Science.gov

Sample records for local ultraluminous infrared

  1. NTT images of ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Melnick, J.; Mirabel, I. F.

    1990-01-01

    New Technology Telescope (NTT) images of 16 southern ultraluminous infrared (LIR greater than 10 to the 12th solar luminosities) galaxies in the Local Universe (z less than 0.13) are presented. All these galaxies are strongly interacting systems showing double nuclei, wisps, and tails that are characteristic of advanced mergers. The most spectacular instance of these cosmic accidents is the 'superantenna', a system with long slender tails that extend over 500 kpc. It is concluded that ultraluminous infrared galaxies are mergers of giant spiral galaxies, and that the distinguishing features of tidal interactions in this type of galaxies become blurred at higher redshifts. The CCD images suggest the existence of a critical separation between the colliding galaxies of about 10 kpc at which the merging systems become ultraluminous in the infrared.

  2. Silicates in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sirocky, M. M.; Levenson, N. A.; Elitzur, M.; Spoon, H. W. W.; Armus, L.

    2008-05-01

    We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescope's Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is independent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18 μm requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sight lines require dust that has a relatively high 18 μm/10 μm absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.

  3. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  4. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  5. MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS

    SciTech Connect

    Xia, X. Y.; Hao, C.-N.; Gao, Y.; Tan, Q. H.; Mao, S.; Omont, A.; Flaquer, B. O.; Leon, S.; Cox, P.

    2012-05-10

    We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

  6. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  7. Buried Quasars in Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2004-01-01

    We were awarded l00OkS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order io measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  8. STELLAR POPULATIONS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Hou, L. G.; Han, J. L.; Kong, M. Z.; Wu Xuebing

    2011-05-10

    Ultraluminous infrared galaxies (ULIRGs) are classified into several types depending on the dominance of starburst or active galactic nucleus (AGN) components. We conducted a stellar population analysis for a sample of 160 ULIRGs to study the evolution of ULIRGs. We found that the dominance of intermediate-age and old stellar populations increases along the sequence of H II-like ULIRGs, Seyfert-H II composite ULIRGs, and Seyfert 2 ULIRGs. Consequently, the typical mean stellar age and stellar mass increase along the sequence. Comparing the gas mass estimated from the CO measurements to the stellar mass estimated from the optical spectra, we found that the gas fraction is anti-correlated with stellar mass. Even so, the total masses of H II-like ULIRGs with small stellar masses and a large fraction of gas are not comparable to the small masses of Seyfert 2 ULIRGs. This indicates that H II-like ULIRGs with small stellar masses have no evolutionary connections with massive Seyfert 2 ULIRGs. Only massive ULIRGs may follow the evolution sequence toward AGNs, and massive H II-like ULIRGs are probably in an earlier stage of the sequence.

  9. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect

    Kilerci Eser, E.; Goto, T.; Doi, Y. E-mail: doi@ea.c.u-tokyo.ac.jp

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  10. Age Dating Ultraluminous Infrared Galaxies along the Merger Sequence

    NASA Astrophysics Data System (ADS)

    Murphy, T. W., Jr.; Soifer, B. T.; Matthews, K.; Armus, L.

    2001-09-01

    Imaging spectroscopy using the new Palomar Integral Field Spectrograph is presented for the Paα line in four ultraluminous infrared galaxies. The resulting integral field data cubes reveal line emission possessing a wide range of complex spatial morphologies, often quite different from the appearance of the continuum. The velocity fields are equally diverse in nature, often failing to resemble typical modes of galactic motion. We see a variety of interesting phenomena in the individual mergers including star formation rates of 2-5 Msolar yr-1 in young tidal tails; a postencounter disk that obeys the Tully-Fisher relation; a large-scale emission-line nebula possibly associated with a massive outflow; an apparently single merging system possessing two distinct kinematical axes belying the presence of a second galaxy, mostly obscured by its merging companion; and possible formation of tidal dwarf galaxies. In most cases, we are able to establish the geometry of the merger and thus estimate the time in the merger process at which we are viewing the system. The resulting range in estimated ages, some of which are very young encounters (~5×107 yr), is not predicted by merger models, which produce high rates of star formation either 1-2×108 yr after the first encounter or very late (~109 yr) in the merger process. Even in the very young mergers, despite a sample selection based on extended line emission, the ultraluminous activity appears to be centrally concentrated on the nucleus of one of the progenitor galaxies-namely, the galaxy with a prograde orbital geometry. The inferred extinction to these concentrations is high, usually at least 1 mag at the wavelength of Paα. The presence of a significant population of very young ultraluminous mergers, together with the majority of ultraluminous infrared galaxies existing in the final stages of merger activity, indicates that the ultraluminous galaxy phase is at least bimodal in time. An evolutionary scenario is proposed

  11. ULTRALUMINOUS INFRARED GALAXIES IN THE WISE AND SDSS SURVEYS

    SciTech Connect

    Su, Shanshan; Kong, Xu; Li, Jinrong; Fang, Guanwen E-mail: xkong@ustc.edu.cn

    2013-11-20

    In this paper, we present a large catalog of 419 Ultraluminous infrared galaxies (ULIRGs), carefully selected from the Wide-field Infrared Survey Explorer mid-infrared data and the Sloan Digital Sky Survey eighth data release, and classify them into three subsamples, based on their emission line properties: H II-like ULIRGs, Seyfert 2 ULIRGs, and composite ULIRGs. We apply our new efficient spectral synthesis technique, which is based on mean field approach to Bayesian independent component analysis (MF-ICA) method, to the galaxy integrated spectra. We also analyze the stellar population properties, including percentage contribution, stellar age, and stellar mass, for these three types of ULIRGs, and explore the evolution among them. We find no significant difference between the properties of stellar populations in ULIRGs with or without active galactic nucleus components. Our results suggest that there is no evolutionary link among these three type ULIRGs.

  12. H(2) emission arises outside photodissociation regions in ultraluminous infrared galaxies.

    PubMed

    Zakamska, Nadia L

    2010-05-01

    Ultraluminous infrared galaxies are among the most luminous objects in the local Universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, but left unresolved was the source of excitation for this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultraluminous infrared galaxies and demonstrate that dust obscuration affects star formation indicators but not molecular hydrogen. I thereby establish that the emission of H(2) is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is unexpected in light of the standard view that H(2) emission is directly associated with star-formation activity. I propose the alternative view that H(2) emission in these objects traces shocks in the surrounding material that are excited by interactions with nearby galaxies. Large-scale shocks cooling by means of H(2) emission may accordingly be more common than previously thought. In the early Universe, a boost in H(2) emission by this process may have accelerated the cooling of matter as it collapsed to form the first stars and galaxies, and would make these first structures more readily observable.

