  20. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    SciTech Connect

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  1. Two Photon Exchange for Exclusive Pion Electroproduction

    SciTech Connect

    Afanaciev, Andrei V.; Aleksejevs, Aleksandrs G.; Barkanova, Svetlana G.

    2013-09-01

    We perform detailed calculations of two-photon-exchange QED corrections to the cross section of pion electroproduction. The results are obtained with and without the soft-photon approximation; analytic expressions for the radiative corrections are derived. The relative importance of the two-photon correction is analyzed for the kinematics of several experiments at Jefferson Lab. A significant, over 20%, effect due to two-photon exchange is predicted for the backward angles of electron scattering at large transferred momenta.

  2. Two-photon collisions and QCD

    SciTech Connect

    Gunion, J.F.

    1980-05-01

    A critical review of the applications of QCD to low- and high-p/sub T/ interactions of two photons is presented. The advantages of the two-photon high-p/sub T/ tests over corresponding hadronic beam and/or target tests of QCD are given particular emphasis.

  3. Two-photon fluorescence probes for imaging of mitochondria and lysosomes.

    PubMed

    Yang, Wanggui; Chan, Pui Shan; Chan, Miu Shan; Li, King Fai; Lo, Pik Kwan; Mak, Nai Ki; Cheah, Kok Wai; Wong, Man Shing

    2013-04-28

    Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.

  4. Two-Photon Laser Scanning Microscopy

    NASA Astrophysics Data System (ADS)

    Nimmerjahn, A.; Theer, P.; Helmchen, F.

    Since its inception more than 15 years ago, two-photon laser scanning microscopy (2PLSM) has found widespread use in biological and medical research. Two-photon microscopy is based on simultaneous absorption of two photons by fluorophores and subsequent fluorescence emission, a process which under normal illumination conditions is highly improbable. Theoretically described around 1930 by Maria Göppert-Mayer [1], the first experimental demonstration of two-photon excitation had to await the invention of the laser, which produced sufficiently high light intensities to observe two-photon absorption events [2]. Only after the development of ultrafast lasers providing subpicosecond light pulses with high peak power intensities, however, two-photon-excited fluorescence became practical in a laser-scanning microscope [3]. Since then 2PLSM has developed into the method of choice for high-resolution imaging in living animals (reviewed in [4,5]). One of the main reasons is the low sensitivity of 2PLSM to light scattering, which enables imaging relatively deep inside biological tissue and direct observation of the dynamic behavior of cells in their native environment. In this chapter, we introduce the physical principles governing 2PLSM and briefly describe the key instrument components. We give an overview of fluorescence labeling techniques and how they are combined with 2PLSM for functional imaging and photomanipulation in living tissue. Finally, we discuss limitations and provide some future perspectives.

  5. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    PubMed

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications.

  6. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering

    PubMed Central

    Kneipp, Janina; Kneipp, Harald; Kneipp, Katrin

    2006-01-01

    Two-photon excitation is gaining rapidly in interest and significance in spectroscopy and microscopy. Here we introduce a new approach that suggests versatile optical labels suitable for both one- and two-photon excitation and also two-photon-excited ultrasensitive, nondestructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states called hyper-Raman scattering (HRS). The rather weak effect can be strengthened greatly if HRS takes place in the local optical fields of gold and silver nanostructures. This so-called surface-enhanced HRS (SEHRS) is the two-photon analogue to surface-enhanced Raman scattering (SERS). SEHRS provides structurally sensitive vibrational information complementary to those obtained by SERS. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy and the high-sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy. We infer effective two-photon cross-sections for SEHRS on the order of 10−46 to 10−45 cm4·s, similar to or higher than the best “action” cross-sections (product of the two-photon absorption cross-section and fluorescence quantum yield) for two-photon fluorescence, and we demonstrate HRS on biological structures such as single cells after incubation with gold nanoparticles. PMID:17088534

  7. Imaging melanin by two-photon absorption microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Yurtsever, Gunay; Fischer, Martin; Simon, John D.; Warren, Warren S.

    2006-02-01

    Multiphoton excitation fluorescence microscopy has proven to be a powerful method for non-invasive, in vivo, thick tissue imaging with molecular specificity. However, many important endogenous biomolecules do not fluoresce (NAD) or fluoresce with low efficiency (Melanin). In this report femtosecond pulse shaping methods are used to measure two-photon absorption (TPA) directly with very high sensitivity. Combining with the laser scanning microscope, this Two-photon Absorption Microscopy (TPAM) retains the penetration and localization advantages of two-photon fluorescence microscopy and permits direct observation of important endogenous molecular markers (melanin or hemoglobin) which are invisible in multiphoton fluorescence microscopy. We have demonstrated here for the first time that TPAM can successfully and more efficiently image melanoma cells and tissues and provide a good melanin contrast in optical sectioning of the melanoma lesions which are comparable to pathological histology. Combining with the two-photon fluorescence images acquired simultaneously, the distribution patterns of the melanocytes and their intratissue behavior could be studied without cutting the lesions from patients. TPAM will undoubtedly find the applications in the clinical diagnosis and biomedical research.

  8. Two-photon polymerization of polydiacetylene.

    PubMed

    Shusterman, Olga; Berman, Amir; Golan, Yuval; Horovitz, Baruch; Zeiri, Leila

    2009-02-05

    We show that visible light can polymerize diacetylene monomers into polydiacetylene (PDA) in a two-photon process. We monitor the process by measuring Raman intensities of PDA using a Raman laser at 633 nm with variable intensity I and show that the Raman cross section at short times increases as I3, corresponding to a two-photon process. The process generates a relatively stable blue phase PDA, in contrast with UV polymerization that leads to a fast blue to red phase transformation.

  9. Two-Photon Cavity Solitons in Active Optical Media

    SciTech Connect

    Vilaseca, R.; Torrent, M. C.; Garcia-Ojalvo, J.; Brambilla, M.; San Miguel, M.

    2001-08-20

    We show that broad-area cascade lasers with no absorbing intracavity elements support the spontaneous formation of two-dimensional bright localized structures in a dark background. These cavity solitons consist of islands of two-photon emission embedded in a background of single-photon emission. We discuss the mechanisms through which these structures are formed and interact, along with their properties and stability.

  10. Two-photon up-conversion affected by inter-molecule correlations near metallic nanostructure

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    Optical antennas, which consist of metallic nanostructures, concentrate free-propagating light into localized surface plasmons (LSP). Such a localized field enables effective interactions between light and molecules nearby the metal surfaces. However, as the light intensity decreases to single-photon level, large dissipation in the metals always inhibits the effective photon-molecule interaction via LSP. We have theoretically elucidated that controlling quantum interference in an antenna-molecule coupled system strongly suppresses the photon-dissipations, and leads to efficient two-photon processes in the molecule. However, it is difficult to prepare only one molecule nearby the metal. Therefore, as a beachhead into a multi-molecule system, we will consider the case that two photons couple with two molecules under one LSP. In rapid intuition, the appearance of the second molecule seemingly damages the up-conversion process. In the presentation, we reveal that controlling the inter-molecule interaction could resolve the difficulty, and lead to the efficient up-conversion through the quantum interference among three-bodies, i.e., LSP and two molecules. Supported by a Grant-in-Aid for JSPS Fellows No. 13J09308.

  11. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  12. Local Land-Atmosphere Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Ek, M.; Santanello, J. A.; Jacobs, C.; Tuinenburg, O.

    2010-12-01

    The GEWEX Land-Atmosphere System Study / Local Coupling (GLASS/LoCo) project seeks to understand the role of local land-atmosphere coupling in the evolution of surface fluxes, and land and atmospheric state variables including clouds. The theme of land-atmosphere interaction is a research area that is rapidly developing; new research has evolved in modeling and observing the degree of land-atmosphere coupling on local scales. Questions of interest are (1) what is the nature and strength of this coupling, and (2) how does this change, i.e. for different temporal and spatial scales, geographic regions, and changing climates. As such, this is an important issue on both weather and climate time scales. The GLASS/LoCo working group is investigating the role of surface hydrology (e.g. soil moisture) and interaction with the evolving atmospheric boundary layer and boundary-layer (top) entrainment and boundary-layer clouds, from both the observational perspective and using coupled land-atmosphere models.

  13. Two-photon excitation microscopy for the study of living cells and tissues.

    PubMed

    Benninger, Richard K P; Piston, David W

    2013-06-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application.

  14. Two photon thermal sensing in Er3+/Yb3+ co-doped nanocrystalline NaNbO3.

    PubMed

    Kumar, Kagola Upendra; Santos, Weslley Queiroz; Silva, Wagner Ferreira; Jacinto, Carlos

    2013-10-01

    We investigate the potential use of two-photon absorption of Er3+/Yb3+ co-doped NaNbO3 nanocrystals for nanothermometry as well as thermal imaging, based on the thermally coupled green Er3+ emission lines. In fact, thermal sensor in the range of 20-80 degrees C with -0.1 degrees C accuracy using excitation powers readily obtained from commercially available semiconductor laser was achieved. The pump-intensity induced local heating was also investigated upon femtosecond laser excitation and 0.55 K/kW x cm(-2) was achieved. The highly efficient green emission together with two-photon dependence and femtosecond laser excitation should increase the brightness of thermal imaging. Additionally, the high temperature-sensitive fluorescence, when compared to previous literatures, should increase the resolution of nanothermometers.

  15. Two photon photoemission of deposited silver clusters

    NASA Astrophysics Data System (ADS)

    Busolt, U.; Cottancin, E.; Röhr, H.; Socaciu, L.; Leisner, T.; Wöste, L.

    We use time resolved two photon photoemission to study the stability of size selected silver clusters deposited onto highly oriented pyrolytic graphite (HOPG) substrates. Size-selected Agn+ clusters (n=2-9) are deposited at low coverage onto HOPG surfaces at liquid nitrogen temperatures. After deposition, the samples are irradiated by a series of ultrashort laser pulse pairs. Photoelectrons created by two photon photoemission are collected in a magnetic bottle type time-of-flight photoelectron spectrometer. Their kinetic energy distribution is recorded as a function of the delay time between subsequent light pulses. With the exception of Ag3 the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the deposited clusters retain their size and identity on the sample. The lifetime of the photoexcitation rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters.

  16. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  17. Two-photon physics as a probe of hadron dynamics

    SciTech Connect

    Brodsky, S.J.

    1981-05-01

    Two-photon collisions provide an ideal laboratory for testing many features of quantum chromodynamics, especially the interplay between the vector-meson-dominated and point-like hadronic interactions of the photon. A number of QCD applications are discussed, including: jet and single-particle production at large transverse momentum; the photon structure function and its relationship to the ..gamma.. ..-->.. q anti q wave function; and the possible role of gluonium states in the ..gamma gamma.. ..-->.. rho/sup 0/rho/sup 0/ channel. Evidence that even low momentum transfer photon-hadron interactions are sensitive to the point-like ..gamma.. ..-->.. q anti q coupling is discussed.

  18. Control of coupled localized nonlinear wave solutions

    NASA Astrophysics Data System (ADS)

    Porubov, A. V.; Antonov, I. D.

    2017-01-01

    A method of forced localization of non-linear wave by a feedback control is developed for coupled equations accounting for non-linear dynamic processes in complex lattices. It is shown, that the control of the shape and velocity of the wave function of macro-strain allows to achieve localization of the shape of the function describing variations of defects in the lattice. Moreover, change of the sign of the amplitude of the last wave may be achieved by variation of the parameters of the control function but independent of the initial conditions.

  19. A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues

    PubMed Central

    Fan, Jiangli; Han, Zhichao; Kang, Yao; Peng, Xiaojun

    2016-01-01

    Lysosome-specific fluorescent probes are exclusive to elucidate the functions of lysosomal thiols. Moreover, two-photon microscopy offers advantages of less phototoxicity, better three dimensional spatial localization, deeper penetration depth and lower self-absorption. However, such fluorescent probes for thiols are still rare. In this work, an efficient two-photon fluorophore 1,8-naphthalimide-based probe conjugating a 2,4-dinitrobenzenesulfonyl chloride and morpholine was designed and synthesized, which exhibited high selectivity and sensitivity towards lysosomal thiols by turn-on fluorescence method quantitatively and was successfully applied to the imaging of thiols in live cells and tissues by two-photon microscopy. PMID:26794434

  20. Denoising two-photon calcium imaging data.

    PubMed

    Malik, Wasim Q; Schummers, James; Sur, Mriganka; Brown, Emery N

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.

  1. Nonlocal Pancharatnam phase in two-photon interferometry

    SciTech Connect

    Mehta, Poonam; Samuel, Joseph; Sinha, Supurna

    2010-09-15

    We propose a polarized intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury-Brown-Twiss photons. The setup involves two polarized thermal sources illuminating two polarized detectors. Varying the relative polarization angle of the detectors introduces a two-photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three-slit experiment and suggests ways of tuning entanglement.

  2. Epifluorescence collection in two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Beaurepaire, Emmanuel; Mertz, Jerome

    2002-09-01

    We present a simple model to describe epifluorescence collection in two-photon microscopy when one images in a turbid slab with an objective. Bulk and surface scattering determine the spatial and angular distributions of the outgoing fluorescence photons at the slab surface, and geometrical optics determines how efficiently the photons are collected. The collection optics are parameterized by the objective's numerical aperture and working distance and by an effective collection field of view. We identify the roles of each of these parameters and provide simple rules of thumb for the optimization of the epifluorescence collection efficiency. Analytical results are corroborated by Monte Carlo simulation.

  3. Platinum Acetylide Two-Photon Chromophores (Postprint)

    DTIC Science & Technology

    2007-01-01

    L.; Pierce, B. M. Science 1994, 265, 632. (14) Prasad, P. N.; Reinhardt, B. A. Chem. Mater. 1990, 2, 660. (15) Larson, E . J.; Friesen , L. A.; Johnson...PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER 4348 5e. TASK NUMBER RG 6. AUTHOR(S) Joy E . Rogers (UES) Jonathan E . Slagle (AT&T Government...afford T1. Platinum Acetylide Two-Photon Chromophores Joy E . Rogers,†,‡ Jonathan E . Slagle,†,§ Douglas M. Krein,†,| Aaron R. Burke,†,| Benjamin C. Hall

  4. Two Photon Detection Techniques for Atomic Fluorine

    DTIC Science & Technology

    1988-06-30

    to the two-photon detection technique. ’.d. %.. %9I Flowing He/F Mixture CaF 2 (20% F) from Pellin- Broca ionization Microwave Discharge Prism 1~~T6th...Stokes (AS) orders are separated using a CaF2 Pellin- Broca prism. The sixth AS at 170 un is propagated through an evacuated beam path (10 .5 torr) and...CaF2 Pellin- Broca prism. The atoms Br (Ref. 5) and Cl (Ref. 6) with limited sensitiv- sixth AS wave at 170 nm is propagated through a series ity6

  5. Two-Photon Fluorescence Microscope for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the

  6. Two-photon imaging and analysis of neural network dynamics

    NASA Astrophysics Data System (ADS)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  7. Encoded multisite two-photon microscopy

    PubMed Central

    Ducros, Mathieu; Houssen, Yannick Goulam; Bradley, Jonathan; de Sars, Vincent; Charpak, Serge

    2013-01-01

    The advent of scanning two-photon microscopy (2PM) has created a fertile new avenue for noninvasive investigation of brain activity in depth. One principal weakness of this method, however, lies with the limit of scanning speed, which makes optical interrogation of action potential-like activity in a neuronal network problematic. Encoded multisite two-photon microscopy (eMS2PM), a scanless method that allows simultaneous imaging of multiple targets in depth with high temporal resolution, addresses this drawback. eMS2PM uses a liquid crystal spatial light modulator to split a high-power femto-laser beam into multiple subbeams. To distinguish them, a digital micromirror device encodes each subbeam with a specific binary amplitude modulation sequence. Fluorescence signals from all independently targeted sites are then collected simultaneously onto a single photodetector and site-specifically decoded. We demonstrate that eMS2PM can be used to image spike-like voltage transients in cultured cells and fluorescence transients (calcium signals in neurons and red blood cells in capillaries from the cortex) in depth in vivo. These results establish eMS2PM as a unique method for simultaneous acquisition of neuronal network activity. PMID:23798397

  8. Encoded multisite two-photon microscopy.

    PubMed

    Ducros, Mathieu; Goulam Houssen, Yannick; Bradley, Jonathan; de Sars, Vincent; Charpak, Serge

    2013-08-06

    The advent of scanning two-photon microscopy (2PM) has created a fertile new avenue for noninvasive investigation of brain activity in depth. One principal weakness of this method, however, lies with the limit of scanning speed, which makes optical interrogation of action potential-like activity in a neuronal network problematic. Encoded multisite two-photon microscopy (eMS2PM), a scanless method that allows simultaneous imaging of multiple targets in depth with high temporal resolution, addresses this drawback. eMS2PM uses a liquid crystal spatial light modulator to split a high-power femto-laser beam into multiple subbeams. To distinguish them, a digital micromirror device encodes each subbeam with a specific binary amplitude modulation sequence. Fluorescence signals from all independently targeted sites are then collected simultaneously onto a single photodetector and site-specifically decoded. We demonstrate that eMS2PM can be used to image spike-like voltage transients in cultured cells and fluorescence transients (calcium signals in neurons and red blood cells in capillaries from the cortex) in depth in vivo. These results establish eMS2PM as a unique method for simultaneous acquisition of neuronal network activity.

  9. Locally and globally coupled oscillators in muscle.

    PubMed

    Sato, Katsuhiko; Kuramoto, Yoshiki; Ohtaki, Masako; Shimamoto, Yuta; Ishiwata, Shin'ichi

    2013-09-06

    At an intermediate activation level, striated muscle exhibits autonomous oscillations called SPOC, in which the basic contractile units, sarcomeres, oscillate in length, and various oscillatory patterns such as traveling waves and their disrupted forms appear in a myofibril. Here we show that these patterns are reproduced by mechanically connecting in series the unit model that explains characteristics of SPOC at the single-sarcomere level. We further reduce the connected model to phase equations, revealing that the combination of local and global couplings is crucial to the emergence of these patterns.

  10. Locally and Globally Coupled Oscillators in Muscle

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Kuramoto, Yoshiki; Ohtaki, Masako; Shimamoto, Yuta; Ishiwata, Shin'ichi

    2013-09-01

    At an intermediate activation level, striated muscle exhibits autonomous oscillations called SPOC, in which the basic contractile units, sarcomeres, oscillate in length, and various oscillatory patterns such as traveling waves and their disrupted forms appear in a myofibril. Here we show that these patterns are reproduced by mechanically connecting in series the unit model that explains characteristics of SPOC at the single-sarcomere level. We further reduce the connected model to phase equations, revealing that the combination of local and global couplings is crucial to the emergence of these patterns.

  11. LASERS IN MEDICINE: Two-photon excitation of aluminium phthalocyanines

    NASA Astrophysics Data System (ADS)

    Meshalkin, Yu P.; Alfimov, E. E.; Vasil'ev, N. E.; Denisov, A. N.; Makukha, V. K.; Ogirenko, A. P.

    1999-12-01

    A demonstration is given of the feasibility of two-photon excitation of aluminium phthalocyanine and of the pharmaceutical preparation 'Fotosens', used in photodynamic therapy. The excitation source was an Nd:YAG laser emitting at the 1064 nm wavelength. The spectra of the two-photon-excited luminescence were obtained and the two-photon absorption cross sections were determined.

  12. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  13. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  14. Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike

    2015-08-12

    We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

  15. One-step theory of two-photon photoemission

    NASA Astrophysics Data System (ADS)

    Braun, J.; Rausch, R.; Potthoff, M.; Ebert, H.

    2016-09-01

    A theoretical frame for two-photon photoemission is derived from the general theory of pump-probe photoemission, assuming that not only the probe but also the pump pulse is sufficiently weak. This allows us to use a perturbative approach to compute the lesser Green function within the Keldysh formalism. Two-photon photoemission spectroscopy is a widely used analytical tool to study nonequilibrium phenomena in solid materials. Our theoretical approach aims at a material-specific, realistic, and quantitative description of the time-dependent spectrum based on a picture of effectively independent electrons as described by the local-density approximation in band-structure theory. To this end we follow Pendry's one-step theory of the photoemission process as close as possible and heavily make use of concepts of relativistic multiple-scattering theory, such as the representation of the final state by a time-reversed low-energy electron diffraction state. The formalism allows for a quantitative calculation of the time-dependent photocurrent for moderately correlated systems like simple metals or more complex compounds like topological insulators. An application to the Ag(100) surface is discussed in detail.

  16. Two-photon quantum walk in a multimode fiber

    PubMed Central

    Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A.; Smith, Brian J.; Gigan, Sylvain

    2016-01-01

    Multiphoton propagation in connected structures—a quantum walk—offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication. PMID:27152325

  17. Two-photon quantum walk in a multimode fiber.

    PubMed

    Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A; Smith, Brian J; Gigan, Sylvain

    2016-01-01

    Multiphoton propagation in connected structures-a quantum walk-offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication.

  18. Two-photon mapping of neocortical circuits

    NASA Astrophysics Data System (ADS)

    Nikolenko, Volodymyr

    The synaptic circuits of the cerebral cortex are still poorly understood, yet knowing their basic structure appears key for understanding their function (Lorente de No, 1949). While some argue that there is a basic modular circuit present in all cortical regions (Douglas et al., 1989; Hubel and Wiesel, 1977), others suggest that synaptic circuits could be randomly structured (Braitenberg and Schuz, 1998). To investigate the patterns of synaptic connections present in neocortex, I have developed a novel two-photon optical mapping method (Nikolenko et al., 2007) to systematically reveal cells that connect to four classes of neurons in slices of mouse primary sensory cortex. Inputs to these cells originated preferentially from specific cortical layers and often were laterally restricted, revealing functional columnar circuits with sharp boundaries. Moreover, many neurons extensively sampled particular territories, and, in some cases, virtually every cell from a particular layer was connected to the postsynaptic target. The results reveal circuits with dense columnar connectivity, approximating in some cases the complete sampling from every potential presynaptic cell in an input layer. I discuss the implications of these findings in the context of the computational strategies used by the cortex.

  19. Nonlinear theory of a two-photon correlated-spontaneous-emission laser: A coherently pumped two-level--two-photon laser

    SciTech Connect

    Lu, N.; Zhao, F.; Bergou, J.

    1989-05-15

    We develop a nonlinear theory of a two-photon correlated-spontaneous-emission laser (CEL) by using an effective interaction Hamiltonian for a two-level system coupled by a two-photon transition. Assuming that the active atoms are prepared initially in a coherent superposition of two atomic levels involved in the two-photon transition, we derive a master equation for the field-density operator by using our quantum theory for coherently pumped lasers. The steady-state properties of the two-photon CEL are studied by converting the field master equation into a Fokker-Planck equation for the antinormal-ordering Q representation of the field-density operator. Because of the injected atomic coherence, the drift and diffusion coefficients become phase sensitive. This leads to laser phase locking and an extra two-photon CEL gain. The laser field can build up from a vacuum in the no-population-inversion region, in contrast to an ordinary two-photon laser for which triggering is needed. We find an approximate steady-state solution of the Q representation for the laser field, which consists of two identical peaks of elliptical type. We calculate the phase variance and, for any given mean photon number, obtain the minimum variance in the phase quadrature as a function of the initial atomic variables. Squeezing of the quantum noise in the phase quadrature is found and it exhibits the following features: (1) it is possible only when the laser intensity is smaller than a certain value; (2) it becomes most significant for small mean photon number, which is achievable in the no-population-inversion region; and (3) a maximum of 50% squeezing can be asymptotically approached in the small laser intensity limit.

  20. Two-photon excited UV fluorescence for protein crystal detection

    SciTech Connect

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-10-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC.

  1. Study of exclusive two-photon production of $W^+W^-$ in $pp$ collisions at $\\sqrt{s} = 7$ TeV and constraints on anomalous quartic gauge couplings

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2013-07-18

    A search for exclusive or quasi-exclusive W+W$-$ production by photon-photon interactions, pp → p(*)W+W$-$p(*), at TeV is reported using data collected by the CMS detector with an integrated luminosity of 5.05 fb$-$1. Events are selected by requiring a μ±e vertex with no additional associated charged tracks and dilepton transverse momentum pT±e) > 30 GeV. Two events passing all selection requirements are observed in the data, compared to a standard model expectation of 2.2 ± 0.4 signal events with 0.84 ± 0.15 background. The tail of the dilepton pT distribution is studied for deviations from the standard model. No events are observed with pT > 100 GeV. Model-independent upper limits are computed and compared to predictions involving anomalous quartic gauge couplings. The limits on the parameters α$W\\atop{0,C}$/Λ2 with a dipole form factor and an energy cutoff Λcutoff = 500 GeV are of the order of 10$-$4.

  2. Two-photon absorption properties of fluorescent proteins

    PubMed Central

    Drobizhev, Mikhail; Makarov, Nikolay S.; Tillo, Shane E.; Hughes, Thomas E.; Rebane, Aleksander

    2016-01-01

    Two-photon excitation of fluorescent proteins is an attractive approach for imaging living systems. Today researchers are eager to know which proteins are the brightest, and what the best excitation wavelengths are. Here we review the two-photon absorption properties of a wide variety of fluorescent proteins, including new far-red variants, to produce a comprehensive guide to choosing the right FP and excitation wavelength for two-photon applications. PMID:21527931

  3. Ordering of azobenzenes by two-photon isomerization

    SciTech Connect

    Ishitobi, Hidekazu; Sekkat, Zouheir; Kawata, Satoshi

    2006-10-28

    We report on light induced orientation by two-photon isomerization of azobenzenes in films of polymer. The dynamics of isomerization and orientation by one-photon absorption and two-photon absorption (TPA) are similar, and TPA creates a degree of molecular orientation which is comparable to that achieved by single-photon isomerization, in agreement with the theoretical predictions of two-photon isomeric orientation.

  4. Two-photon absorption by a quantum dot pair

    NASA Astrophysics Data System (ADS)

    Scheibner, Michael; Economou, Sophia E.; Ponomarev, Ilya V.; Jennings, Cameron; Bracker, Allan S.; Gammon, Daniel

    2015-08-01

    The biexciton absorption spectrum of a pair of InAs/GaAs quantum dots is being studied by photoluminescence excitation spectroscopy. An absorption resonance with the characteristics of an instantaneous two-photon process reveals a coherent interdot two-photon transition. Pauli-selective tunneling is being used to demonstrate the transduction of the two-photon coherence into a nonlocal spin singlet state. The two-photon transition can be tuned spectrally by electric field, enabling amplification of its transition strength.

  5. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  6. Is the σ(600) a glueball? Two photon reactions can tell us

    NASA Astrophysics Data System (ADS)

    Pennington, M. R.

    2001-08-01

    Minkowski and Ochs have recently argued that the small two photon coupling of a conjectured σ(600) is so small that it is likely to be a glueball. We ask whether this can be so or whether it is simply gauge invariance that produces the observed low mass suppression?

  7. Full two-photon down-conversion of a single photon

    NASA Astrophysics Data System (ADS)

    Sánchez-Burillo, E.; Martín-Moreno, L.; García-Ripoll, J. J.; Zueco, D.

    2016-11-01

    We demonstrate, both numerically and analytically, that it is possible to deterministically generate two photons from one and only one photon. We characterize the output two-photon field and make our calculations close to reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly coupled to a one-dimensional waveguide. We show that almost perfect down-conversion, with efficiency over 99 % , is reachable using state-of-the-art waveguide QED architectures such as photonic crystals or superconducting circuits. In particular, we sketch an implementation in circuit QED, where the three-level atom is a transmon.

  8. A multidimensional screening method for the selection of two-photon enhanced fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb; Barnett, Lauren; Rebane, Aleksander; Hughes, Thomas; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhailov, Alexandr

    2014-03-01

    Two-photon excitation of fluorescent proteins (FPs) is widely used in imaging whole organisms or living tissues. Many different FPs are now available but these proteins have only been optimized for their one-photon properties. We have developed a technique for screening entire libraries of E. coli colonies expressing FPs that utilizes multiple wavelengths of linear excitation as well as two-photon excitation. Single mutations in a particular protein that affect one or twophoton properties are easily identified, providing new views of structure/function relationships. An amplified femtosecond Ti:sapphire laser and a spectrally filtered lamp source are used to acquire the fluorescence signals of up to ~1000 E. coli colonies on a standard Petri dish. Automation of the analysis and acquisition of the fluorescent signals makes it feasible to rapidly screen tens of thousands of colonies. In a proof of principle experiment with the commonly used EGFP, we used two rounds of error prone PCR and selection to evolve new proteins with shifted absorption and increased two-photon cross sections at 790nm. This method of screening, coupled with careful measurements of photo bleaching dynamics and two-photon cross sections, should make it possible to optimize a wide variety of fluorescent proteins and biosensors for use in two-photon microscopes.

  9. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    PubMed Central

    Moretti, Claudio; Antonini, Andrea; Bovetti, Serena; Liberale, Carlo; Fellin, Tommaso

    2016-01-01

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain. PMID:27867707

  10. Two-photon upconversion affected by intermolecule correlations near metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We investigate an efficient two-photon upconversion process in more than one molecule coupled to an optical antenna. In the previous paper [Y. Osaka et al., Phys. Rev. Lett. 112, 133601 (2014), 10.1103/PhysRevLett.112.133601], we considered the two-photon upconversion process in a single molecule within one-dimensional input-output theory and revealed that controlling the antenna-molecule coupling enables the efficient upconversion with radiative loss in the antenna suppressed. In this paper, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the upconversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the intermolecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon upconversion.

  11. Two-photon absorption in arsenic sulfide glasses

    NASA Astrophysics Data System (ADS)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  12. Two-photon fluorescence excitation spectroscopy of biological molecules

    NASA Astrophysics Data System (ADS)

    Meshalkin, Yuri P.; Alfimov, E. E.; Groshev, D. E.; Makukha, V. K.

    1996-06-01

    The UV fluorescence spectra of aromatic amino-acids and some proteins at two photon excitation by second harmonic of Nd:YAG laser are received. Two-photon absorption cross sections of tryptophan, tyrosine, phenylalanine and proteins: bovine serum albumin, lysozyme, trypsin, (alpha) - chymotrypsinogen and pepsin at wavelength 532 nm were measured by means of the two-quantum standard method.

  13. Two-photon excitation based photochemistry and neural imaging

    NASA Astrophysics Data System (ADS)

    Hatch, Kevin Andrew

    Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.

  14. Molecular engineering of two-photon fluorescent probes for bioimaging applications.

    PubMed

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-22

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  15. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  16. A cysteamine-selective two-photon fluorescent probe for ratiometric bioimaging.

    PubMed

    Sarkar, Avik R; Heo, Cheol Ho; Kim, Eunjin; Lee, Hyo Won; Singh, Hardev; Kim, Jeong Jin; Kang, Hyuk; Kang, Chulhun; Kim, Hwan Myung

    2015-02-11

    We report a two-photon fluorescent probe for ratiometric imaging of cysteamine in situ. This probe can detect the levels of endogenous cysteamine with statistical significance in live cells and brain hippocampal tissues, revealing that cysteamine is localized mainly in the perikaria of the pyramidal neurons and the granule cells.

  17. In vivo two-photon calcium imaging in the visual system.

    PubMed

    Ohki, Kenichi; Reid, R Clay

    2014-04-01

    Two-photon imaging of calcium-sensitive dyes in vivo has become a common tool used by neuroscientists, largely because of the development of bolus loading techniques, which can label every neuron in a local circuit with calcium-sensitive dye. Like multielectrode recordings, two-photon imaging paired with bolus loading provides a method for monitoring many neurons at once, but, in addition, it provides a means for determining the precise location of every neuron. Thus, it is an ideal method for studying the fine-scale functional architecture of the cortex and guiding the experimenter to individual neurons that can be targeted for further anatomical study. Two-photon calcium imaging enables study of the fine structure of functional maps in the visual cortex in cats and rodents. In mice, it can allow the characterization of specific cell types when paired with transgenic or retrograde labeling.

  18. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  19. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  20. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  1. Two-photon interference of temporally separated photons

    NASA Astrophysics Data System (ADS)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  2. Random access three-dimensional two-photon microscopy.

    PubMed

    Rózsa, Balázs; Katona, Gergely; Vizi, E Sylvester; Várallyay, Zoltán; Sághy, Attila; Valenta, Lásló; Maák, Pál; Fekete, Júlia; Bányász, Akos; Szipocs, Róbert

    2007-04-01

    We propose a two-photon microscope scheme capable of real-time, three-dimensional investigation of the electric activity pattern of neural networks or signal summation rules of individual neurons in a 0.6 mm x 0.6 mm x 0.2 mm volume of the sample. The points of measurement are chosen according to a conventional scanning two-photon image, and they are addressed by separately adjustable optical fibers. This allows scanning at kilohertz repetition rates of as many as 100 data points. Submicrometer spatial resolution is maintained during the measurement similarly to conventional two-photon microscopy.

  3. Chimera-type states induced by local coupling

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; García-Ñustes, M. A.; Rojas, R. G.

    2016-05-01

    Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation diagram.

  4. Chimera-type states induced by local coupling.

    PubMed

    Clerc, M G; Coulibaly, S; Ferré, M A; García-Ñustes, M A; Rojas, R G

    2016-05-01

    Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation diagram.

  5. Chimera states in purely local delay-coupled oscillators.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar

    2016-05-01

    We study the existence of chimera states in a network of locally coupled chaotic and limit-cycle oscillators. The necessary condition for chimera state in purely local coupled oscillators is discussed. At first, we numerically observe the existence of chimera or multichimera states in the locally coupled Hindmarsh-Rose neuron model. We find that delay time in the nonlinear local coupling reduces the domain of the coherent island in the parameter space of the synaptic coupling strength and time delay, and thus the coherent region can be completely eliminated once the time delay exceeds a certain threshold. We then consider another form of nonlinearity in the local coupling, and the existence of chimera states is observed in the time-delayed Mackey-Glass system and in a Van der Pol oscillator. We also discuss the effect of time delay in local coupling for the existence of chimera states in Mackey-Glass systems. The nonlinearity present in the coupling function plays a key role in the emergence of chimera or multichimera states. A phase diagram for the chimera state is identified over a wide parameter space.

  6. Chimera states in purely local delay-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar

    2016-05-01

    We study the existence of chimera states in a network of locally coupled chaotic and limit-cycle oscillators. The necessary condition for chimera state in purely local coupled oscillators is discussed. At first, we numerically observe the existence of chimera or multichimera states in the locally coupled Hindmarsh-Rose neuron model. We find that delay time in the nonlinear local coupling reduces the domain of the coherent island in the parameter space of the synaptic coupling strength and time delay, and thus the coherent region can be completely eliminated once the time delay exceeds a certain threshold. We then consider another form of nonlinearity in the local coupling, and the existence of chimera states is observed in the time-delayed Mackey-Glass system and in a Van der Pol oscillator. We also discuss the effect of time delay in local coupling for the existence of chimera states in Mackey-Glass systems. The nonlinearity present in the coupling function plays a key role in the emergence of chimera or multichimera states. A phase diagram for the chimera state is identified over a wide parameter space.

  7. Two-Photon-Absorption Scheme for Optical Beam Tracking

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  8. Three-dimensional two-photon imaging in polymeric materials

    NASA Astrophysics Data System (ADS)

    Belfield, Kevin D.; Schafer, Katherine J.; Andrasik, Stephen; Yavuz, Ozlem; Van Stryland, Eric W.; Hagan, David J.; Hales, Joel M.