  13. ENHANCED DENSE GAS FRACTION IN ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Juneau, S.; Shirley, Y. L.; Bussmann, R. S.; Narayanan, D. T.; Moustakas, J.; Kennicutt, R. C.; Vanden Bout, P. A. E-mail: yshirley@as.arizona.ed E-mail: dnarayanan@cfa.harvard.ed E-mail: robk@ast.cam.ac.u

    2009-12-20

    We present a detailed analysis of the relation between infrared luminosity and molecular line luminosity, for a variety of molecular transitions, using a sample of 34 nearby galaxies spanning a broad range of infrared luminosities (10{sup 10} L{sub sun} < L{sub IR} < 10{sup 12.5} L{sub sun}). We show that the power-law index of the relation is sensitive to the critical density of the molecular gas tracer used, and that the dominant driver in observed molecular line ratios in galaxies is the gas density. As most nearby ultraluminous infrared galaxies (ULIRGs) exhibit strong signatures of active galactic nuclei (AGNs) in their center, we revisit previous claims questioning the reliability of HCN as a probe of the dense gas responsible for star formation in the presence of AGNs. We find that the enhanced HCN(1-0)/CO(1-0) luminosity ratio observed in ULIRGs can be successfully reproduced using numerical models with fixed chemical abundances and without AGN-induced chemistry effects. We extend this analysis to a total of 10 molecular line ratios by combining the following transitions: CO(1-0), HCO{sup +}(1-0), HCO{sup +}(3-2), HCN(1-0), and HCN(3-2). Our results suggest that AGNs reside in systems with higher dense gas fraction, and that chemistry or other effects associated with their hard radiation field may not dominate (NGC 1068 is one exception). Galaxy merger could be the underlying cause of increased dense gas fraction, and the evolutionary stage of such mergers may be another determinant of the HCN/CO luminosity ratio.

  14. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  15. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew; Stern, Daniel; Alexander, D. M.; Bauer, Franz E.; Boggs, Stephen E.; Craig, William W.; Brandt, W. Niel; Luo, Bin; Christensen, Finn E.; Comastri, Andrea; Farrah, Duncan; Gandhi, Poshak; Hailey, Charles J.; Harrison, Fiona A.; Hickox, Ryan C.; Koss, Michael; and others

    2015-11-20

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.

  16. Ultraluminous infrared galaxies and the radio-optical correlation for quasars

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Smith, Harding E.; Lonsdale, Colin J.

    1995-01-01

    Through analysis of available optical spectrophotometric data and radio flux density measurements in the literature, it is demonstrated that a good correlation exists between the radio power and bolometric luminosity of the optically-selected OSOs in the Bright Quasar Sample (BOS) of Schmidt and Green (1983). We have recently used VLBI measurements of a sample of ultraluminous infrared galaxies to infer the likely existence of radio-quiet Active Galactic Nuclei (AGNs) deeply enshrouded in dust within their nuclei (Lonsdale, Smith, and Lonsdale 1993). We employ the radio-bolometric luminosity correlation for the BQS quasars to test whether these hypothetical buried AGNs can be energetically responsible for the observed far-infrared luminosities of the ultraluminous infrared galaxies. The ultraluminous infrared galaxies are shown to follow the same relation between radio core power and bolometric luminosity as the radio-quiet QSOs, suggesting that buried AGNs can account for essentially all the observed infrared luminosity, and raising the possibility that any starburst which may be in progress may not be energetically dominant. The broader implications of the radio-optical correlation in quasars for AGNs and luminous infrared galaxy models and the use of radio astronomy as a probe of the central powerhouse in radio quiet AGNs and luminous infrared galaxies are briefly discussed.

  17. OSSE observations of the ultraluminous infrared galaxies ARP 220 and MRK 273

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Shier, L. M.; Sturner, S. J.; McNaron-Brown, K.; Bland-Hawthorn, J.

    1997-01-01

    The results of oriented scintillation spectrometer experiment (OSSE) observations of the ultraluminous infrared galaxies Arp 220 and Mrk 273 are reported. The pointings of Arp 220 and Mrk 273 concentrated on their upper limits. The gamma ray luminosities from these sources were found to be between one and two orders of magnitude smaller than the infrared luminosities. Multiwavelength luminosity spectra are produced from the radio to the gamma ray regime, and are compared with the typical multiwavelength spectra of active galactic nuclei. The lack of measured gamma ray emission provides no evidence for the existence of buried active galactic nuclei in these ultraluminous infrared galaxies, but is consistent with an origin of the infrared luminosity from starburst activity.

  18. THE MERGER-TRIGGERED ACTIVE GALACTIC NUCLEUS CONTRIBUTION TO THE ULTRALUMINOUS INFRARED GALAXY POPULATION

    SciTech Connect

    Draper, A. R.; Ballantyne, D. R.

    2012-07-10

    It has long been thought that there is a connection between ultraluminous infrared galaxies (ULIRGs), quasars, and major mergers. Indeed, simulations show that major mergers are capable of triggering massive starbursts and quasars. However, observations by the Herschel Space Observatory suggest that, at least at high redshift, there may not always be a simple causal connection between ULIRGs and mergers. Here, we combine an evolving merger-triggered active galactic nucleus (AGN) luminosity function with a merger-triggered starburst model to calculate the maximum contribution of major mergers to the ULIRG population. We find that major mergers can account for the entire local population of ULIRGs hosting AGNs and {approx}25% of the total local ULIRG luminosity density. By z {approx} 1, major mergers can no longer account for the luminosity density of ULIRGs hosting AGNs and contribute {approx}<12% of the total ULIRG luminosity density. This drop is likely due to high-redshift galaxies being more gas rich and therefore able to achieve high star formation rates through secular evolution. Additionally, we find that major mergers can account for the local population of warm ULIRGs. This suggests that selecting high-redshift warm ULIRGs will allow for the identification of high-redshift merger-triggered ULIRGs. As major mergers are likely to trigger very highly obscured AGNs, a significant fraction of the high-redshift warm ULIRG population may host Compton thick AGNs.

  19. Evolutionary paths along the BPT diagram for luminous and ultraluminous infrared galaxies

    SciTech Connect

    Fiorenza, Stephanie L.; Takeuchi, Tsutomu T.; Małek, Katarzyna E.; Liu, Charles T.

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (10{sup 11} < L {sub IR} < 10{sup 13} L {sub ☉}) within the IRAS 2 Jy Redshift Survey with 0.05 ≲ z ≲ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving [N II]/Hα that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  20. Principal component analysis and radiative transfer modelling of Spitzer Infrared Spectrograph spectra of ultraluminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Hurley, P. D.; Oliver, S.; Farrah, D.; Wang, L.; Efstathiou, A.

    2012-08-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. We further investigate the principal components (PCs) of ULIRGs derived in Wang et al. We quantitatively show that five PCs are optimal for describing the Infrared Spectrograph spectra. These five components (PC1-PC5) and the mean spectrum provide a template basis set that reproduces spectra of all z < 0.35 ULIRGs within the noise. For comparison, the spectra are also modelled with a combination of radiative transfer models of both starbursts and the dusty torus surrounding active galactic nuclei (AGN). The five PCs typically provide better fits than the models. We argue that the radiative transfer models require a colder dust component and have difficulty in modelling strong polycyclic aromatic hydrocarbon features. Aided by the models we also interpret the physical processes that the PCs represent. The third PC is shown to indicate the nature of the dominant power source, while PC1 is related to the inclination of the AGN torus. Finally, we use the five PCs to define a new classification scheme using 5D Gaussian mixture modelling and trained on widely used optical classifications. The five PCs, average spectra for the four classifications and the code to classify objects are made available at: .

  1. GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z {approx} 2

    SciTech Connect

    Kartaltepe, Jeyhan S.; Dickinson, Mark; Alexander, David M.; Bell, Eric F.; Dahlen, Tomas; Lotz, Jennifer; Elbaz, David; Wiklind, Tommy; Faber, S. M.; Aussel, Herve; Bethermin, Matthieu; Bournaud, Frederic; Dannerbauer, Helmut; Charmandaris, Vassilis; Conselice, Christopher J.; Cooray, Asantha; Dave, Romeel; Dunlop, James; and others

    2012-09-20

    Using deep 100 and 160 {mu}m observations in GOODS-South from GOODS-Herschel, combined with high-resolution HST/WFC3 near-infrared imaging from CANDELS, we present the first detailed morphological analysis of a complete, far-infrared (FIR) selected sample of 52 ultraluminous infrared galaxies (ULIRGs; L{sub IR} > 10{sup 12} L{sub Sun }) at z {approx} 2. We also make use of a comparison sample of galaxies with lower IR luminosities but with the same redshift and H-band magnitude distribution. Our visual classifications of these two samples indicate that the fractions of objects with disk and spheroid morphologies are roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs (72{sup +5}{sub -7}% versus 32 {+-} 3%). The combination of disk and irregular/interacting morphologies suggests that early-stage interactions, minor mergers, and disk instabilities could play an important role in ULIRGs at z {approx} 2. We compare these fractions with those of a z {approx} 1 sample selected from GOODS-H and COSMOS across a wide luminosity range and find that the fraction of disks decreases systematically with L{sub IR} while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z {approx} 2 and z {approx} 1, though there are slightly fewer mergers and slightly more disks at higher redshift. We investigate the position of the z {approx} 2 ULIRGs, along with 70 z {approx} 2 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (i.e., they lie more than a factor of three above the main-sequence relation). We find that many of these systems are clear interactions and mergers ({approx}50%) compared to only 24% of systems on the main sequence relation. If irregular disks are included as potential minor mergers, then we find that up to {approx

  2. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  3. THE Lyα LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE

    SciTech Connect

    Martin, Crystal L.; Wong, Joseph; Dijkstra, Mark; Henry, Alaina; Soto, Kurt T.; Danforth, Charles W.

    2015-04-10

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Lyα emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Lyα profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding −1000 km s{sup −1} in three H ii-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Lyα line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Lyα attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Lyα photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Lyα and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Lyα emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1–1% of the radiative cooling from the hot winds in the H ii-dominated ULIRGs.

  4. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Farrah, D.; Petty, S. M.; Harris, K.; Lebouteiller, V.; Spoon, H. W. W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H. A.; González-Alfonso, E.; Clements, D. L.; Efstathiou, A.; Cormier, D.; Afonso, J.; Hurley, P.; Borys, C.; Verma, A.; Cooray, A.; Salvatelli, V.

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  5. Selection and mid-infrared spectroscopy of ultraluminous star-forming galaxies at z ∼ 2

    SciTech Connect

    Fang, Guanwen; Kong, Xu; Chen, Yang; Lin, Xuanbin; Huang, Jia-Sheng; Willner, S. P.; Wang, Tao E-mail: jhuang@cfa.harvard.edu

    2014-02-01

    Starting from a sample of 24 μm sources in the Extended Groth Strip, we use 3.6-8 μm color criteria to select ultraluminous infrared galaxies (ULIRGs) at z ∼ 2. Spectroscopy from 20-38 μm of 14 objects verifies their nature and gives their redshifts. Multi-wavelength data for these objects imply stellar masses >10{sup 11} M {sub ☉} and star formation rates ≥410 M {sub ☉} yr{sup –1}. Four objects of this sample observed at 1.6 μm (rest-frame visible) with Hubble Space Telescope/WFC3 show diverse morphologies, suggesting that multiple formation processes create ULIRGs. Of the 14 objects, 4 show signs of active galactic nuclei, but the luminosity appears to be dominated by star formation in all cases.

  6. Evidence for Multiple Mergers among Ultraluminous Infrared Galaxies: Remnants of Compact Groups?

    PubMed

    Borne; Bushouse; Lucas; Colina

    2000-02-01

    In a large sample of ultraluminous infrared galaxies (ULIRGs) imaged with the Hubble Space Telescope, we have identified a significant subsample that shows evidence for multiple mergers. The evidence is seen among two classes of ULIRGs: (1) those with multiple remnant nuclei in their core, sometimes accompanied by a complex system of tidal tails, and (2) those that are in fact dense groupings of interacting (soon-to-merge) galaxies. We conservatively estimate that, in the redshift range 0.05

  7. Hard X-Rays from a Complete Sample of the Brightest Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2003-01-01

    We were awarded 70kS of XMM-Newton spacecraft time using the Epic pn camera to observe three ultraluminous infrared galaxies (ULIGs) in order to measure the spectral shape of their hard X-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN), and to separate out the contributions from a putative starburst. By observing three objects we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the X-ray background. XMM-Newton was deemed to be better suited to our proposed measurements of ULIGs than the Chandra X-ray observatory due to its larger aperture and better sensitivity to hard (2-10 keV) X-rays.