    2002-01-01

    We report image formation via single and two-photon photoinduced fluorescence changes in a polymeric medium with two-photon fluorescence readout of multiplayer structures. Photoinduced acid generation in the presence of a two-photon fluorescent dye possessing strongly basic functional groups (7-benzothiazolyl-9,9-didecyl-2,2-(N,N- diphenylamino)fluorene underwent protonation upon exposure with UV or near-IR (740 nm fs pulses). Solution studies demonstrate formation of monoprotonated and diprotonated species upon irradiation, each resulting in distinctly different absorption and fluorescence properties. The fluorescence of the original, neutral, fluorophore is quenched upon monoprotonation with a concomitant increase in fluorescence at longer wavelengths due to the monoprotonated form. Hence, two channel two-photon fluorescence imaging provides 'positive' or 'negative' image readout capability. Results of solution and solid polymer thin films experiments are presented.

  9. Two-Photon Fluorescence Microscopy for Biomedical Research

    NASA Technical Reports Server (NTRS)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  10. Two-photon directed evolution of green fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-07-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.

  11. Pulse-shaping based two-photon FRET stoichiometry.

    PubMed

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  12. Two-photon photovoltaic effect in gallium arsenide.

    PubMed

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  13. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  14. Antecedents of two-photon excitation laser scanning microscopy.

    PubMed

    Masters, Barry R; So, Peter T C

    2004-01-01

    In 1931, Maria Göppert-Mayer published her doctoral dissertation on the theory of two-photon quantum transitions (two-photon absorption and emission) in atoms. This report describes and analyzes the theoretical and experimental work on nonlinear optics, in particular two-photon excitation processes, that occurred between 1931 and the experimental implementation of two-photon excitation microscopy by the group of Webb in 1990. In addition to Maria Göppert-Mayer's theoretical work, the invention of the laser has a key role in the development of two-photon microscopy. Nonlinear effects were previously observed in different frequency domains (low-frequency electric and magnetic fields and magnetization), but the high electric field strength afforded by lasers was necessary to demonstrate many nonlinear effects in the optical frequency range. In 1978, the first high-resolution nonlinear microscope with depth resolution was described by the Oxford group. Sheppard and Kompfner published a study in Applied Optics describing microscopic imaging based on second-harmonic generation. In their report, they further proposed that other nonlinear optical effects, such as two-photon fluorescence, could also be applied. However, the developments in the field of nonlinear optical stalled due to a lack of a suitable laser source. This obstacle was removed with the advent of femtosecond lasers in the 1980s. In 1990, the seminal study of Denk, Strickler, and Webb on two-photon laser scanning fluorescence microscopy was published in Science. Their paper clearly demonstrated the capability of two-photon excitation microscopy for biology, and it served to convince a wide audience of scientists of the potential capability of the technique.

  15. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  16. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  17. Imperfect traveling chimera states induced by local synaptic gradient coupling

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  18. Imperfect traveling chimera states induced by local synaptic gradient coupling.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  19. Identifying parameters to describe local land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Jacobs, C. M.; Santanello, J. A.; Tuinenburg, O.

    2009-12-01

    The Global Energy and Water Cycle Experiment (GEWEX) Land-Atmosphere System Study / Local Coupling (GLASS/LoCo) project seeks to understand the role of local land-atmosphere coupling in the evolution of surface fluxes and boundary layer state variables including clouds. The theme of land-atmosphere interaction is a research area that is rapidly developing; after the well-known GLACE experiments and various diagnostic studies, new research has evolved in modeling and observing the degree of land-atmosphere coupling on local scales. Questions of interest are (1) how much is coupling related to local versus "remote" processes, (2) what is the nature and strength of coupling, and (3) how does this change (e.g. for different temporal and spatial scales, geographic regions, and changing climates). As such, this is an important issue on both weather and climate time scales. The GLASS/LoCo working group is investigating diagnostics to quantify land-atmosphere coupling. Coupling parameters include the roles of soil moisture and surface evaporative fraction as well as the evolving atmospheric boundary layer and boundary-layer entrainment. After suitable diagnostic parameters are identified, observational data and output from weather and climate models will be used to "map" land-atmosphere coupling in regards to (1)-(3) above.

  20. Mitochondrial organization and motility probed by two-photon microscopy in cultured mouse brainstem neurons

    SciTech Connect

    Mueller, Michael . E-mail: mike@neuro-physiol.med.uni-goettingen.de; Mironov, Sergej L.; Ivannikov, Maxim V.; Schmidt, Joerg; Richter, Diethelm W.

    2005-02-01

    Two-photon microscopy of rhodamine 123-labeled mitochondria revealed that mitochondria of neurons cultured from mouse respiratory center form functionally coupled, dynamically organized aggregates such as chains and clusters, while single mitochondria were rarely seen. Mitochondrial chain structures predominate in dendrites, while irregularly shaped mitochondrial clusters are mostly found in the soma. Both types of mitochondrial structures showed chaotic Brownian motions and the mitochondrial chains also revealed well-directed movements. The latter dislocations were arrested upon mitochondrial depolarization or blockade of mitochondrial ATP synthesis. Depolymerization of microtubules by colchicine or nocodazole or inhibition of protein phosphatases by calyculin A disrupted mitochondrial chains and the mitochondria accumulated in the soma. Forskolin and IBMX reversibly blocked directed movements of mitochondria, but did not affect their overall spatial distribution. Thus, protein phosphorylation seems to control both mitochondrial transport and organization. Protein phosphorylation downstream of enhanced cytosolic cAMP levels apparently regulates the transition from motile to non-motile mitochondria, while phosphorylation resulting from inhibition of types 1 and 2A protein phosphatases massively disturbs mitochondrial organization. The complex phosphorylation processes seem to control the close interaction of mitochondria and cytoskeleton which may guarantee that mitochondria are immobilized at energetic hot spots and rearranged in response to changes in local energy demands.

  1. Two-photon fluorescent probe for cadmium imaging in cells.

    PubMed

    Liu, Yongyou; Dong, Xiaohu; Sun, Jian; Zhong, Cheng; Li, Boheng; You, Ximeng; Liu, Bifeng; Liu, Zhihong

    2012-04-21

    A novel two-photon excited fluorescent probe for cadmium (named as TPCd) was designed and synthesized utilizing a prodan (6-acetyl-2-methoxynaphthalene) derivative as the two-photon fluorophore and an o-phenylenediamine derivative as the Cd(2+) chelator, which possessed favorable photophysical properties and good water-solubility. The probe was designed with a photoinduced electron transfer (PET) mechanism and thus was weakly fluorescent itself. After binding with Cd(2+) which blocked the PET process, the fluorescence intensity of the probe was enhanced by up to 15-fold under one-photon excitation (OPE) and 27-fold under two-photon excitation (TPE), respectively. The two-photon action cross-section (Φδ) of the TPCd-Cd complex at 740 nm reached 109 GM compared to 3.6 GM for free TPCd, indicating the promising prospect of the probe in two-photon application. TPCd chelated Cd(2+) with 1 : 1 stoichiometry, and the apparent dissociation constant (K(d)) was 6.1 × 10(-5) M for the one-photon mode and 7.2 × 10(-5) M for the two-photon mode. The probe responded to Cd(2+) over a wide linear range from 0.1 to 30 μM with a detection limit of 0.04 μM. High selectivity of the probe towards Cd(2+) was acquired in Tris-HCl/sodium phosphate buffer. The probe was pH-independent in the biologically relevant pH range and non-toxic to living cells at reasonable concentration levels, warranting its in vivo applications. Through two-photon microscopy imaging, the probe was successfully applied to detect Cd(2+) uptake in living HepG2 cells.

  2. High-fidelity hydrophilic probe for two-photon fluorescence lysosomal imaging.

    PubMed

    Wang, Xuhua; Nguyen, Dao M; Yanez, Ciceron O; Rodriguez, Luis; Ahn, Hyo-Yang; Bondar, Mykhailo V; Belfield, Kevin D

    2010-09-08

    The synthesis and characterization of a novel two-photon-absorbing fluorene derivative, LT1, selective for the lysosomes of HCT 116 cancer cells, is reported. Linear and nonlinear photophysical and photochemical properties of the probe were investigated to evaluate the potential of the probe for two-photon fluorescence microscopy (2PFM) lysosomal imaging. The cytotoxicity of the probe was investigated to evaluate the potential of using this probe for live two-photon fluorescence biological imaging applications. Colocalization studies of the probe with commercial Lysotracker Red in HCT 116 cells demonstrated the specific localization of the probe in the lysosomes with an extremely high colocalization coefficient (0.96). A figure of merit was introduced to allow comparison between probes. LT1 has a number of properties that far exceed those of commercial lysotracker probes, including higher two-photon absorption cross sections, good fluorescence quantum yield, and, importantly, high photostability, all resulting in a superior figure of merit. 2PFM was used to demonstrate lysosomal tracking with LT1.

  3. Simultaneous two-photon activation of type-I photodynamic therapy agents.

    PubMed

    Fisher, W G; Partridge, W P; Dees, C; Wachter, E A

    1997-08-01

    The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote nonresonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4'-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamaging near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage.

  4. Two-photon transitions in primordial hydrogen recombination

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.

    2008-07-01

    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from cosmic microwave background observations. While the central role of the two-photon decay 2s→1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns, nd→1s (n≥3). Simple attempts to include these processes in recombination calculations with an effective two-photon decay coefficient analogous to the 2s decay coefficient Λ2s=8.22s-1 have suffered from physical problems associated with the existence of kinematically allowed sequences of one-photon decays, e.g. 3d→2p→1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick to two-photon absorption, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However, we find that some photons between Lyα and Lyβ are produced, mainly by 3d→1s two-photon decay and 2s→1s Raman scattering. At later times, these photons redshift down to Lyα, excite hydrogen atoms, and act to slow recombination. Thus, the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. Our calculation involves a very different physical argument than the recent studies of Wong and Scott and Chluba and Sunyaev, and produces a much larger effect on the ionization history. The implied correction to the cosmic microwave

  5. Three-dimensional microfabrication using two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina

    1998-09-01

    Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two-photon

  6. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  7. Two-photon interference between disparate sources for quantum networking

    PubMed Central

    McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.

    2013-01-01

    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 ± 4%, which paves the way to hybrid universal quantum networks. PMID:23783585

  8. Two-photon excitation photodynamic therapy with Photofrin

    NASA Astrophysics Data System (ADS)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  9. Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging

    PubMed Central

    Yang, Yanlong; Yao, Baoli; Lei, Ming; Dan, Dan; Li, Runze; Horn, Mark Van; Chen, Xun; Li, Yang; Ye, Tong

    2016-01-01

    Bessel beams have been successfully used in two-photon laser scanning fluorescence microscopy to extend the depth of field (EDF), which makes it possible to observe fast events volumetrically. However, the depth information is lost due to integration of fluorescence signals along the propagation direction. We describe the design and implementation of two-photon lasers scanning stereomicroscopy, which allows viewing dynamic processes in three-dimensional (3D) space stereoscopically in real-time with shutter glasses at the speed of 1.4 volumes per second. The depth information can be appreciated by human visual system or be recovered with correspondence algorithms for some cases. PMID:27997624

  10. A fluorescent benzothiazole probe with efficient two-photon absorption

    NASA Astrophysics Data System (ADS)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  11. Two-photon photoassociation spectroscopy of an ultracold heteronuclear molecule

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Pérez-Ríos, Jesús; Elliott, D. S.; Chen, Yong P.

    2017-01-01

    We report on two-photon photoassociation (PA) spectroscopy of ultracold heteronuclear LiRb molecules. This is used to determine the binding energies of the loosely bound levels of the electronic ground singlet and the lowest triplet states of LiRb. We observe strong two-photon PA lines with power broadened linewidths greater than 20 GHz at relatively low laser intensity of 30 W /c m2 . The implication of this observation on direct atom to molecule conversion using stimulated Raman adiabatic passage is discussed and the prospect for electronic ground-state molecule production is theoretically analyzed.

  12. Two-photon interference with non-identical photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  13. Two-photon in vivo imaging of retinal microstructures

    NASA Astrophysics Data System (ADS)

    Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2014-02-01

    Non-invasive fluorescence retinal imaging in small animals is an important requirement in an array of translational vision applications. Two-photon imaging has the potential for long-term investigation of healthy and diseased retinal function and structure in vivo. Here, we demonstrate that two-photon microscopy through a mouse's pupil can yield high-quality optically sectioned fundus images. By remotely scanning using an electronically tunable lens we acquire highly-resolved 3D fluorescein angiograms. These results provide an important step towards various applications that will benefit from the use of infrared light, including functional imaging of retinal responses to light stimulation.

  14. Modulation of Attosecond Beating by Resonant Two-Photon Transition

    NASA Astrophysics Data System (ADS)

    Jiménez Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2015-09-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the π jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  15. Quinoline-Derived Two-Photon Sensitive Quadrupolar Probes.

    PubMed

    Tran, Christine; Berqouch, Nawel; Dhimane, Hamid; Clermont, Guillaume; Blanchard-Desce, Mireille; Ogden, David; Dalko, Peter I

    2017-02-03

    Quadrupolar probes derived from 8-dimethylamino-quinoline (8-DMAQ) having a pegylated fluorene core were prepared and studied under "one-photon" (λ=365 nm) and "two-photon" (TP) (λ=730 nm) irradiation conditions. Compound 1 a was identified as the most efficient probe by UV activation that showed sequential release of acetic acid as a model. Although the probe showed high two-photon absorption it stayed inert under femtosecond irradiation conditions. Fast and selective photolysis was observed, however, by using picosecond irradiation conditions with a remarkably high TP uncaging cross-section (δu =2.3 GM).

  16. Spatial solitons in two-photon photorefractive media

    SciTech Connect

    Hou Chunfeng; Pei Yanbo; Zhou Zhongxiang; Sun Xiudong

    2005-05-15

    We provide a theory for spatial solitons due to the two-photon photorefractive effect based on the Castro-Camus model [Opt. Lett. 28, 1129 (2003)]. We present the evolution equation of one-dimensional spatial solitons in two-photon photorefractive media. In steady state and under appropriate external bias conditions, we obtain the dark and bright soliton solutions of the optical wave evolution equation, and also discuss the self-deflection of the bright solitons theoretically by taking into account the diffusion effect.

  17. Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy.

    PubMed

    Tao, Wen; Soonpaa, Mark H; Field, Loren J; Chen, Peng-Sheng; Firulli, Anthony B; Shou, Weinian; Rubart, Michael

    2012-08-01

    Although the adult mammalian myocardium exhibits a limited ability to undergo regenerative growth, its intrinsic renewal rate is insufficient to compensate for myocyte loss during cardiac disease. Transplantation of donor cardiomyocytes or cardiomyogenic stem cells is considered a promising strategy for reconstitution of cardiac mass, provided the engrafted cells functionally integrate with host myocardium and actively contribute to its contractile force. The authors previously developed a two-photon fluorescence microscopy-based assay that allows in situ screening of donor cell function after intracardiac delivery of the cells. This report reviews the techniques of two-photon fluorescence microscopy and summarizes its application for quantifying the extent to which a variety of donor cell types stably and functionally couple with the recipient myocardium.

  18. Two-photon gateway in one-atom cavity quantum electrodynamics.

    PubMed

    Kubanek, A; Ourjoumtsev, A; Schuster, I; Koch, M; Pinkse, P W H; Murr, K; Rempe, G

    2008-11-14

    Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.

  19. Programmable two-photon quantum interference in 103 channels in opaque scattering media

    NASA Astrophysics Data System (ADS)

    Wolterink, Tom A. W.; Uppu, Ravitej; Ctistis, Georgios; Vos, Willem L.; Boller, Klaus-J.; Pinkse, Pepijn W. H.

    2016-05-01

    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports a large number of transmission channels. By adaptive spatial phase modulation of the incident wave fronts, the photons are directed at targeted speckle spots or output channels. From 103 experimentally available coupled channels, we select two channels and enhance their transmission to realize the equivalent of a fully programmable 2 ×2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be nonunitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication.

  20. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xuanze; Zong, Weijian; Li, Rongqin; Zeng, Zhiping; Zhao, Jia; Xi, Peng; Chen, Liangyi; Sun, Yujie

    2016-05-01

    Advances in light-sheet microscopy have enabled the fast three-dimensional (3D) imaging of live cells and bulk specimens with low photodamage and phototoxicity. Combining light-sheet illumination with super-resolution imaging is expected to resolve subcellular structures. Actually, such kind of super-resolution light-sheet microscopy was recently demonstrated using a single-molecule localization algorithm. However, the imaging depth and temporal resolution of this method are limited owing to the requirements of precise single molecule localization and reconstruction. In this work, we present two-photon super-resolution light-sheet imaging via stochastic optical fluctuation imaging (2PLS-SOFI), which acquires high spatiotemporal resolution and excellent optical sectioning ability. 2PLS-SOFI is based on non-linear excitation of fluctuation/blinking probes using our recently developed fast two-photon three-axis digital scanned light-sheet microscope (2P3A-DSLM), which enables both deep penetration and thin sheet of light. Overall, 2PLS-SOFI demonstrates up to 3-fold spatial resolution enhancement compared with conventional two-photon light-sheet (2PLS) microscopy and about 40-fold temporal resolution enhancement compared with individual molecule localization-selective plane illumination microscopy (IML-SPIM). Therefore, 2PLS-SOFI is promising for 3D long-term, deep-tissue imaging with high spatiotemporal resolution.

  1. Magneto-Photoluminescence Based on Two-Photon Excitation in Lanthanide-Doped Up-Conversion Crystal Particles.

    PubMed

    Xu, Hengxing; Qin, Wei; Li, Mingxing; Wu, Ting; Hu, Bin

    2017-02-20

    Experimental studies on magneto-photoluminescence based on two-photon excitation in up-conversion Y2 O2 S:Er, Yb crystal particles are reported. It is found that the up-conversion photoluminescence generated by two-photon excitation exhibits magnetic field effects at room temperature, leading to a two-photon excitation-induced magneto-photoluminescence, when the two-photon excitation exceeds the critical intensity. By considering the spin selection rule in electronic transitions, it is proposed that spin-antiparallel and spin-parallel transition dipoles with spin mixing are accountable for the observed magneto-photoluminescence. Specifically, the two-photon excitation generates spin-antiparallel electric dipoles between (4) S3/2 -(4) I15/2 in Er(3+) ions. The antiparallel spins are conserved by exchange interaction within dipoles. When the photoexcitation exceeds the critical intensity, the Coulomb screening can decrease the exchange interaction. Consequently, the spin-orbital coupling can partially convert the antiparallel dipoles into parallel dipoles, generating a spin mixing. Eventually, the populations between antiparallel and parallel dipoles reach an equilibrium established by the competition between exchange interaction and spin-orbital coupling. Applying a magnetic field can break the equilibrium by disturbing spin mixing through introducing spin precessions, changing the spin populations on antiparallel and parallel dipoles and leading to the magneto-photoluminescence. Therefore, spin-dependent transition dipoles present a convenient mechanism to realize magneto-photoluminescence in multiphoton up-conversion crystal particles.

  2. Two-photon excitation endoscopy through a multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Morales Delgado, Edgar E.; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    The vast number of propagating solutions to the wave equation in multimode optical fibers represents a larger information capacity than provided by fiber bundles of the same diameter. Therefore, in the field of imaging, multimode fibers potentially allow the transmission of images with higher resolution. However, image transmission through multimode fibers is not direct as in the fiber bundle case, in which each of the fiber cores can relay a portion of the distal image. In multimode fiber transmission, a distribution of intensity is scrambled in time and space by the propagating modes, leading to a speckle-like pattern that does not resemble the initial distribution. Here, we demonstrate two-photon excitation imaging of fluorescent beads through a multimode optical fiber. We show that our method maintains the advantages of two-photon excitation microscopy compared to single-photon excitation such as reduced photo-bleaching, deeper penetration depth and sectioning capability. Our method is based on time-gated digital phase conjugation, which allows the generation of focused pulses on the other side of a multimode fiber. To acquire an image, the focused femtosecond pulse is scanned in a three-dimensional mesh, producing two-photon excitation on each spatial location of the sample. By collecting the fluorescence through the fiber, a 3D two-photon image is reconstructed.

  3. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  4. Compact two-photon laser-scanning microscope made from minimally modified commercial components

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Hoogland, Tycho; Losavio, Bradley E.; McQuiston, A. R.; Saggau, Peter

    2002-06-01

    A compact two-photon laser-scanning microscope (TPLSM) was constructed using a diode-pumped, mode-locked Nd:YLF laser (Biolight 1000, Coherent Laser Group) and a small confocal laser scan-head (PCM2000, Nikon Bioscience). The laser emits at 1047nm and is fiber-coupled to a compact compressor unit producing a pulse-width of ~175fsec. Both the pulse compressor and confocal scan head were interfaced on a small optical breadboard that was directly attached to an upright research microscope (Eclipse E600FN, Nikon Bioscience). Two-photon fluorescence emitted from the specimen was collected into a multimode fiber and transmitted directly to an external PMT supplied with the Nikon confocal system. The modifications to the scanhead were minimal (a single mirror replacement) and did not interfere with its confocal function. The resulting system offers several advantages: compact size, turnkey operation, and the ability to translate the microscope rather than an often delicate specimen. In addition, it is possible to switch between confocal and two-photon operation, allowing for straightforward comparison. Using this compact TPLSM, we obtained structural and functional images from hippocampal neurons in living brain slices using commonly available fluorophores.

  5. Transverse target spin asymmetry in inclusive DIS with two-photon exchange

    SciTech Connect

    Andrei Afanasev; Mark Strikman; Christian Weiss

    2007-09-06

    We study the transverse target spin dependence of the cross section for the inclusive electron-nucleon scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation (Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-photon and absorptive two-photon exchange amplitudes as well as from real photon emission (bremsstrahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin dependence should be governed by a "parton-like" mechanism in which the two-photon exchange couples mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the dominant contribution arises from quark helicity flip due to interactions with non-perturbative vacuum fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon. Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, mu^2_chiral>>Lambda^2_QCD. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be of the order 10^-4, with different sign for proton and neutron. We also comment on the spin dependence in the limit of soft high-energy scattering.

  6. Enhanced two-photon absorption property of silver nanoparticle aggregates induced by a thioether derivative

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Wang, Xiao-lan; Wei, Meng-qing; Wang, Hui; Tian, Yu-peng; Li, Sheng-li; Xue, Zhao-ming; Yang, Jia-xiang; Kong, Lin

    2016-12-01

    A novel thioether derivative with two-photon absorption activity, 4,4'-((4-(dimethylamino)phenyl)methylene)bis (sulfanediyl)dianiline (abbreviated as L), was designed and synthesized, which was used to couple with Ag nanoparticles (Ag NPs, ∼6 nm) to construct L-Ag hybrid particles with L uniformly dispersed on the surface of Ag NPs. The newly-formed hybrid particles self-assembled through L-L interactions between L molecules in one hybrid particle and adjacent particle to from Ag NPs aggregates (100 nm in diameter). By Raman and XPS analysis, the interfacial interaction 'hot spot' was determined, which was between thioether group and primary amino group of L molecule and Ag+ ion on the surface of pure Ag NPs. The interfacial interactions between the two components brought about changeable linear optical properties and enhanced nonlinear optical properties, two-photon absorption cross section and two-photon absorption coefficient included. Furthermore, the optical power limiting application of Ag NPs aggregates was also optimized by this means.

  7. An amphiphilic ruthenium(II)-polypyridyl appended porphyrin as potential bifunctional two-photon tumor-imaging and photodynamic therapeutic agent.

    PubMed

    Poon, Chun-Ting; Chan, Pui-Shan; Man, Cornelia; Jiang, Feng-Lei; Wong, Ricky Ngok Shun; Mak, Nai-Ki; Kwong, Daniel W J; Tsao, Sai-Wah; Wong, Wai-Kwok

    2010-01-01

    An amphiphilic porphyrin appended with a Ru(II)-polypyridyl complex (Ru-P) showing a moderate two-photon absorption cross-section (178.0+/-26.8GM), high singlet oxygen quantum yield and rapid cellular uptake was synthesized. In vitro study using human nasopharyngeal carcinoma cells showed that Ru-P exhibited a strong two-photon induced fluorescence upon uptake, lysosomal localization and potent two-photon induced cytotoxicity. These results show that Ru-P, which was designed to enhance its cellular uptake, can potentially be used as an efficacious bifunctional two-photon tumor-imaging and photodynamic therapeutic agent despite its moderate two-photon absorption cross-section.

  8. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    SciTech Connect

    Littlewood, David John; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob; Gunzburger, Max

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  9. Intermediate vibrational coordinate localization with harmonic coupling constraints

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.

    2016-05-01

    Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations.

  10. Two-photon absorption of Zn(II) octupolar molecules.

    PubMed

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  11. One- and two-photon detachment of O-

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Urbain, Xavier; Dochain, Arnaud; Cyr, Alain; Dunseath, Kevin M.; Terao-Dunseath, Mariko

    2016-08-01

    Cross sections for one- and two-photon detachment of O-(1 s22 s22 p5P2o) have been determined in a joint experimental and theoretical study. The absolute measurement is based on the animated-crossed-beam technique, which is extended to the case of pulsed lasers, pulsed ion beams, and multiphoton detachment. The ab initio calculations employ R -matrix Floquet theory, with simple descriptions of the initial bound state and the residual oxygen atom which reproduce well the electron affinity and ground-state polarizability. For one-photon detachment, the measured and computed cross sections are in good mutual agreement, departing significantly from previous reference experiments and calculations. The generalized two-photon detachment cross section, measured at the Nd:YAG laser wavelength, is in good agreement with the R -matrix Floquet calculations. Long-standing discrepancies between theory and experiment are thus resolved.

  12. Two-Photon-Excited Fluorescence-Encoded Infrared Spectroscopy.

    PubMed

    Mastron, Joseph N; Tokmakoff, Andrei

    2016-11-23

    We report on a method for performing ultrafast infrared (IR) vibrational spectroscopy using fluorescence detection. Vibrational dynamics on the ground electronic state driven by femtosecond mid-infrared pulses are detected by changes in fluorescence amplitude resulting from modulation of a two-photon visible transition by nuclear motion. We examine a series of coumarin dyes and study the signals as a function of solvent and excitation pulse parameters. The measured signal characterizes the relaxation of vibrational populations and coherences but yields different information than conventional IR transient absorption measurements. These differences result from the manner in which the ground-state dynamics are projected by the two-photon detection step. Extensions of this method can be adapted for a variety of increased-sensitivity IR measurements.

  13. Two-photon microscopy using fiber-based nanosecond excitation

    PubMed Central

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-01-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements. PMID:27446680

  14. Two-photon-excited photoluminescence from porous silicon

    SciTech Connect

    Diener, J.; Shen, Y.R. |; Kovalev, D.I.; Polisski, G.; Koch, F.

    1998-11-01

    Two-photon-excited photoluminescence can be readily observed from porous silicon (PSi) with pulsed lasers. While its spectrum and lifetime are identical to those under one-photon excitation, it has a degree of polarization significantly higher than the latter and depending on the orientation of the input polarization with respect to the crystalline axes of the sample. The degree of polarization is a maximum when the input polarization is along [110] in the surface plane of PSi prepared from a Si (100) wafer and a minimum along [010]. The results can be understood from selective excitation of ellipsoidal nanoparticles by linearly polarized light and intrinsic anisotropy in two-photon excitation of crystalline Si. {copyright} {ital 1998} {ital The American Physical Society}

  15. Direct frequency comb two-photon laser cooling and trapping

    NASA Astrophysics Data System (ADS)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  16. Modulation of attosecond beating in resonant two-photon ionization.

    PubMed

    Jiménez-Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2014-12-31

    We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena by means of a general analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  17. Modulation of Attosecond Beating in Resonant Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2014-12-01

    We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena by means of a general analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N =2 doubly excited states.

  18. Combinatorial discovery of two-photon photoremovable protecting groups

    PubMed Central

    Pirrung, Michael C.; Pieper, Wolfgang H.; Kaliappan, Krishna P.; Dhananjeyan, Mugunthu R.

    2003-01-01

    A design principle for a two-photon photochemically removable protecting group based on sequential one-photon processes has been established. The expected performance of such groups in spatially directed photoactivation/photodeprotection has been shown by a kinetic analysis. One particular molecular class fitting into this design, the nitrobenzyl ethers of o-hydroxycinnamates, has been presented. An initial demonstration of two-photon deprotection of one such group prompted further optimization with respect to photochemical deprotection rate. This was accomplished by the preparation and screening of a 135-member indexed combinatorial library. Optimum performance for λ >350 nm deprotection in organic solvent was found with 4,5-dialkoxy and α-cyano substitution in the nitrobenzyl group and 4-methoxy substitution in the cinnamate. PMID:14557545

  19. Development of glucose sensor using two-photon adsorbed photopolymerization.

    PubMed

    Kim, Jong Min; Park, Jung-Jin; Lee, Haeng-Ja; Kim, Woo-Sik; Muramatsu, Hiroshi; Chang, Sang-Mok

    2010-01-01

    A novel glucose sensor was constructed, and its analytical potential examined. A chip-type three-electrode system for use in a flow-type electrochemical glucose sensor was fabricated using a UV lithography technique on a glass slide. An Ag/AgCl reference electrode was made by electroplating silver onto a Pt electrode and dipping in a saturated KCl solution for 30 min. In addition, a glucose-sensing electrode was fabricated using a two-photon adsorbed photopolymerization technique with a photo-reactive resin containing a glucose oxidase enzyme, ferrocene mediator, non-ionic surfactant, and carbon nanotubes. The cyclic voltammetry of the potassium ferrocyanide in the Pt sensor system showed a stable electrode condition. The response of the modified Pt sensor confirms the feasibility of using a two-photon adsorbed photopolymerization technique for the easy fabrication of functional biosensors.

  20. Two-photon microscopy using fiber-based nanosecond excitation.

    PubMed

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  1. Local dynamics of gap-junction-coupled interneuron networks

    NASA Astrophysics Data System (ADS)

    Lau, Troy; Gage, Gregory J.; Berke, Joshua D.; Zochowski, Michal

    2010-03-01

    Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.

  2. Photolysis of caged calcium in femtoliter volumes using two-photon excitation.

    PubMed Central

    Brown, E B; Shear, J B; Adams, S R; Tsien, R Y; Webb, W W

    1999-01-01

    A new technique for the determination of the two-photon uncaging action cross section (deltau) of photolyzable calcium cages is described. This technique is potentially applicable to other caged species that can be chelated by a fluorescent indicator dye, as well as caged fluorescent compounds. The two-photon action cross sections of three calcium cages, DM-nitrophen, NP-EGTA, and azid-1, are studied in the range of excitation wavelengths between 700 and 800 nm. Azid-1 has a maximum deltau of approximately 1.4 GM at 700 nm, DM-nitrophen has a maximum deltau of approximately 0.013 GM at 730 nm, and NP-EGTA has no measurable uncaging yield. The equations necessary to predict the amount of cage photolyzed and the temporal behavior of the liberated calcium distribution under a variety of conditions are derived. These equations predict that by using 700-nm light from a Ti:sapphire laser focused with a 1.3-NA objective, essentially all of the azid-1 within the two-photon focal volume would be photolyzed with a 10-micros pulse train of approximately 7 mW average power. The initially localized distributions of free calcium will dissipate rapidly because of diffusion of free calcium and uptake by buffers. In buffer-free cytoplasm, the elevation of the calcium concentration at the center of the focal volume is expected to last for approximately 165 micros. PMID:9876162

  3. Two-photon nano-PEBBLE sensors: subcellular pH measurements.

    PubMed

    Ray, Aniruddha; Koo Lee, Yong-Eun; Epstein, Tamir; Kim, Gwangseong; Kopelman, Raoul

    2011-09-21

    Intracellular pH mapping is of great importance as it plays a critical role in many cellular events. Also, in tissue, pH mapping can be an indicator for the onset of cancer. Here we describe a biocompatible, targeted, ratiometric, fluorescent, pH sensing nano-PEBBLE (Photonic Explorer for Biomedical use with Biologically Localized Embedding) that is based on two-photon excitation. Two-photon excitation minimizes the photobleaching and cell autofluorescence drastically, leading to an increase in the signal-to-noise ratio. PEBBLE nanosensors provide a novel approach for introducing membrane impermeant dyes, like HPTS, into cells. We use both non-targeted and F3 peptide targeted PEBBLE nanosensors for intracellular pH measurement of 9L cells. The intracellular measurements suggest that the non-targeted nanosensors are mostly trapped in endosomes, whereas the F3 peptide targeting enables them to escape/avoid these acidic compartments. Combining the advantages of pH sensitive PEBBLE nanoparticles, including their specific targeting, with the advantages of two-photon microscopy provides an attractive and promising prospect for non-invasive real-time monitoring of pH inside cancer cells and tissues.

  4. Simultaneous two-photon excitation of photodynamic therapy agents

    SciTech Connect

    Wachter, E.A.; Fisher, W.G. |; Partridge, W.P.; Dees, H.C.; Petersen, M.G.

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  5. Two-photon exchange corrections to the pion form factor

    DOE PAGES

    Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.

    2010-01-06

    Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.

  6. Two-photon Shack-Hartmann wavefront sensor.

    PubMed

    Xia, Fei; Sinefeld, David; Li, Bo; Xu, Chris

    2017-03-15

    We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.

  7. Two-photon injection of polaritons in semiconductor microstructures.

    PubMed

    Leménager, Godefroy; Pisanello, Ferruccio; Bloch, Jacqueline; Kavokin, Alexey; Amo, Alberto; Lemaitre, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; De Vittorio, Massimo; Giacobino, Elisabeth; Bramati, Alberto

    2014-01-15

    We experimentally demonstrate that two-photon pumping of "dark" excitons in quantum wells embedded in semiconductor microcavities can result in exciton-polariton injection and photon lasing. In the case of a semiconductor micropillar pumped at half of the exciton frequency, we observe a clear threshold behavior, characteristic of the vertical cavity surface emitting laser transition. These results are interpreted in terms of stimulated emission of terahertz photons, which allows for conversion of "dark" excitons into exciton-polaritons.

  8. Two-Photon Absorption Characterization of HgCdTe

    DTIC Science & Technology

    1990-07-30

    8c. ADDRESS (City, State. and ZIP Code) 10, SOURCE OF FUNDING NUMBERS Fort Belvoir, VA 22060-5677 PROGRAM 0. PROJECT 10 TASK ~ WORK UNIT ELEMENT NO NO...Investigation of Lifetimes ................................ 50 0 0 Other Areas Phonon -Assisted Magneto-Optical Effects ....................... 58 _valablilti...5. According to second order perturbation theory, two-photon absorption transition probablities are proportional to the product of two matrix elements

  9. Two-Photon Porphyrin Core Dendrimers for Optical Power Limiting

    DTIC Science & Technology

    2006-09-30

    Gryko (Polish Acad. Sci,), we studied 2PA of novel corroles [9]. 7. We studied the requirements imposed on organic photochromes for 2PA terabyte...imposed on organic photochromes for two-photon absorption (2PA) terabyte volumetric optical storage. We present a quantitative model of signal-to...noise ratio (SNR) and signal-to-background ratio (SBR) when 2PA-induced photochromic switching is used for writing, and 2PA-induced fluorescence is

  10. Development of Novel Two-Photon Absorbing Chromophores

    DTIC Science & Technology

    2006-08-01

    M. Urbas, Paul A. Fleitz, Joy E . Rogers, Jonathan E . Slagle, Daniel G. McLean, Richard L. Sutherland, Mark Brant , Douglas M. Krein, and...A. Fleitz (Exploratory Development, Hardened Materials Branch) Joy E . Rogers (UES) Jonathan E . Slagle (AT&T Government Solutions) Daniel G. McLean...Prescribed by ANSI Std. Z39-18 Invited Paper Development of novel two-photon absorbing chromophores Joy E . ~ o ~ e r s * " ’ ~ , Jonathan E . Slagle

  11. Improved deep two-photon calcium imaging in vivo.

    PubMed

    Birkner, Antje; Tischbirek, Carsten H; Konnerth, Arthur

    2016-12-21

    Two-photon laser scanning calcium imaging has emerged as a useful method for the exploration of neural function and structure at the cellular and subcellular level in vivo. The applications range from imaging of subcellular compartments such as dendrites, spines and axonal boutons up to the functional analysis of large neuronal or glial populations. However, the depth penetration is often limited to a few hundred micrometers, corresponding, for example, to the upper cortical layers of the mouse brain. Light scattering and aberrations originating from refractive index inhomogeneties of the tissue are the reasons for these limitations. The depth penetration of two-photon imaging can be enhanced through various approaches, such as the implementation of adaptive optics, the use of three-photon excitation and/or labeling cells with red-shifted genetically encoded fluorescent sensors. However, most of the approaches used so far require the implementation of new instrumentation and/or time consuming staining protocols. Here we present a simple approach that can be readily implemented in combination with standard two-photon microscopes. The method involves an optimized protocol for depth-restricted labeling with the red-shifted fluorescent calcium indicator Cal-590 and benefits from the use of ultra-short laser pulses. The approach allows in vivo functional imaging of neuronal populations with single cell resolution in all six layers of the mouse cortex. We demonstrate that stable recordings in deep cortical layers are not restricted to anesthetized animals but are well feasible in awake, behaving mice. We anticipate that the improved depth penetration will be beneficial for two-photon functional imaging in larger species, such as non-human primates.