  8. FAINT CO LINE WINGS IN FOUR STAR-FORMING (ULTRA)LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Zschaechner, Laura; Bolatto, Alberto; Weiss, Axel

    2015-09-20

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s{sup −1}-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  9. Optical and infrared signatures of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Copperwheat, Christopher; Cropper, Mark; Soria, Roberto; Wu, Kinwah

    2005-09-01

    We have constructed a model to describe the optical emission from ultra-luminous X-ray sources (ULXs). We assume a binary model with a black hole accreting matter from a Roche lobe filling companion star. We consider the effects of radiative transport and radiative equilibrium in the irradiated surfaces of both the star and a thin accretion disc. We have developed this model as a tool with which to positively identify the optical counterparts of ULXs, and subsequently derive parameters such as the black hole mass and the luminosity class and spectral type of the counterpart. We examine the dependence of the optical emission on these and other variables. We extend our model to examine the magnitude variation at infrared wavelengths, and we find that observations at these wavelengths may have more diagnostic power than in the optical. We apply our model to existing HST observations of the candidates for the optical counterpart of ULX X-7 in NGC 4559. All candidates could be consistent with an irradiated star alone, but we find that a number of them are too faint to fit with an irradiated star and disc together. Were one of these the optical counterpart to X-7, it would display a significant temporal variation.

  10. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  11. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  12. A deficit of ultraluminous X-ray sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Luangtip, W.; Roberts, T. P.; Mineo, S.; Lehmer, B. D.; Alexander, D. M.; Jackson, F. E.; Goulding, A. D.; Fischer, J. L.

    2015-01-01

    We present results from a Chandra study of ultraluminous X-ray sources (ULXs) in a sample of 17 nearby (DL < 60 Mpc) luminous infrared galaxies (LIRGs), selected to have star formation rates (SFRs) in excess of 7 M⊙ yr-1 and low foreground Galactic column densities (NH ≲ 5 × 1020 cm-2). A total of 53 ULXs were detected and we confirm that this is a complete catalogue of ULXs for the LIRG sample. We examine the evolution of ULX spectra with luminosity in these galaxies by stacking the spectra of individual objects in three luminosity bins, finding a distinct change in spectral index at luminosity ˜2 × 1039 erg s-1. This may be a change in spectrum as 10 M⊙ black holes transit from an ˜ Eddington to a super-Eddington accretion regime, and is supported by a plausible detection of partially ionized absorption imprinted on the spectrum of the luminous ULX (LX ≈ 5 × 1039 erg s-1) CXOU J024238.9-000055 in NGC 1068, consistent with the highly ionized massive wind that we would expect to see driven by a super-Eddington accretion flow. This sample shows a large deficit in the number of ULXs detected per unit SFR (0.2 versus 2 ULXs, per M⊙ yr-1) compared to the detection rate in nearby (DL < 14.5 Mpc) normal star-forming galaxies. This deficit also manifests itself as a lower differential X-ray luminosity function normalization for the LIRG sample than for samples of other star-forming galaxies. We show that it is unlikely that this deficit is a purely observational effect. Part of this deficit might be attributable to the high metallicity of the LIRGs impeding the production efficiency of ULXs and/or a lag between the star formation starting and the production of ULXs; however, we argue that the evidence - including very low NULX/LFIR, and an even lower ULX incidence in the central regions of the LIRGs - shows that the main culprit for this deficit is likely to be the high column of gas and dust in these galaxies, that fuels the high SFR but also acts to

  13. INTEGRAL Spectroscopy of IRAS 17208-0014: Implications for the Evolutionary Scenarios of Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Arribas, Santiago; Colina, Luis

    2003-07-01

    New integral field optical fiber spectroscopy obtained with the INTEGRAL system, together with archival HST WFPC2 and NICMOS images, has been used to investigate the ultraluminous infrared galaxy (ULIRG) IRAS 17208-0014, one of the coldest and most luminous objects in the IRAS 1 Jy sample. We have found that the optical nucleus is not coincident with the true (near-IR and dynamical) nucleus, but that it is displaced by 1.3 kpc (1.5") from it. As a consequence, the previous optical spectral classifications for the nucleus of this galaxy have to be changed from H II to LINER. The ionized gas emission is concentrated around the optical nucleus, where a young (5-6 Myr), massive [(3+/-1)×108 Msolar], and luminous [(6+/-2)×1010 Lsolar] starburst is detected. Contrary to what is found in dynamically young ULIRGs, no strong line emission tracing star-forming regions, or tidal dwarf galaxies, is detected in the inner parts of the tidal tails. The two-dimensional gas velocity field identifies the optically faint K-band nucleus as the dynamical nucleus of the galaxy and shows that the 3 kpc, tilted (i~35deg) disk is rotating at Δvsini=250 km s-1. Radial motions of gas are found along the minor kinematic axis, which, according to the geometry of the system, are well interpreted as inflows perpendicular to the inner disk. The existence of such inflows supports the idea that, as a consequence of the merging process, gas is channeling from the external regions, several kiloparsecs away, into the nuclear regions where the massive starburst reported above is taking place. The kinematical, morphological, and photometric evidence presented here supports the idea that in IRAS 17208-0014 we are witnessing a luminous, cool ULIRG that is at the final coalescence phase of a system composed of two spiral galaxies with m<=m* and a mass ratio of ~2:1, each consisting of a disk+bulge internal structure, that have been involved in a prograde encounter. This system will most likely evolve

  14. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  15. IRAS F13308+5946: A POSSIBLE TRANSITION PHASE FROM TYPE I ULTRALUMINOUS INFRARED GALAXY TO OPTICAL QUASAR

    SciTech Connect

    Meng Xianmin; Wu Hong; Wang Jing; Gu Qiusheng; Cao Chen

    2010-08-01

    We present a stellar population synthesis study of a type I luminous infrared galaxy: IRAS F13308+5946. It is a quasar with absolute magnitude M{sub i} = -22.56 and has the spectral feature of a Seyfert 1.5 galaxy. Optical images show characteristics of later stages of a merger. With the help of the stellar synthesis code STARLIGHT and both Calzetti et al.'s and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find that it may have experienced an ultraluminous infrared galaxy (ULIRG) phase for nearly 300 Myr, so this galaxy has probably experienced a type I ULIRG phase. Both nuclear starburst (SB) and active galactic nuclei contribute to the present IR luminosity budget, with the SB contributing {approx}70%. The mass of the supermassive black hole is M{sub BH} = 1.8 x 10{sup 8} M{sub sun} and the Eddington ratio L{sub bol}/L{sub Edd} is 0.12, both of which are approximate typical values of Palomar-Green QSOs. These results indicate that IRAS F13308+5946 is probably at the transitional phase from a type I ULIRG to a classical QSO.

  16. Optical-faint, Far-infrared-bright Herschel Sources in the CANDELS Fields: Ultra-luminous Infrared Galaxies at z > 1 and the Effect of Source Blending

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Somerville, Rachel; Ashby, Matthew L. N.; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven "SDSS-invisible," very bright 250 μm sources (S 250 > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ~ 1-2 whose high L IR is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  17. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  18. A Chandra X-Ray Investigation of the Violent Interstellar Medium: From Dwarf Starbursts to Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Grimes, J. P.; Heckman, T.; Strickland, D.; Ptak, A.

    2005-07-01

    We have analyzed observations with the Chandra X-Ray Observatory of the diffuse emission by hot gas in seven dwarf starburst galaxies, six edge-on starburst galaxies, and nine ultraluminous infrared galaxies. These systems cover ranges of ~104 in X-ray luminosity, and several thousand in star formation rate and K-band luminosity (a proxy for stellar mass). Despite this range in fundamental parameters, we find that the properties of the diffuse X-ray emission are very similar in all three classes of starburst galaxies. The spectrum of the diffuse emission is well fitted by thermal emission from gas with kT~0.25-0.8 keV and with several times solar abundance ratios of α-elements to Fe. The ratio of the thermal X-ray to far-infrared luminosity is roughly constant, as is the characteristic surface brightness of the diffuse X-ray emission. The size of the diffuse X-ray source increases systematically with both far-infrared and K-band luminosity. All three classes show strong morphological relationships between the regions of hot gas probed by the diffuse X-ray emission and the warm gas probed by optical line emission. These findings suggest that the same physical mechanism is producing the diffuse X-ray emission in the three types of starbursts. These results are consistent with that mechanism being shocks driven by a galactic ``superwind,'' which is powered by the kinetic energy collectively supplied by stellar winds and supernovae in the starburst.

  19. Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305.

    PubMed

    Colina; Arribas; Borne; Monreal

    2000-04-10

    Integral field optical spectroscopy with the INTEGRAL fiber-fed system and Hubble Space Telescope optical imaging are used to map the complex stellar and warm ionized gas structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images reconstructed from wavelength-delimited extractions of the integral field spectra reveal that the observed ionized gas distribution is decoupled from the stellar main body of the galaxy, with the dominant continuum and emission-line regions separated by projected distances of up to 7.5 kpc. The two optical nuclei are detected as apparently faint emission-line regions, and their optical properties are consistent with being dust-enshrouded weak [O i] LINERs. The brightest emission-line region is associated with a faint (mI=20.4), giant H ii region of 600 pc diameter, in which a young ( approximately 5 Myr) massive cluster of about 2x107 M middle dot in circle dominates the ionization. Internal reddening toward the line-emitting regions and the optical nuclei ranges from 1 to 8 mag in the visual. Taking the reddening into account, the overall star formation in IRAS 12112+0305 is dominated by starbursts associated with the two nuclei and corresponds to a star formation rate of 80 M middle dot in circle yr-1. PMID:10727379

  20. NuSTAR reveals an intrinsically X-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    SciTech Connect

    Teng, Stacy H.; Rigby, J. R.; Brandt, W. N.; Luo, B.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Alexander, D. M.; Gandhi, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Hickox, R. C.; Ptak, A. F.; and others

    2014-04-10

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N{sub H}∼1.2{sub −0.3}{sup +0.3}×10{sup 23} cm{sup –2}) column. The intrinsic X-ray luminosity (L {sub 0.5–30} {sub keV} ∼ 1.0 × 10{sup 43} erg s{sup –1}) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is ∼0.03% compared to the typical values of 2%-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope (α{sub OX} ∼ –1.7). It is a local example of a low-ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  1. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties

    NASA Astrophysics Data System (ADS)

    Bellocchi, Enrica; Arribas, Santiago; Colina, Luis; Miralles-Caballero, Daniel

    2013-09-01

    Context. (Ultra) Luminous infrared galaxies [(U)LIRGs] host the most extreme star-forming events in the present universe and are places where a significant fraction of the past star formation beyond z ~ 1 has occurred. The kinematic characterization of this population is important to constrain the processes that govern such events. Aims: We present and discuss the 2D kinematic properties of the ionized gas (Hα) in sample local (U)LIRGs, for which relatively high linear resolution and signal-to-noise (S/N) ratio can be obtained. Methods: We have obtained Very Large Telescope VIMOS optical integral field spectroscopy (IFS) for 38 local (z < 0.1) (U)LIRGs (31 LIRGs and 7 ULIRGs, 51 individual galaxies). This sample covers well the less studied LIRG luminosity range, and it includes the morphological types corresponding to the different phases along the merging process (i.e., isolated disks, interacting and merging systems). Results: The vast majority of objects have two main kinematically distinct components. One component (i.e., narrow or systemic) extends over the whole line-emitting region and is characterized by small-to-intermediate velocity dispersions (i.e., σ from 30 to 160 km s-1). The second component (broad) has a larger velocity dispersion (up to 320 km s-1); it is mainly found in the inner regions and is generally blueshifted with respect to the systemic component. The largest extensions and extreme kinematic properties are observed in interacting and merging systems, and they are likely associated with nuclear outflows. The systemic component traces the overall velocity field, showing a large variety of kinematic 2D structures, from very regular velocity patterns typical of pure rotating disks (29%) to kinematically perturbed disks (47%) and highly disrupted and complex velocity fields (24%). Thus, most of the objects (76%) are dominated by rotation. We find that rotation is more relevant in LIRGs than in ULIRGs. There is a clear correlation between

  2. The Nature of Ultraluminous Galaxies: Infrared Space Observatory Analysis and Instrument Team

    NASA Technical Reports Server (NTRS)

    Satyapal, Shobita

    2001-01-01

    The scientific goal of the proposed research was to investigate the physical conditions in the nuclear regions of infrared luminous galaxies by carrying out detailed infrared spectroscopic observations of a large sample of infrared luminous galaxies. During the past year, these observations have been successfully analyzed and extensive modeling using photoionization and photodissociation codes has been carried out. Two first-author publications and a second-author publication have been submitted to the Astrophysical Journal and results were presented at two invited talks. Four additional journal papers are in preparation and will be submitted during year 2 of the grant. The secondary project included in this program was the development of a near-infrared cryogenic Fabry-Perot interferometer for use on future large aperture telescopes. System integration and room temperature testing was successfully carried out for this project during year 1.

  3. Mid-infrared spectroscopy of Spitzer-selected ultra-luminous starbursts at z ~ 2

    NASA Astrophysics Data System (ADS)

    Fiolet, N.; Omont, A.; Lagache, G.; Bertincourt, B.; Fadda, D.; Baker, A. J.; Beelen, A.; Berta, S.; Boulanger, F.; Farrah, D.; Kovács, A.; Lonsdale, C.; Owen, F.; Polletta, M.; Shupe, D.; Yan, L.