  12. Temporal coherence and indistinguishability in two-photon interference effects

    SciTech Connect

    Jha, Anand Kumar; O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2008-02-15

    We show that temporal two-photon interference effects involving the signal and idler photons created by parametric down-conversion can be fully characterized in terms of the variations of two length parameters--called the biphoton path-length difference and the biphoton path-asymmetry-length difference--which we construct using the six different length parameters that a general two-photon interference experiment involves. We perform an experiment in which the effects of the variations of these two parameters can be independently controlled and studied. In our experimental setup, which does not involve mixing of signal and idler photons at a beam splitter, we further report observations of Hong-Ou-Mandel- (HOM-)like effects both in coincidence and in one-photon count rates. As an important consequence, we argue that the HOM and the HOM-like effects are best described as observations of how two-photon coherence changes as a function of the biphoton path-asymmetry-length difference.

  13. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  14. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  15. Tunable two-photon correlation in a double-cavity optomechanical system

    SciTech Connect

    Feng, Zhi-Bo; Zhang, Jian-Qi

    2015-12-15

    Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

  16. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues.

    PubMed

    Zhou, Liyi; Zhang, Xiaobing; Wang, Qianqian; Lv, Yifan; Mao, Guojiang; Luo, Aili; Wu, Yongxiang; Wu, Yuan; Zhang, Jing; Tan, Weihong

    2014-07-16

    In contrast to one-photon microscopy, two-photon probe-based fluorescent imaging can provide improved three-dimensional spatial localization and increased imaging depth. Consequently, it has become one of the most attractive techniques for studying biological events in living cells and tissues. However, the quantitation of these probes is primarily based on single-emission intensity change, which tends to be affected by a variety of environmental factors. Ratiometric probes, on the other hand, can eliminate these interferences by the built-in correction of the dual emission bands, resulting in a more favorable system for imaging living cells and tissues. Herein, for the first time, we adopted a through-bond energy transfer (TBET) strategy to design and synthesize a small molecular ratiometric two-photon fluorescent probe for imaging living cells and tissues in real time. Specifically, a two-photon fluorophore (D-π-A-structured naphthalene derivative) and a rhodamine B fluorophore are directly connected by electronically conjugated bond to form a TBET probe, or Np-Rh, which shows a target-modulated ratiometric two-photon fluorescence response with highly efficient energy transfer (93.7%) and two well-resolved emission peaks separated by 100 nm. This novel probe was then applied for two-photon imaging of living cells and tissues and showed high ratiometric imaging resolution and deep-tissue imaging depth of 180 μm, thus demonstrating its practical application in biological systems.

  17. Communication: Improved pair approximations in local coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Schwilk, Max; Usvyat, Denis; Werner, Hans-Joachim

    2015-03-01

    In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.

  18. Spiral wave chimeras in locally coupled oscillator systems

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Dierckx, Hans

    2016-02-01

    The recently discovered chimera state involves the coexistence of synchronized and desynchronized states for a group of identical oscillators. In this work, we show the existence of (inwardly) rotating spiral wave chimeras in the three-component reaction-diffusion systems where each element is locally coupled by diffusion. A transition from spiral waves with the smooth core to spiral wave chimeras is found as we change the local dynamics of the system or as we gradually increase the diffusion coefficient of the activator. Our findings on the spiral wave chimera in the reaction-diffusion systems suggest that spiral chimera states may be found in chemical and biological systems that can be modeled by a large population of oscillators indirectly coupled via a diffusive environment.

  19. Two-Photon Absorption and Two-Photon Four-Wave Mixing for the Terbium Ion in Insulators.

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    Resonant enhancement of over two orders of magnitude of direct two-photon absorption from the ground state ^7F_6 to the excited state ^5G_6 of the 4f^8 configuration of Tb^{3+} at 40,200 cm ^{-1} has been observed in time resolved experiments with two separate lasers. The results provide clear evidence for resonant enhancement of two-photon absorption in rare earth compounds and imply the same for Raman scattering. Two separate transition mechanisms have been observed. When a single laser frequency was used, the intermediate states making the largest contribution were from excited configurations of opposite parity which were far from resonance. Detailed two-frequency experiments showed, however, that near the single photon resonance, there was a much stronger contribution from the 4f ^8 configuration ^5D _4 intermediate state. The phase-matching-induced frequency selectivity in the single-photon-resonant four-wave mixing has been observed in further rare earth compounds. These observations provide additional evidence that the phase matching effects, resulting from anomalous dispersion associated with the single-photon resonance, play a major role in determining both the intensity and the line narrowing of the mixing signal, and that similar effects will be observable in any rare earth compound. An effect of two-photon-resonant four-wave mixing has been observed for a transition to the 4f^8 configuration ^5K _8 state of the Tb^{3+ } ion in LiYF_4. The strength of the resonance is comparable to that of single -photon resonances. This technique holds promise as a new spectroscopic tool, especially for studies of two-photon transitions in non-fluorescent materials.

  20. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging

    PubMed Central

    Freeman, Kim; Tao, Wen; Sun, Hongli; Soonpaa, Mark H.; Rubart, Michael

    2013-01-01

    Background Sympathetic nerve wiring in the mammalian heart has remained largely unexplored. Resolving the wiring diagram of the cardiac sympathetic network would help establish the structural underpinnings of neurocardiac coupling. New Method We used two-photon excitation fluorescence microscopy, combined with a computer-assisted 3-D tracking algorithm, to map the local sympathetic circuits in living hearts from adult transgenic mice expressing enhanced green fluorescent protein (EGFP) in peripheral adrenergic neurons. Results Quantitative co-localization analyses confirmed that the intramyocardial EGFP distribution recapitulated the anatomy of the sympathetic arbor. In the left ventricular subepicardium of the uninjured heart, the sympathetic network was composed of multiple subarbors, exhibiting variable branching and looping topology. Axonal branches did not overlap with each other within their respective parental subarbor nor with neurites of annexed subarbors. The sympathetic network in the border zone of a 2-week-old myocardial infarction was characterized by substantive rewiring, which included spatially heterogeneous loss and gain of sympathetic fibers and formation of multiple, predominately nested, axon loops of widely variable circumference and geometry. Comparison with Existing Methods In contrast to mechanical tissue sectioning methods that may involve deformation of tissue and uncertainty in registration across sections, our approach preserves continuity of structure, which allows tracing of neurites over distances, and thus enables derivation of the three-dimensional and topological morphology of cardiac sympathetic nerves. Conclusions Our assay should be of general utility to unravel the mechanisms governing sympathetic axon spacing during development and disease. PMID:24056230

  1. Two-photon inner-shell transitions in molybdenum

    NASA Astrophysics Data System (ADS)

    Bannett, Yigal B.; Freund, Isaac

    1984-07-01

    The two-photon x-ray emission spectra of inner-shell transitions in metallic Mo have been studied using large-area energy-dispersive Si(Li) detectors and fast, computer-controlled, time-coincidence electronics. The discrete energy-summation spectrum displays a peak at 17.1 keV corresponding to the expected 2s-->1s transition, as well as a second, more intense peak at 19.7 keV. Based upon very recent analytical H-atom calculations by Florescu, this latter peak is tentatively identified as due primarily to 3d-->1s transitions. The continuous two-photon spectrum has also been measured on an absolute intensity scale and compared with a frozen-orbital calculation based upon direct summation of the second-order perturbation expansion for the relevant matrix elements. For the 2s-->1s transition, excellent quantitative agreement is found using the self-consistent-field Hartree-Fock wave functions of Clementi and Roetti. The same calculation predicts that the 3s-->1s transition is of negligible relative amplitude. Because the calculational method is inapplicable to d states, a simple closure approximation is developed which is found to be reasonably good for both the 2s and 3s two-photon transitions, but apparently fails for the 3d transition since it predicts a result which is relatively much too small. Our data are the first for inner-shell transitions and it is anticipated that further developments in both instrumentation and in theory will yield a new, rich, multiphoton inner-shell spectroscopy.

  2. Hyperspectral imaging of microalgae using two-photon excitation.

    SciTech Connect

    Sinclair, Michael B.; Melgaard, David Kennett; Reichardt, Thomas A.; Timlin, Jerilyn Ann; Garcia, Omar Fidel; Luk, Ting Shan; Jones, Howland D. T.; Collins, Aaron M.

    2010-10-01

    A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon

  3. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization.

    PubMed

    Masui, Kyoko; Shoji, Satoru; Asaba, Kenji; Rodgers, Thomas C; Jin, Feng; Duan, Xuan-Ming; Kawata, Satoshi

    2011-11-07

    We demonstrate fabrication of Au nanorod aggregates microstructures by means of a femtosecond near-infrared laser. The laser light was tightly focused into colloidal Au nanorods dispersed in photopolymerizable metyl-methacrylate (MMA) compound to induce two-photon polymerization (TPP). TPP of MMA glued the nanorods together to form solid microstrucures of aggregates. The laser light excited a local surface plasmon, resulting in confinement of TPP in the vicinity of nanorods. Concurrenly occurring optical accumulation of nanorods created a unique mechanism for the formation of nanorod aggregates into desired microstructures. This technique would be a clue for a novel micro/nanofabrication method for plasmonic materials and devices.

  4. Two-Photon Exchange in (Semi-)Inclusive DIS

    SciTech Connect

    Schlegel, M.; Metz, A.

    2009-08-04

    In this note we consider effects of a Two-Photon Exchange (TPE) in inclusive DIS and semi-inclusive DIS (SIDIS). In particular, transverse single spin asymmetries are generated in inclusive DIS if more than one photon is exchanged between the lepton and the hadron. We briefly summarize the TPE in DIS in the parton model and extend our approach to SIDIS, where a new leading twist sin(2{phi}) contribution to the longitudinal beam spin asymmetry shows up. Possible TPE effects for the Sivers and the Collins asymmetries in SIDIS are power-suppressed.

  5. Two-Photon Exchange in (Semi-)Inclusive DIS

    SciTech Connect

    Schlegel, Marc; Metz, Andreas

    2009-01-01

    In this note we consider effects of a Two-Photon Exchange (TPE) in inclusive DIS and semi-inclusive DIS (SIDIS). In particular, transverse single spin asymmetries are generated in inclusive DIS if more than one photon is exchanged between the lepton and the hadron. We briefly summarize the TPE in DIS in the parton model and extend our approach to SIDIS, where a new leading twist $\\sin(2\\phi)$ contribution to the longitudinal beam spin asymmetry shows up. Possible TPE effects for the Sivers and the Collins asymmetries in SIDIS are power-suppressed.

  6. Two-photon exchange corrections to the pion form factor

    SciTech Connect

    Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.

    2010-01-06

    Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.

  7. Two-photon exchange in electron-trinucleon elastic scattering

    NASA Astrophysics Data System (ADS)

    Kobushkin, A. P.; Timoshenko, Ju. V.

    2013-10-01

    We discuss two-photon exchange (TPE) in elastic electron scattering off the trinucleon systems, 3He and 3H. The calculations are done in the semirelativistic approximation with the trinucleon wave functions obtained with the Paris and CD-Bonn nucleon-nucleon potentials. An applicability area of the model is wide enough and includes the main part of kinematical domain where experimental data exist. All three TPE amplitudes (generalized form factors) for electron 3He elastic scattering are calculated. We find that the TPE amplitudes are a few times more significant in the scattering of electrons off 3He then in the electron-proton scattering.

  8. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect

    Atwater, J. H.; Spinelli, P.; Kosten, E.; Parsons, J.; Van Lare, C.; Van de Groep, J.; Garcia de Abajo, J.; Polman, A.; Atwater, H. A.

    2011-10-10

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 μm high and 10 μm in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  9. Two-photon quantum interference in plasmonics: theory and applications.

    PubMed

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  10. Two-photon spectroscopy of excitons with entangled photons.

    PubMed

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  11. Nonlinear Dual-Comb Spectroscopy with Two-Photon Excitation

    NASA Astrophysics Data System (ADS)

    Meek, S. A.; Hipke, A.; Hansch, T. W.; Picque, N.

    2013-06-01

    Dual frequency comb spectroscopy has proven to be a powerful method for acquiring broadband, high resolution spectra with measurement times that are much shorter than in traditional moving-mirror Fourier transform spectroscopy. Because the measurements are carried out with femtosecond lasers, this technique has great potential for decreasing the measurement times and improving the signal-to-noise ratio of nonlinear spectroscopic measurements, such as two-photon excitation or Raman processes. In the case of two-photon excitation, an entire spectrum can be obtained at a given signal level using dual-comb spectroscopy in the same time that a measurement of a single transition frequency would be obtained with a continuous laser of the same average power. In this presentation, I will show the latest results in extending the dual-comb technique to two-photon excitation spectroscopy, with measurements on gas-phase rubidium and liquid-phase dye samples. In our realization of dual-comb spectroscopy, two frequency combs with slightly different repetition rates are combined on a beam splitter and directed into a sample, and we measure the intensity of the resulting fluorescence as a function of time. Because of the different repetition rates, the time delay between a pulse from the first comb and the next pulse from the second comb changes linearly with time, simulating the action of the moving mirror in a traditional Michelson interferometer. The Fourier transform of the measured time-domain interferogram produces a radio-frequency spectrum that can be directly converted to a broadband optical spectrum through a linear scaling of the frequency. To achieve the highest possible resolution, it is necessary to compensate the residual relative fluctuations of the repetition rate and the carrier-envelope offset frequency of the frequency combs. Measuring RF beatnotes of each comb with two CW lasers provides two error signals that can be used to correct the recorded interferograms

  12. Two-photon exclusive processes in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1986-07-01

    QCD predictions for ..gamma gamma.. annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in ..gamma gamma.. reactions.

  13. Metastable Krypton Beam Source via Two-Photon Pumping Technique

    SciTech Connect

    Wong, W.W.; Young, L.

    2003-01-01

    Metastable beams of rare gas atoms have wide applications in chemical analysis of samples, as well as in aiding understanding of fundamental processes and physical attributes. Most current sources of metastable rare gas atomic beams, however, are limited in their flux density, which greatly reduces their utility in applications such as low level trace analysis and precision measurements. Previous work has demonstrated feasibility of metastable krypton production via two-photon pumping, and this paper extends that possibility into beam form. Further optimization on this scheme, moreover, promises 100-fold increase of metastable krypton flux density over that of an rf-driven discharge.

  14. Imaging nanowire plasmon modes with two-photon polymerization

    SciTech Connect

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich; Ditlbacher, Harald; Hohenau, Andreas; Krenn, Joachim R.; Hirzer, Andreas; Schmidt, Volker

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.

  15. Pulse front adaptive optics in two-photon microscopy.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  16. Polarization rotation under two-photon Raman resonance for magnetometry

    SciTech Connect

    Pradhan, S.; Behera, R.; Das, A. K.

    2012-04-23

    The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.

  17. Rate for annihilation of galactic dark matter into two photons

    NASA Technical Reports Server (NTRS)

    Giudice, Gian F.; Griest, Kim

    1989-01-01

    A calculation of the cross section for neutralino-neutralino annihilation into two photons is performed and applied to dark matter in the galactic halo to find the counting rate in a large gamma ray detector such as EGRET (Energetic Gamma Ray Experiment Telescope) or ASTROGAM. Combining constraints from particle accelerators with the requirement that the neutralinos make up the dark matter, it is found that rates of over a few dozen events per year are unlikely. The assumptions that go into these conclusions are listed. Other particle dark matter candidates which could give larger and perhaps observable signals are suggested.

  18. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    PubMed Central

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-01-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling. PMID:27576922

  19. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-08-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling.

  20. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels.

    PubMed

    Liu, Guohua; Du, Kang; Haussener, Sophia; Wang, Kaiying

    2016-10-20

    Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels.

  1. Acetylene-substituted two-photon absorbing molecules with rigid elongated pi-conjugation: synthesis, spectroscopic properties and two-photon fluorescence cell imaging applications.

    PubMed

    Liu, Bo; Zhang, Hai-Li; Liu, Jun; Huang, Zhen-Li; Zhao, Yuan-Di; Luo, Qing-Ming

    2007-09-01

    Two asymmetrical molecules with substituted acetylene as central rigid elongated conjugation are reported as potential chromophores for two-photon microscopic imaging. These molecules consist of a typical D-pi-A structure, have different donors (D), the same pi-conjugated center (pi) and the same acceptor (A). Structural characterization and spectroscopic properties, including single-photon (linear) absorption, quantum yields, single-photon fluorescence, and two-photon absorption spectra, were studied in solvents with different polarity. These acetylene-substituted molecules were found to have high two-photon absorption cross-sections (for example, 690 GM for molecule 1 in toluene), which were determined by a two-photon induced fluorescence method using a femtosecond Ti: sapphire laser as excitation source. Single- and two-photon cellular imaging experiments demonstrate that the substituted acetylene derivatives could be one kind of promising two-photon fluorescence probes for cellular imaging.

  2. Femtosecond two-photon-excited fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Teuchner, Klaus; Mueller, Susanne; Freyer, Wolfgang; Leupold, Dieter; Altmeyer, Peter; Stuecker, Markus; Hoffmann, Klaus

    2003-02-01

    Spectral and time-resolved fluorescence studies of different eumelanins (natural, synthetic, enzymatic) in solution have been carried out by two-photon excitation at 800 nm, using 80 fs pulses with photon flux densities <= 1027 cm-2.s-1. Whereas all samples show monotonously decreasing absorption between near UV and near IR, their fluorescence behavior indicates strong heterogeneity. With respect to the also measured one-photon excited fluorescence (OPF) of melanin at 400 nm, the overall spectral shape of the two-photon excited fluorescence (TPF) is red-shifted. Both OPF and TPF exhibit three-exponential decay with a shortest component # 200 ps. As is also shown, the fluorescence properties of melanin are dependent on the micro-environment. This allows the hypothesis, that the process of malignant transformation in skin tissue could be reflected in the fluorescence, provided the melanin in skin is selectively excited. The latter is realized by the described stepwise absorption of two 800 nm photons. In this way, indeed characteristic differences between the TPF spectra of healthy tissue, nevus cell nevi and malignant melanoma have been found.

  3. Nonresonant two-photon transitions in length and velocity gauges

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2016-08-01

    We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi frequencies under the "gauge" transformation from the length to the velocity gauge. It is shown that gauge invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color absorption. The arguments leading to this conclusion are supported by analytic calculations which express the matrix elements in terms of hypergeometric functions, and ramified by a "master identity" which is fulfilled by off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the length gauge. The study of the gauge dependence of atomic processes highlights subtle connections between the concept of asymptotic states, the gauge transformation of the wave function, and infinitesimal damping parameters for perturbations and interaction Hamiltonians that switch off the terms in the infinite past and future [of the form exp(-ɛ |t |)] . We include a pertinent discussion.

  4. Two-Photon Holographic Stimulation of ReaChR

    PubMed Central

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  5. Two-Photon-Induced Fluorescence of Isomorphic Nucleobase Analogs

    PubMed Central

    Lane, Richard S. K.; Jones, Rosemary; Sinkeldam, Renatus W.

    2014-01-01

    Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the two-photon excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both furan-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications. PMID:24604669

  6. Theory of Two-Photon Absorptions in Graphene Fragments

    NASA Astrophysics Data System (ADS)

    Aryanpour, K.; Shukla, A.; Mazumdar, S.; Sandhu, A.; Roberts, A.

    2012-02-01

    Electron-electron correlations in graphene is currently an active field of research [1-3]. The carbon atoms in graphene have the same sp^2 hybridization as in strongly correlated π-conjugated polymer systems. The low energy behavior in graphene however appears to be reasonably described within the one-electron Dirac massless fermions model. Historically, the occurrence of the lowest two-photon state below the optical one-photon state provided the strongest proof for strong electron correlations in linear polyenes [4]. We systematically study the Coulomb interaction effects on the ground state and nonlinear absorptions in graphene fragments as a function of system size, beginning from the smallest stable fragment coronene. We report high order calculations of one- vs two-photon spin singlet and triplet states, in coronene, hexabenzocoronene and other molecular fragments that clearly indicate the strong role of electron-electron interactions. We will discuss the implications of our work on molecular systems for the thermodynamic limit of graphene. [4pt] [1] Siegel David A.; et al., PNAS, v108, 28, 11365-11369 (2011)[0pt] [2] Gr"onqvist J. H.; et al., arXiv: 1107.5653v1[0pt] [3] Uchoa B.; et al., arXiv: 1109.1577v1[0pt] [4] Ramasesha S.; et al., J. Chem. Phys. 80, 3278 (1984)

  7. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  8. High-order dispersion effects in two-photon interference

    NASA Astrophysics Data System (ADS)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  9. Temperature dependence of the two photon absorption in indium arsenide

    SciTech Connect

    Berryman, K.W.; Rella, C.W.

    1995-12-31

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms.

  10. Two-photon multiplane imaging of neural circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Miller, Jae-eun K.; Carrillo-Reid, Luis; Pnevmatikakis, Eftychios; Paninski, Liam; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Imaging the neuronal activity throughout the brain with high temporal and spatial resolution is an important step in understanding how the brain works. Two-photon laser scanning microscopy with fluorescent calcium indicators has enabled this type of experiments in vivo. Most of these microscopes acquire images serially, with a single laser beam, limiting the overall imaging speed. To overcome this limit, multiple beamlets can be used to image in parallel multiple regions. Here, we demonstrate a novel scheme of a two-photon laser-scanning microscope that can simultaneously record neuronal activity at multiple planes of the sample with a single photomultiplier tube. A spatial light modulator is used to generate the designated multiple beamlets, and a constrained non-negative matrix factorization algorithm is used to demix the signals from multiple scanned planes. We simultaneously record neuronal activity of multiple layers of a mouse cortex at 10 fps in vivo. This novel imaging scheme provides a powerful tool for mapping the brain activity.

  11. Simultaneous two-photon excitation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  12. Multidimensional two-photon imaging of diseased skin

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sestini, S.; De Giorgi, V.; Massi, D.; Lotti, T.; Pavone, F. S.

    2008-02-01

    We used combined two photon intrinsic fluorescence (TPE), second harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two photon emission detection (MTPE) to investigate different kinds of human cutaneous ex-vivo skin lesions. Morphological and spectroscopic analyses allowed to characterize both healthy and pathological skin samples, including tumors, as well as to discriminate between healthy and diseased tissue, in a good agreement with common routine histology. In particular, we examined tissue samples from normal and pathological scar tissue (keloid), and skin tumors, including basal cell carcinoma (BCC) and malignant melanoma (MM). By using combined TPE-SHG microscopy we investigated morphological features of different skin regions, as BCC, tumor-stroma interface, healthy dermis, fibroblastic proliferation, and keloids. The SHG to autofluorescence aging index of dermis (SAAID) score was used to characterize each region, finding differences between BCC, healthy skin, tumor-stroma interface, keloids, and fibroblastic proliferation. Further comparative analysis of healthy skin and neoplastic samples was performed using FLIM. In particular, BCC showed a blue-shifted fluorescence emission, a higher absorption at 800 nm excitation wavelength, and a slightly longer mean fluorescence lifetime. MM showed a lifetime distribution similar to the corresponding melanocytic nevus (MN) lifetime distribution for the slow lifetime component, and different for the fast lifetime component.

  13. Coupling light to a localized surface plasmon-polariton

    NASA Astrophysics Data System (ADS)

    Agio, Mario; Zumofen, Gert; Mojarad, Nassiredin M.; Sandoghdar, Vahid

    2009-08-01

    We investigate the interaction of focused Gaussian and radially-polarized beams with a silver nanosphere, with emphasis on the coupling to localized surface plasmon-polaritons. We discuss the overall efficiency, including the effect of the entrance pupil and of absorption in the nanosphere, showing that a Gaussian beam performs better than a radially-polarized beam, when focused by an aplanatic system. We find that more than 50% of the photons in the incident beam can be reflected using realistic focusing parameters.

  14. Locally coupled coherent states and Herman-Kluk dynamics

    NASA Astrophysics Data System (ADS)

    Child, M. S.; Shalashilin, D. V.

    2003-02-01

    An exact analysis of coupled coherent state (CCS) theory in the moving locally quadratic Hamiltonian approximation is shown to reproduce both the linearized coherent state matrix element of the Herman-Kluk propagator and the coherent state overlap with Heller's thawed Gaussian wave function. The derivation is applicable to anharmonic as well as harmonic systems, because the quadratic approximation is taken to apply only in the vicinity of a particular classical trajectory. New compact expressions for the linearized Herman-Kluk coherent state matrix element are given, and improvements for the practical application of CCS theory are discussed.

  15. Rate-Tunable Stepwise Two-Photon-Gated Photoresponsive Systems Employing a Synergetic Interaction between Transient Biradical Units.

    PubMed

    Mutoh, Katsuya; Kobayashi, Yoichi; Yamane, Takuya; Ikezawa, Takahiro; Abe, Jiro

    2017-03-29

    The cooperative interaction between photons and molecules, recently termed as the "photosynergetic" effect, is crucial to develop advanced photofunctional materials beyond a one-photon reaction of a single chromophore. The two-photon absorption is one of the attractive processes for the efficient utilization of photons. Especially, the nonlinear response of the two-photon absorption process is of interest not only to realize temporal and spatial control of reactions but also to develop the rewritable optical memory media and smart optical devices responding to the intensity of light. The stepwise two-photon-induced photochromism, which involves a short-lived transient species as an intermediate state, is one of the advanced photoresponsive compounds. The key feature of the stepwise two-photon-induced photochromism is an effective electronic interaction between the photogenerated transient chromophores. Here, we designed bis(phenoxyl-imidazolyl radical complex) (bisPIC) derivatives, which are composed of a couple of photochromic units and absorb two photons in a stepwise manner. The stepwise photochromic properties were investigated in detail by using double pulse laser flash photolysis and time-resolved Fourier transform infrared (TR-FTIR) spectroscopy. The one-photon reaction leads to the generation of a short-lived biradical species, which absorbs an additional photon and generates two electronically coupled biradical units, resulting in the formation of the long-lived quinoid species. The short-lived biradical species and the long-lived quinoid species of each bisPIC derivatives show the significantly different absorption spectra and rates of the thermal back reactions. These results indicate the colors and the lifetimes of the transient species can be systematically changed by switching the wavelength and intensity of the excitation light. The development of an excitation light threshold system based on the fast-switchable photochromic compounds will give

  16. Two-photon absorption and nonlinear polariton effects in organic crystals

    NASA Astrophysics Data System (ADS)

    Johnson, C. K.

    1981-10-01

    Two photon excitation (TPE) and second harmonic generation (SHG) were studied in phenanthrene crystals as low temperatures (2 to 6 K). Analysis of vibronic structure reveals that the dominant intermediate states for TPA are those of B2 (L axis) symmetry. The TPE spectra principally associated with intermediate states of A1 (M) symmetry exhibit strong intramolecular vibronic coupling by totally symmetric vibrations. Polarized TPE spectra of mixed crystals of phenanthrene in fluorene confirm the predominance of the long axis mechanism in TPA and the participation of states of A1 symmetry by vibronic coupling. Position of the upper Davydov component of the origin depends on photon propagation direction and polarization in both TPE and SHG. The appearance of the dipole forbidden lower Davydov component in these spectra is discussed in terms of misalignment and excitation of a longitudinal exciton.

  17. Cyclometalated Iridium(III) Complexes as Two-Photon Phosphorescent Probes for Specific Mitochondrial Dynamics Tracking in Living Cells.

    PubMed

    Jin, Chengzhi; Liu, Jiangping; Chen, Yu; Zeng, Leli; Guan, Ruilin; Ouyang, Cheng; Ji, Liangnian; Chao, Hui

    2015-08-17

    Five cyclometalated iridium(III) complexes with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives (IrL1-IrL5) were synthesized and developed to image and track mitochondria in living cells under two-photon (750 nm) excitation, with two-photon absorption cross-sections of 48.8-65.5 GM at 750 nm. Confocal microscopy and inductive coupled plasma-mass spectrometry (ICP-MS) demonstrated that these complexes selectively accumulate in mitochondria within 5 min, without needing additional reagents for membrane permeabilization, or replacement of the culture medium. In addition, photobleaching experiments and luminescence measurements confirmed the photostability of these complexes under continuous laser irradiation and physiological pH resistance. Moreover, results using 3D multicellular spheroids demonstrate the proficiency of these two-photon luminescent complexes in deep penetration imaging. Two-photon excitation using such novel complexes of iridium(III) for exclusive visualization of mitochondria in living cells may substantially enhance practical applications of bioimaging and tracking.

  18. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    PubMed Central

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2010-01-01

    The ability to measure oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here, we report the first practical in vivo two-photon high-resolution pO2 measurements in small rodents’ cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 µm, sub-second temporal resolution and requires low probe concentration. Most importantly, the properties of the probe allowed for the first direct high-resolution measurement of cortical extravascular (tissue) pO2, opening numerous possibilities for functional metabolic brain studies. PMID:20693997

  19. One- and two-photon absorption of highly conjugated multiporphyrin systems in the two-photon Soret transition region

    NASA Astrophysics Data System (ADS)

    Fisher, Jonathan A. N.; Susumu, Kimihiro; Therien, Michael J.; Yodh, Arjun G.

    2009-04-01

    This study presents a detailed investigation of near-infrared one- and two-photon absorption (TPA) in a series of highly conjugated (porphinato)zinc(II) compounds. The chromophores interrogated include meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers (PZnn species), (porphinato)zinc(II)-spacer-(porphinato)zinc(II) (PZn-Sp-PZn) complexes, PZnn structures featuring terminal electron-releasing and -withdrawing substituents, related conjugated arrays in which electron-rich and -poor PZn units alternate, and benchmark PZn monomers. Broadband TPA cross-section measurements were performed ratiometrically using fluorescein as a reference. Superficially, the measurements indicate very large TPA cross-sections (up to ˜104GM; 1GM =1×10-50cm4sphoton-1) in the two-photon Soret (or B-band) resonance region. However, a more careful analysis of fluorescence as a function of incident photon flux suggests that significant one-photon absorption is present in the same spectral region for all compounds in the series. TPA cross-sections are extracted for the first time for some of these compounds using a model that includes both one-photon absorption and TPA contributions. Resultant TPA cross-sections are ˜10GM. The findings suggest that large TPA cross-sections reported in the Soret resonance region of similar compounds might contain significant contributions from one-photon absorption processes.

  20. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    NASA Astrophysics Data System (ADS)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  1. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation.

    PubMed

    Liese, Jan; Rooijakkers, Suzan H M; van Strijp, Jos A G; Novick, Richard P; Dustin, Michael L

    2013-06-01

    Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.

  2. Measurement of two-photon exchange effects in CLAS

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak; Raue, Brian; Adikaram, Dasuni; Weinstein, Lawrence

    2014-03-01

    There is a significant discrepancy between the Rosenbluth and the polarization transfer measurements of the proton's electric to magnetic form factor ratio GEp/GEp. One possible explanation of this discrepancy is the contribution from two-photon exchange (TPE) effects, which are not typically accounted for in standard radiative corrections. The ratio of positron-proton to electron-proton elastic scattering cross sections, R =σ/(e+ p) σ (e- p) , provides a model independent measurement of the TPE contribution to elastic electron-proton scattering. We measured this ratio at Jefferson Lab using a mixed electron-positron beam. Both electrons and positrons were elastically scattered from a liquid hydrogen target. The resulting scattered particles were detected in CLAS. The experimental details and results will be discussed. U.S. Dept. of Energy.

  3. Two-photon exchange effect studied with neural networks

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-09-15

    An approach to the extraction of the two-photon exchange (TPE) correction from elastic ep scattering data is presented. The cross-section, polarization transfer (PT), and charge asymmetry data are considered. It is assumed that the TPE correction to the PT data is negligible. The form factors and TPE correcting term are given by one multidimensional function approximated by the feedforward neural network (NN). To find a model-independent approximation, the Bayesian framework for the NNs is adapted. A large number of different parametrizations is considered. The most optimal model is indicated by the Bayesian algorithm. The obtained fit of the TPE correction behaves linearly in {epsilon} but it has a nontrivial Q{sup 2} dependence. A strong dependence of the TPE fit on the choice of parametrization is observed.

  4. High contrast two-photon imaging of fingermarks

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  5. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility.

    PubMed

    Suter, Marcel; Zhang, Li; Siringil, Erdem C; Peters, Christian; Luehmann, Tessa; Ergeneman, Olgac; Peyer, Kathrin E; Nelson, Bradley J; Hierold, Christofer

    2013-12-01

    This work presents the fabrication and controlled actuation of swimming microrobots made of a magnetic polymer composite (MPC) consisting of 11-nm-diameter magnetite (Fe3O4) nanoparticles and photocurable resin (SU-8). Two-photon polymerization (TPP) is used to fabricate the magnetic microstructures. The material properties and the cytotoxicity of the MPC with different nanoparticle concentrations are characterized. The live/dead staining tests indicate that MPC samples with varied concentrations, up to 10 vol.%, have negligible cytotoxicity after 24 h incubation. Fabrication parameters of MPC with up to 4 vol.% were investigated. We demonstrate that the helical microdevices made of 2 vol.% MPC were capable of performing corkscrew motion in water applying weak uniform rotating magnetic fields.

  6. Two-photon transition form factor of c ¯ quarkonia

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  7. Fluorescent Pluronic nanodots for in vivo two-photon imaging

    NASA Astrophysics Data System (ADS)

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Marder, Seth R.; Sanden, Boudewijn Van der; Stephan, Olivier

    2009-06-01

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 µm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  8. Fluorescent Pluronic nanodots for in vivo two-photon imaging.

    PubMed

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Marder, Seth R; Van der Sanden, Boudewijn; Stephan, Olivier

    2009-06-10

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 microm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  9. On the two-photon width of the δ(980)

    NASA Astrophysics Data System (ADS)

    Narison, S.

    1986-07-01

    The two-photon width of the δ(980) is evaluated using three-point function sum rules which are able to predict accurately the anomalous π0 --> γ and non-anomalous δ --> ηπ decay rates. The prediction, though smaller than previous results based on vector meson dominance, is still higher than the present Crystal Ball data. An analysis of the three-point function with one-gluon exchange cannot support the previous successful explanation of the data within the four-quark scheme. On leave of absence from Laboratoire de Physique Mathématique, Université des Sciences et Techniques du Languedoc, Place Eugène Batailon, F-34100 Montpellier Cedez, France.

  10. Clinical multiphoton tomography and clinical two-photon microendoscopy

    NASA Astrophysics Data System (ADS)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  11. Arbitrary-scan imaging for two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Botcherby, Edward; Smith, Christopher; Booth, Martin; Juskaitis, Rimas; Wilson, Tony

    2010-02-01

    In this paper, we present details of a scanning two-photon fluorescence microscope we have built with a nearisotropic scan rate. This means that the focal spot can be scanned at high speed along any direction in the specimen, without introducing systematic aberrations. We present experimental point spread function measurements for this system using an Olympus 0.8 NA 40X water dipping objective lens that demonstrates an axial range of operation greater than 200 μm. We give details of a novel actuator device used to displace the focusing element and demonstrate axial scan responses up to 3.5 kHz. Finally, we present a bioscience application of this system to image dendritic processes that follow non-linear paths in three-dimensional space. The focal spot was scanned along one such process at 400 Hz with an axial range of more than 90 μm.