    2010-12-01

    Context. Spitzer's wide-field surveys and followup capabilities have allowed a new breakthrough in mid-IR spectroscopy up to redshifts ≥ 2, especially for 24 μm detected sources. Aims: We want to study the mid-infrared properties and the starburst and AGN contributions, of 24 μm sources at z ~ 2, through analysis of mid-infrared spectra combined with millimeter, radio, and infrared photometry. Mid-infrared spectroscopy allows us to recover accurate redshifts. Methods: A complete sample of 16 Spitzer-selected sources (ULIRGs) believed to be starbursts at z ~ 2 (“5.8 μm-peakers”) was selected in the (0.5 deg2) J1064+56 SWIRE Lockman Hole field (“Lockman-North”). These sources have S24µ > 0.5 mJy, a stellar emission peak redshifted to 5.8 μm, and r'Vega > 23. The entire sample was observed with the low resolution units of the Spitzer/IRS infrared spectrograph. These sources have 1.2 mm observations with IRAM 30 m/MAMBO and very deep 20 cm observations from the VLA. Nine of our sources also benefit from 350 μm observation and detection from CSO/SHARC-II. All these data were jointly analyzed. Results: The entire sample shows good quality IRS spectra dominated by strong PAH features. The main PAH features at 6.2, 7.7, 8.6, and 11.3 μm have high S/N average luminosities of 2.90±0.31, 10.38±1.09, 3.62±0.27, and 2.29±0.26×1010 L⊙, respectively. Thanks to their PAH spectra, we derived accurate redshifts spanning from 1.750 to 2.284. The average of these redshifts is 2.017±0.038. This result confirms that the selection criteria of “5.8 μm-peakers” associated with a strong detection at 24 μm are reliable to select sources at z ~ 2. We have analyzed the different correlations between PAH emission and infrared, millimeter, and radio emissions. Practically all our sources are strongly dominated by starburst emission, with only one source showing an important AGN contribution. We have also defined two subsamples based on the equivalent width at 7.7

  4. ISM Properties of Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  5. The blueshifted Pa alpha broad line component and the origin of strong iron emission in the ultraluminous infrared galaxy IRAS 07598+6508

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Kawara, Kimiaki; Murayama, Takashi; Sato, Yasunori

    1994-01-01

    We present the Pa alpha emission profile of the ultraluminous infrared galaxy (ULFIRG) IRAS 07598+6508 which is an unusually strong Fe II emitter in the optical. The Pa alpha emission line profile shows a blueshifted broad component (FWHM approximately equal to 3900 km/sec) together with a narrow core (FWHM less than or equal to 530 km/sec). The presence of the broad line component strongly suggests that IRAS 07598+6508 has an active galactic nucleus, supporting a scenario of merger-induced quasar formation proposed by Sanders et al. (1988), although we cannot rule out the possibility of a supernova-driven high speed wind. Possible detection of (Fe II) 1.893 micrometer emission is also reported. It is shown that strong Fe II emitters such as IRAS 07598+6508 have intermediate IRAS color properties between normal quasars and cold ultraluminous infrared galaxies. We thus suggest an evolutionary link from cold ULFIRG through warm ULFIRG and Fe II ULFIRG to quasars.

  6. Clustering of Ultraluminous Infrared Galaxies in the Boötes Field

    NASA Astrophysics Data System (ADS)

    De Alba, Roberto; Papovich, C.; Finkelstein, S. L.; Dey, A.; Brodwin, M.; Armus, L.; Block, M.; Borys, C.; Brown, M.; Cool, R.; Desai, V.; Dickinson, M.; Dole, H.; Eisenstein, D.; Herrera, D.; Jannuzi, B. T.; Kochanek, C.; Le Floc'h, E.; Morrison, J.; Pérez-González, P.; Rieke, G.; Rieke, M.; Rujopakarn, W.; Stern, D.; Weiner, B.; Zehavi, I.

    2010-01-01

    We study the nature and clustering of infrared (IR) galaxies at z 1.5-3 in a 9 deg2 region from the Spitzer Deep, Wide-Field Survey (SDWFS) and the MIPS AGN and Galaxy Evolution Survey (MAGES). Using a method developed by Huang et al. (2009), we identify stellar-dominated IR-luminous galaxies at 1.5 < z < 3 by selecting objects with IRAC colors 0.05 < ([3.6] - [4.5])AB < 0.4 and -0.7 < ([3.6] - [8.0])AB < 0.5 and S(24 micron) > 0.3 mJy. We compute the angular correlation function of this sample over scales of 0.001 - 1 deg. Assuming an empirical redshift distribution, we derive spatial correlation scale lengths, r_0 = 8.6 (-0.8, +0.8) h-1 Mpc for S(24) > 0.3 mJy and 8.2 (-1.2, +1.2) h-1 Mpc for S(24) > 0.5 mJy, with a possible scale length increase at higher 24 micron flux densities, S(24) > 0.6 mJy. We compare our sample to IR-luminous, dust-obscured galaxies (DOGs) at this redshift selected on the basis of their high R - [24] colors. While the DOG sample includes objects with S(24) > 1 mJy, our IR-luminous, stellar-dominated sample contains few bright objects, and is approximately limited to S(24) < 0.6 mJy; high 24-micron emission at z 2 requires a substantial amount of dust heated by AGN. At 0.3 mJy < S(24) < 0.6 mJy, the clustering strength of these two samples are nearly indistinguishable, and they are consistent with the clustering of other massive galaxies at these redshifts. Therefore, we conclude that these objects occupy dark-matter haloes of similar mass, and that these massive galaxies experience IR-active stages as a result both of star-formation and AGN activity with some duty cycle. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  7. ALMA Investigation of Vibrationally Excited HCN/HCO+/HNC Emission Lines in the AGN-Hosting Ultraluminous Infrared Galaxy IRAS 20551-4250

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551-4250 at HCN/HCO+/HNC J = 3-2 lines at both vibrational ground (v = 0) and vibrationally excited (v 2 = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v 2 = 1f J = 4-3 emission line. In our ALMA Cycle 2 data, the HCN/HCO+/HNC J = 3-2 emission lines at v = 0 are clearly detected. The HCN and HNC v 2 = 1f J = 3-2 emission lines are also detected, but the HCO+ v 2 = 1f J = 3-2 emission line is not. Given the high energy level of v 2 = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5-35 μm spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO+ and HNC. The flux ratio and excitation temperature between v 2 = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational (J-level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO+ v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO+ flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO+ abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO+.

  8. Local Luminous Infrared Galaxies. II. Active Galactic Nucleus Activity from Spitzer/Infrared Spectrograph Spectra

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Rigopoulou, Dimitra

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 μm) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L IR = 1011-1012 L ⊙). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 μm spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is ~62%. The derived AGN bolometric luminosities are in the range L bol(AGN) = (0.4-50) × 1043 erg s-1. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L bol[AGN]/L IR <= 0.05. Only ~= 8% of local LIRGs have a significant AGN bolometric contribution L bol[AGN]/L IR > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L IR = 1012-1013 L ⊙), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%^{+8%}_{-3%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of ΩAGN IR = 3 × 105 L ⊙ Mpc-3 in LIRGs. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  9. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  10. Exploring the overabundance of ultraluminous X-ray sources in metal- and dust-poor local Lyman break analogs

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann E.; Zezas, Andreas; Yukita, Mihoko; Ptak, Andrew

    2016-01-01

    We have studied high mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z > 2) Lyman break galaxies, and within the larger sample of Lyman break analogs (LBAs) are sufficiently nearby (< 87 Mpc) to be spatially-resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12+log[O/H]=8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this talk, I present our in-depth study of the only two LBAs that have spatially-resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (LX>1039 erg s-1 ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on 8 detected ULXs. Comparing with the star-forming galaxy X-ray luminosity function (XLF), Haro 11 and VV 114 host ~4 times more LX>1040 erg s-1 sources than expected given their SFRs. We simulate the effects of source blending from crowded lower luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. Based on this analysis, we find that these LBAs have a shallower bright end slope than the standard XLF.

  11. The evolution of and starburst-agn connection in luminous and ultraluminous infrared galaxies and their link to globular cluster formation

    NASA Astrophysics Data System (ADS)

    Fiorenza, Stephanie Lynn

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011 < LIR < 1012 L[special character omitted]) and ultraluminous infrared galaxies (ULIRGs; 1012 < LIR < 1013 L[special character omitted]), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, I first spectroscopically examine U/LIRGs (1011 < LIR < 1013 L[special character omitted]) within the IRAS 2 Jansky Redshift Survey with 0.05 < z < 0.16. Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hdelta)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive evolutionary paths on the BPT diagram involving [N II]/Halpha that are based on how these properties vary between two U/LIRGs positioned at the end-points. The paths involve U/LIRGs that decrease in SFR and increase in AGN activity. Paths with U/LIRGs that evolve into high luminosity AGN likely do so due to recent, strong starbursts. Second, to study how the properties of the IR power sources in U/LIRGs vary, I use a combination of photometric data points that I carefully measure (using photometry from SDSS, 2MASS, WISE, and Spitzer) and that I retrieve from catalogues (IRAS, AKARI, and ISO) to perform UV to FIR SED-fitting with CIGALE (Code Investigating GALaxy Emission) for 34 U/LIRGs from the IRAS 2 Jy Redshift Survey with 0.01 < z < 0.16. I find evidence that the nuclear starburst forms first in U/LIRGs, and also find that U/LIRGs with relatively similar SFRs show

  12. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (THE SUPERANTENNAE): X-Ray Emission From the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.

  13. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  14. MID-INFRARED DETERMINATION OF TOTAL INFRARED LUMINOSITY AND STAR FORMATION RATES OF LOCAL AND HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Rujopakarn, W.; Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P.; Rex, M.; Walth, G. L.; Kartaltepe, J. S.

    2013-04-10

    We demonstrate estimating the total infrared luminosity, L(TIR), and star formation rates (SFRs) of star-forming galaxies at redshift 0 < z < 2.8 from single-band 24 {mu}m observations, using local spectral energy distribution (SED) templates without introducing additional free parameters. Our method is based on characterizing the SEDs of galaxies as a function of their L(TIR) surface density, which is motivated by the indications that the majority of IR luminous star-forming galaxies at 1 < z < 3 have extended star-forming regions, in contrast to the strongly nuclear concentrated, merger-induced starbursts in local luminous and ultraluminous IR galaxies. We validate our procedure for estimating L(TIR) by comparing the resulting L(TIR) with those measured from far-IR observations, such as those from Herschel in the Extended Chandra Deep Field South (ECDFS) and Hubble Deep Field North (HDFN), as well as L(TIR) measured from stacked far-IR observations at redshift 0 < z < 2.8. Active galactic nuclei were excluded using X-ray and 3.6-8.0 {mu}m observations, which are generally available in deep cosmological survey fields. The Gaussian fits to the distribution of the discrepancies between the L(TIR) measurements from single-band 24 {mu}m and Herschel observations in the ECDFS and HDFN samples have {sigma} < 0.1 dex, with {approx}10% of objects disagreeing by more than 0.2 dex. Since the 24 {mu}m estimates are based on SEDs for extended galaxies, this agreement suggests that {approx}90% of IR galaxies at high z are indeed much more physically extended than local counterparts of similar L(TIR), consistent with recent independent studies of the fractions of galaxies forming stars in the main-sequence and starburst modes, respectively. Because we have not introduced empirical corrections to enhance these estimates, in principle, our method should be applicable to lower luminosity galaxies. This will enable use of the 21 {mu}m band of the Mid-Infrared Instrument on board

  15. The ultraluminous state

    NASA Astrophysics Data System (ADS)

    Gladstone, Jeanette C.; Roberts, Timothy P.; Done, Chris

    2009-08-01

    We revisit the question of the nature of ultraluminous X-ray sources (ULXs) through a detailed investigation of their spectral shape, using the highest quality X-ray data available in the XMM-Newton public archives (>~10000 counts in their EPIC spectrum). We confirm that simple spectral models commonly used for the analysis and interpretation of ULXs (power-law continuum and multicolour disc blackbody models) are inadequate in the face of such high-quality data. Instead we find two near ubiquitous features in the spectrum: a soft excess and a rollover in the spectrum at energies above 3 keV. We investigate a range of more physical models to describe these data. Slim discs which include radiation trapping (approximated by a p-free disc model) do not adequately fit the data, and several objects give unphysically high disc temperatures (kTin > 3keV). Instead, disc plus Comptonized corona models fit the data well, but the derived corona is cool and optically thick (τ ~ 5-30). This is unlike the τ ~ 1 coronae seen in Galactic binaries, ruling out models where ULXs are powered by sub-Eddington accretion on to an intermediate-mass black hole despite many objects having apparently cool disc temperatures. We argue that these observed disc temperatures are not a good indicator of the black hole mass as the powerful, optically thick corona drains energy from the inner disc and obscures it. We estimate the intrinsic (corona-less) disc temperature, and demonstrate that in most cases it lies in the regime of stellar mass black holes. These objects have spectra which range from those similar to the highest mass accretion rate states in Galactic binaries (a single peak at 2-3 keV) to those which clearly have two peaks, one at energies below 1 keV (from the outer, un-Comptonized disc) and one above 3 keV (from the Comptonized, inner disc). However, a few ULXs have a significantly cooler corrected disc temperature; we suggest that these are the most extreme stellar mass black hole

  16. A comparison of the morphological properties between local and z ∼ 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ∼8% from local to z ≲ 1, and it is consistent with the reduction between local and redshifted data sets (6{sub −6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ∼20% lower compared to published results, and the reduction due to redshifting is 15{sub −8}{sup +10}%. Consequently, the differences of merger fractions between local and z ≲ 1 (U)LIRGs is only ∼17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ∼ 1. At z > 1, the morphology types of ∼30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  17. Ultraluminous galaxies: monsters or babies? Proceedings. Workshop, Schloss Ringberg (Germany), 20 - 26 Sep 1998.