  12. High contrast two-photon imaging of fingermarks

    PubMed Central

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-01-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples. PMID:27053515

  13. Two-photon quantum interference for an undergraduate lab

    NASA Astrophysics Data System (ADS)

    Ourjoumtsev, A.; Dheur, M.-C.; Avignon, T.; Jacubowiez, L.

    2015-11-01

    We present a simple setup allowing undergraduate students to reproduce the Hong-Ou-Mandel experiment during a half-day labwork session and observe the coalescence of two indistinguishable photons merging on a balanced beamsplitter. This two-photon interference effect, fundamentally related to the bosonic character of the photons, is commonly used in the fields of quantum communication and computing to test the indistinguishability of two single-photon wavepackets. The setup makes use of very few optical elements and requires little alignement that can be performed by students themselves. It allows them to gather essential experimental skills related to parametric crystals, fibre optics and single-photon detection, and to transpose abstract concepts of quantum physics to a hands-on experiment in the lab.

  14. Anomalous two-photon spectral features in warm rubidium vapor

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Milburn, T. J.; Kielpinski, D.; Stace, T. M.; Luiten, A. N.

    2016-09-01

    We report observation of anomalous fluorescence spectral features in the environs of a two-photon transition in a rubidium vapor when excited with two different wavelength lasers that are both counterpropagating through the vapor. These features are characterized by an unusual trade-off between the detunings of the driving fields. Three different hypothetical processes are presented to explain the observed spectra: a simultaneous three-atom and four-photon collision, a four-photon excitation involving a light field produced via amplified spontaneous emission, and population pumping perturbing the expected steady-state spectra. Numerical modeling of each hypothetical process is presented, supporting the population pumping process as the most plausible mechanism.

  15. Ground state bromine atom density measurements by two-photon absorption laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Foucher, M.; Chabert, P.; Booth, J.-P.

    2014-12-01

    Ground state bromine atom detection by two-photon absorption laser-induced fluorescence (TALIF) is demonstrated. The (4p5) {^2Po3/2} bromine atoms are excited by two-photon absorption at 252.594 nm to the (5p) {^4So3/2} state and detected by 635.25 nm fluorescence to the (5s) 4P5/2 state. The atoms are generated in a radio-frequency inductively-coupled plasma in pure HBr. The excitation laser also causes some photodissociation of HBr molecules, but this can be minimized by not focussing the laser beam, still giving adequate signal levels. We determined the natural lifetime of the emitting (5p) {^4So3/2} state, τf^Br*=30.9 +/- 1.4 ns and the rate constant for quenching of this state by collision with HBr molecules, k_HBrQ = 1.02 +/- 0.07× 10-15 m3 s-1 .

  16. Creation of two-photon states via interactions between Rydberg atoms during light storage

    NASA Astrophysics Data System (ADS)

    Ruseckas, J.; Yu, I. A.; Juzeliūnas, G.

    2017-02-01

    We propose a method to create two-photon states in a controllable way using interaction between the Rydberg atoms during the storage and retrieval of slow light. A distinctive feature of the suggested procedure is that the slow light is stored into a superposition of two atomic coherences under conditions of electromagnetically induced transparency. Interaction between the atoms during the storage period creates entangled pairs of atoms in a superposition state that is orthogonal to the initially stored state. Restoring the slow light from this new atomic state one can produce a two-photon state with a second-order correlation function determined by the atom-atom interaction and the storage time. Therefore the measurement of the restored light allows one to probe the atom-atom coupling by optical means with a sensitivity that can be increased by extending the storage time. As a realization of this idea we consider a many-body Ramsey-type technique which involves π /2 pulses creating a superposition of Rydberg states at the beginning and the end of the storage period. In that case the regenerated light is due to the resonance dipole-dipole interaction between the atoms in the Rydberg states.

  17. Two-photon fluorescent probe derived from naphthalimide for cysteine detection and imaging in living cells

    NASA Astrophysics Data System (ADS)

    Liu, Yanbin; Liu, Yuwen; Liu, Wei; Liang, Shucai

    2015-02-01

    A maleimide coupling naphthalimide was reported as new two-photon fluorescent (TPF) probe for cysteine (Cys). The probe was weakly fluorescent itself due to the donor-excited photoinduced electron transfer (d-PET). After reaction with Cys, d-PET process was blocked and fluorescence enhancement of the probe was observed at 470 nm. The d-PET principle was rationalized by theoretical calculations with density functional theory and time-dependent density functional theory. Thiol-maleimide addition between the probe and Cys was confirmed by 1H NMR and mass spectrum measurements. TPF analysis demonstrated a 24.7-fold emission increase of the probe induced by Cys upon excitation at 760 nm. The two-photon action cross-section of probe-Cys adduct at 760 nm reached 42 GM compared to 1.7 GM for free probe. The probe showed high sensitivity and selectivity to Cys over other potential interferences; especially it had the capability to discriminate Cys from glutathione and homocysteine. Through TPF imaging, the probe was successfully applied in the detection of Cys in living cells.

  18. In-depth fiber optic two-photon polymerization and its applications in micromanipulation

    NASA Astrophysics Data System (ADS)

    Mishra, Yogeshwar N.; Ingle, Ninad D.; Pinto, Mervyn; Mohanty, Samarendra K.

    2011-02-01

    Two photon polymerization (TPP) has enabled three-dimensional microfabrication with sub-diffraction limited spatial resolution. However, depth at which TPP could be achieved, has been limited due to the high numerical aperture microscope objective, used to focus the ultrafast laser beam. Here, we report fiber-optic two photon polymerization (FTP) for in-depth fabrication of microstructures from a photopolymerizable resin. A cleaved single mode optical fiber coupled with tunable femtosecond laser could achieve TPP, forming extended waveguide on the fiber itself. The length of the FTP tip was found to depend on the laser power and exposure duration. Microfabricated fiber tip using FTP was employed to deliver continuous wave laser beam on to polystyrene microspheres in order to transport and manipulate selected particles by scattering force and 2D trapping. Such microstructures formed by TPP on tip of the fiber will also enable puncture and micro-surgery of cellular structures. With use of a cleaved fiber or axicon tip, FTP structures were fabricated on curved surfaces at large depth. The required Power for FTP and the polymerization rate was faster while using an axicon tip optical fiber. This enabled fabrication of complex octopus-like microstructures.

  19. Two-photon patterning of optical waveguides in flexible polymers

    NASA Astrophysics Data System (ADS)

    Bichler, Sabine; Feldbacher, Sonja; Woods, Rachel; Satzinger, Valentin; Schmidt, Volker; Jakopic, Georg; Langer, Gregor; Kern, Wolfgang

    2009-08-01

    Over the last few years two-photon based photo-processes have become an important method to generate 3D microstructures in organic materials without the use of masks and molds. The present work deals with the fabrication of optical waveguides in a flexible polysiloxane matrix for data transmission on printed circuit boards (PCB). In the developed system the waveguide core is formed by two-photon induced photo polymerization (TPIP) of selected monomers, which are dissolved in a silicone matrix. Through the photo-induced polymerization an interpenetrating network is generated, resulting in a refractive index change between the illuminated waveguide cladding and the illuminated core material. Because of the optical transparency, flexibility, chemical and thermal stability polysiloxanes were chosen as optical matrix material. Different types of phenyl methacrylates with a high refractive index were used as monomers. In order to obtain a high contrast in refractive index, the monomers were removed from non-illuminated regions in a vacuum process after laser exposure. The written optical waveguides were evidenced by phase contrast microscopy, revealing an excellent structuring behaviour of the developed material. Optical techniques e.g. cut-back measurements and light extraction tests were applied to characterize the inscribed waveguide structures and to detect the resulting optical loss. To determine the refractive index change upon UV-irradiation spectroscopic ellipsometry was applied. Thus, a difference of Δn=0.02 between the non-illuminated cladding and the illuminated core material was detected. Further, prototypes of optical interconnects on PCBs were fabricated by inscription of a waveguide bundle between a mounted laser and photo diode, resulting in the desired increase of the transmitted photocurrent after TPA structuring. In conclusion, the obtained results demonstrate that fully flexible optical interconnects are accessible by the developed process.

  20. Light-induced damage and its diagnosis in two-photon excited autofluorescence imaging of retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Chen, Danni; Qu, Junle; Xu, Gaixia; Zhao, Lingling; Niu, Hanben

    2007-05-01

    In this paper, a novel method for the differentiation of the retinal pigment epithelium (RPE) cells after light-induced damage by two-photon excitation is presented. Fresh samples of RPE cells of pig eyes are obtained from local slaughterhouse. Light-induced damage is produced by the output from Ti: sapphire laser which is focused onto the RPE layer. We study the change of the autofluorescence properties of RPE after two-photon excitation with the same wavelength. Preliminary results show that after two-photon excitation, there are two clear changes in the emission spectrum. The first change is the blue-shift of the emission peak. The emission peak of the intact RPE is located at 592nm, and after excitation, it shifts to 540nm. It is supposed that the excitation has led to the increased autofluorescence of flavin whose emission peak is located at 540nm. The second change is the increased intensity of the emission peak, which might be caused by the accelerated aging because the autofluorescence of RPE would increase during aging process. Experimental results indicate that two-photon excitation could not only lead to the damage of the RPE cells in multiphoton RPE imaging, but also provide an evaluation of the light-induced damage.

  1. Classes of two-photon states defined by linear interactions and destructive two-photon quantum interference in a single mode

    NASA Astrophysics Data System (ADS)

    Lund, A. P.

    2015-11-01

    We describe a two-photon quantum interference effect which differs from the Hong-Ou-Mandel effect in that the destructive quantum inference occurs on a component of the state where two photons are in a single output mode while maintaining the two-photon events in the alternative mode. This effect is manifestly nonclassical but requires more sophisticated technology to observe than the Hong-Ou-Mandel effect. The theory outlined in this paper can also be used to classify two-photon states into classes which are related by the ability to transform the states within the class by using only linear optical interactions. This theory shows that there is an infinite number of these classes of two photon states when there are two or more modes which can support the photons.

  2. Enhanced Soundings for Local Coupling Studies Field Campaign Report

    SciTech Connect

    Ferguson, Craig R; Santanello, Joseph A; Gentine, Pierre

    2016-04-01

    This document presents initial analyses of the enhanced radiosonde observations obtained during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Enhanced Soundings for Local Coupling Studies Field Campaign (ESLCS), which took place at the ARM Southern Great Plains (SGP) Central Facility (CF) from June 15 to August 31, 2015. During ESLCS, routine 4-times-daily radiosonde measurements at the ARM-SGP CF were augmented on 12 days (June 18 and 29; July 11, 14, 19, and 26; August 15, 16, 21, 25, 26, and 27) with daytime 1-hourly radiosondes and 10-minute ‘trailer’ radiosondes every 3 hours. These 12 intensive operational period (IOP) days were selected on the basis of prior-day qualitative forecasts of potential land-atmosphere coupling strength. The campaign captured 2 dry soil convection advantage days (June 29 and July 14) and 10 atmospherically controlled days. Other noteworthy IOP events include: 2 soil dry-down sequences (July 11-14-19 and August 21-25-26), a 2-day clear-sky case (August 15-16), and the passing of Tropical Storm Bill (June 18). To date, the ESLCS data set constitutes the highest-temporal-resolution sampling of the evolution of the daytime planetary boundary layer (PBL) using radiosondes at the ARM-SGP. The data set is expected to contribute to: 1) improved understanding and modeling of the diurnal evolution of the PBL, particularly with regard to the role of local soil wetness, and (2) new insights into the appropriateness of current ARM-SGP CF thermodynamic sampling strategies.

  3. Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.

    PubMed Central

    Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C

    2002-01-01

    The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses. PMID:11916876

  4. Polarization-Sensitive Two-Photon Microscopy Study of the Organization of Liquid-Crystalline DNA

    PubMed Central

    Mojzisova, Halina; Olesiak, Joanna; Zielinski, Marcin; Matczyszyn, Katarzyna; Chauvat, Dominique; Zyss, Joseph

    2009-01-01

    Abstract Highly concentrated DNA solutions exhibit self-ordering properties such as the generation of liquid-crystalline phases. Such organized domains may play an important role in the global chromatin topology but can also be used as a simple model for the study of more complex 3D DNA structures. In this work, using polarized two-photon fluorescence microscopy, we report on the orientation of DNA molecules in liquid-crystalline phases. For this purpose, we analyze the signal emitted by fluorophores that are noncovalently bound to DNA strands. In nonlinear processes, excitation occurs exclusively in the focal volume, which offers advantages such as the reduction of photobleaching of out-of-focus molecules and intrinsic 3D sectioning capability. Propidium iodide and Hoechst, two fluorophores with different DNA binding modes, have been considered. Polarimetric measurements show that the dyes follow the alignment with respect to the DNA strands and allow the determination of the angles between the emission dipoles and the longitudinal axis of the DNA double strand. These results provide a useful starting point toward the application of two-photon polarimetry techniques to determine the local orientation of condensed DNA in physiological conditions. PMID:19843467

  5. Measuring calcium levels in Saprolegnia ferax using the two-photon laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Lilje, Osu

    2003-07-01

    xThe genus Saprolegnia in the phylum Oomycetes contains a number of parasitic species that can cause a range of important animal diseases. The aim of this study was to measure the calcium gradient, one of the growth regulating mechanisms, in Saprolegnia ferax. The two-photon laser scanning microscope allowed for detailed physiological measurements of calcium levels along the fungus-like hyphae of S.ferax. Calcium concentration was determined by making ratiometric calculation of emission levels of the calcium-sensitive fluorochrome Indo-1 at 485nm to 405nm. The calculated values were compared to the intracellular calibration values. The advantage of the two-photon laser scanning microscope is that it allows minor changes in concentration to be detected in highly localized regions of the hyphae. The technique used in this study minimized background and autofluorescence and therefore allowed for more accurate changes in intracellular Ca2+ concentration to be detected. The calcium concentration at the hyphal tip and 5, 10 and 40μm distal to the tip were calculated to be 65, 17, 38 and 20nM respectively, confirming other studies that suggest a tip-high calcium gradient.

  6. Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach.

    PubMed Central

    Yu, W; So, P T; French, T; Gratton, E

    1996-01-01

    We use the lipophilic fluorescence probe Laurdan to study cell membranes. The generalized polarization (GP) of Laurdan-labeled cells contains useful information about membrane fluidity and polarity. A high GP is usually associated with low fluidity, low polarity, or high cholesterol content of the membranes, and a low GP is the opposite. We have combined the GP method and two-photon fluorescence microscopy to provide an alternative approach to study cell membranes. Using two-photon excitation in a conventional microscope offers great advantages for studying biological samples. These advantages include efficient background rejection, low photodamage, and improved depth discrimination. We performed GP measurements on mouse fibroblast cells and observed that both intensity and GP images are not spatially uniform. We tested for possible GP artifacts arising from cellular autofluorescence and lifetime quenching, using a procedure for background fluorescence subtraction and by direct lifetime measurements in the microscope. GP measured in a single cell displays a broad distribution, and the GP of 40 different cells grown on the same cover glass is also statistically distributed. The correlations between intensity and GP images were analyzed, and no monotonic dependence between the two was found. By digitally separating high and low GP values, we found that high GP values often associate with the regions of the plasma membrane and low GP values link with the nuclear membranes. Our results also show local GP variations within the plasma and nuclear membranes. Images FIGURE 1 FIGURE 3 FIGURE 5 FIGURE 6 FIGURE 7 PMID:8789081

  7. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    PubMed Central

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293

  8. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    PubMed

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  9. Nonconventional synchronization and energy localization in weakly coupled autogenerators

    NASA Astrophysics Data System (ADS)

    Kovaleva, Margarita; Pilipchuk, Valery; Manevitch, Leonid

    2016-09-01

    The present work follows our previous study dealing with a new type of synchronization in a system of two weakly coupled generalized van der Pol-Duffing autogenerators. The essence of the effect revealed is that the synchronized oscillations are not stationary but accompanied by the most intensive energy exchange between the oscillators. The phase shift between the generators remains constant most of the time, except for vanishingly small transitional intervals. The current analysis deals with a generalized model in order to clarify the frequency detuning effect. We found that varying the frequency detuning, nonlinearity, and dissipation parameters can lead to structural changes in phase diagrams of the energy exchange dynamics, with important transitions from the intensive energy exchange to its localization on one of the two oscillators. The main conclusion is that stationary and nonstationary synchronizations associate with nonlinear normal and local modes, respectively. The analysis uses phase plane diagrams, including the concept of limiting phase trajectories, whose role in nonstationary synchronization appears to be similar to the role of nonlinear normal modes in conventional stationary states.

  10. Two-Photon Ghost Image and Interference-Diffraction

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  11. Watching Electrons Transfer from Metals to Insulators using Two Photon Photoemission

    SciTech Connect

    Johns, James E.

    2010-05-01

    Ultrafast angle-resolved two photon photoemission was used to study the dynamics and interfacial band structure of ultrathin films adsorbed onto Ag(111). Studies focused on the image potential state (IPS) in each system as a probe for measuring changes in electronic behavior in differing environments. The energetics and dynamics of the IPS at the toluene/Ag(111) interface are strongly dependent upon coverage. For a single monolayer, the first IPS is bound by 0.81 eV below the vacuum level and has a lifetime of 50 femtoseconds (fs). Further adsorption of toluene creates islands of toluene with an exposed wetting layer underneath. The IPS is then split into two peaks, one corresponding to the islands and one corresponding to the monolayer. The wetting layer IPS shows the same dynamics as the monolayer, while the lifetime of the islands increases exponentially with increasing thickness. Furthermore, the island IPS transitions from delocalized to localized within 500 fs, and electrons with larger parallel momenta decay much faster. Attempts were made using a stochastic model to extract the rates of localization and intraband cooling at differing momenta. In sexithiophene (6T) and dihexyl-sexithiophene (DH6T), the IPS was used as a probe to see if the nuclear motion of spectating side chains can interfere with molecular conduction. The energy and band mass of the IPS was measured for 6T and two geometries of DH6T on Ag(111). Electrons injected into the thicker coverages of DH6T grew exponentially heavier until they were completely localized by 230 fs, while those injected into 6T remained nearly free electron like. Based off of lifetime arguments and the density of defects, the most likely cause for the mass enhancement of the IPS in this system is small polaron formation caused by coupling of the electron to vibrations of the alkyl substituents. The energetic relaxation of the molecular adsorbate was also measured to be 20 meV/100 fs for the DH6T, and 0 meV/100 fs for

  12. Tuning two-photon photoluminescence of gold nanoparticle aggregates with DNA and its application as turn-on photoluminescence probe for DNA sequence detection.

    PubMed

    Yuan, Peiyan; Ma, Rizhao; Guan, Zhenping; Gao, Nengyue; Xu, Qing-Hua

    2014-08-13

    Plasmon coupling between noble metal nanoparticles has been known to dramatically enhance linear and nonlinear optical properties of nearby chromophores and metal nanoparticles themselves. The interparticle distance is expected to have significant influence on the coupling strength. Here we have prepared DNA tuned Au nanoparticle assemblies with well controlled separation distances from 2.0 to 12.2 nm to investigate plasmon coupling strength and particle size effects on two-photon photoluminescence (TPPL) enhancement. TPPL intensities of these DNA coupled nanoassemblies were found to increase rapidly as the separation distance decreases. The largest TPPL enhancement factors of 115 and 265 were achieved at the shortest available separation distance of 2.0 nm for 21 and 41 nm Au NPs-dsDNA assemblies, respectively. We have further utilized DNA induced coupling of Au NPs and TPPL enhancement to develop a two-photon sensing scheme for detection of DNA sequences. This TPPL based method displayed high sensitivity with a limit of detection of 2.9 pM and excellent selectivity against ssDNA with mismatched bases. A single mismatch can be easily differentiated at room temperature. Taking the unique advantages of two-photon excitation, this method could be potentially further extended to DNA detection inside cells or even in vivo. These findings can provide important insight for fundamental understanding of plasmon-coupling enhanced TPPL and development of various two-photon excitation based applications.

  13. Nonlinear local electrovascular coupling. II: From data to neuronal masses.

    PubMed

    Riera, J J; Jimenez, J C; Wan, X; Kawashima, R; Ozaki, T

    2007-04-01

    In the companion article a local electrovascular coupling (LEVC) model was proposed to explain the continuous dynamics of electrical and vascular states within a cortical unit. These states produce certain mesoscopic reflections whose discrete time series can be reconstructed from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). In this article we develop a recursive optimization algorithm based on the local linearization (LL) filter and an innovation method to make statistical inferences about the LEVC model from both EEG and fMRI data, i.e., to estimate the unobserved states and the unknown parameters of the model. For a better understanding, the LL filter is described from a Bayesian point of view, providing the particulars for the case of hybrid data (e.g., EEG and fMRI), which could be sampled at different rates. The dynamics of the exogenous synaptic inputs going into the cortical unit are also estimated by introducing a set of Gaussian radial basis functions. In order to study the dynamics of the electrical and vascular states in the striate cortex of humans as well as their local interrelationships, we applied this algorithm to EEG and fMRI recordings obtained concurrently from two subjects while passively observing a radial checkerboard with a white/black pattern reversal. The EEG and fMRI data from the first subject was used to estimate the electrical/vascular states and parameters of the LEVC model in V1 for a 4.0 Hz reversion frequency. We used the EEG data from the second subject to investigate the changes in the dynamics of the electrical states when the frequency of reversion is varied from 0.5-4.0 Hz. Then we made use of the estimated electrical states to predict the effects on the vasculature that such variations produce.

  14. Two-photon width and gluonic component of σ/f(600)

    NASA Astrophysics Data System (ADS)

    Mennessier, G.; Narison, S.; Ochs, W.

    2008-09-01

    We analyse data on ππ and γγ scattering below 700 MeV within an improved analytic K-matrix model. This model is based on an effective theory with couplings between resonances, hadrons and photons. The two-photon decay of a resonance can proceed through intermediate transition into charged hadrons (here: ππ) and their subsequent annihilation or through a "direct" transition into photons. Our analysis confirms the rather large total radiative width of the σ resonance which we find as ( 3.9±0.6) keV but suggests its dominance by the ππ rescattering process. This process is not sensitive to the internal structure of the resonance contrary to the direct component which we find small, (0.13±0.05) keV, and well consistent with the expectations for an unmixed glueball according to the QCD sum rule calculations.

  15. Fully integrated reflection-mode photoacoustic/two-photon microscopy in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Liang; Song, Wei; Zhang, Yang; Zheng, Wei

    2016-03-01

    Using a water-immersion optical objective in conjunction with a miniature 40-MHz ultrasonic transducer, we developed reflection-mode photoacoustic microscopy with a transverse resolution as high as 320 nm. Here, we further integrated two-photon microscopy capability into the system to enable multimodality in vivo biomedical imaging at submicron resolution. As a result, the system is capable of tri-modality label-free imaging of microvasculature, collagen, and cell morphology, based on the contrast of optical absorption, second-harmonic generation, and autofluorescence, respectively. In addition, we demonstrated simultaneous microscopic imaging of neuron and microvasculature in the brain cortex of a living mouse, which may offer new opportunities for studying the mechanisms of neurovascular coupling.

  16. Large-angle two-photon exclusive channels in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.; Lepage, G.P.

    1981-05-01

    Detailed leading order QCD predictions are given for the scaling, angular, and helicity dependence of the reactions ..gamma gamma.. ..-->.. M anti M (M = ..pi.., K, rho, etc.) at large momentum transfer. In addition to providing a basic test of QCD at short distances, measurements can be used to determine the process-independent meson distribution amplitudes phi/sub M/(x,Q). Other related two-photon channels such as ..gamma gamma.. ..-->.. ..gamma..rho, ..gamma..*..gamma.. ..-->.. ..pi../sup 0/, eta/sup 0/, eta' and eta/sub c/ ..-->.. ..gamma gamma.. are also discussed. The existence of a fixed Regge singularity at J = 0 which couples to ..gamma..rho ..-->.. ..gamma..rho in the t-channel but not ..gamma pi.. ..-->.. ..gamma pi.. is also proved.

  17. Statistical properties of a two-photon cavity mode in the presence of degenerate parametric amplifier

    SciTech Connect

    Abdalla, M. Sebawe Khalil, E.M. Obada, A.S.-F.

    2007-11-15

    A Hamiltonian model that includes two-photon interaction with a two-level atom and a degenerate parametric amplifier is considered. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is employed to discuss the purity, the entropy squeezing, and the variance squeezing, in addition to the normal squeezing. It has been shown that the existence of the second harmonic generation leads to reduction in the squeezing amount for all quadrature variances and we found that as the value of the coupling parameter {lambda}{sub 2} increases the squeezing phenomenon gets more apparent. Further we have also considered the Q-function as an example of the quasi-probability distribution.

  18. Potential formalism of optical spatial soliton propagation in a two-photon photovoltaic-photorefractive material under open circuit condition

    NASA Astrophysics Data System (ADS)

    Akhouri, B. P.; Gupta, P. K.

    2014-04-01

    Propagation characteristics of optical spatial solitons in a two-photon photovoltaic-photorefractive medium under open circuit condition have been investigated using the formalism of a particle in a potential well. Optical nonlinearity has been evaluated using Castro-Camus model. Variational formalism has been employed to investigate the resulting modified nonlinear Schrödinger equation. Potential formalism has been examined to identify localized optical spatial solitons.

  19. Two-photon pathway to ultracold ground state molecules of 23Na40K

    NASA Astrophysics Data System (ADS)

    Park, Jee Woo; Will, Sebastian A.; Zwierlein, Martin W.

    2015-07-01

    We report on high-resolution spectroscopy of ultracold fermionic 23Na40K Feshbach molecules, and identify a two-photon pathway to the rovibrational singlet ground state via a resonantly mixed B1Π ˜ c3Σ+intermediate state. Photoassociation in a 23Na-40K atomic mixture and one-photon spectroscopy on 23Na40K Feshbach molecules reveal about 20 vibrational levels of the electronically excited c3Σ+state. Two of these levels are found to be strongly perturbed by nearby B1Π levels via spin-orbit coupling, resulting in additional lines of dominant singlet character in the perturbed complex {{{B}}}1\\Pi | v=4> ˜ {{{c}}}3{Σ }+| v=25> , or of resonantly mixed character in {{{B}}}1\\Pi | v=12> ˜ {{{c}}}3{Σ }+| v=35> . The dominantly singlet level is used to locate the absolute rovibrational singlet ground state {{{X}}}1{Σ }+| v=0,J=0> via Autler-Townes spectroscopy. We demonstrate coherent two-photon coupling via dark state spectroscopy between the predominantly triplet Feshbach molecular state and the singlet ground state. Its binding energy is measured to be 5212.0447(1) cm-1, a thousand-fold improvement in accuracy compared to previous determinations. In their absolute singlet ground state, 23Na40K molecules are chemically stable under binary collisions and possess a large electric dipole moment of 2.72 Debye. Our work thus paves the way towards the creation of strongly dipolar Fermi gases of NaK molecules.

  20. Search for Two-Photon Interaction with Axionlike Particles Using High-Repetition Pulsed Magnets and Synchrotron X Rays.

    PubMed

    Inada, T; Yamazaki, T; Namba, T; Asai, S; Kobayashi, T; Tamasaku, K; Tanaka, Y; Inubushi, Y; Sawada, K; Yabashi, M; Ishikawa, T; Matsuo, A; Kawaguchi, K; Kindo, K; Nojiri, H

    2017-02-17

    We report on new results of a search for a two-photon interaction with axionlike particles (ALPs). The experiment is carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we develop a novel pulsed-magnet system, composed of multiple racetrack magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing a vacuum with high intensity fields. The data obtained with a total of 27 676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass ≲0.1  eV.

  1. Search for Two-Photon Interaction with Axionlike Particles Using High-Repetition Pulsed Magnets and Synchrotron X Rays

    NASA Astrophysics Data System (ADS)

    Inada, T.; Yamazaki, T.; Namba, T.; Asai, S.; Kobayashi, T.; Tamasaku, K.; Tanaka, Y.; Inubushi, Y.; Sawada, K.; Yabashi, M.; Ishikawa, T.; Matsuo, A.; Kawaguchi, K.; Kindo, K.; Nojiri, H.

    2017-02-01

    We report on new results of a search for a two-photon interaction with axionlike particles (ALPs). The experiment is carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we develop a novel pulsed-magnet system, composed of multiple racetrack magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing a vacuum with high intensity fields. The data obtained with a total of 27 676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass ≲0.1 eV .

  2. Measurement of two-photon exchange effect with CLAS

    SciTech Connect

    Raue, Brian A

    2010-08-01

    The structure of the proton is one the most important and most studied topics in nuclear physics. However, discrepant measurements of the proton's electromagnetic form factor ratio, GE/GM, seriously jeopardize a definitive understanding of the proton's structure. Measurements of GEGM using the Rosenbluth separation technique disagree with those using polarization transfer methods by about a factor of three at Q2~5.6 GeV2. It has been hypothesized that this discrepancy is due to two-photon exchange (TPE) effects that are not part of the usual radiative corrections. Theoretical corrections for the TPE effect are difficult due to the fact that a large number of excited nucleon states can contribute to the process. However, the TPE effect can be directly determined by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = sigma(e+)/sigma(e-), as the TPE effect changes sign with respect to the charge of the incident particle. A brief test run of a modified beamline and the CLAS detector at Jefferson Lab has resulted in the most precise measurements of the R to date. We will present results from the test run covering Q2<0.8 GeV2 and 0.78<=epsilon<=0.97. In addition, the test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality so that the measurements can be extended up to Q2~3.0 GeV2.

  3. Two-Photon-Exchange Effects and Δ (1232) Deformation

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Qing; Yang, Shin Nan

    The two-photon-exchange (TPE) contribution in ep to epπ 0 with W = MΔ and small Q2 is calculated and its corrections to the ratios of electromagnetic transition form factors REM = E1 + (3/2)/M1 + (3/2) and RSM = S1 + (3/2)/M1 + (3/2), are analysed. A simple hadronic model is used to estimate the TPE amplitude. Two phenomenological models, MAID2007 and SAID, are used to approximate the full ep to epπ 0 cross sections which contain both the TPE and the one-photon-exchange (OPE) contributions. The genuine OPE amplitude is then extracted from an integral equation by iteration. We find that the TPE contribution is not sensitive to whether MAID or SAID is used as input in the region with Q2 < 2 GeV2. It gives small correction to REM while for RSM, the correction is about -10% at small ɛ and about 1% at large ɛ for Q2 ≈ 2.5 GeV2. The large correction from TPE at small ɛ must be included in the analysis to get a reliable extraction of RSM.

  4. Perturbative QCD predictions for two-photon exchange

    SciTech Connect

    Borisyuk, Dmitry; Kobushkin, Alexander

    2009-02-01

    We study two-photon exchange (TPE) in the elastic electron-nucleon scattering at high Q{sup 2} in the framework of perturbative quantum chromodynamics. The obtained TPE amplitude is of order {alpha}/{alpha}{sub s} with respect to Born approximation. Its shape and value are sensitive to the choice of nucleon wave function, thus study of TPE effects can provide important information about nucleon structure. With the wave functions based on quantum chromodynamics sum rules, TPE correction to the electron-proton cross section has a negative sign, is almost linear in {epsilon}, and grows logarithmically with Q{sup 2} up to 7% at Q{sup 2}=30 GeV{sup 2}. The results of existing hadronic calculations, taking into account just the nucleon intermediate state, can be smoothly connected with the perturbative quantum chromodynamics result near Q{sup 2}{approx}3 GeV{sup 2}. Above this point two methods disagree, which implies that the hadronic approach becomes inadequate at high Q{sup 2}. Other relevant observables, such as the electron/positron cross section ratio, are also discussed.

  5. Two-photon absorption in conjugated energetic molecule

    SciTech Connect

    Bjorgaard, Josiah August; Sifain, Andrew; Nelson, Tammie Renee; Myers, Thomas Winfield; Veauthier, Jacqueline Marie; Chavez, David E.; Scharff, Robert Jason; Tretiak, Sergei

    2016-06-03

    Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities are significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  6. Review of two-photon exchange in electron scattering

    SciTech Connect

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  7. Two-photon excited photoconversion of cyanine-based dyes.

    PubMed

    Kwok, Sheldon J J; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-31

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  8. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  9. Results from the OLYMPUS Two-Photon Exchange Experiment

    NASA Astrophysics Data System (ADS)

    O'Connor, Colton; Olympus Collaboration

    2017-01-01

    Measurements of the proton's electric-to-magnetic form factor ratio obtained by different methods disagree significantly in a way that depends on Q2. The OLYMPUS experiment was designed to empirically quantify two-photon exchange in lepton-proton scattering, an effect that, in some models, can fully account for this disagreement. This was achieved at the DORIS storage ring at DESY by measuring the ratio of the elastic cross-sections for positron-proton and electron-proton scattering with alternating 2.01 GeV lepton beams incident on an internal hydrogen gas target. Data were collected with an integrated luminosity of over 4.0 fb-1 using a large-acceptance toroidal spectrometer and multiple luminosity monitoring systems, allowing for precise results (<1% uncertainty) over the range of 0.6 <=Q2 <= 2.2 (GeV/ c)2. This work is supported by DOE Grant DE-FG02-94ER40818.

  10. Two-photon excited photoconversion of cyanine-based dyes

    PubMed Central

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-01-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue. PMID:27029524

  11. Mobile laser lithography station for microscopic two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Leinenbach, F.; Breunig, H. G.; König, K.

    2015-03-01

    We present a mobile laser lithography station for 3D structuring by microscopic two-photon polymerization. For structuring the Coherent Vitara UBB titanium:sapphire femtosecond laser is used, which has a power output of 500mW and generates pulses with a central wavelength of 810nm. The laser pulses have a tunable bandwidth from 50nm to 250nm. The pulses are temporally compressed using chirped mirrors to a minimum duration of less than 15fs at the sample. The laser power reaching the sample can be motionless controlled by a combination of a liquid crystal retarder and a polarizer within milliseconds. The sample is placed onto a microscope stage which has a movement range of 300µm in the X, Y and Z direction with an accuracy of 2nm. Sample imaging is possible with a microscope camera simultaneous to the structuring. The pulses are focused by a 40X microscope objective (1.3NA) onto the sample. To operate the lithography station, we developed a LabVIEW-based software which controls sample position, laser power and objective height and as well as the microscope camera. Furthermore, CAD data can be read and converted into sample position data. By combining all these components, a fully automatic structuring of a sample with sub-micrometer precision is possible.

  12. Two-photon polymerization for fabrication of biomedical devices

    NASA Astrophysics Data System (ADS)

    Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.

    2007-01-01

    Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.

  13. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  14. Two-photon autofluorescence spectroscopy of oral mucosa tissue

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Shilagard, Tuya; Qiu, Suimin; Vargas, Gracie

    2011-03-01

    The survival rate for individuals diagnosed with oral cancer is correlated with the stage of detection. Thus the development of novel techniques for the earliest possible detection of malignancies is of critical importance. Single photon (1P) autofluorescence spectroscopy has proven to be a powerful diagnostic tool in this regard, but 2P (two photon) spectroscopy remains essentially unexplored. In this investigation, a spectroscopic system was incorporated into a custom-built 2P laser scanning microscope. Oral cancer was induced in the buccal pouch of Syrian Golden hamsters by tri-weekly topical application of 9,10-dimethyl-1,2-benzanthracene (DMBA).Three separated sites where investigated in each hamster at four excitation wavelengths from 780 nm to 890 nm. A Total of 8 hamsters were investigated (4 normal and 4 DMBA treated). All investigated sites were imaged via 2p imaging, marked for biopsy, processed for histology and H&E staining, and graded by a pathologist. The in vivo emission spectrum for normal, mild/high grade dysplasia and squamous cell carcinoma is presented. It is shown that the hamsters with various stages of dysplasia are characterized by spectral differences as a function of depth and excitation wavelength, compared to normal hamsters.

  15. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  16. Two-Photon Absorption in Conjugated Energetic Molecules.

    PubMed

    Bjorgaard, Josiah A; Sifain, Andrew E; Nelson, Tammie; Myers, Thomas W; Veauthier, Jacqueline M; Chavez, David E; Scharff, R Jason; Tretiak, Sergei

    2016-07-07

    Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation. We found calculated vertical excitation energies to be in good agreement with experiment for most molecules. Peak TPA intensities were found to be significant and on the order of 10(2) GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity were used to examine the character of relevant transitions. Modification of molecular substituents, such as additional oxygen or other functional groups, produces significant changes in electronic structure, OPA, and TPA and improves oxygen balance. The results show that certain molecules are apt to undergo nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  17. Two-photon absorption in conjugated energetic molecule

    DOE PAGES

    Bjorgaard, Josiah August; Sifain, Andrew; Nelson, Tammie Renee; ...

    2016-06-03

    Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities aremore » significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.« less

  18. Two-photon excited photoconversion of cyanine-based dyes

    NASA Astrophysics Data System (ADS)

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  19. Acoustic metamaterials with coupled local resonators for broadband vibration suppression

    NASA Astrophysics Data System (ADS)

    Hu, Guobiao; Tang, Lihua; Das, Raj; Gao, Shiqiao; Liu, Haipeng

    2017-02-01

    This paper investigates a modified acoustic metamaterial system with local resonators coupled through linear springs. The proposed acoustic metamaterial system can provide three band gaps for broadband vibration suppression. First, the band structure of the modified acoustic metamaterial is calculated by using Bloch's theorem under the assumption of infinite lattice. The existence of three band gaps is confirmed in the band structure. Effects of mass and spring parameters on the band gap behaviour of the modified metamaterial are investigated through a dimensionless parametric study. Based on the parametric study, optimal dimensionless parameters are proposed to achieve maximal total band gap width in the low frequency range. Subsequently, a more realistic finite lattice model is established. The transmittances of the conventional and modified metamaterial systems are compared. The three band gaps predicted from transmittances and broadband vibration suppression behaviour are consistent with the predictions from infinite lattice model using Bloch's theorem. Finally, the time-domain responses are simulated and the superiority of the modified acoustic metamaterial over the conventional one is demonstrated.

  20. Extreme coupling: A route towards local magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Menzel, C.; Hebestreit, E.; Alaee, R.; Albooyeh, M.; Mühlig, S.; Burger, S.; Rockstuhl, C.; Simovski, C.; Tretyakov, S.; Lederer, F.; Pertsch, T.

    2014-04-01

    Genuinely homogeneous metamaterials, which may be characterized by local effective constitutive relations, are required for many spectacular metamaterial applications. Such metamaterials have to be made of meta-atoms, i.e., subwavelength resonators, which exhibit only electric and or magnetic dipole and negligible higher-order multipolar polarizabilities in the spectral range of interest. Here, we show that these desired meta-atoms can be designed by exploiting the extreme coupling regime. Appropriate meta-atoms are identified by performing a multipole analysis of the field scattered from the respective meta-atom. To design those particular meta-atoms it is important to disclose the frequency and angular-dependent polarizability of both dipole moments. We demonstrate the applicability of a purely analytical model to accurately calculate for a normally incident plane wave reflection and transmission from meta-surfaces made of periodically arranged meta-atoms. With our work we identify a possible route towards the engineering of artificial materials while only considering the response from its constituents. Our approach is generally applicable to all spectral domains and can be used to evaluate and design metamaterials made from different constituting materials, e.g., metals, dielectrics, or semiconductors.

  1. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs.

    PubMed

    Cahalan, Michael D; Parker, Ian

    2008-01-01

    The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production.

  2. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions.

    PubMed Central

    Denk, W

    1994-01-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine. Images PMID:7517555

  3. Choreography of Cell Motility and Interaction Dynamics Imaged by Two-Photon Microscopy in Lymphoid Organs

    PubMed Central

    Cahalan, Michael D.; Parker, Ian

    2009-01-01

    The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production. PMID:18173372

  4. Reaction-based two-photon probes for mercury ions: fluorescence imaging with dual optical windows.

    PubMed

    Rao, Alla Sreenivasa; Kim, Dokyoung; Wang, Taejun; Kim, Ki Hean; Hwang, Sekyu; Ahn, Kyo Han

    2012-05-18

    For fluorescent imaging of mercury ions in living species, two-photon probes with dual optical windows are in high demand but remain unexplored. Several dithioacetals were evaluated, and a probe was found, which, upon reaction with mercury species, yielded a two-photon dye; this conversion accompanies ratiometric emission changes with a 97-nm shift, enabling fluorescent imaging of both the probe and mercury ions in cells by one- and two-photon microscopy for the first time.

  5. Measurement of two-photon exchange effect with CLAS

    SciTech Connect

    Raue, Brian A.

    2010-08-05

    The structure of the proton is one the most important and most studied topics in nuclear physics. However, discrepant measurements of the proton's electromagnetic form factor ratio, G{sub E}/G{sub M}, seriously jeopardize a definitive understanding of the proton's structure. Measurements of G{sub E}G{sub M} using the Rosenbluth separation technique disagree with those using polarization transfer methods by about a factor of three at Q{sup 2{approx}}5.6 GeV{sup 2}. It has been hypothesized that this discrepancy is due to two-photon exchange (TPE) effects that are not part of the usual radiative corrections. Theoretical corrections for the TPE effect are difficult due to the fact that a large number of excited nucleon states can contribute to the process. However, the TPE effect can be directly determined by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = {sigma}(e{sup +})/{sigma}(e{sup -}), as the TPE effect changes sign with respect to the charge of the incident particle. A brief test run of a modified beamline and the CLAS detector at Jefferson Lab has resulted in the most precise measurements of the R to date. We will present results from the test run covering Q{sup 2}<0.8 GeV{sup 2} and 0.78{<=}{epsilon}{<=}0.97. In addition, the test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality so that the measurements can be extended up to Q{sup 2{approx}}3.0 GeV{sup 2}.

  6. Voltage-sensitive rhodol with enhanced two-photon brightness.

    PubMed

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  7. Dynamical modeling of pulsed two-photon interference

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-11-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong-Ou-Mandel, and Mach-Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers.

  8. Determining the Quark Charges by One and Two Photon Processes.

    NASA Astrophysics Data System (ADS)

    Janah, Arjun

    1982-05-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known "color-suppression" effect. Single photon/weak-boson processes such as (nu)N (--->) (nu)X distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e('+)e('-) (--->) e('+)e('-) + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum -dependent) color suppression and (b) the added contribution from pair production of charged gluons. This is done, and it is observed that: (i) in icq, the ratio R('(gamma)(gamma)(2 jet)) is not simply a number given by the quark charges; it depends on the gluon mass, on kinematics and on the particular differential cross-section considered; (ii) the deviation of icq cross-sections from the fcq values depends crucially on whether one includes "untagged" events; if this is done, the deviation is large; the charged gluon contribution is mainly responsible for this deviation; the quark contribution is smaller than naively expected. Finally, comparison is made with experimental data on e('+)e('-) (--->) e('+)e('-) + 2 jets. Here, icq is found to be in better agreement than fcq, for a broad range of gluon masses. A suitably modified equivalent photon approximation is employed.

  9. Two-photon decay of excited levels in hydrogen: The ambiguity of the separation of cascades and pure two-photon emission

    SciTech Connect

    Labzowsky, L.; Solovyev, D.; Plunien, G.

    2009-12-15

    The problem of the evaluation of the two-photon decay width of excited states in hydrogen is considered. Two different approaches to the evaluation of the width including cascades channels are employed: the summation of the transition probabilities for various decay channels and the evaluation of the imaginary part of the Lamb shift. As application, the two-photon decay channels for the 3s level of the hydrogen atom are evaluated, including the cascade transition probability 3s-2p-1s. An important role is assigned to the two-photon decays in astrophysics context, since processes of this kind provide a possibility for the decoupling of radiation and matter in the early universe. We demonstrate the ambiguity of separation of the 'pure' two-photon contribution and criticize the existing methods for such a separation.

  10. Two-photon absorption and nonlinear polariton effects in organic crystals

    SciTech Connect

    Johnson, C.K.

    1981-01-01

    Two-photon excitation (TPE) and second harmonic generation (SHG) have been studied in phenanthrene crystals at low temperatures (2 to 6K) in order to investigate mechanisms of two-photon absorption (TPA), the relationship between TPE and SHG, and polariton effects. The transition studied is of special interest because it is both one- and two-photon allowed in the dipole approximation. Consequently, polariton states and SHG play a role in the two-photon process. In the polariton model, both TPA and SHG are understood as resulting from the process of polariton fusion.

  11. Description of the states of two-photon interference in an optical gating Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Pongophas, Ekkarat; Sriklin, Watthana; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2016-01-01

    We investigate the interference of two photons in an optical gating Michelson interferometer. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two-photon state evolution. Both representations lead to identical results. The evolution analysis describes the result by the interference of four two-photon traveling states, whereas the space-time domain analysis reveals that the classical interference of the high-intensity light source is identical to two-photon interference in the quantum regime, except for a multiplicative factor of (n2), where n is the number of photons.

  12. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    NASA Astrophysics Data System (ADS)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  13. Development and application of biological techniques to two-photon photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Khurana, Mamta; Karotki, Aliaksandr; Moriyama, Eduardo H.; Akens, Margarete K.; Wilson, Brian C.

    2007-06-01

    Two-photon (2-γ) photodynamic therapy (PDT) as opposed to "standard" one-photon (1-γ) PDT with Visudyne has recently been suggested as a targeted treatment alternative for wet-form age-related macular degeneration (AMD) and other neovascular diseases. AMD is a major cause of severe vision loss in the older population. It occurs due to growth of new leaky blood vessels (neovasculature) from the choriocapillaris, which results in destruction of photoreceptors in the fovea and loss of central vision. Damage outside the diseased region is always a concern, due to photosensitizer accumulation and its 1-γ excitation. Highly targeted 2-γ excitation, due to its non-linear intensity dependence, intrinsically avoids out-of-focus damage to healthy tissues and so could be valuable for wet-AMD. We have previously developed a quantitative approach for comparing the 2-γ efficacy of photosensitizers in vitro. In this study, we report further the development of ex vivo and in vivo techniques. A mouse mesenteric vessel has been investigated as the ex vivo model of neovasculature. For the in vivo studies, we have explored a mouse dorsal skin-fold window chamber model. Two-photon PDT is delivered using tightly focused ~300 fs laser pulses from a Ti:sapphire laser operating at 850 nm with 90 MHz pulse repetition rate. Confocal microscopy coupled to the laser was used to visualize the vessel's/cell's response before, during and after the treatment. We are able to demonstrate quantitative biological techniques to evaluate efficacy of 2-γ PDT photosensitizers in vivo.

  14. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip Thomas

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necess-itating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent frac-tion of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  15. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids

    PubMed Central

    Rane, Tushar D.; Armani, Andrea M.

    2016-01-01

    Nanomaterials can be synthesized from a wide range of material systems in numerous morphologies, creating an extremely diverse portfolio. As result of this tunability, these materials are emerging as a new class of nanotherapeutics and imaging agents. One particularly interesting nanomaterial is the gold nanoparticle. Due to its inherent biocompatibility and tunable photothermal behavior, it has made a rapid transition from the lab setting to in vivo testing. In most nanotherapeutic applications, the efficacy of the agent is directly related to the target of interest. However, the optimization of the AuNP size and shape for efficacy in vitro, prior to testing in in vivo models of a disease, has been largely limited to two dimensional monolayers of cells. Two dimensional cell cultures are unable to reproduce conditions experienced by AuNP in the body. In this article, we systematically investigate the effect of different properties of AuNP on the penetration depth into 3D cell spheroids using two-photon microscopy. The 3D spheroids are formed from the HCT116 cell line, a colorectal carcinoma cell line. In addition to studying different sizes and shapes of AuNPs, we also study the effect of an oligo surface chemistry. There is a significant difference between AuNP uptake profiles in the 2D monolayers of cells as compared to the 3D cell spheroids. Additionally, the range of sizes and shapes studied here also exhibit marked differences in uptake penetration depth and efficacy. Finally, our results demonstrate that two-photon microscopy enables quantitative AuNP localization and concentration data to be obtained at the single spheroid level without fluorescent labeling of the AuNP, thus, providing a viable technique for large scale screening of AuNP properties in 3D cell spheroids as compared to tedious and time consuming techniques like electron microscopy. PMID:27936027

  16. Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis

    PubMed Central

    Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.

    1999-01-01

    Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000

  17. Two-photon absorption of BF2-carrying compounds: insights from theory and experiment.

    PubMed

    Bednarska, Joanna; Zaleśny, Robert; Wielgus, Małgorzata; Jędrzejewska, Beata; Puttreddy, Rakesh; Rissanen, Kari; Bartkowiak, Wojciech; Ågren, Hans; Ośmiałowski, Borys

    2017-02-22

    This communication presents a structure-property study of a few novel pyridine-based difluoroborate compounds with a N-BF2-O core, which exhibit outstanding fluorescence properties. To exploit their potential for two-photon bioimaging, relationships between the two-photon action cross section and systematic structural modifications have been investigated and unravelled.

  18. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  19. Two-dimensional two-photon absorbing chromophores and solvent effects on their cross-sections

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Jen, Alex K.

    2003-02-01

    A series of 2-dimensional two-photon absorbing chromophores and their 1-dimensional analogs were studied. The influence of the solvents on the linear absorption, photoluminescence and two-photon absorption cross-sections were also examined for these chromophores. The stoke's shift increase with increasing solvent polarity, that can be adequately described by Lippert equation. Two-photon absorption cross sections were measured with femtosecond pulses by the two-photon-induced fluorescence technique. It was observed that two-photon cross-sections were also strongly dependent on the solvents, however no simple correlation with solvent polarity was found in this study. Interestingly, a linear relationship was observed in these chromophores between the molar extinction coefficient and the two-photon cross section when plotted in log-log formats. Understanding of the relationship may provide a better insight of the two-photon absorption processes, and potentially will contribute to the design of highly efficient two-photon absorbing chromophores.

  20. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy.

    PubMed

    Zeng, Leli; Kuang, Shi; Li, Guanying; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2017-02-07

    A glutathione (GSH)-activatable ruthenium(ii)-azo photosensitizer was prepared. The complex had low toxicity towards cells under dark conditions. It exhibited excellent phototoxicity under two-photon excitation (810 nm) and thus was developed as a two-photon photodynamic anticancer agent for cancer therapy.

  1. Two-photon absorption and nonlinear polariton effects in organic crystals

    SciTech Connect

    Johnson, C.K.

    1981-10-01

    Two-photon excitation (TPE) and second harmonic generation (SHG) were studied in phenanthrene crystals at low temperatures (2 to 6/sup 0/K). Polarized TPE spectra of the 350 nm /sup 1/A/sub 1/ reverse arrow /sup 1/A/sub 1/ absorption system in phenanthrene crystals are supplemented using a nitrogen laser-pumped dye laser. Analysis of vibronic structure reveals that the dominant intermediate states for TPA are those of B/sub 2/ (L axis) symmetry. TPE spectra principally associated with intermediate states of A/sub 1/ (M) symmetry exhibit strong intramolecular vibronic coupling by totally symmetric vibrations. Polarized TPE spectra of mixed crystals of phenanthrene in fluorene confirm the predominance of the long-axis mechanism in TPA and the participation of states of A/sub 1/ symmetry by vibronic coupling. Position of the upper Davydov component of the origin depends on photon propagation direction and polarization in both TPE and SHG. The appearance of the dipole-forbidden lower Davydov component in these spectra is discussed in terms of misalignment and excitation of a longitudinal exciton. Similarity of TPE and SHG spectra indicates that both result from polariton fusion. The calculated polariton dispersion curve accounts for the energy shifts of the upper component in TPE and SHG. Phase matching on the a*b face leads to creation of a polariton on the upper polariton branch, above the one-photon absorption frequency, for a*- and b-polarized light.

  2. Description of states of two-photon interference in optical gating Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Pongophas, Ekkarat; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2015-07-01

    The interference of two photons in the optical gating Michelson interferometer is investigated. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two photon state evolution. Both representations lead to an equivalent description of the two-photon states which is the interference of four cases of two-photon traveling states, as implied by the evolution analysis. Additionally, the space-time domain analysis reveals that the classical interference of high-intensity light source is identical to the two-photon interference in the quantum regime except for a multiplicative factor of (n 2), where n is the number of photons.

  3. Quantum dynamics of two-photon quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Lü, Zhiguo; Zhao, Chunjian; Zheng, Hang

    2017-02-01

    We apply a simple analytical method based on a unitary transformation to calculate the ground state, its excitation spectrum and quantum dynamic evolution of physical quantities for the double-photon quantum Rabi Hamiltonian over the wide coupling-strength range. The concise analytical method possesses the same mathematical simplicity as the approach of the rotating wave approximation (RWA). By quantitative comparison with the numerically exact result obtained by matrix diagonalization, we confirm that our calculated results obtained by transformed rotating-wave method are not only accurate in the weak coupling regime but also correct in intermediate strong-coupling case. In the intermediate ultrastrong-coupling regime, the calculated values of the ground state and lower lying excited states are nearly the same as the exact ones. It turns out that our calculation for the energy spectrum is beyond the ordinary-RWA. Meanwhile, we demonstrate the signatures resulting from the counter-rotating wave terms by monitoring the population, the coherence, the squeezing of the photon under the ultra-strong conditions. In particular, we find that when the frequency of the photon is much larger than the transition frequency of the system, the lineshape of the time evolution becomes complicated with the increase of the coupling strength, which may be verified experimentally.

  4. Optomechanical coupling in the Anderson-localization regime

    NASA Astrophysics Data System (ADS)

    García, P. D.; Bericat-Vadell, R.; Arregui, G.; Navarro-Urrios, D.; Colombano, M.; Alzina, F.; Sotomayor-Torres, C. M.

    2017-03-01

    Optomechanical crystals, purposely designed and fabricated semiconductor nanostructures, are used to enhance the coupling between the electromagnetic field and the mechanical vibrations of matter at the nanoscale. However, in real optomechanical crystals, imperfections open extra channels where the transfer of energy is lost, reducing the optomechanical coupling efficiency. Here, we quantify the role of disorder in a paradigmatic one-dimensional optomechanical crystal with full phononic and photonic band gaps. We show how disorder can be exploited as a resource to enhance the optomechanical coupling beyond engineered structures, thus providing a new tool set for optomechanics.

  5. Application of two-photon 3D lithography for the fabrication of embedded ORMOCER waveguides

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Kuna, L.; Satzinger, V.; Houbertz, R.; Jakopic, G.; Leising, G.

    2007-02-01

    The idea of applying the two-photon 3D lithography (2P-3DL) to an industrial printed wiring board (PWB) fabrication process is quite pioneering. Taking advantage of the unique rapid prototyping properties of 2P-3DL--its particularly inherent true 3D capability and its high flexibility in processing- this lithographic method can be adapted and optimized concerning the direct laser-writing of integrated optical interconnects with tens of microns in diameter. This will push the method forward towards industrial fabrication of next generation PWBs with integrated optical layers, and put it on the leading edge of printed circuit board (PCB) technology. In this context, the concept of a direct laser-written embedded waveguide is based on the local increase of the refractive index of the exposed material, which is triggered by two-photon absorption (TPA) at the laser focus. The laser induced refractive index difference forms the core of the waveguide, whereas the unexposed surrounding material forms the cladding. Thus, only one optical material is required to form the waveguide using true 3D lithographic process compared to other devices, which significantly simplifies processes. The material is subject to stringent requirements concerning the PWB production process: beside its high refractive index change, a low optical loss of the fabricated optical interconnect is required. The integration of the waveguide into the volume of the material also requires thick films up to 500 microns on the PWB substrate, and the material has to withstand the complete PWB fabrication process, where the board is chemically treated and exposed to high temperatures as well as high pressure during the lamination processes of subsequent metal layers. For this application, an inorganic-organic hybrid polymer (ORMOCER) film is applied, casted onto a PWB substrate, and the two-photon 3D lithography system parameters and optics are tuned such that waveguides with a diameter of approx. 30 microns

  6. Multi-beam two-photon imaging of fast Ca2+ signals in the Langendorff mouse heart.

    PubMed

    Hammer, Karin; Lipp, Peter; Kaestner, Lars

    2014-11-03

    Although the role of calcium (Ca(2+)) in excitation-contraction coupling in the heart can be comprehensively studied at the cellular level, propagation of Ca(2+) signals intercellularly requires tissue-based investigations. To access cells below the epicardium, an optical-sectioning technique is necessary. Multi-photon microscopy allows reliable imaging for penetration to depths of up to 0.5 mm. Here, we provide a protocol that uses multibeam two-photon microscopy for measuring Ca(2+) signals in a Langendorff-perfused mouse heart.

  7. Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures

    NASA Astrophysics Data System (ADS)

    Aekbote, Badri L.; Schubert, Félix; Ormos, Pál; Kelemen, Lóránd

    2014-12-01

    Fluorescence enhancement achieved by functionalized microstructures made by two-photon polymerization (TPP) is reported for the first time. Microstructures of various shapes made of SU-8 photoresist were prepared and coated with gold nanoparticles (NP) of 80 nm. Localized fluorescence enhancement was demonstrated by microstructures equipped with tips of sub-micron dimensions. The enhancement was realized by positioning the NP-coated structures over fluorescent protein layers. Two fluorophores with their absorption in the red and in the green region of the VIS spectrum were used. Laser scanning confocal microscopy was used to quantify the enhancement. The enhancement factor was as high as 6 in areas of several square-micrometers and more than 3 in the case of local enhancement, comparable with literature values for similar nanoparticles. The structured pattern of the observed fluorescence intensity indicates a classic enhancement mechanism realized by standing waves over reflecting surfaces. With further development mobile microtools made by TPP and functionalized by metal NPs can be actuated by optical tweezers and position to any fluorescent micro-object, such as single cells to realize localized, targeted fluorescence enhancement.

  8. Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate

    PubMed Central

    Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V.; Konotop, Vladimir V.; Chen, Xianfeng

    2016-01-01

    We address the impact of the spin-orbit (SO) coupling on the localization-delocalization-transition (LDT) in a spin-orbit coupled Bose-Einstein condensate in a bichromatic potential. We find that SO coupling significantly alters the threshold depth of the one of sublattices above which the lowest eigenstates transform from delocalizated into localized. For some moderate coupling strengths the threshold is strongly reduced, which is explained by the SO coupling-induced band flattening in one of the sub-lattices. We explain why simultaneous Rabi and SO coupling are necessary ingredients for LDT threshold cancellation and show that strong SO coupling drives the system into the state where its evolution becomes similar to the evolution of a one-component system. We also find that defocusing nonlinearity can lead to localization of the states which are delocalized in the linear limit. PMID:27531120

  9. Vasodilation by in vivo activation of astrocyte endfeet via two-photon calcium uncaging as a strategy to prevent brain ischemia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Cheng, Jie; Roman, Gustavo; Wong, Stephen T. C.

    2013-12-01

    Decreased cerebral blood flow causes brain ischemia and plays an important role in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease and vascular dementia. In this study, we photomodulated astrocytes in the live animal by a combination of two-photon calcium uncaging in the astrocyte endfoot and in vivo imaging of neurovasculature and astrocytes by intravital two-photon microscopy after labeling with cell type specific fluorescent dyes. Our study demonstrates that photomodulation at the endfoot of a single astrocyte led to a 25% increase in the diameter of a neighboring arteriole, which is a crucial factor regulating cerebral microcirculation in downstream capillaries. Two-photon uncaging in the astrocyte soma or endfoot near veins does not show the same effect on microcirculation. These experimental results suggest that infrared photomodulation on astrocyte endfeet may be a strategy to increase cerebral local microcirculation and thus prevent brain ischemia.

  10. Vibration localization in mono- and bi-coupled bladed disks - A transfer matrix approach

    NASA Technical Reports Server (NTRS)

    Ottarsson, Gisli; Pierre, Christophe

    1993-01-01

    A transfer matrix approach to the analysis of the dynamics of mistuned bladed disks is presented. The study focuses on mono-coupled systems, in which each blade is coupled to its two neighboring blades, and bi-coupled systems, where each blade is coupled to its four nearest neighbors. Transfer matrices yield the free dynamics, both the characteristic free wave and the normal modes - in closed form for the tuned assemblies. Mistuned assemblies are represented by random transfer matrices and an examination of the effect of mistuning on harmonic wave propagation yields the localization factor - the average rate of spatial wave amplitude decay per blade - in the mono-coupled assembly. Based on a comparison of the wave propagation characteristics of the mono- and bi-coupled assemblies, important conclusions are drawn about the effect of the additional coupling coordinate on the sensitivity to mistuning and the strength of mode localization predicted by a mono-coupled analysis.

  11. Re-visit local coupling correction in the interaction regions of RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Liu, C.; Marusic, A.; Minty, M.; Ptitsyn, V.; Schoefer, V.; Tepikian, S.; Trbojevic, D.; Zimmer, C.

    2011-11-01

    In this article we will re-visit the local coupling correction in the interaction regions (IRs) of the Relativistic Heavy Ion Collider (RHIC). We will review the measurement data of triplet quadrupole rolls, the local coupling correction strengths in the RHIC control system, and the methods for the local coupling correction with local skew quadrupole correctors. Based on the in-turnnel measurement data of triplet roll errors in 2011, we will analytically calculate and simulate IR-bump method to find out the local skew correction strengths and compare them at store and at injection with the Blue and Yellow ring lattices in the 2011 polarized proton (p-p) and Au-Au runs. The vertical dispersion from the triplet roll errors, local and global coupling correction skew quadrupoles, and the vertical dipole correctors are calculated and discussed.

  12. Exploring the relationship between vibrational mode locality and coupling using constrained optimization

    NASA Astrophysics Data System (ADS)

    Molina, Andrew; Smereka, Peter; Zimmerman, Paul M.

    2016-03-01

    The use of alternate coordinate systems as a means to improve the efficiency and accuracy of anharmonic vibrational structure analysis has seen renewed interest in recent years. While normal modes (which diagonalize the mass-weighted Hessian matrix) are a typical choice, the delocalized nature of this basis makes it less optimal when anharmonicity is in play. When a set of modes is not designed to treat anharmonicity, anharmonic effects will contribute to inter-mode coupling in an uncontrolled fashion. These effects can be mitigated by introducing locality, but this comes at its own cost of potentially large second-order coupling terms. Herein, a method is described which partially localizes vibrations to connect the fully delocalized and fully localized limits. This allows a balance between the treatment of harmonic and anharmonic coupling, which minimizes the error that arises from neglected coupling terms. Partially localized modes are investigated for a range of model systems including a tetramer of hydrogen fluoride, water dimer, ethene, diphenylethane, and stilbene. Generally, partial localization reaches ˜75% of maximal locality while introducing less than ˜30% of the harmonic coupling of the fully localized system. Furthermore, partial localization produces mode pairs that are spatially separated and thus weakly coupled to one another. It is likely that this property can be exploited in the creation of model Hamiltonians that omit the coupling parameters of the distant (and therefore uncoupled) pairs.

  13. Studies of local horizontal-vertical betatron coupling in the Fermilab Main Ring

    SciTech Connect

    Bourianoff, G.; Sun, N.; Tsironis, G.P.; Kourbanis, I.

    1993-09-01

    We give preliminary evidence that local horizontal-vertical betatron coupling can be detected using digital signal processing techniques. We use the Fermilab Main ring to perform a number of local detection experiments using UDAS. For the data analysis we use straightforward FFT`s as well as more sophisticated parametric estimation techniques. We show that the latter enables the detection of local coupling with some accuracy.

  14. Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking.

    PubMed

    Hu, Honghua; Przhonska, Olga V; Terenziani, Francesca; Painelli, Anna; Fishman, Dmitry; Ensley, Trenton R; Reichert, Matthew; Webster, Scott; Bricks, Julia L; Kachkovski, Alexey D; Hagan, David J; Van Stryland, Eric W

    2013-05-28

    Polymethine dyes (PDs) with absorption bands in the near-infrared region undergo symmetry breaking in polar solvents. To investigate how symmetry breaking affects nonlinear optical responses of PDs, an extensive and challenging experimental characterization of a cationic 2-azaazulene polymethine dye, including linear absorption, fluorescence, two-photon absorption and excited-state absorption, has been performed in two solvents with different polarity. Based on this extensive set of experimental data, a three-electronic-state model, accounting for the coupling of electronic degrees of freedom to molecular vibrations and polar solvation, has been reliably parameterized and validated for this dye, fully rationalizing optical spectra in terms of spectral position, intensities and bandshapes. In low-polarity solvents where the dye is mainly in its symmetric form, a nominally forbidden two-photon absorption band is observed, due to a vibronic activation mechanism. Inhomogeneous broadening plays a major role in polar solvents: absorption spectra represent the weighted sum of contributions from states with a variable amount of symmetry breaking, leading to a complex evolution of linear and nonlinear optical spectra with solvent polarity. In more polar solvents, the dominant role of the asymmetric form leads to the activation of two-photon absorption as a result of the symmetry lowering. The subtle interplay between the two mechanisms for two-photon absorption activation, vibronic coupling and polar solvation, can be fully accounted for within the proposed microscopic model allowing a detailed interpretation of the optical spectra of PDs.

  15. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts using two photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bukara, Katarina; Jovanić, Svetlana; Drvenica, Ivana T.; Stančić, Ana; Ilić, Vesna; Rabasović, Mihailo D.; Pantelić, Dejan; Jelenković, Branislav; Bugarski, Branko; Krmpot, Aleksandar J.

    2017-02-01

    The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells' shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.

  16. Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Broser, Philip J.; Schulte, Roland; Roth, A.; Helmchen, Fritjof; Waters, Jack; Lang, Stefan; Sakmann, Bert J.; Wittum, Gabriel

    2005-03-01

    Two-photon microscopy in combination with novel fluorescent labeling techniques enables imaging of three-dimensional neuronal morphologies in intact brain tissue. In principle it is now possible to automatically reconstruct the dendritic branching patterns of neurons from 3D fluorescence image stacks. In practice however, the signal-to-noise ratio can be low, in particular in the case of thin dendrites or axons imaged relatively deep in the tissue. Here we present a nonlinear anisotropic diffusion filter that enhances the signal-to-noise ratio while preserving the original dimensions of the structural elements. The key idea is to use structural information in the raw data -- the local moments of inertia -- to locally control the strength and direction of diffusion filtering. A cylindrical dendrite, for example, is effectively smoothed only parallel to its longitudinal axis, not perpendicular to it. This is demonstrated for artificial data as well as for in vivo 2-photon microscopic data from pyramidal neurons of rat neocortex. In both cases noise is averaged out along the dendrites, leading to bridging of apparent gaps, while dendritic diameters are not affected. The filter is a valuable general tool for smoothing cellular processes and is well suited for preparing data for subsequent image segmentation and neuron reconstruction.

  17. Nonsequential two-photon absorption from the K shell in solid zirconium

    NASA Astrophysics Data System (ADS)

    Ghimire, Shambhu; Fuchs, Matthias; Hastings, Jerry; Herrmann, Sven C.; Inubushi, Yuichi; Pines, Jack; Shwartz, Sharon; Yabashi, Makina; Reis, David A.

    2016-10-01

    We report the observation of nonsequential two-photon absorption from the K shell of solid Zr (atomic number Z =40 ) using intense x-ray pulses from the Spring-8 Angstrom Compact Free-Electron Laser (SACLA). We determine the generalized nonlinear two-photon absorption cross section at the two-photon threshold in the range of 3.9-57 ×10-60cm4s bounded by the estimated uncertainty in the absolute intensity. The lower limit is consistent with the prediction of 3.1 ×10-60cm4s from the nonresonant Z-6 scaling for hydrogenic ions in the nonrelativistic, dipole limit.

  18. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    SciTech Connect

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  19. Dicke coherent narrowing in two-photon and Raman spectroscopy of thin vapor cells

    SciTech Connect

    Dutier, Gabriel; Todorov, Petko; Hamdi, Ismahene; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-10-15

    The principle of coherent Dicke narrowing in a thin vapor cell, in which sub-Doppler spectral line shapes are observed under a normal irradiation for a {lambda}/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300-nm-thick Cs cell. Extension to the Raman situation is finally considered.

  20. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  1. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    PubMed

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  2. Local coupling (LoCo) vs. large-scale coupled (LsCo) land-atmosphere interactions in idealized experiments

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Lintner, B. R.; Findell, K. L.; Rochetin, N.; Sobel, A. H.; Anber, U. M.

    2014-12-01

    We will present two idealized epxeriments/methodologies to investigate local (LoCo) and large-scale (LsCo) coupling between the surface and the atmsophere: the contiental Radiative-Convective Equilibrium (RCE) and the continental Weak Temperature Gradient (WTG). The RCE defines an equilibrium state of coupling between the surafce and the atmosphere isolated from any large-scale dependence, which were investigated within the single column model of the Laboratoire de Meteorologie Dynamique (LMD) coupled to a simple bucket land model. This studies emphasizes the role of low-level cloud and the diurnal cylce of the boundary layer on the final state of the system. In the WTG we investigate the coupling between the surface and the atmosphere during the dry and wet season of the Amazon with the WRF model coupled to the NOAH land-surface model. Large-scale coupling is obtained with the WTG. The dry and wet season demonstrate very fundamental behavior: in the dry season deep convection is generated by radiative cooling in the higher troposhere and is disconnected from the surface. In the wet season the coupling between the surface and the atmosphere is much tighter. We suggest that the WTG is a powerful tool to investigate the coupling between the surface and the atmosphere, which solves two major issues: the limited resolution of convection in GCMs and the lack of large-scale coupling in CRM. Later investigation will look at the effect of deforestation, water table and distance from the ocean.

  3. Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation.

    PubMed

    Xu, Xingsheng

    2013-11-15

    For colloidal quantum dots, the ongoing biggest problem is their fluorescence blinking. Until now, there is no generally accepted model for this fluorescence blinking. Here, two-photon excited fluorescence from CdSe/ZnS nanocrystals on silicon nitride photonic crystals is studied using a femtosecond laser. From analysis of the spectra and decay processes, most of the relative trion efficiency is larger than 10%, and the largest relative trion efficiency reaches 46.7%. The photonic crystals enhance the trion emission of CdSe/ZnS nanocrystals, where the enhancement is due to the coupling of the trion emission to the leaky mode of the photonic crystal slab. Moreover, the photonic crystals enhance the Auger-assisted trapping efficiency of electrons/holes to surface states, and then enhance the efficiency of the generations of charge separation and DC electric field, which modifies the trion spectrum. Therefore, a model is present for explaining the mechanism of fluorescence blinking including the effect of the environment.

  4. Molecular spectroscopy by stepwise two-photon ion-pair production at 71 nm

    SciTech Connect

    Kung, A.H.; Page, R.H.; Larkin, R.J.; Shen, Y.R.; Lee, Y.T.

    1985-06-01

    The Rydberg states of H/sub 2/ have been a continuing subject of intensive study by various research groups. However, understanding of the high lying electronic states of this molecule has been inhibited by the lack of spectroscopic data in the region <75 nm. Experimental studies have been difficult because spectroscopic features are generally buried under an intense absorption or photoionization continuum. Intense, high-resolution excitation sources are not easily available. Recent developments on tunable, narrowband, coherent xuv sources provide new means of studying the spectroscopy in this region with high resolution (+- .0005 nm). We have applied the technique of stepwise two-photon excitation to study photoionization of H/sub 2/ in a molecular beam using the two lowest excited states of H/sub 2/ as the intermediate level. This excitation, coupled with the detection of background-free H/sup -/ ions has enabled us to uncover, for the first time, spectroscopic features that are difficult to observe in positive ion detection. These features have been successfully assigned to new Rydberg series converging to the high vibrations of the H/sub 2//sup +/ ground electronic state.

  5. Chimera states and the interplay between initial conditions and non-local coupling

    NASA Astrophysics Data System (ADS)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  6. A biomimetic coupled circuit based microphone array for sound source localization.

    PubMed

    Xu, Huping; Xu, Xiangyuan; Jia, Han; Guan, Luyang; Bao, Ming

    2015-09-01

    An equivalent analog circuit is designed to mimic the coupled ears of the fly Ormia ochracea for sound source localization. This coupled circuit receives two signals with tiny phase difference from a space closed two-microphone array, and produces two signals with obvious intensity difference. The response sensitivity can be adjusted through the coupled circuit parameters. The directional characteristics of the coupled circuit have been demonstrated in the experiment. The miniature microphone array can localize the sound source with low computational burden by using the intensity difference. This system has significant advantages in various applications where the array size is limited.

  7. Monitoring photosensitizer uptake using two photon fluorescence lifetime imaging microscopy.

    PubMed

    Yeh, Shu-Chi Allison; Diamond, Kevin R; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Fang, Qiyin

    2012-01-01

    Photodynamic Therapy (PDT) provides an opportunity for treatment of various invasive tumors by the use of a cancer targeting photosensitizing agent and light of specific wavelengths. However, real-time monitoring of drug localization is desirable because the induction of the phototoxic effect relies on interplay between the dosage of localized drug and light. Fluorescence emission in PDT may be used to monitor the uptake process but fluorescence intensity is subject to variability due to scattering and absorption; the addition of fluorescence lifetime may be beneficial to probe site-specific drug-molecular interactions and cell damage. We investigated the fluorescence lifetime changes of Photofrin(®) at various intracellular components in the Mat-LyLu (MLL) cell line. The fluorescence decays were analyzed using a bi-exponential model, followed by segmentation analysis of lifetime parameters. When Photofrin(®) was localized at the cell membrane, the slow lifetime component was found to be significantly shorter (4.3 ± 0.5 ns) compared to those at other locations (cytoplasm: 7.3 ± 0.3 ns; mitochondria: 7.0 ± 0.2 ns, p < 0.05).

  8. Note: Derivation of two-photon circular dichroism—Addendum to “Two-photon circular dichroism” [J. Chem. Phys. 62, 1006 (1975)

    SciTech Connect

    Friese, Daniel H.

    2015-09-07

    This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  9. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  10. Solvent effects on two-photon absorption of dialkylamino substituted distyrylbenzene chromophore

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Ferrighi, Lara; Frediani, Luca; Wang, Chuan-Kui; Luo, Yi

    2007-05-01

    Solvent effects on the two-photon absorption of a symmetrical diamino substituted distyrylbenzene chromophore have been studied using the density functional response theory in combination with the polarizable continuum model. It is shown that the dielectric medium has a rather small effect both on the bond length alternation and on the one-photon absorption spectrum, but it affects significantly the two-photon absorption cross section. It is found that both one- and two-photon absorptions are extremely sensitive to the planarity of the molecule, and the absorption intensity can be dramatically reduced by the conformation distortion. It has led to the conclusion that the experimentally observed anomalous solvent effect on the two-photon absorption of dialkylamino substituted distyrylbenzene chromophores cannot be attributed to the intrinsic properties of a single molecule and its interaction with solvents.

  11. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  12. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  13. Two-photon absorption properties of a new series of 2CTσ chromophores

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  14. Dye-doped sol-gel materials for two-photon absorption induced fluorescence

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Roger, Gisèle; Cassagne, Florence; Lévy, Yves; Brun, Alain; Chaput, Frédéric; Boilot, Jean-Pierre; Rapaport, Alexandra; Heerdt, Céline; Bass, Michael

    2002-01-01

    Two-photon absorption (TPA) and subsequent fluorescence properties of laser dyes are retained when doped into solid state sol-gel materials. These properties were demonstrated to be applicable in true 3D displays.

  15. Y-shaped two-photon absorbing molecules with an imidazole-thiazole core

    NASA Technical Reports Server (NTRS)

    Feng, Ke; De Boni, Leonardo; Misoguti, Lino; Mendonca, C. R.; Meador, Michael; Hsu, Fu-Lian; Bu, Xiu R.

    2004-01-01

    Two new classes of two-photon absorbing Y-shaped molecules have been developed to possess an imidazole-thiazole core and a stilbene-type conjugation pathway with either nitro or sulfonyl as terminal electron-accepting group.

  16. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  17. Super-resolution two-photon microscopy via scanning patterned illumination

    NASA Astrophysics Data System (ADS)

    Urban, Ben E.; Yi, Ji; Chen, Siyu; Dong, Biqin; Zhu, Yongling; DeVries, Steven H.; Backman, Vadim; Zhang, Hao F.

    2015-04-01

    We developed two-photon scanning patterned illumination microscopy (2P-SPIM) for super-resolution two-photon imaging. Our approach used a traditional two-photon microscopy setup with temporally modulated excitation to create patterned illumination fields. Combing nine different illuminations and structured illumination reconstruction, super-resolution imaging was achieved in two-photon microscopy. Using 2P-SPIM we achieved a lateral resolution of 141 nm, which represents an improvement by a factor of 1.9 over the corresponding diffraction limit. We further demonstrated super-resolution cellular imaging by 2P-SPIM to image actin cytoskeleton in mammalian cells and three-dimensional imaging in highly scattering retinal tissue.

  18. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  19. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    NASA Astrophysics Data System (ADS)

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-04-01

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √{ N } -fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  20. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell

    NASA Astrophysics Data System (ADS)

    Zhang, TianYue; Lu, GuoWei; Shen, HongMing; Perriat, P.; Martini, M.; Tillement, O.; Gong, QiHuang

    2014-06-01

    Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently. The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method. The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect. The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations. Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label. The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

  1. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

    PubMed Central

    Aouani, Heykel; Schön, Peter; Brasselet, Sophie; Rigneault, Hervé; Wenger, Jérôme

    2010-01-01

    Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications. PMID:21258531

  2. Two-Photon Exchange in Elastic Electron-Proton Scattering: A QCD Factorization Approach

    SciTech Connect

    Kivel, Nikolai; Vanderhaeghen, Marc

    2009-08-28

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer Q{sup 2}. It is shown that the leading two-photon exchange amplitude behaves as 1/Q{sup 4}, and can be expressed in a model independent way in terms of the leading twist nucleon distribution amplitudes. Using several models for the nucleon distribution amplitudes, we provide estimates for existing data and for ongoing experiments.

  3. Suppression of two-photon resonantly enhanced nonlinear processes in extended media

    SciTech Connect

    Garrett, W.R.; Moore, M.A.; Payne, M.G.; Wunderlich, R.K.

    1988-11-01

    On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs.

  4. DURIP97 Instrumentation for Characterization of Two-Photon Absorbing Organic Materials

    DTIC Science & Technology

    2007-11-02

    Room Bl 15 Boiling AFB DC 20332- 8050 5 . FUNDING NUMBERS AFOSR Grant F49620-97-1-0200 8. PERFORMING ORGANIZATION REPORT NUMBER 11. SUPPLEMENTARY...REPORT 1 Final Technical ...u DATES CUVCHED 4/1/97 - 3/ 31 /98 4. TITLE AND SUBTITLE DURIP97 Instrumentation for Characterization of Two-Photon...in great demand for variety-of applications including, two-photon excited fluorescence microscopy (7- 4), optical limiting ( 5 - 7), three-dimensional

  5. Two-photon ionization of atomic hydrogen with elliptically polarized light

    NASA Technical Reports Server (NTRS)

    Kassaee, A.; Rustgi, M. L.; Long, S. A. T.

    1988-01-01

    The theory of two-photon ionization of a hydrogenic state in the nonrelativistic dipole approximation is generalized for elliptically polarized light. An application to the metastable 2S state of atomic hydrogen is made. Significant differences in the angular distribution of the outgoing electrons are found depending upon the polarization of the photons. It is claimed that two-photon ionization employing elliptically polarized photons from lasers may provide an additional test for the theories of multiphoton ionization.

  6. Absolute frequency measurement of rubidium 5S-7S two-photon transitions.

    PubMed

    Morzyński, Piotr; Wcisło, Piotr; Ablewski, Piotr; Gartman, Rafał; Gawlik, Wojciech; Masłowski, Piotr; Nagórny, Bartłomiej; Ozimek, Filip; Radzewicz, Czesław; Witkowski, Marcin; Ciuryło, Roman; Zawada, Michał

    2013-11-15

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

  7. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging

    PubMed Central

    Ragan, Timothy; Kadiri, Lolahon R.; Venkataraju, Kannan Umadevi; Bahlmann, Karsten; Sutin, Jason; Taranda, Julian; Arganda-Carreras, Ignacio; Kim, Yongsoo; Seung, H. Sebastian

    2011-01-01

    Here we describe an automated method, which we call serial two-photon (STP) tomography, that achieves high-throughput fluorescence imaging of mouse brains by integrating two-photon microscopy and tissue sectioning. STP tomography generates high-resolution datasets that are free of distortions and can be readily warped in 3D, for example, for comparing multiple anatomical tracings. This method opens the door to routine systematic studies of neuroanatomy in mouse models of human brain disorders. PMID:22245809

  8. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-03

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.

  9. Two-Photon Laser Micro-Nano Fabrication; Understanding from Single-Voxel Level

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014231 TITLE: Two-Photon Laser Micro - Nano Fabrication; Understanding...758 @ 2003 Materials Research Society LL4.6 Two-Photon Laser Micro - Nano Fabrication; Understanding from Single-Voxel Level Satoshi Kawatal and Hong...spatial resolution by the radical quenching effect [8, 9], improvement of fabrication efficiency by using 3D vector scanning [9], 3D micro -diagnosis by

  10. Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches

    PubMed Central

    2015-01-01

    Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution. PMID:24857186

  11. Rapid prototyping of electrochromatography chips for improved two-photon excited fluorescence detection.

    PubMed

    Hackl, Claudia; Beyreiss, Reinhild; Geissler, David; Jezierski, Stefan; Belder, Detlev

    2014-04-15

    In the present study, we introduce two-photon excitation at 532 nm for label-free fluorescence detection in chip electrochromatography. Two-photon excitation at 532 nm offers a promising alternative to one-photon excitation at 266 nm, as it enables the use of economic chip materials instead of fused silica. In order to demonstrate these benefits, one-photon and two-photon induced fluorescence detection are compared in different chip layouts and materials with respect to the achievable sensitivity in the detection of polycyclic aromatic hydrocarbons (PAHs). Customized chromatography chips with cover or bottom slides of different material and thickness are produced by means of a rapid prototyping method based on liquid-phase lithography. The design of thin bottom chips (180 μm) enables the use of high-performance immersion objectives with low working distances, which allows one to exploit the full potential of two-photon excitation for a sensitive detection. The developed method is applied for label-free analysis of PAHs separated on a polymer monolith inside polymer glass sandwich chips made from fused silica or soda-lime glass. The obtained limits of detection range from 40 nM to 1.95 μM, with similar sensitivities in fused silica thin bottom chips for one-photon and two-photon excitation. In deep-UV non- or less-transparent devices two-photon excitation is mandatory for label-free detection of aromatics with high sensitivity.

  12. Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research

    PubMed Central

    PERRY, SETH W.; BURKE, RYAN M.; BROWN, EDWARD B.

    2012-01-01

    Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM—two-photon excitation fluorescence microscopy, and second harmonic generation microscopy—as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality. PMID:22258888

  13. Highly Selective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria.

    PubMed

    Niu, Weifen; Guo, Lei; Li, Yinhui; Shuang, Shaomin; Dong, Chuan; Wong, Man Shing

    2016-02-02

    A novel ratiometric mitochondrial cysteine (Cys)-selective two-photon fluorescence probe has been developed on the basis of a merocyanine as the fluorophore and an acrylate moiety as the biothiol reaction site. The biocompatible and photostable acrylate-functionalized merocyanine probe shows not only a mitochondria-targeting property but also highly selective detection and monitoring of Cys over other biothiols such as homocysteine (Hcy) and glutathione (GSH) and hydrogen sulfide (H2S) in live cells. In addition, this probe exhibits ratiometric fluorescence emission characteristics (F518/F452), which are linearly proportional to Cys concentrations in the range of 0.5-40 μM. More importantly, the probe and its released fluorophore, merocyanine, exhibit strong two-photon excited fluorescence (TPEF) with two-photon action cross-section (Φσmax) of 65.2 GM at 740 nm and 72.6 GM at 760 nm in aqueous medium, respectively, which is highly desirable for high contrast and brightness ratiometric two-photon fluorescence imaging of the living samples. The probe has been successfully applied to ratiometrically image and detect mitochondrial Cys in live cells and intact tissues down to a depth of 150 μm by two-photon fluorescence microscopy. Thus, this ratiometric two-photon fluorescent probe is practically useful for an investigation of Cys in living biological systems.

  14. Two-photon fluorescent probes for biological Mg(2+) detection based on 7-substituted coumarin.

    PubMed

    Yin, Haijing; Zhang, Buchang; Yu, Haizhu; Zhu, Lin; Feng, Yan; Zhu, Manzhou; Guo, Qingxiang; Meng, Xiangming

    2015-05-01

    Two novel water-soluble coumarin-based compounds (OC7, NC7) were designed and synthesized as two-photon fluorescent probes for biological Mg(2+) detection. The compounds feature a β-keto acid as a high selective binding site for Mg(2+) and the coumarin framework as the two-photon fluorophore. OC7 and NC7 show significant "off-on" detecting signals (9.05-fold and 23.8-fold fluorescence enhancement) and lower detection limits compared with previous reported two-photon fluorescent probes for Mg(2+). Moreover, OC7-Mg(2+) and NC7-Mg(2+) exhibit large two-photon absorption cross sections (340 and 615 GM) at the near-infrared wavelengths (740 and 860 nm), which indicates that the probes are very suitable for detection of Mg(2+) in vivo. Both OC7 and NC7 are pH-insensitive and of low cytotoxicity and can be applied to image intracellular Mg(2+) under two-photon microscopy (TPM). Our results provide a strategy to modify the coumarin fluorophore to get better two-photon fluorescent properties. And the results also suggest that electronic density of β-keto acid plays a very important role in the recognition of Mg(2+).

  15. Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury.

    PubMed

    Wang, Haolu; Zhang, Run; Bridle, Kim R; Jayachandran, Aparna; Thomas, James A; Zhang, Wenzhu; Yuan, Jingli; Xu, Zhi Ping; Crawford, Darrell H G; Liang, Xiaowen; Liu, Xin; Roberts, Michael S

    2017-03-28

    Oxidative stress reflects an imbalance between reactive oxygen species (ROS) and antioxidants, which has been reported as an early unifying event in the development and progression of various diseases and as a direct and mechanistic indicator of treatment response. However, highly reactive and short-lived nature of ROS and antioxidant limited conventional detection agents, which are influenced by many interfering factors. Here, we present a two-photon sensing platform for in vivo dual imaging of oxidative stress at the single cell-level resolution. This sensing platform consists of three probes, which combine the turn-on fluorescent transition-metal complex with different specific responsive groups for glutathione (GSH), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). By combining fluorescence intensity imaging and fluorescence lifetime imaging, these probes totally remove any possibility of crosstalk from in vivo environmental or instrumental factors, and enable accurate localization and measurement of the changes in ROS and GSH within the liver. This precedes changes in conventional biochemical and histological assessments in two distinct experimental murine models of liver injury. The ability to monitor real-time cellular oxidative stress with dual-modality imaging has significant implications for high-accurate, spatially configured and quantitative assessment of metabolic status and drug response.

  16. Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury

    PubMed Central

    Wang, Haolu; Zhang, Run; Bridle, Kim R.; Jayachandran, Aparna; Thomas, James A.; Zhang, Wenzhu; Yuan, Jingli; Xu, Zhi Ping; Crawford, Darrell H. G.; Liang, Xiaowen; Liu, Xin; Roberts, Michael S.

    2017-01-01

    Oxidative stress reflects an imbalance between reactive oxygen species (ROS) and antioxidants, which has been reported as an early unifying event in the development and progression of various diseases and as a direct and mechanistic indicator of treatment response. However, highly reactive and short-lived nature of ROS and antioxidant limited conventional detection agents, which are influenced by many interfering factors. Here, we present a two-photon sensing platform for in vivo dual imaging of oxidative stress at the single cell-level resolution. This sensing platform consists of three probes, which combine the turn-on fluorescent transition-metal complex with different specific responsive groups for glutathione (GSH), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). By combining fluorescence intensity imaging and fluorescence lifetime imaging, these probes totally remove any possibility of crosstalk from in vivo environmental or instrumental factors, and enable accurate localization and measurement of the changes in ROS and GSH within the liver. This precedes changes in conventional biochemical and histological assessments in two distinct experimental murine models of liver injury. The ability to monitor real-time cellular oxidative stress with dual-modality imaging has significant implications for high-accurate, spatially configured and quantitative assessment of metabolic status and drug response. PMID:28349954

  17. Enhanced two-photon fluorescence imaging and therapy of cancer cells via Gold@bridged silsesquioxane nanoparticles.

    PubMed

    Croissant, Jonas; Maynadier, Marie; Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Chaix, Arnaud; Cattoën, Xavier; Wong Chi Man, Michel; Gallud, Audrey; Gary-Bobo, Magali; Garcia, Marcel; Raehm, Laurence; Durand, Jean-Olivier

    2015-01-21

    A two-photon photosensitizer with four triethoxysilyl groups is synthesized through the click reaction. This photosensitizer allows the design of bridged silsesquioxane (BS) nanoparticles through a sol-gel process; moreover, gold core BS shells or BS nanoparticles decorated with gold nanospheres are synthesized. An enhancement of the two-photon properties is noted with gold and the nanoparticles are efficient for two-photon imaging and two-photon photodynamic therapy of cancer cells.

  18. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  19. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.

    PubMed

    Krasieva, Tatiana B; Ehren, Jennifer; O'Sullivan, Thomas; Tromberg, Bruce J; Maher, Pamela

    2015-10-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids.

  20. Cell and Brain Tissue Imaging of the Flavonoid Fisetin Using Label-Free Two-Photon Microscopy

    PubMed Central

    Krasieva, Tatiana B.; Ehren, Jennifer; O’Sullivan, Thomas; Tromberg, Bruce J.; Maher, Pamela

    2015-01-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their byproducts. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids. PMID:26271433

  1. An experimental study of nonclassical effects in two-photon interferometry

    NASA Astrophysics Data System (ADS)

    Liang, Junlin

    Two-photon interferometry is a relatively new field with applications ranging from precise measurements of optical phase shifts to fundamental tests of quantum mechanics. In contrast to conventional single-photon interferometry, two-photon interferometry typically involves measuring correlations between two detectors placed in two different output ports of an interferometer. Of particular interest is two-photon interferometry with entangled photon pairs, in which case it is often possible to observe effects that are not possible with classical fields. Because these entanglement effects are becoming increasingly important in Quantum Information Processing (QIP) applications, there is currently a strong need for further exploration of new ideas, basic physics, and experimental techniques of two-photon interferometry. Contained herein are the results of three new two-photon interferometry experiments using entangled photon pairs produced by a Type-I Parametric Down-Conversion (PDC) source. In the first experiment, we demonstrate a new technique for compensating for two-photon interferometer beamsplitter asymmetries by manipulating the polarization degree of freedom in the system. Roughly speaking, projective polarization measurements are used to re-balance the magnitude of various two-photon amplitudes that were made distinguishable by non-ideal refection and transmission coefficients of a key beamsplitter. In the second experiment, we utilize a short coherence-length continuous-wave (CW) PDC pump laser to explore two-photon interferometry in a new intermediate regime between the more familiar extremal cases which use either a long coherence-length CW pump or an ultra-short pulsed pump laser. These results provide new insight into the role of PDC pump coherence in two-photon interferometry. Finally, we use two-photon interferometry to experimentally investigate entangled "photon holes", which is a new form of entanglement that arises from the correlated absence of

  2. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    PubMed Central

    2016-01-01

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed for self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules. PMID:27689237

  3. Targeted nanosensor aided three-dimensional pH mapping in tumor spheroids using two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Lee, Yong-Eun Koo; Elbez, Remy; Kopelman, Raoul

    2012-03-01

    Tumors are generally characterized by a pH lower than the surrounding tissues. The mapping of tumor pH is of great importance as it plays a critical role in drug delivery and its effectiveness. Here we present a pH mapping technique in tumor spheroids, using targeted, ratiometric, fluorescent, pH nano-sensor that is based on two-photon excitation. Spheroids are micro-tumors that are widely used as an in-vitro three dimensional tumor model to study the different properties of the tumor for the purpose of drug delivery, therapy etc. The nanosensor consists of 8-Hydroxypyrene- 1,3,6-trisulfonic acid (HPTS), a pH sensitive dye, encapsulated in polyacrylamide hydrogel nanoparticle matrix and F3 peptide, conjugated to the nanoparticle's surface. The nanosensor has an average size of 68nm and contains approximately 0.5% dye by weight. The fluorescence intensity ratio, at the two-photon excitation wavelengths of 900nm and 750nm, increases linearly in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. Our study reveals the pH distribution inside human cervix cancer spheroids (of different sizes) during the various stages of their formation. This information can be used to develop more efficient drug delivery mechanisms. The two-photon excitation used for this purpose is especially useful as it drastically minimizes both photobleaching and autofluorescence, thus leading to an increase in the signal-to-noise ratio. It also enables deep tissue imaging due to higher photon penetration depth.

  4. Development of Bottom-Up Chemical Approaches to 3-D Negative Index Meta-Materials: Two Photon Lithographic Approach-Chiral Chemical Synthesis Approach

    DTIC Science & Technology

    2014-06-30

    Approaches to 3-D Negative Index Meta-Materials Two Photon Lithographic Approach- Chiral Chemical Synthesis Approach 5a. CONTRACT NUMBER FA9550-09-1...materials with large optical activity. A series of chiral polymers, based on thiophene, fluorene, and fluorene-quinoxaline motif with chiral side...chains were synthesized, post-processed and characterized in both solution and film phases. A new concept of chirality enhancement via coupling with

  5. Heterodimerization and Surface Localization of G Protein Coupled Receptors

    PubMed Central

    Minneman, Kenneth P.

    2007-01-01

    G protein coupled receptors (GPCRs) are one of the largest human gene families, and are targets for many important therapeutic drugs. Over the last few years, there has been a major paradigm shift in our understanding of how these receptors function. Formerly, GPCRs were thought to exist as monomers that, upon agonist occupation, activated a heterotrimeric G protein to alter the concentrations of specific second messengers. Until recently, this relatively linear cascade has been the standard paradigm for signaling by these molecules. However, it is now clear that this model is not adequate to explain many aspects of GPCR function. We now know that many, if not most, GPCRs form homo- and/or hetero-oligomeric complexes and interact directly with intracellular proteins in addition to G proteins. It now appears that many GPCRs may not function independently, but might more accurately be described as subunits of large multi-protein signaling complexes. These observations raise many important new questions; some of which include: 1) How many functionally and pharmacologically distinct receptor subtypes exist in vivo? 2) Which GPCRs physically associate, and in what stochiometries? 3) What are the roles of individual subunits in binding ligand and activating responses? 4) Are the pharmacological or signaling properties of GPCR heterodimers different from monomers? Since these receptors are the targets for a large number of clinically useful compounds, such information is likely to be of direct therapeutic importance, both in understanding how existing drugs work, but also in discovering novel compounds to treat disease. PMID:17011524

  6. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  7. Localized Surface Plasmons Selectively Coupled to Resonant Light in Tubular Microcavities

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Li, Shilong; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Saei Ghareh Naz, Ehsan; Ma, Libo; Schmidt, Oliver G.

    2016-06-01

    Vertical gold nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold nanogap on the microcavities, which is conveniently achieved by rolling up specially designed thin dielectric films into three-dimensional microtube cavities. The coupling phenomenon is explained by a modified quasipotential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  8. Influence of molecular environment on single-photon behavior of heterocyclic NLO chromophores and its implications for two-photon behavior

    NASA Astrophysics Data System (ADS)

    Baur, Jeffery W.; Alexander, Max D., Jr.; Banach, Michael J.; Reinhardt, Bruce A.; Prasad, Paras N.; Yaun, Lixiang; Vaia, Richard A.

    1998-10-01

    Over the past several years, organic molecules exhibiting significant two-photon absorbance have been of intense interest for a wide variety of applications including high speed communications, data storage, imaging, and optical limiting. However, it has been commonly observed that the local molecular environment can significantly affect the linear and nonlinear optical properties of the chromophores. In an effort to examine these effects, the influence of the solvent environment on the linear absorbance and photoluminescence of a series of donor-acceptor heterocyclic chromophores was examined. The Stoke's shift associated with one-photon absorbance and photoluminescence was observed to increase with increasing solvent polarity. This behavior is adequately described by the Lippert equation and is related to relaxation of the solvent molecules around an excited molecule. Additionally, it was observed that the spectral shape, as well as the solvent dependence, of two-photon and one-photon pumped photoluminescence were similar, thus indicating that the longest-lived luminescing excited state is independent of the method of excitation. These results have direct implications to two-photon applications which rely on up-converted fluorescence. They also yield insight into the structure-property relationships governing their linear and multi-photon behavior including the potential contributions to the effective two-photon cross-section from excited state absorbance.

  9. Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice

    NASA Astrophysics Data System (ADS)

    Cheng, Yongshan; Tang, Gaohui; Adhikari, S. K.

    2014-06-01

    We study the localization of a noninteracting and weakly interacting Bose-Einstein condensate (BEC) with spin-orbit coupling loaded in a quasiperiodic bichromatic optical lattice potential using the numerical solution and variational approximation of a binary mean-field Gross-Pitaevskii equation with two pseudospin components. We confirm the existence of the stationary localized states in the presence of the spin-orbit and Rabi couplings for an equal distribution of atoms in the two components. We find that the interaction between the spin-orbit and Rabi couplings favors the localization or delocalization of the BEC depending on the phase difference between the components. We also studied the oscillation dynamics of the localized states for an initial population imbalance between the two components.

  10. Measurement of Mechanical Tension at Cell-cell Junctions Using Two-photon Laser Ablation

    PubMed Central

    Liang, Xuan; Michael, Magdalene; Gomez, Guillermo A.

    2017-01-01

    The cortical actomyosin cytoskeleton is found in all non-muscle cells where a key function is to control mechanical force (Salbreux et al., 2012). When coupled to E-cadherin cell-cell adhesion, cortical actomyosin generates junctional tension that influences many aspects of tissue function, organization and morphogenesis (Lecuit and Yap, 2015). Uncovering the molecular mechanisms underlying the generation of junctional tension requires tools for measuring it in live cells with a high spatio-temporal resolution. For this, we have set up a technique of laser ablation, in which we use the high power output of a two-photon laser to physically cut the actin cortex at the sites of cell-cell adhesion labeled with E-cadherin-GFP. Tension, thus is visualized as the outwards recoil of the vertices that define a junction after this was ablated/cut. Analysis of recoil versus time allows extracting parameters related to the amount of contractile force that is applied to the junction before ablation (initial recoil) and the ratio between elasticity of the junction and viscosity of the media (cytoplasm) in which the junctional cortex is immersed. Using this approach we have discovered how Src protein-tyrosine kinase (Gomez et al., 2015); actin-binding proteins such as tropomyosins (Caldwell et al., 2014) and N-WASP (Wu et al., 2014); Myosin II (Priya et al., 2015) and coronin-1B (Michael et al., 2016) contribute to the molecular apparatus responsible for generating tension at the cell-cell junctions. This protocol describes the experimental procedure for setting up laser ablation experiments and how to optimize ablation and acquisition conditions for optimal measurements of junctional tension. It also provides a full description, step by step, of the post-acquisition analysis required to evaluate changes in contractile force as well as cell elasticity and/or cytoplasm viscosity. PMID:28191488

  11. A theoretical investigation of two typical two-photon pH fluorescent probes.

    PubMed

    Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang

    2013-01-01

    Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation.

  12. Long-Term Two-Photon Imaging in Awake Macaque Monkey.

    PubMed

    Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing; Tang, Shiming

    2017-03-08

    Successful application of two-photon imaging with genetic tools in awake macaque monkeys will enable fundamental advances in our understanding of higher cognitive function at the level of molecular and neuronal circuits. Here we report techniques for long-term two-photon imaging in awake macaque monkeys. Using genetically encoded indicators including GCaMP5 and GCaMP6s delivered by AAV2/1 into the visual cortex, we demonstrate that high-quality two-photon imaging of large neuronal populations can be achieved and maintained in awake monkeys for months. Simultaneous intracellular recording and two-photon calcium imaging confirm that fluorescence activity is linearly proportional to neuronal spiking activity across a wide range of firing rates (10 Hz to 150 Hz). By providing two-photon imaging access to cortical neuronal populations at single-cell or single dendritic spine resolution in awake monkeys, the techniques reported can help bridge the use of modern genetic and molecular tools and the study of higher cognitive function.

  13. Sulfonated aluminum phthalocyanines for two-photon photodynamic cancer therapy: the effect of the excitation wavelength

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, W.; Yu, H. B.; Cheung, N. H.; Chen, J. Y.

    2014-03-01

    Sulfonated aluminum phthalocyanine (AlPcS) is a well-studied photosensitizer which has been widely used in research and in clinical applications of the photodynamic therapy of cancers. Conventionally, one-photon excitation was used, but it was unknown whether two-photon excitation of AlPcS was equally effective. In this study, the two-photon absorption cross sections of AlPcS at near infrared wavelengths were deduced from femtosecond (fs) laser-induced fluorescence. We found that the two-photon absorption cross section of AlPcS was strongly dependent on the excitation wavelength. It was about 19 GM when excited at 800 nm, but grew to 855 GM when excited at 750 nm. The 750 nm fs-laser-induced fluorescence images of AlPcS in human nasopharyngeal carcinoma cells were clearly visible while the corresponding images were very dim when excited at 800 nm. Singlet oxygen production was 13 times higher when excited at 750 nm relative to 800 nm. Our subsequent in vitro experiments showed that 750 nm two-photon excitation with an unfocused fs laser beam damaged cancer cells in a light-dose-dependent manner typical of photodynamic therapy (PDT). The killing at 750 nm was about 9-10 times more efficient than at 800 nm. These results demonstrated for the first time that AlPcS has good potential for two-photon PDT of cancers.

  14. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  15. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging.

    PubMed

    Wang, Shichao; Xu, Shasha; Wang, Yiming; Tian, Xiaohe; Zhang, Yujin; Wang, Chuankui; Wu, Jieying; Yang, Jiaxiang; Tian, Yupeng

    2017-02-15

    Two centrosymmetric D-π-D type triphenylamine chromophores with long π-conjugated bridge and strong electron-donating moiety were designed, synthesized and fully characterized. The crystal analysis revealed that multiple CH⋯π interactions existed in two chromophores, which played a crucial role in generating molecular 1D chains and 2D layers structures. Linear and nonlinear optical properties of the chromophores were systematically investigated with the aid of theoretical calculations. Two chromophores both exhibited intense and wide-dispersed one-photon/two-photon excited fluorescence, bear prodigious 2PA cross section (δ). Especially for Dye2, with ethyoxyl groups, displayed the strong 2PA activity, large cross-sections (δmax>16,000GM) and high NLO efficiency (δmax/MW>16GM/(g·mol)) in the range of 680-830nm in DMF. In addition, one- and two-photon fluorescence microscopy images of HepG2 cells incubated with Dye2 were obtained and found that Dye2 could effectively uptake toward living cells and display a uniformly localized in cytosolic space.

  16. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging

    NASA Astrophysics Data System (ADS)

    Wang, Shichao; Xu, Shasha; Wang, Yiming; Tian, Xiaohe; Zhang, Yujin; Wang, Chuankui; Wu, Jieying; Yang, Jiaxiang; Tian, Yupeng

    2017-02-01

    Two centrosymmetric D-π-D type triphenylamine chromophores with long π-conjugated bridge and strong electron-donating moiety were designed, synthesized and fully characterized. The crystal analysis revealed that multiple Csbnd H ⋯ π interactions existed in two chromophores, which played a crucial role in generating molecular 1D chains and 2D layers structures. Linear and nonlinear optical properties of the chromophores were systematically investigated with the aid of theoretical calculations. Two chromophores both exhibited intense and wide-dispersed one-photon/two-photon excited fluorescence, bear prodigious 2PA cross section (δ). Especially for Dye2, with ethyoxyl groups, displayed the strong 2PA activity, large cross-sections (δmax > 16,000 GM) and high NLO efficiency (δmax/MW > 16 GM/(g·mol)) in the range of 680-830 nm in DMF. In addition, one- and two-photon fluorescence microscopy images of HepG2 cells incubated with Dye2 were obtained and found that Dye2 could effectively uptake toward living cells and display a uniformly localized in cytosolic space.

  17. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  18. Design, synthesis, and characterization of photoinitiators for two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Whitby, Reece; MacMillan, Ryan; Janssens, Stefaan; Raymond, Sebastiampillai; Clarke, Dave; Kay, Andrew; Jin, Jianyong; Simpson, Cather M.

    2016-09-01

    A series of dipolar and quadrupolar two-photon absorption (2PA) photoinitiators (PIs) based around the well-known triphenylamine (TPA) core and tricyanofuran (TCF) acceptors have been prepared for use in two-photon polymerisation (TPP). The synthesised dipolar species are designated as 5 and 7, and the remaining quadrupolar species are 6, 8, 9 and 10. Large two-photon absorption cross-sections (δ2PA) ranging between 333 - 507 GM were measured at 780 nm using the z-scan technique. Fluorescence quantum yields (ΦF) were below 3% across the series when compared to Rhodamine 6G as a reference standard. Finally, TPP tests were conducted on PIs 7 and 8 to assess their ability to initiate the polymerisation of acrylate monomers using an 800 nm femtosecond Ti:Sapphire laser system.

  19. Selective two-photon excitation of a vibronic state by correlated photons.

    PubMed

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  20. Fluorescence imaging of single molecules and photosynthetic membranes with two-photon excitation

    SciTech Connect

    Sanchez, E.J.; Novotny, L.; Xie, X.S.

    1997-12-31

    We report the imaging of single-molecule fluorescence induced by two-photon excitation in ambient conditions. Using an inverted fluorescence microscope, we obtained the two-photon images of different single fluorophores (Rhodamine B, Sulforhodamine 101, Coumarin 535 on poly-methyl methacrylate films) and biological membrane fragments by Faster scanning the sample with respect to a diffraction limited focus of a mode-locked Ti: sapphire laser beam. The signal to background ratio was as high as 50:1 and the full width at half maximum (250nm) of a single-molecule peak was significantly shorter than that for one photon excitation. With its high sensitivity and simplicity, the two-photon experiment offers a valuable approach for spectroscopic studies on individual immobilized molecules.

  1. Two-photon Calcium Imaging in Mice Navigating a Virtual Reality Environment

    PubMed Central

    Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B.

    2014-01-01

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior1-6. Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice. PMID:24637961

  2. 420nm alkali blue laser based on two-photon absorption

    NASA Astrophysics Data System (ADS)

    Tan, Yan-nan; Li, Yi-min; Liu, Tong; Gong, Fa-quan; Jia, Chun-yan; Hu, Shu; Gai, Bao-dong; Guo, Jing-wei; Liu, Wan-fa

    2015-02-01

    Based on two-photon absorption, a 420nm blue laser of alkali Rb vapor was demonstrated, and a dye laser was used as the pumping laser. Utilizing the energy level structure of Rb atom, lasering mechanism and two-photon absorption process are analyzed. Absorbing two 778.1nm photons, Rb atoms were excited from 52 S1/2 to 52 D5/2, then relaxed to 62 P3/2 with mid infrared photon radiation. 420nm blue laser was achieved by the transition 62 P3/2-->52 S1/2. To improve efficiency of the blue laser, two-photon resonant excitation pumped alkali vapor blue lasers are proposed, which will be good beam quality, high efficiency and scalable blue lasers. The development of diode pumped alkali vapor blue laser is expected.

  3. Long-term two-photon neuroimaging with a photostable AIE luminogen.

    PubMed

    Qian, Jun; Zhu, Zhenfeng; Leung, Chris Wai Tung; Xi, Wang; Su, Liling; Chen, Guangdi; Qin, Anjun; Tang, Ben Zhong; He, Sailing

    2015-04-01

    In neuroscience, fluorescence labeled two-photon microscopy is a promising tool to visualize ex vivo and in vivo tissue morphology, and track dynamic neural activities. Specific and highly photostable fluorescent probes are required in this technology. However, most fluorescent proteins and organic fluorophores suffer from photobleaching, so they are not suitable for long-term imaging and observation. To overcome this problem, we utilize tetraphenylethene-triphenylphosphonium (TPE-TPP), which possesses aggregation-induced emission (AIE) and two-photon fluorescence characteristics, for neuroimaging. The unique AIE feature of TPE-TPP makes its nanoaggregates resistant to photobleaching, which is useful to track neural cells and brain-microglia for a long period of time. Two-photon fluorescence of TPE-TPP facilitates its application in deep in vivo neuroimaging, as demonstrated in the present paper.

  4. Electron capture of dopants in two-photonic ionization in a poly(methyl methacrylate) solid

    SciTech Connect

    Tsuchida, Akira; Sakai, Wataru; Nakano, Mitsuru; Yamamoto, Masahide

    1992-10-29

    Behavior of the electron produced by two-photonic excitation of an aromatic donor in a poly(methyl methacrylate) solid was studied by the addition of the electron scavengers to the system. According to the Perrin type analysis for the two-photonically ejected electron, the capture radii (R{sub c}) of the scavengers examined were estimated to be from 8 to 40 {Angstrom}. For the two-photonically ejected electrons, R{sub c} is a capture radius for thermalized electrons. In this case the parent electron donor is not necessarily within this radius. On the other hand, for the fluorescence quenching, the distance between the donor and acceptor is within the static quenching radius (R{sub q}) of the donor. 13 refs., 4 figs., 2 tabs.

  5. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    PubMed Central

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  6. Two-photon patterning of a polymer containing Y-shaped azochromophores

    SciTech Connect

    Ambrosio, A.; Orabona, E.; Maddalena, P.; Camposeo, A.; Polo, M.; Neves, A. A. R.; Pisignano, D.; Carella, A.; Borbone, F.; Roviello, A.

    2009-01-05

    We report on the patterning of the free surface of azo-based polymer films by means of mass migration driven by one- or two-photon absorption. A symmetric donor-acceptor-donor structured Y-shaped azochromophore is specifically synthesized to enhance two-photon absorption in the polymer. The exposure of the polymer film to a focused laser beam results in light-driven mass migration for both one- and two-photon absorptions. Features with subdiffraction resolution (250 nm) are realized and the patterning dynamics is investigated as a function of the light dose. Furthermore, functional photonic structures, such as diffraction gratings with periods ranging between 0.5 and 2.0 {mu}m, have been realized.

  7. Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Silva, D. L.; De Boni, L.; Correa, D. S.; Costa, S. C. S.; Hidalgo, A. A.; Zilio, S. C.; Canuto, S.; Mendonca, C. R.

    2012-05-01

    Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects.

  8. Monte carlo analysis of two-photon fluorescence imaging through a scattering medium.

    PubMed

    Blanca, C M; Saloma, C

    1998-12-01

    The behavior of two-photon fluorescence imaging through a scattering medium is analyzed by use of the Monte Carlo technique. The axial and transverse distributions of the excitation photons in the focused Gaussian beam are derived for both isotropic and anisotropic scatterers at different numerical apertures and at various ratios of the scattering depth with the mean free path. The two-photon fluorescence profiles of the sample are determined from the square of the normalized excitation intensity distributions. For the same lens aperture and scattering medium, two-photon fluorescence imaging offers a sharper and less aberrated axial response than that of single-photon confocal fluorescence imaging. The contrast in the corresponding transverse fluorescence profile is also significantly higher. Also presented are results comparing the effects of isotropic and anisotropic scattering media in confocal reflection imaging. The convergence properties of the Monte Carlo simulation are also discussed.

  9. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively.

  10. Robust spatial-polarization hyperentanglement distribution of two-photon systems against collective noise

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-03-01

    Hyperentanglement is a significant resource for high-capacity quantum communication. Here we present a robust spatial-polarization hyperentanglement distribution scheme for two-photon systems. The error on the polarization states of two-photon systems transmitted from two paths can be corrected resorting to the robust time-bin entanglement which suffers little from the channel noise. The spatial bit-flip error takes place with a very small probability and the spatial phase-flip error can be precluded by adjusting the path-length of spatial modes. Using this scheme, the two parties in quantum communication can share a maximally hyperentangled state of two-photon systems in a deterministic way, which will improve the efficiency of quantum communication largely.

  11. Excited state two photon absorption of a charge transfer radical dimer in the near infrared.

    PubMed

    Schiccheri, Nicola; Meneghetti, Moreno

    2005-06-02

    Nonlinear transmission measurements of a solution of radical dimers of tetramethyl-tetrathiafulvalene, (TMTTF+)2, recorded with 9 ns laser pulses at 1064 nm are reported and interpreted on the basis of a multiphoton absorption process. One finds that the process can be interpreted with a sequence of three photon absorption, the first being a one photon absorption related to the intermolecular charge transfer process characteristic of the dimers and the second a two photon absorption from the excited state created with the first process. A model calculation allows one to obtain the value of the two photon absorption cross section which is found to be several orders of magnitude larger than those usually found for two photon absorbing systems excited from the ground state. These results show the importance of an excited-state population for obtaining large nonlinear optical responses.

  12. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm

    SciTech Connect

    Fisher, W.G.; Wachter, E.A.; Lytle, F.E.; Armas, M.; Seaton, C.

    1998-04-01

    Passively mode-locked titanium:sapphire (Ti:S) lasers are capable of generating a high-frequency train of transform-limited subpico-second pulses, producing peak powers near 10{sup 5}thinspW at moderate average powers. The low energy per pulse ({lt}20 nJ) permits low fluence levels to be maintained in tightly focused beams, reducing the possibility of saturating fluorescence transitions. These properties, combined with a wavelength tunability from approximately 700 nm to 1 {mu}m, provide excellent opportunities for studying simultaneous two-photon excitation (TPE). However, pulse formation is very sensitive to a variety of intracavity parameters, including group velocity dispersion compensation, which leads to wavelength-dependent pulse profiles as the wavelength is scanned. This wavelength dependence can seriously distort band shapes and apparent peak heights during collection of two-photon spectral data. Since two-photon excited fluorescence is proportional to the product of the peak and average powers, it is not possible to obtain source-independent spectra by using average power correction schemes alone. Continuous-wave, single-mode lasers can be used to generate source-independent two-photon data, but these sources are four to five orders of magnitude less efficient than the mode-locked Ti:S laser and are not practical for general two-photon measurements. Hence, a continuous-wave, single-mode Ti:S laser has been used to collect a source-independent excitation spectrum for the laser dye Coumarin 480. This spectrum may be used to correct data collected with multimode sources; this possibility is demonstrated by using a simple ratiometric method to collect accurate TPE spectra with the mode-locked Ti:S laser. An approximate value of the two-photon cross section for Coumarin 480 is also given. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  13. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    PubMed

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications.

  14. Frustrated FRET for high-contrast high-resolution two-photon imaging.

    PubMed

    Xu, Fang; Wei, Lu; Chen, Zhixing; Min, Wei

    2013-06-17

    Two-photon fluorescence microscopy has become increasingly popular in biomedical research as it allows high-resolution imaging of thick biological specimen with superior contrast and penetration than confocal microscopy. However, two-photon microscopy still faces two fundamental limitations: 1) image-contrast deterioration with imaging depth due to out-of-focus background and 2) diffraction-limited spatial resolution. Herein we propose to create and detect high-order (more than quadratic) nonlinear signals by harnessing the frustrated fluorescence resonance energy transfer (FRET) effect within a specially designed donor-acceptor probe pair. Two distinct techniques are described. In the first method, donor fluorescence generated by a two-photon laser at the focus is preferentially switched on and off by a modulated and focused one-photon laser beam that is able to block FRET via direct acceptor excitation. The resulting image, constructed from the enhanced donor fluorescence signal, turns out to be an overall three-photon process. In the second method, a two-photon laser at a proper wavelength is capable of simultaneously exciting both the donor and the acceptor. By sinusoidally modulating the two-photon excitation laser at a fundamental frequency ω, an overall four-photon signal can be isolated by demodulating the donor fluorescence at the third harmonic frequency 3ω. We show that both the image contrast and the spatial resolution of the standard two-photon fluorescence microscopy can be substantially improved by virtue of the high-order nonlinearity. This frustrated FRET approach represents a strategy that is based on extracting the inherent nonlinear photophysical response of the specially designed imaging probes.

  15. Two-photon microscopy of deep intravital tissues and its merits in clinical research.

    PubMed

    Wang, B-G; König, K; Halbhuber, K-J

    2010-04-01

    Multiphoton excitation laser scanning microscopy, relying on the simultaneous absorption of two or more photons by a molecule, is one of the most exciting recent developments in biomedical imaging. Thanks to its superior imaging capability of deeper tissue penetration and efficient light detection, this system becomes more and more an inspiring tool for intravital bulk tissue imaging. Two-photon excitation microscopy including 2-photon fluorescence and second harmonic generated signal microscopy is the most common multiphoton microscopic application. In the present review we take diverse ocular tissues as intravital samples to demonstrate the advantages of this approach. Experiments with registration of intracellular 2-photon fluorescence and extracellular collagen second harmonic generated signal microscopy in native ocular tissues are focused. Data show that the in-tandem combination of 2-photon fluorescence and second harmonic generated signal microscopy as two-modality microscopy allows for in situ co-localization imaging of various microstructural components in the whole-mount deep intravital tissues. New applications and recent developments of this high technology in clinical studies such as 2-photon-controlled drug release, in vivo drug screening and administration in skin and kidney, as well as its uses in tumourous tissues such as melanoma and glioma, in diseased lung, brain and heart are additionally reviewed. Intrinsic emission two-modal 2-photon microscopy/tomography, acting as an efficient and sensitive non-injurious imaging approach featured by high contrast and subcellular spatial resolution, has been proved to be a promising tool for intravital deep tissue imaging and clinical studies. Given the level of its performance, we believe that the non-linear optical imaging technique has tremendous potentials to find more applications in biomedical fundamental and clinical research in the near future.

  16. Enhanced two-photon absorption and fluorescence upconversion in Thioflavin T micelle-type aggregates in glycerol/water solution

    NASA Astrophysics Data System (ADS)

    Donnelly, Julie; Vesga, Yuly; Hernandez, Florencio E.

    2016-09-01

    In this article, we report the systematic characterization of the two-photon absorption of ThT in different mixtures of glycerol/water solution. The relationships of TPA peak position and amplitude revealed a dependence on particle size suggesting that the curious trend observed in TPA with changing glycerol content can be attributed to the presence of micelle-type aggregates. Consequently, the relatively strong TPA cross-section (δTPA = 300 GM) obtained in 8.75% glycerol/water solutions could be attributed to the immobilization of dye molecules and the strong coupling of the molecular transition dipoles in micelle-type aggregates. This enhancement of TPA, in addition to the already reported significant fluorescence quantum yield of ThT attached to brain tissue, is expected to boost the application of this compound for in vitro and perhaps in vivo high resolution multiphoton bioimaging of amyloids in brain tissue.

  17. TWO-PHOTON TISSUE IMAGING: SEEING THE IMMUNE SYSTEM IN A FRESH LIGHT

    PubMed Central

    Cahalan, Michael D.; Parker, Ian; Wei, Sindy H.; Miller, Mark J.

    2009-01-01

    Many lymphocyte functions, such as antigen recognition, take place deep in densely populated lymphoid organs. Because direct in vivo observation was not possible, the dynamics of immune-cell interactions have been inferred or extrapolated from in vitro studies. Two-photon fluorescence excitation uses extremely brief (<1 picosecond) and intense pulses of light to ‘see’ directly into living tissues, to a greater depth and with less phototoxicity than conventional imaging methods. Two-photon microscopy, in combination with newly developed indicator molecules, promises to extend single-cell approaches to the in vivo setting and to reveal in detail the cellular collaborations that underlie the immune response. PMID:12415310

  18. Global analysis of proton elastic form factor data with two-photon exchange corrections

    SciTech Connect

    J. Arrington; W. Melnitchouk; J. A. Tjon

    2007-09-01

    We use the world's data on elastic electron-proton scattering and calculations of two-photon exchange effects to extract corrected values of the proton's electric and magnetic form factors over the full Q^2 range of the existing data. Our analysis combines the corrected Rosenbluth cross section and polarization transfer data, and is the first extraction of G_Ep and G_Mp including explicit two-photon exchange corrections and their associated uncertainties. In addition, we examine the angular dependence of the corrected cross sections, and discuss the possible nonlinearities of the cross section as a function of epsilon.

  19. Non-degenerate two photon absorption enhancement for laser dyes by precise lock-in detection

    SciTech Connect

    Xue, B.; Katan, C.; Bjorgaard, J. A.; Kobayashi, T.

    2015-12-15

    This study demonstrates a measurement system for a non-degenerate two-photon absorption (NDTPA) spectrum. The NDTPA light sources are a white light super continuum beam (WLSC, 500 ∼ 720 nm) and a fundamental beam (798 nm) from a Ti:Sapphire laser. A reliable broadband NDTPA spectrum is acquired in a single-shot detection procedure using a 128-channel lock-in amplifier. The NDTPA spectra for several common laser dyes are measured. Two photon absorption cross section enhancements are found in the experiment and validated by theoretical calculation for all of the chromophores.

  20. Two-photon exchange correction to 2 S -2 P splitting in muonic 3He ions

    NASA Astrophysics Data System (ADS)

    Carlson, Carl E.; Gorchtein, Mikhail; Vanderhaeghen, Marc

    2017-01-01

    We calculate the two-photon exchange correction to the Lamb shift in muonic 3He ions within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron-3He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2 S state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

  1. Two-photon photoemission from metals induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.; Smith, W. L.; Bloembergen, N.

    1977-01-01

    We have measured the two-photon photoemission current density from tungsten, tantalum, and molybdenum when irradiated by 532-nm wavelength radiation. This wavelength was produced by the second-harmonic radiation of single picosecond laser pulses from a mode-locked neodymium-doped yttrium-aluminum-garnet laser. The results are interpreted in terms of both a simple temperature-independent two-photon photoemission effect and a generalization of the Fowler-DuBridge theory of photoemission. The laser polarization dependence of the emitted current is also reported.

  2. Measurement of Electron Beam Polarization from Unstrained Bulk GaAs via Two Photon Photoemission

    SciTech Connect

    J L McCarter, T J Gay, J Hansknecht, M Poelker, M L Stutzman

    2011-06-01

    This paper describes measurements of the beam polarization and quantum efficiency for photoemission using two-photon excitation from unstrained bulk GaAs illuminated with pulsed, high intensity 1560nm laser light. Quantum efficiency is linearly proportional to 1560nm peak laser intensity, which was varied in three independent ways, indicating that the emitted electrons are promoted from the valence to the conduction band via two-photon absorption. Beam polarization was measured using a microMott polarimeter, with a value of 16.8(4)% polarization at 1560nm, which is roughly half the measured value of 33.4(8)% using 778 nm light.

  3. New insight in boron chemistry: Application in two-photon absorption

    NASA Astrophysics Data System (ADS)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  4. Understanding the Two-Photon Absorption Spectrum of PE2 Platinum Acetylide Complex

    DTIC Science & Technology

    2014-07-09

    AFRL-RX-WP-JA-2014-0188 UNDERSTANDING THE TWO-PHOTON ABSORPTION SPECTRUM OF PE2 PLATINUM ACETYLIDE COMPLEX (POSTPRINT) Thomas M...UNDERSTANDING THE TWO-PHOTON ABSORPTION SPECTRUM OF PE2 PLATINUM ACETYLIDE COMPLEX (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER...on the two-absorption crosssection spectrum of trans-Pt(PBu3)2 (C≡C−C6H4−C≡C−C6H5)2 (PE2) platinum acetylide complex employing the femtosecond

  5. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  6. Photolysis of a peptide with N-peptidyl-7-nitroindoline units using two-photon absorption

    PubMed Central

    Hatch, Kevin A.; Ornelas, Alfredo; Williams, Kaitlyn N.; Boland, Thomas; Michael, Katja; Li, Chunqiang

    2016-01-01

    N-acyl-7-nitroindolines have been used as caged compounds to photorelease active molecules by a one- or two-photon excitation mechanism in biological systems. Here, we report the photolysis of a polypeptide that contains 7-nitroindoline units as linker moieties in its peptide backbone for potential materials engineering applications. Upon two-photon excitation with femtosecond laser light at 710 nm the photoreactive amide bond in N-peptidyl-7-nitroindolines is cleaved rendering short peptide fragments. Thus, this photochemical process changes the molecular composition at the laser focal volume. Gel modifications of this peptide can potentially be used for three-dimensional microstructure fabrication. PMID:27896004

  7. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization

    NASA Astrophysics Data System (ADS)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine

    2015-04-01

    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  8. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    PubMed

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  9. Axial range of conjugate adaptive optics in two-photon microscopy.

    PubMed

    Paudel, Hari P; Taranto, John; Mertz, Jerome; Bifano, Thomas

    2015-08-10

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  10. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy

    PubMed Central

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-01-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo. PMID:27446677

  11. Theory of coherent two-photon NMR: Standard-basis operators and coherent averaging

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez

    1980-05-01

    Theory of the two-photon coherent transitions for the multilevel spin system is developed by using the coherent averaging of the time-evolution operator and the spin description by the standard-basis operators. The employed formalism provides a clear picture of the interactions which cause the multi-quantum transitions and make possible to evaluate not only the two-photon but also the multiphoton transitions. The theory has been applied to the quadrupole perturbed spin-systems with s = 1 and s = {3}/{2} where the effective double-quantum rf field has been evaluated.

  12. Measurement of the two-photon absorption cross section by means of femtosecond thermal lensing.

    PubMed

    Rodriguez, Luis; Chiesa, Matteo

    2011-07-01

    We present a variation of the single-beam thermal lensing experiment to determine the two-photon absorption cross sections of classical fluorophores. The approach is based on comparison of two thermal lensing signals simultaneously induced by a one- and two-photon absorption process from a high-repetition-rate femtosecond laser system. As a consequence of this comparison, a simplified expression independent of the several experimental parameters is obtained. Additionally, because of the low incident power levels required, undesirable optical effects such as Kerr or Raman scattering are avoided. Our experimental results agree well with those recently published for luminescent methods, validating the approach.

  13. Nonsequential Two-Photon Double Ionization of Atoms: Identifying the Mechanism

    SciTech Connect

    Foerre, Morten; Nepstad, Raymond; Selstoe, Soelve

    2010-10-15

    We develop an approximate model for the process of direct (nonsequential) two-photon double ionization of atoms. Employing the model, we calculate (generalized) total cross sections as well as energy-resolved differential cross sections of helium for photon energies ranging from 39 to 54 eV. A comparison with results of ab initio calculations reveals that the agreement is at a quantitative level. We thus demonstrate that this complex ionization process can be described by the simple model, providing insight into the underlying physical mechanism. Finally, we use the model to calculate generalized cross sections for the two-photon double ionization of neon in the nonsequential regime.

  14. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  15. Two-photon confocal microscopy in the study of the volume characteristics of semiconductors

    NASA Astrophysics Data System (ADS)

    Kalinushkin, V. P.; Uvarov, O. V.

    2016-12-01

    Zn-Se crystals are used to analyze prospects for application of two-photon confocal microscopy in the study of plane and volume interband and impurity luminescence in semiconductors. Such maps can be formed with a depth step and planar spatial resolution of several micrometers at distances of up to 1 mm from the surface. The method is used to detect luminescence-active inhomogeneities in crystals and study their structure and luminescence characteristics. Prospects for the application of the two-photon confocal microscopy in the study of direct-band-semiconductors and materials of the fourth group are discussed.

  16. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue

    PubMed Central

    Ingaramo, Maria; York, Andrew G.; Wawrzusin, Peter; Milberg, Oleg; Hong, Amy; Weigert, Roberto; Shroff, Hari; Patterson, George H.

    2014-01-01

    Multifocal structured illumination microscopy (MSIM) provides a twofold resolution enhancement beyond the diffraction limit at sample depths up to 50 µm, but scattered and out-of-focus light in thick samples degrades MSIM performance. Here we implement MSIM with a microlens array to enable efficient two-photon excitation. Two-photon MSIM gives resolution-doubled images with better sectioning and contrast in thick scattering samples such as Caenorhabditis elegans embryos, Drosophila melanogaster larval salivary glands, and mouse liver tissue. PMID:24706872

  17. Saturated two-photon excitation fluorescence microscopy with core-ring illumination.

    PubMed

    Oketani, Ryosuke; Doi, Atsushi; Smith, Nicholas I; Nawa, Yasunori; Kawata, Satoshi; Fujita, Katsumasa

    2017-02-01

    We demonstrated resolution improvement in two-photon excitation microscopy by combining saturated excitation (SAX) of fluorescence and pupil manipulation. We theoretically estimated the resolution improvement and the sidelobe effect in the point spread function with various pupil designs and found that the combination of SAX and core-ring illumination can effectively enhance the spatial resolution in 3D and suppress sidelobe artifacts. The experimental demonstration shows that the proposed technique is effective for observation with a depth of 100 μm in a tissue phantom and can be applied to 3D observations of tissue samples with higher spatial resolution than conventional two-photon excitation microscopy.

  18. Full band structure calculation of two-photon indirect absorption in bulk silicon

    SciTech Connect

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-03-28

    Degenerate two-photon indirect absorption in silicon is an important limiting effect on the use of silicon structures for all-optical information processing at telecommunication wavelengths. We perform a full band structure calculation to investigate two-photon indirect absorption in bulk silicon, using a pseudopotential description of the energy bands and an adiabatic bond charge model to describe phonon dispersion and polarization. Our results agree well with some recent experimental results. The transverse acoustic/optical phonon-assisted processes dominate.

  19. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    SciTech Connect

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; Littlewood, David John

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result, the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

  20. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    DOE PAGES

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; ...

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less

  1. Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals.

    PubMed

    Agrawal, Ankit; Singh, Ajay; Yazdi, Sadegh; Singh, Amita; Ong, Gary K; Bustillo, Karen; Johns, Robert W; Ringe, Emilie; Milliron, Delia J

    2017-04-12

    Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.

  2. Local superconducting coupling in the strong-localization limit of ultrathin granular metal films

    SciTech Connect

    Haviland, D. B.; Jaeger, H. M.; Orr, B. G.; Goldman, A. M.

    1989-07-01

    The onset of fluctuations into the superconducting state, as identified bythe appearance of a local minimum in the resistance versus temperature, isfound to be coincident with the characteristic activation energy ofnormal-state conduction falling to a value of the order of the superconductingenergy gap of the material at /ital T/=0. The model of conduction used isvariable-range hopping with a Coulomb gap, appropriate to granular metals.

  3. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  4. Mitigating thermal mechanical damage potential during two-photon dermal imaging.

    PubMed

    Masters, Barry R; So, Peter T C; Buehler, Christof; Barry, Nicholas; Sutin, Jason D; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Two-photon excitation fluorescence microscopy allows in vivo high-resolution imaging of human skin structure and biochemistry with a penetration depth over 100 microm. The major damage mechanism during two-photon skin imaging is associated with the formation of cavitation at the epidermal-dermal junction, which results in thermal mechanical damage of the tissue. In this report, we verify that this damage mechanism is of thermal origin and is associated with one-photon absorption of infrared excitation light by melanin granules present in the epidermal-dermal junction. The thermal mechanical damage threshold for selected Caucasian skin specimens from a skin bank as a function of laser pulse energy and repetition rate has been determined. The experimentally established thermal mechanical damage threshold is consistent with a simple heat diffusion model for skin under femtosecond pulse laser illumination. Minimizing thermal mechanical damage is vital for the potential use of two-photon imaging in noninvasive optical biopsy of human skin in vivo. We describe a technique to mitigate specimen thermal mechanical damage based on the use of a laser pulse picker that reduces the laser repetition rate by selecting a fraction of pulses from a laser pulse train. Since the laser pulse picker decreases laser average power while maintaining laser pulse peak power, thermal mechanical damage can be minimized while two-photon fluorescence excitation efficiency is maximized.

  5. Two-photon imaging and spectroscopy of fresh human colon biopsies

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sturiale, A.; Nesi, G.; Tonelli, F.; Pavone, F. S.

    2012-03-01

    Two-photon fluorescence (TPEF) microscopy is a powerful tool to image human tissues up to 200 microns depth without any exogenously added probe. TPEF can take advantage of the autofluorescence of molecules intrinsically contained in a biological tissue, as such NADH, elastin, collagen, and flavins. Two-photon microscopy has been already successfully used to image several types of tissues, including skin, muscles, tendons, bladder. Nevertheless, its usefulness in imaging colon tissue has not been deeply investigated yet. In this work we have used combined two-photon excited fluorescence (TPEF), second harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two-photon emission detection (MTPE) to investigate different kinds of human ex-vivo fresh biopsies of colon. Morphological and spectroscopic analyses allowed to characterize both healthy mucosa, polyp, and colon samples in a good agreement with common routine histology. Even if further analysis, as well as a more significant statistics on a large number of samples would be helpful to discriminate between low, mild, and high grade cancer, our method is a promising tool to be used as diagnostic confirmation of histological results, as well as a diagnostic tool in a multiphoton endoscope or colonoscope to be used in in-vivo imaging applications.

  6. Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes.

    PubMed

    Huang, Huaiyi; Yang, Liang; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Diao, JiaJie; Liu, Jiankang; Ji, Liangnian; Long, Jiangang; Chao, Hui

    2016-03-01

    Mitochondrial fission and fusion control the shape, size, number, and function of mitochondria in the cells of organisms from yeast to mammals. The disruption of mitochondrial fission and fusion is involved in severe human diseases such as Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Agents that can real-time track the mitochondrial dynamics are of great importance. However, the short excitation wavelengths and rapidly photo-bleaching properties of commercial mitochondrial dyes render them unsuitable for tracking mitochondrial dynamics. Thus, mitochondrial targeting agents that exhibit superior photo-stability under continual light irradiation, deep tissue penetration and at intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds employ low-energy near-infrared light and have emerged as a non-invasive tool for real-time cell imaging. Here, cyclometalated Ir(III) complexes (Ir1-Ir5) are demonstrated as one- and two-photon phosphorescent probes for the real-time imaging and tracking of mitochondrial fission and fusion. The results indicate that Ir2 is well suited for two-photon phosphorescent tracking of mitochondrial fission and fusion in living cells and in Caenorhabditis elegans (C. elegans). This study provides a practical use for mitochondrial targeting two-photon phosphorescent Ir(III) complexes.

  7. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  8. Carbon quantum dot-NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors.

    PubMed

    Fowley, Colin; McHale, Anthony P; McCaughan, Bridgeen; Fraix, Aurore; Sortino, Salvatore; Callan, John F

    2015-01-04

    We report a conjugate between carbon quantum dots and a NO photoreleaser able to photogenerate the anticancer NO radical via an energy transfer mechanism. This nanohybrid proved toxic to cancer cells in vitro and significantly reduced tumor volume in mice bearing human xenograft BxPC-3 pancreatic tumors upon two-photon excitation with the highly biocompatible 800 nm light.

  9. Inclusive D*-meson production in two-photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    Sokolov, A. A.

    2002-06-01

    The inclusive production of D*+ is measured by DELPHI in photon-photon collisions at LEP-II energies. The measured cross sections are compatible with the QCD calculations having the contributions from the resolved processes sensitive to the gluon density in photon. The total cross section of the charm quark production in two-photon collisions at LEP-II energies is estimated.

  10. Specific features of two-photon optical nutation in a system of biexcitons in semiconductors

    SciTech Connect

    Khadzhi, P. I. Vasil'ev, V. V.

    2007-05-15

    Specific features of two-photon nutation in a system of coherent biexcitons in CuCl-type semiconductors are studied. It is shown that, depending on the parameters of the system, nutation represents a process of periodic conversion of photon pairs into biexcitons and vice versa. The possibility of phase control of optical nutation is predicted.

  11. Degenerate two-photon absorption in all-trans retinal: nonlinear spectrum and theoretical calculations.

    PubMed

    Vivas, M G; Silva, D L; Misoguti, L; Zaleśny, R; Bartkowiak, W; Mendonca, C R

    2010-03-18

    In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal in ethanol employing the Z-scan technique with femtosecond pulses. The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and a peak at 790 nm. We attribute the 2PA band to the mixing of states (1)B(u)(+)-like and |S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to |S(1)>, |S(2)> ("(1)B(u)(+)"), |S(3)>, and |S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.

  12. Imaging marine virus CroV and its host Cafeteria roenbergensis with two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Chakraborty, Sayan; Sun, Wenqing; Aghvami, Seyedmohammadali; Fischer, Matthias G.; Qian, Wei; Xiao, Chuan; Li, Chunqiang

    2014-02-01

    We use two-photon microscopy to monitor the infection process of marine zooplankton, Cafeteria roenbergensis (C.roenbergensis), by Cafeteria roenbergensis virus (CroV), a giant DNA virus named after its host. Here, we image C.roenbergensis in culture by two-photon excited NADH autofluorescence at video-rate (30 frame/s), and the movement of C.roenbergensis is recorded in live videos. Moreover, CroV is stained with DNA dye SYBR gold and recorded simultaneously with this two-photon microscope. We observed the initial infection moment with this method. The result demonstrates the potential use of two-photon microscopy to investigate the fast dynamic interaction between C.roenbergensis with virus CroV. After catching this initial moment, we will freeze the sample in liquid nitrogen for cryo-electron microscopy (EM) study to resolve the virus-host interaction at molecular level. The long-term goal is to study similar fast moving pathogen-host interaction process which could lead to important medical applications.

  13. Theory of two-photon interactions with broadband down-converted light and entangled photons

    NASA Astrophysics Data System (ADS)

    Dayan, Barak

    2007-10-01

    When two-photon interactions are induced by down-converted light with a bandwidth that exceeds the pump bandwidth, they can obtain a behavior that is pulselike temporally, yet spectrally narrow. At low photon fluxes this behavior reflects the time and energy entanglement between the down-converted photons. However, two-photon interactions such as two-photon absorption (TPA) and sum-frequency generation (SFG) can exhibit such a behavior even at high power levels, as long as the final state (i.e., the atomic level in TPA, or the generated light in SFG) is narrow-band enough. This behavior does not depend on the squeezing properties of the light, is insensitive to linear losses, and has potential applications. In this paper we describe analytically this behavior for traveling-wave down conversion with continuous or pulsed pumping, both for high- and low-power regimes. For this we derive a quantum-mechanical expression for the down-converted amplitude generated by an arbitrary pump, and formulate operators that represent various two-photon interactions induced by broadband light. This model is in excellent agreement with experimental results of TPA and SFG with high-power down-converted light and with entangled photons [Dayan , Phys. Rev. Lett. 93, 023005 (2004); 94, 043602 (2005); Pe’er , ibid. 94, 073601 (2005)].

  14. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  15. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  16. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones

    PubMed Central

    Sharma, Robin; Schwarz, Christina; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not well understood in primates. Methods We developed a two-photon fluorescence adaptive optics scanning light ophthalmoscope dedicated to in vivo imaging in anesthetized macaques. Using pulsed light at 730 nm, two-photon fluorescence was captured from rods and cones during light and dark adaptation through the eye's pupil. Results The fluorescence from rods and cones increased with light exposure but at different rates. During dark adaptation, autofluorescence declined, with cone autofluorescence decreasing approximately 4 times faster than from rods. Rates of autofluorescence decrease in rods and cones were approximately 4 times faster than their respective rates of photopigment regeneration. Also, subsets of sparsely distributed cones were less fluorescent than their neighbors immediately following bleach at 565 nm and they were comparable with the S cone mosaic in density and distribution. Conclusions Although other molecules could be contributing, we posit that these fluorescence changes are mediated by products of the retinoid cycle. In vivo two-photon ophthalmoscopy provides a way to monitor noninvasively stages of the retinoid cycle that were previously inaccessible in the living primate eye. This can be used to assess objectively photoreceptor function in normal and diseased retinas. PMID:26903225

  17. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].

    PubMed

    Zhao, Feng-Ying; Wu, Hong-Xin; Chen, Die-Yan; Ma, Wan-Yun

    2014-07-01

    As an optical microscope with high resolution, two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples. Compared with confocal laser scanning microscope, TPE fluorescence microscope provides a deeper detecting depth. In spite of that, the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed. Mouse oocytes with a large diameter, which play an important role in clinical and biological fields, have obvious absorption and scattering effects. In the present paper, we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes. Using volume as a parameter, the attenuation degree of these chromosomes was also studied. The result of our data suggested that there exists a severe axial intensity loss in two-photon microscopic images of mouse oocytes due to the absorption and scattering effects. It is necessary to make compensation for these images of mouse oocyte chromosomes obtained from two-photon microscopic system. It will be specially needed in studying the quantitative three-dimensional information of mouse oocytes.

  18. Two-photon-state generation via four-wave mixing in optical fibers

    SciTech Connect

    Chen Jun; Li Xiaoying; Kumar, Prem

    2005-09-15

    A quantum theory of two-photon-state generation via four-wave mixing in optical fibers is studied, with emphasis on the case where the pump is a classical, narrow (picosecond-duration) pulse. One of the experiments performed in our lab is discussed and analyzed. Numerical predictions from the theory are shown to be in good agreement with the experimental results.

  19. Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy

    PubMed Central

    Barnard, Edward S.; Hoke, Eric T.; Connor, Stephen T.; Groves, James R.; Kuykendall, Tevye; Yan, Zewu; Samulon, Eric C.; Bourret-Courchesne, Edith D.; Aloni, Shaul; Schuck, P. James; Peters, Craig H.; Hardin, Brian E.

    2013-01-01

    Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10× and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation. PMID:23807197

  20. Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy.

    PubMed

    Barnard, Edward S; Hoke, Eric T; Connor, Stephen T; Groves, James R; Kuykendall, Tevye; Yan, Zewu; Samulon, Eric C; Bourret-Courchesne, Edith D; Aloni, Shaul; Schuck, P James; Peters, Craig H; Hardin, Brian E

    2013-01-01

    Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10× and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation.

  1. Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-02-01

    In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.

  2. Stepwise Two-Photon-Induced Fast Photoswitching via Electron Transfer in Higher Excited States of Photochromic Imidazole Dimer.

    PubMed

    Kobayashi, Yoichi; Katayama, Tetsuro; Yamane, Takuya; Setoura, Kenji; Ito, Syoji; Miyasaka, Hiroshi; Abe, Jiro

    2016-05-11

    Stepwise two-photon excitations have been attracting much interest because of their much lower power thresholds compared with simultaneous two-photon processes and because some stepwise two-photon processes can be initiated by a weak incoherent excitation light source. Here we apply stepwise two-photon optical processes to the photochromic bridged imidazole dimer, whose solution instantly changes color upon UV irradiation and quickly reverts to the initial color thermally at room temperature. We synthesized a zinc tetraphenylporphyrin (ZnTPP)-substituted bridged imidazole dimer, and wide ranges of time-resolved spectroscopic studies revealed that a ZnTPP-linked bridged imidazole dimer shows efficient visible stepwise two-photon-induced photochromic reactions upon excitation at the porphyrin moiety. The fast photoswitching property combined with stepwise two-photon processes is important not only for the potential for novel photochromic materials that are sensitive to the incident light intensity but also for fundamental photochemistry using higher excited states.

  3. Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun

    2016-07-01

    Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.

  4. Noninvasive two-photon fluorescence microscopy imaging of mouse retina and RPE through the pupil of the eye

    PubMed Central

    Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Hunter, Jennifer J.; Williams, David R.; Alexander, Nathan S.; Palczewski, Krzysztof

    2014-01-01

    Two-photon excitation microscopy (TPM) can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in sub-cellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all–trans–retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here we report repetitive, dynamic imaging of these compounds in live mice, through the pupil of the eye. Leveraging advanced adaptive optics we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium (RPE) by their characteristic localization, spectral properties, and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions. PMID:24952647

  5. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye

    PubMed Central

    Sharma, Robin; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. Methods Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. Results All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. Conclusions This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes. PMID:26903224

  6. Two-photon photoacoustics ultrasound measurement by a loss modulation technique

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Hung; Chang, Chieh-Feng; Cheng, Yu-Hsiang; Sun, Chi-Kuang

    2013-03-01

    In this work, we investigated the principle of the two-photon absorption (TPA) detection with a loss modulation technique, and first demonstrated the existence of two-photon photoacoustics ultrasound excited by a femtosecond high repetition rate laser. By using the AO modulation with different modulation frequencies, we successfully create the beating of the light signal when the two arms of the beams are both spatial and temporal overlapping. The pulse train of the femtosecond laser causes the narrow band excitation, providing the frequency selectivity and sensitivity. Moreover, the pulse energy is no more than 15nJ/pulse, which is at least 3 orders of magnitude smaller than that of the nanosecond laser, and therefore prevents the thermal damage of the sample. With the help of lock-in detection and a low noise amplifier, we can separate the signal of two-photon absorption from one-photon absorption. We used an ultrasonic transducer to detect the response of the sample, and verified the existence of the two-photon photoacoustics ultrasound generating by the femtosecond laser. Several contrast agents, such as the black carbon solution, the fluorescence dye and the nano-particles, were used in the experiment. In the end, we demonstrated the application, two photo-acoustic imaging, which provides the high spatial resolution (<10μm) and large penetration depth (~1mm), to the simulated biological tissue. This is a milestone to develop the two-photon photoacoustics microscopy, which, in principle, has the great potential to achieve the in vitro and in vivo high resolution deep tissue imaging.

  7. Two-photon photodetector in a multiquantum well GaAs laser structure at 1.55 microm.

    PubMed

    Duchesne, D; Razzari, L; Halloran, L; Morandotti, R; SpringThorpe, A J; Christodoulides, D N; Moss, D J

    2009-03-30

    We report two-photon photocurrent in a GaAs/AlGaAs multiple quantum well laser at 1.55 microm. Using 1ps pulses, a purely quadratic photocurrent is observed. We measure the device efficiency, sensitivity, as well as the two-photon absorption coefficient. The results show that the device has potential for signal processing, autocorrelation and possibly two-photon source applications at sub-Watt power levels.

  8. Quantum Impurities develop Fractional Local Moments in Spin-Orbit Coupled Systems

    NASA Astrophysics Data System (ADS)

    Agarwala, Adhip; Shenoy, Vijay B.

    Systems with spin-orbit coupling have the potential to realize exotic quantum states which are interesting both from fundamental and technological perspectives. We investigate the new physics that arises when a correlated spin-1/2 quantum impurity hybridizes with a spin-orbit coupled Fermi system. The intriguing aspect uncovered is that, in contrast to unit local moment in conventional systems, the impurity here develops a fractional local moment of 2/3. The concomitant Kondo effect has a high Kondo temperature (TK). Our theory explains these novel features including the origins of the fractional local moment and provides a recipe to use spin-orbit coupling(λ) to enhance Kondo temperature (TK ~λ 4 / 3). These results will be useful in shedding light on a range of experiments, including those of magnetic impurities at oxide interfaces. Our predictions can also be directly tested in cold-atom systems where the spin-orbit coupling can be engendered via a uniform synthetic non-Abelian gauge field. In addition, this work opens up new directions of research in spin-orbit coupled Kondo lattice systems. Reference: arXiv:1509.07328 Work supported by CSIR, DST and DAE.

  9. Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    SciTech Connect

    Chatrchyan, S.; et al.,

    2012-04-01

    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.

  10. Two-photon absorption for the realization of optical waveguides on printed circuit boards

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Riester, Markus

    2007-02-01

    The integration of optical interconnections in printed circuit boards (PCBs) is an emerging field that arouses rapidly growing interest worldwide. At present the key issue is to identify a technical concept, which allows for the realization of optical interconnections that are compatible to existing PCB manufacturing processes. Above all, the material in which the optical interconnections are embedded has to withstand increased temperatures and lamination pressures as well as various wet chemistry processes. AT&S uses so-called two-photon absorption (TPA) laser structuring - a rather new and innovative technology - to realize optical circuits in a special polymer layer. In this case a near infrared laser is applied working in the femto-second regime. The high photon density that can be reached in the laser's focus results in a modification of the optical polymer, which is usually photosensitive in the UV-spectrum of light only. In our particular case, the refractive index of the optical polymer is increased. Choosing the right laser intensity and focus propagation speed one achieves a waveguide well embedded within the polymer layer, which has not been affected by the laser. In contrast to one-photon absorption, which only allows a two dimensional respectively lateral modification of a polymer, this technology allows a modification within the volume resulting in 3D-microstructures inside the polymer layer. Apart from the possibility to realize structures in three dimensions, this TPA-technique has additional advantages. First of all, it allows one step fabrication, which reduces costs and production time compared to etching procedures or conventional UV lithography processes. Moreover, this technique allows varying the waveguide's cross section geometry and diameter simply varying size and form of the structuring laser focus. Whereas the realization of optical waveguides is not challenging anymore the coupling of waveguides with optoelectronic components is rather

  11. Magnetic patterning: local manipulation of the intergranular exchange coupling via grain boundary engineering

    PubMed Central

    Huang, Kuo-Feng; Liao, Jung-Wei; Hsieh, Cheng-Yu; Wang, Liang-Wei; Huang, Yen-Chun; Wen, Wei-Chih; Chang, Mu-Tung; Lo, Shen-Chuan; Yuan, Jun; Lin, Hsiu-Hau; Lai, Chih-Huang

    2015-01-01

    Magnetic patterning, with designed spatial profile of the desired magnetic properties, has been a rising challenge for developing magnetic devices at nanoscale. Most existing methods rely on locally modifying magnetic anisotropy energy or saturation magnetization, and thus post stringent constraints on the adaptability in diverse applications. We propose an alternative route for magnetic patterning: by manipulating the local intergranular exchange coupling to tune lateral magnetic properties. As demonstration, the grain boundary structure of Co/Pt multilayers is engineered by thermal treatment, where the stress state of the multilayers and thus the intergranular exchange coupling can be modified. With Ag passivation layers on top of the Co/Pt multilayers, we can hinder the stress relaxation and grain boundary modification. Combining the pre-patterned Ag passivation layer with thermal treatment, we can design spatial variations of the magnetic properties by tuning the intergranular exchange coupling, which diversifies the magnetic patterning process and extends its feasibility for varieties of new devices. PMID:26156786

  12. Benchmarking two-photon absorption cross sections: performance of CC2 and CAM-B3LYP.

    PubMed

    Beerepoot, Maarten T P; Friese, Daniel H; List, Nanna H; Kongsted, Jacob; Ruud, Kenneth

    2015-07-15

    We investigate the performance of CC2 and TDDFT/CAM-B3LYP for the calculation of two-photon absorption (TPA) strengths and cross sections and contrast our results to a recent coupled cluster equation-of-motion (EOM-EE-CCSD) benchmark study [K. D. Nanda and A. I. Krylov, J. Chem. Phys., 2015, 142, 064118]. In particular, we investigate whether CC2 TPA strengths are significantly overestimated compared to higher-level coupled-cluster calculations for fluorescent protein chromophores. Our conclusion is that CC2 TPA strengths are only slightly overestimated compared to the reference EOM-EE-CCSD results and that previously published overestimated cross sections are a result of inconsistencies in the conversion of the TPA strengths to macroscopic units. TDDFT/CAM-B3LYP TPA strengths, on the other hand, are found to be 1.5 to 3 times smaller than the coupled-cluster reference for the molecular systems considered. The unsatisfactory performance of TDDFT/CAM-B3LYP can be linked to an underestimation of excited-state dipole moments predicted by TDDFT/CAM-B3LYP.

  13. Search for Double Higgs Production in the Final State with Two Photons and Two Bottom Quarks at the CMS Detector

    NASA Astrophysics Data System (ADS)

    Hebda, Philip Robert

    A search for the production of Higgs pairs in the decay channel with two photons and two bottom quarks is reported for both resonant and nonresonant cases. The data corresponds to an integrated luminosity of 19.7 /fb of proton-proton collisions at a center-of-mass energy of 8 TeV collected by the CMS detector at the CERN Large Hardron Collider. The candidate events are selected by requiring two photons and two jets and are classified according to the number of jets tagged as coming from the hadronization of a bottom quark. The search for resonance production of two Higgs bosons through a new particle as hypothesized in extensions to the Standard Model involving a Radion or KK-graviton from models with warped extra dimensions or involving a heavy Higgs from models with supersymmetry, is performed on the resonant mass range from 260 GeV to 1100 GeV. The search for Standard Model nonresonant production of two Higgs bosons is performed; in addition a theoretical framework is explored for the analysis of anomalous values of the couplings tt¯H, HHH, and tt¯HH. The observations are consistent with background expectations. Upper limits at the 95% confidence level are extracted on the production cross section of resonant and SM nonresonant production. In particular, the Radion with a vacuum expectation of 1 TeV is observed (expected) to be excluded with masses below 0.97 TeV (0.88 TeV), while the analysis is not sensitive to the Radion with a vacuum expectation of 3 TeV. The nonresonant double Higgs cross section is observed (expected) to be excluded at 1.91 fb (1.59 fb) or 72.9 (60.7) times the NNLO Standard Model value.

  14. A cyclometallated fluorenyl Ir(iii) complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT).

    PubMed

    Boreham, Elizabeth M; Jones, Lucy; Swinburne, Adam N; Blanchard-Desce, Mireille; Hugues, Vincent; Terryn, Christine; Miomandre, Fabien; Lemercier, Gilles; Natrajan, Louise S

    2015-09-28

    A new Ir(iii) cyclometallated complex bearing a fluorenyl 5-substituted-1,10-phenanthroline ligand ([Ir(ppy)2()][PF6], ppy = 2-phenylpyridine) is presented which exhibits enhanced triplet oxygen sensing properties. The efficacy of this complex to act as a photosensitiser for altering the morphology of C6 Glioma cells that represent malignant nervous tumours has been evaluated. The increased heavy metal effect and related spin-orbit coupling parameters on the photophysical properties of this complex are evidenced by comparison with Ru(ii) analogues. The complex [Ir(ppy)2()][PF6] is shown to exhibit relatively high two-photon absorption efficiencies for the lowest energy MLCT electronic transitions with two-photon absorption cross sections that range from 50 to 80 Goeppert-Mayer units between 750 to 800 nm. Quantum yields for the complex were measured up to 23% and the Stern-Volmer quenching constant, KSV was determined to be 40 bar(-1) in acetonitrile solution, confirming the high efficiency of the complex as a triplet oxygen sensitiser. Preliminary in vitro experiments with C6 Glioma cells treated with [Ir(ppy)2()][PF6], show that the complex is an efficient sensitizer for triplet oxygen, producing cytotoxic singlet oxygen ((1)O2) by two-photon excitation at 740 nm resulting in photodynamic effects that lead to localised cell damage and death.

  15. Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.

    PubMed

    Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M

    2013-04-26

    We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.

  16. Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Yanez, Ciceron

    2009-12-01

    Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a

  17. Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2014-12-01

    We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.

  18. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    NASA Astrophysics Data System (ADS)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  19. [Two-photon excitation fluorescence spectrum of the light-harvesting complex LH2 from Chromatium minutissimum within 650-745 nm range is determined by two-photon absorption of bacteriochlorophyll rather than of carotenoids].

    PubMed

    Krikunova, M A; Leupold, D; Rini, M; Voigt, B; Moskalenko, A A; Toropygina, O A; Razzhivin, A P

    2002-01-01

    Two-photon fluorescence excitation spectra of the peripheral light-harvesting complex LH2 from the purple photosynthetic bacterium Chromatium minutissimum were examined within the expected spectral range of the optically forbidden S1 singlet state of carotenoids. LH2 preparations isolated from wild-type and carotenoid-depleted cells were used. 100-fs laser pulses in the range of 1300-1490 nm with an energy of 7-9 mW (corresponding to one-photon absorption between 650 and 745 nm) were used for two-photon fluorescence excitation. It was shown that two-photon fluorescence excitation spectra of LH2 complex from wild and carotenoid-depleted cells are very similar to each other and to the two-photon fluorescence excitation spectrum of bacteriochlorophyll a in acetone. It was concluded that direct two-photon excitation of bacteriochlorophyll a determines the fluorescence of both samples within the 650-745 nm spectral range.

  20. A Modified Wall Matching Treatment to Account for Local Solid to Fluid Thermal Coupling

    NASA Technical Reports Server (NTRS)

    White, Jeffery A.

    2002-01-01

    The wall-matching methodology of Wilcox is modified to include a solid-wall, thermal-conduction model. This coupled fluid-thermal-structure model is derived assuming that the wall thermal-structure behavior is locally one-dimensional and that structural deformations, due to thermally induced stresses, are not significant. The one-dimensional coupled fluid-thermal-structure model is derived such that the wall temperature is removed as an independent boundary condition variable. The one-dimensional coupled fluid-thermal-structure model is also derived for the general case of an arbitrary mixture of thermally prefect gases and a wall of arbitrary thickness and conductivity by using a compressible, streamwise-pressure-gradient-corrected, wall-matching function and Fourier's law of heat conduction. The resulting model was implemented in the VULCAN CFD code as a new boundary condition type. VULCAN was then used to simulate a two-dimensional Mach 6 wind tunnel facility nozzle flow to demonstrate/validate the one-dimensional coupled fluid-thermal-structure model. The nozzle internal-wall surface temperature and heat transfer distributions computed using the one-dimensional coupled fluid-thermal-structure model are compared to wall temperature and heat transfer distributions from an iterative multi-dimensional analysis obtained by coupling the VULCAN CFD code and the MSC/NASTRAN-thermal code. The one-dimensional coupled fluid-thermal-structure model analysis is shown to be very robust and in excellent agreement with the multi-dimensional iteratively coupled analysis. It is also shown that the one-dimensional analysis can be used as an initial guess for the multi-dimensional iteratively coupled analysis.

  1. 3D Orbital Tracking in a Modified Two-photon Microscope: An Application to the Tracking of Intracellular Vesicles

    PubMed Central

    Gratton, Enrico

    2014-01-01

    The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope1. As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns2. The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam3-5. To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell6,7. Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network8. PMID:25350070

  2. 3D orbital tracking in a modified two-photon microscope: an application to the tracking of intracellular vesicles.

    PubMed

    Anzalone, Andrea; Annibale, Paolo; Gratton, Enrico

    2014-10-01

    The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope(1). As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns(2). The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam(3-5). To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell(6,7). Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network(8).

  3. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  4. How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization

    NASA Astrophysics Data System (ADS)

    Vedurmudi, A. P.; Goulet, J.; Christensen-Dalsgaard, J.; Young, B. A.; Williams, R.; van Hemmen, J. L.

    2016-01-01

    In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.

  5. A Modeling and Observational Framework for Diagnosing Local Land-Atmosphere Coupling on Diurnal Time Scales

    NASA Astrophysics Data System (ADS)

    Santanello, J. A.; Peters-Lidard, C. D.; Kumar, S.

    2009-12-01

    Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during the summer of 2006 and 2007 in the Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Mixing diagram diagnostics based on the evolution of 2m temperature and humidity are examined for the dry/wet extremes of this region, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  6. Modeling and Observational Framework for Diagnosing Local Land-Atmosphere Coupling on Diurnal Time Scales

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Alonge, Charles; Tao, Wei-Kuo

    2009-01-01

    Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U. S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The co-evolution of these variables and the convective PBL is sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land-atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate

  7. Efficient multi-site two-photon functional imaging of neuronal circuits

    PubMed Central

    Castanares, Michael Lawrence; Gautam, Vini; Drury, Jack; Bachor, Hans; Daria, Vincent R.

    2016-01-01

    Two-photon imaging using high-speed multi-channel detectors is a promising approach for optical recording of cellular membrane dynamics at multiple sites. A main bottleneck of this technique is the limited number of photons captured within a short exposure time (~1ms). Here, we implement temporal gating to improve the two-photon fluorescence yield from holographically projected multiple foci whilst maintaining a biologically safe incident average power. We observed up to 6x improvement in the signal-to-noise ratio (SNR) in Fluorescein and cultured hippocampal neurons showing evoked calcium transients. With improved SNR, we could pave the way to achieving multi-site optical recording of fluorogenic probes with response times in the order of ~1ms. PMID:28018745

  8. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing

    PubMed Central

    Rueckel, Markus; Mack-Bucher, Julia A.; Denk, Winfried

    2006-01-01

    The image quality of a two-photon microscope is often degraded by wavefront aberrations induced by the specimen. We demonstrate here that resolution and signal size in two-photon microcopy can be substantially improved, even in living biological specimens, by adaptive wavefront correction based on sensing the wavefront of coherence-gated backscattered light (coherence-gated wavefront sensing, CGWS) and wavefront control by a deformable mirror. A nearly diffraction-limited focus can be restored even for strong aberrations. CGWS-based wavefront correction should be applicable to samples with a wide range of scattering properties and it should be possible to perform real-time pixel-by-pixel correction even at fast scan speeds. PMID:17088565

  9. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    NASA Astrophysics Data System (ADS)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  10. Two-photon triggered drug delivery system: a new way to prevent posterior capsule opacification

    NASA Astrophysics Data System (ADS)

    Kim, H.-C.; Härtner, S.; Hampp, N.

    2006-02-01

    One of the major complications of cataract surgery is posterior capsule opacification caused by proliferation and migration of residual lens epithelial cells into the visual axis. In this study we present a novel approach to treat posterior capsule opacification in a non-invasive manner. A polymer-drug conjugate has been developed which is suitable for manufacturing functional intraocular lenses equipped with a drug delivery system. The therapeutic molecules, 5-fluorouracil, were attached through a photolabile linkage to the acrylic polymer backbone of the intraocular lens material. The controlled release of 5-fluorouracil is accomplished by two-photon induced cleavage of the linkage which is stable in ordinary conditions. The properties of the therapeutic system are characterized and the function is demonstrated in in vitro tests. The utilization of two-photon-absorption processes in drug delivery may provide a powerful tool to prevent posterior capsule opacification.

  11. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor); Perry, Joseph W (Inventor)

    2007-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  12. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  13. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  14. Measurement of electron beam polarization from unstrained GaAs via two-photon photoemission

    SciTech Connect

    McCarter, James L.; Afanasev, A.; Gay, T. J.; Hansknecht, John C.; Kechiantz, A.; Poelker, B. Matthew

    2014-02-01

    Two-photon absorption of 1560 nm light was used to generate polarized electron beams from unstrained GaAs photocathodes of varying thickness: 625 {mu}m, 0.32 {mu}m, and 0.18 {mu}m. For each photocathode, the degree of spin polarization of the photoemitted beam was less than 50%, contradicting earlier predictions based on simple quantum mechanical selection rules for spherically-symmetric systems but consistent with the more sophisticated model of Bhat et al. (Phys. Rev. B 71 (2005) 035209). Polarization via two-photon absorption was the highest from the thinnest photocathode sample and comparable to that obtained via one-photon absorption (using 778 nm light), with values 40.3 +- 1.0% and 42.6 +- 1.0%, respectively.

  15. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping

    2016-08-01

    We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.

  16. Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor

    PubMed Central

    Boitier, F.; Godard, A.; Dubreuil, N.; Delaye, P.; Fabre, C.; Rosencher, E.

    2011-01-01

    For many years twin beams originating from parametric down-converted light beams have aroused great interest and attention in the photonics community. One particular aspect of the twin beams is their peculiar intensity correlation functions, which are related to the coincidence rate of photon pairs. Here we take advantage of the huge bandwidth offered by two-photon absorption in a semiconductor to quantitatively determine correlation functions of twin beams generated by spontaneous parametric down-conversion. Compared with classical incoherent sources, photon extrabunching is unambiguously and precisely measured, originating from exact coincidence between down-converted pairs of photons, travelling in unison. These results strongly establish that two-photon counting in semiconductors is a powerful tool for the absolute measurement of light beam photon correlations at ultrashort timescales. PMID:21829187

  17. Non-resonant below-bandgap two-photon absorption in quantum dot solar cells

    SciTech Connect

    Li, Tian; Dagenais, Mario

    2015-04-27

    We study the optically nonlinear sub-bandgap photocurrent generation facilitated by an extended tailing distribution of states in an InAs/GaAs quantum dots (QDs) solar cell. The tailing states function as both the energy states for low energy photon absorption and the photocarriers extraction pathway. One of the biggest advantages of our method is that it can clearly differentiate the photocurrent due to one-photon absorption (1PA) process and two-photon absorption (2PA) process. Both 1PA and 2PA photocurrent generation efficiency in an InAs/GaAs QD device operated at 1550 nm have been quantitatively evaluated. A two-photon absorption coefficient β = 5.7 cm/GW is extracted.

  18. Relativistic two-photon decay rates of 2s12 hydrogenic ions

    NASA Astrophysics Data System (ADS)

    Goldman, S. P.; Drake, G. W. F.

    1981-07-01

    Rates are calculated for the decay of metastable 2s12 ions to the ground state by the simultaneous emission of two photons. The calculation includes all relativistic and retardation effects, and all combinations of photon multipoles which make significant contributions up to Z=100. Summations over intermediate states are performed by constructing a finite-basis-set representation of the Dirac Green's function. The estimated accuracy of the results is +/- 10 ppm for all Z up to 100. The decay rates are about 20 (αZ)2% larger than an earlier calculation by Johnson owing to the inclusion of higher-order retardation effects. The general question of gauge invariance in two-photon transitions is discussed.

  19. Two-photon physics and the coming generation of heavy ion colliders

    SciTech Connect

    Rhoades-Brown, M.J.

    1992-01-01

    The possibilities for two-photon physics at the coming generation of heavy ion colliders is discussed. Particular attention is given to both e{sup +}, e{sup {minus}} production and resonance production of the Higgs particle. For e{sup +},e{sup {minus}} production the inadequacy of traditional perturbation theory is outlined, and through of the introduction of approximations valid for heavy ions it is shown how to sum a class of non-perturbative diagrams. The role of the nuclear form factor in suppressing the cross section for the heaviest resonances is also discussed. It is shown how this latter point affects the two-photon cross sections for W{sup +},W{sup {minus}} and Higgs production at RHIC, LHC and SSC energies.

  20. Two-photon physics and the coming generation of heavy ion colliders

    SciTech Connect

    Rhoades-Brown, M.J.

    1992-07-01

    The possibilities for two-photon physics at the coming generation of heavy ion colliders is discussed. Particular attention is given to both e{sup +}, e{sup {minus}} production and resonance production of the Higgs particle. For e{sup +},e{sup {minus}} production the inadequacy of traditional perturbation theory is outlined, and through of the introduction of approximations valid for heavy ions it is shown how to sum a class of non-perturbative diagrams. The role of the nuclear form factor in suppressing the cross section for the heaviest resonances is also discussed. It is shown how this latter point affects the two-photon cross sections for W{sup +},W{sup {minus}} and Higgs production at RHIC, LHC and SSC energies.

  1. Neutrophil Extravasation Cascade: What Can We Learn from Two-photon Intravital Imaging?

    PubMed Central

    Park, Sang A

    2016-01-01

    Immune cells (leukocytes or white blood cells) move actively and sensitively based on body conditions. Despite their important role as protectors inside the body, it is difficult to directly observe the spatiotemporal momentum of leukocytes. With advances in imaging technology, the introduction of two-photon microscopy has enabled researchers to look deeper inside tissues in a three-dimensional manner. In observations of immune cell movement along the blood vessel, vascular permeability and innate immune cell movements remain unclear. Here, we describe the neutrophil extravasation cascade, which were observed using a two-photon intravital imaging technique. We also provide evidence for novel mechanisms such as neutrophil body extension and microparticle formation as well as their biological roles during migration. PMID:28035206

  2. Spectral, energy, and time parameters of two-photon fluorescence of 2,5-diphenyloxazole polycrystals

    SciTech Connect

    Agal`tsov, A.M.; Gorelik, V.S.; Rakhmatullaev, I.A.

    1995-12-01

    Two-photon fluorescence (TPF) spectra of 2,5-diphenyloxazole polycrystals (known in the literature as PPO) were obtained and studied as a function of the pump power and time delay. The fluorescence spectrum shape observed upon two-photon excitation is shown to be distinctly different from that observed upon electron-beam excitation. It is shown that high pump powers result in stimulated fluorescence. PPO exhibits a high TPF quantum yield, the integrated conversion efficiency of exciting radiation to TPF being 40%. The TPF decay time is measured to be 20 ns. The spectral data obtained for PPO polycrystals can be used in the development of new TPF light sources tunable in the UV region. 10 refs., 4 figs., 1 tab.

  3. Lifetimes of two-photon-emitting states in heliumlike and hydrogenlike nickel

    SciTech Connect

    Dunford, R. W.; Hass, M.; Bakke, E.; Berry, H. G.; Liu, C. J.; Raphaelian, M. L. A.; Curtis, L. J.

    1989-06-12

    We report measurements of the lifetimes of the 2/sup 1/S/sub 0/ state of heliumlike Ni/sup 26 +/ and the 2/sup 2/S/sub 1/2/ state of hydrogenlike Ni/sup 27 +/, both of which decay predominantly by two-photon emission. Our method differs from previous measurements of the lifetimes of similar states in that we require a coincidence between the two photons. Our lifetime of 217.1(1.8) ps for the hydrogenlike decay is in agreement with the theoretical value of 215.45 ps. The heliumlike decay lifetime of 156.1(1.6) ps is in fair agreement with the theoretical value of 154.3(0.5) ps.

  4. Continuous wave two-photon scanning near-field optical microscopy.

    PubMed Central

    Kirsch, A K; Subramaniam, V; Striker, G; Schnetter, C; Arndt-Jovin, D J; Jovin, T M

    1998-01-01

    We have implemented continuous-wave two-photon excitation of near-UV absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 647-nm emission of an Ar-Kr mixed gas laser was used to excite the UV-absorbing DNA dyes DAPI, the bisbenzimidazole Hoechst 33342, and ethidium bromide in a shared aperture SNOM with uncoated fiber tips. Polytene chromosomes of Drosophila melanogaster and the nuclei of 3T3 Balb/c cells labeled with these dyes were readily imaged. The fluorescence intensity showed the expected nonlinear (second order) dependence on the excitation power in the range of 8-180 mW. We measured the fluorescence intensity as a function of the tip-sample displacement in the direction normal to the sample surface in the single- and two-photon excitation modes (SPE, TPE). The fluorescence intensity decayed faster in TPE than in SPE. PMID:9726953

  5. Two-photon exchange contribution to elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2015-04-01

    Two experimental techniques, Rosenbluth separation and recoil polarization transfer, used to extract proton's electromagnetic form factors ratio GE/GM yield markedly different results. Modern theoretical calculations suggest that two-photon exchange might be responsible for the observed discrepancy and that it is epsilon dependent. Jefferson Lab Experiment E05-017 was designed to measure the two-photon exchange contribution over a wide range of ɛ and Q2. In contrast with the conventional Rosenbluth method, E05-017 detected the elastically scattered proton rather than the electron. This approach returns a much more precise extraction of the form factor ratios. After a brief description of the experimental goals and techniques, the current status of the analysis will be presented.

  6. Mathematical modeling of two-photon thermal fields in laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Oane, Mihai; Apostol, Dan

    2004-04-01

    In this paper, we have developed an analytical model to study the temperature distributions in IR optical materials heated by laser pulses. Our model takes into account the two-photon absorption (TPA). The calculations are based on a three-dimensional model of heat diffusion in solids using the integral transform method. We find out the rigorous analytical expression of the thermal field when one considers both one- and two-photon absorption. The model is valid for any laser-solid system whose interaction can be described by the generalized Beer-Lambert law. Specific results are presented for an application of the model to ZnSe sample. We find out that TPA can produce detectable temperature variation.

  7. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms.

    PubMed

    Vizsnyiczai, Gaszton; Kelemen, Lóránd; Ormos, Pál

    2014-10-06

    Two-photon polymerization enables the fabrication of micron sized structures with submicron resolution. Spatial light modulators (SLM) have already been used to create multiple polymerizing foci in the photoresist by holographic beam shaping, thus enabling the parallel fabrication of multiple microstructures. Here we demonstrate the parallel two-photon polymerization of single 3D microstructures by multiple holographically translated foci. Multiple foci were created by phase holograms, which were calculated real-time on an NVIDIA CUDA GPU, and displayed on an electronically addressed SLM. A 3D demonstrational structure was designed that is built up from a nested set of dodecahedron frames of decreasing size. Each individual microstructure was fabricated with the parallel and coordinated motion of 5 holographic foci. The reproducibility and the high uniformity of features of the microstructures were verified by scanning electron microscopy.

  8. Adaptive optics for in vivo two-photon calcium imaging of neuronal networks

    NASA Astrophysics Data System (ADS)

    Meimon, Serge; Conan, Jean-Marc; Mugnier, Laurent M.; Michau, Vincent; Cossart, Rosa; Malvache, Arnaud

    2014-03-01

    The landscape of biomedical research in neuroscience has changed dramatically in recent years as a result of spectacular progress in dynamic microscopy. However, the optical accessibility of deep brain structures or deeper regions of the surgically exposed hippocampus (a few 100 microns typically) remains limited, due to volumic aberrations created by the sample inhomogeneities. Adaptive optics can correct for these aberrations. Our goal is to realize a novel adaptive optics module dedicated to in vivo two-photon calcium imaging of the hippocampus. The key issue in adaptive optics is the ability to perform an accurate and reliable wavefront sensing. In two- photon microscopy indirect methods are required. Two families of approaches have been proposed so far, the modal sensorless technique and a method based on pupil segmentation. We present here a formal comparison of these approaches, in particular as a function of the amount of aberrations.

  9. Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption.

    PubMed

    Dubinina, Galyna G; Price, Randi S; Abboud, Khalil A; Wicks, Geoffrey; Wnuk, Pawel; Stepanenko, Yuriy; Drobizhev, Mikhail; Rebane, Aleksander; Schanze, Kirk S

    2012-11-28

    The linear and nonlinear optical properties of a series of linear and cross-conjugated platinum(II) acetylide complexes that contain extended p-(phenylene vinylene) chromophores are reported. The complexes exhibit very high femtosecond two-photon absorption (2PA) cross section values (σ(2) up to 10,000 GM), as measured by nonlinear transmission (NLT) and two-photon excited fluorescence (2PEF) methods. The large 2PA cross sections span a broad range of wavelengths, 570-810 nm, and they overlap with the triplet excited state absorption. Spectral coincidence of high cross section 2PA and triplet absorption is a key feature giving rise to efficient dual-mode optical power limiting (OPL).

  10. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  11. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  12. Temperature effect on the two-photon absorption spectrum of all-trans-β-carotene.

    PubMed

    Vivas, M G; Mendonca, C R

    2012-07-05

    In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-β-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans→cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.

  13. Two-photon excited fluorescence microendoscopic imaging using a GRIN lens

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Peng, Xiao; Lin, Danying; Wang, Qi; Gao, Jian; Zhou, Jie; Ye, Tong; Qu, Junle; Niu, Hanben

    2015-03-01

    With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in traditional fluorescence microscopes have limited the imaging applications mostly to superficial tissues. To overcome this disadvantage, researchers have developed the graded-index (GRIN) probes with small diameters for imaging internal organs of small animals in a minimally invasive fashion. Here, we present the development of a fluorescence endoscopic imaging system based on a GRIN lens using two-photon excitation. Experimental results showed that this system could perform dynamic fluorescence microendoscopic imaging and monitor the blood flow in anesthetized living mice using two-photon excitation.

  14. Cluster-surface interaction studied by time-resolved two-photon photoemission

    NASA Astrophysics Data System (ADS)

    Busolt, U.; Cottancin, E.; Röhr, H.; Socaciu, L.; Leisner, T.; Wöste, L.

    We use time-resolved two-photon photoemission to study the stability of size selected Agn+ clusters (n=2-9)deposited onto highly oriented pyrolytic graphite (HOPG) substrates at liquid nitrogen temperatures. The deposition was carried out with variable kinetic energies of the clusters. Clusters deposited with high kinetic energy (up to 60 eV/cluster) become fragmented upon impact. For low deposition energies (1-4 eV/cluster) the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the soft deposited clusters retain their size and identity on the sample. The phase of the odd/even effect suggests that transient negatively charged cluster ions serve as an intermediate step in the two-photon photoemission process. The lifetime of the anions rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters.

  15. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    NASA Astrophysics Data System (ADS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s2 1S0↔ 6s7s 1S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s1S0 state via the intercombination 6s6p3P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  16. In vivo two-photon microscopy of the hippocampus using glass plugs

    PubMed Central

    Velasco, Mary Grace M.; Levene, Michael J.

    2014-01-01

    Two-photon microscopy has been used in conjunction with micro-optics, such as GRIN lenses, to access subcortical structures in the intact mouse brain. In this study, we demonstrate the use of thick glass windows, or plugs, for high-resolution, large field-of-view two-photon imaging of the hippocampus in a live mouse. These plugs are less expensive, yield larger fields-of-view and are simpler to use than GRIN lenses while requiring less tissue removal compared to previous methods based on cortical ablation. To demonstrate the capabilities of our system, we show fluorescence images of dendritic spines in the CA1 region of the hippocampus in THY1-YFP transgenic mice. PMID:24940533

  17. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hauser, Daniel; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S.; Geistlinger, Katharina; Kumar, Sunil S.; Wester, Roland

    2016-03-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just a few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J =1 ←0 and J =2 ←1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598 596.08(19) MHz for J =1 ←0 and 1 196 791.57(27) MHz for J =2 ←1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  18. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2003-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  19. Pyrrolo[3,2-b]pyrroles – from unprecedented solvatofluorochromism to two-photon absorption

    PubMed Central

    Friese, Daniel H.; Mikhaylov, Alexander; Krzeszewski, Maciej; Poronik, Yevgen M.

    2015-01-01

    A combined experimental and theoretical study of the two-photon absorption properties of a series of quadrupolar molecules possessing a highly electron-rich heterocyclic core, pyrrolo[3,2-b]pyrrole is presented. In agreement with quantum-chemical calculations, we observe large two-photon absorption (2PA) cross-section values, σ2PA ~ 102–103 GM (1GM = 1050 cm4 s photon−1) at wavelengths 650–700 nm, corresponding to the 2-photon allowed but 1-photon forbidden transitions. The calculations also predict that increased planarity of this molecule via removal of two N-substituents leads to further increase in the σ2PA values. Surprisingly, the most quadrupolar pyrrolo[3,2-b]pyrrole derivative bearing two 4-nitrophenyl substituents at positions 2 and 5 demonstrates very strong solvatofluorochromic effect, with the fluorescence quantum yield as high as 0.96 in cyclohexane, while the fluorescence vanishes in DMSO. PMID:26511232

  20. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.