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Tacconi, L. J.

    The following topics were dealt with: ultraluminous infrared galaxies, surveys, galaxy formation, Stratospheric Observatory for Infrared Astronomy, (SOFIA), X-ray observations, optical spectroscopy, IR spectroscopy, photometry, interacting galaxies, radio observations, starbursts, AGN, morphological classification, ULIRGs, theoretical aspects, and the link to high redshift.

  18. The Ultraluminous GRB 110918A

    NASA Astrophysics Data System (ADS)

    Frederiks, D. D.; Hurley, K.; Svinkin, D. S.; Pal'shin, V. D.; Mangano, V.; Oates, S.; Aptekar, R. L.; Golenetskii, S. V.; Mazets, E. P.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Kokomov, A. A.; Cline, T. L.; Burrows, D. N.; Krimm, H. A.; Pagani, C.; Sbarufatti, B.; Siegel, M. H.; Mitrofanov, I. G.; Golovin, D.; Litvak, M. L.; Sanin, A. B.; Boynton, W.; Fellows, C.; Harshman, K.; Enos, H.; Starr, R.; von Kienlin, A.; Rau, A.; Zhang, X.; Goldstein, J.

    2013-12-01

    GRB 110918A is the brightest long gamma-ray burst (GRB) detected by Konus-WIND during its almost 19 yr of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final Interplanetary Network localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderate peak energy of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z = 0.984, a huge isotropic-equivalent energy release E iso = (2.1 ± 0.1) × 1054 erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity L iso = (4.7 ± 0.2) × 1054 erg s-1. A tail of the soft γ-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. The Swift/X-Ray Telescope and the Swift/Ultraviolet Optical Telescope observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and interstellar-medium-like circumburst environment implied. We conclude that, among the multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.°7-3.°4 results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z ~ 7.5 for Konus-WIND and z ~ 12 for the Swift/Burst Alert Telescope, which stresses the importance of GRBs as probes of the early Universe.

  19. The ultraluminous GRB 110918A

    SciTech Connect

    Frederiks, D. D.; Svinkin, D. S.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Mazets, E. P.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Kokomov, A. A.; Hurley, K.; Mangano, V.; Burrows, D. N.; Sbarufatti, B.; Siegel, M. H.; Oates, S.; Cline, T. L.; Krimm, H. A.; Pagani, C.; Mitrofanov, I. G. [Space Research Institute, Profsoyuznaya 84 and others

    2013-12-20

    GRB 110918A is the brightest long gamma-ray burst (GRB) detected by Konus-WIND during its almost 19 yr of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final Interplanetary Network localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderate peak energy of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z = 0.984, a huge isotropic-equivalent energy release E {sub iso} = (2.1 ± 0.1) × 10{sup 54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity L {sub iso} = (4.7 ± 0.2) × 10{sup 54} erg s{sup –1}. A tail of the soft γ-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. The Swift/X-Ray Telescope and the Swift/Ultraviolet Optical Telescope observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and interstellar-medium-like circumburst environment implied. We conclude that, among the multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.°7-3.°4 results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z ∼ 7.5 for Konus-WIND and z ∼ 12 for the Swift/Burst Alert Telescope, which stresses the importance of GRBs as probes of the early

  20. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    SciTech Connect

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-09-20

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Halpha, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Halpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 {mu}m polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  1. Ultraluminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Gladstone, Jeanette

    2012-07-01

    The first black hole was observed almost 50 years ago, ˜ 1 year after Sco X-1 (although its nature was not confirmed for ˜ 11 years). Observations of black holes have been ongoing since then, falling in to two distinct categories; stellar-mass (sMBHs; 3 - 80 M_{⊙}) and super-massive black holes (10^6 - 10^9 M_⊙). The missing link between these two types, intermediate mass black holes, has been the target of many searches due to their cosmological implications. Ultraluminous X-ray sources (ULXs) have been proposed to harbor such objects, but recent observational evidence has strongly suggested that the majority contain sMBHs. However, a handful of the brightest ULXs are so luminous that they defy this explanation. Here we will discuss the nature of both standard ULXs and this new bright subgroup of this population.

  2. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    SciTech Connect

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi; Ita, Yoshifusa; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Nakashima, Asami; and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  3. Infrared target recognition based on improved joint local ternary pattern

    NASA Astrophysics Data System (ADS)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  4. Strong coupling between mid-infrared localized plasmons and phonons.

    PubMed

    Wan, Weiwei; Yang, Xiaodong; Gao, Jie

    2016-05-30

    We numerically and experimentally demonstrate strong coupling between the mid-infrared localized surface plasmon resonances supported by plasmonic metamaterials and the phonon vibrational resonances of polymethyl methacrylate (PMMA) molecules. The plasmonic resonances are tuned across the phonon resonance of PMMA molecules at 52 THz to observe the strong coupling, which manifests itself as an anti-crossing feature with two newly formed plasmon-phonon modes. It is also shown that the forbidden energy gap due to mode splitting is proportional to the overlapped optical power between the plasmonic resonance mode and the PMMA molecules, providing an effective approach for manipulating the coupling strength of light-matter interaction. PMID:27410151

  5. Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Downes, D.; Solomon, P. M.

    1998-11-01

    New CO interferometer data show that the molecular gas in infrared ultraluminous galaxies is in rotating nuclear disks or rings. The CO maps yield disk radii, kinematic major axes, rotation speeds, enclosed dynamical masses, and gas masses. The CO brightness temperatures, the double-peaked CO line profiles, the limits on thermal continuum flux from dust, and the constraint that the gas mass must be less than the dynamical mass all indicate that the CO lines are subthermally excited and moderately opaque (τ = 4 to 10). We fit kinematic models in which most of the CO flux comes from a moderate-density warm intercloud medium, rather than from self-gravitating clouds. Typical ring radii are 300 to 800 pc. We derive gas masses not from a standard CO-to-mass ratio, but from a model of radiative transfer through subthermally excited CO in the molecular disks. This model yields gas masses of ~5 × 109 M⊙, ~5 times lower than the standard method, and a ratio Mgas/L'CO~0.8 M⊙ (K km s-1 pc2)-1. In the nuclear disks, we derive a ratio of gas to dynamical mass of Mgas/Mdyn ~ 1/6, and a maximum ratio of gas to total mass surface density, μ/μtot, of 1/3. For the galaxies VII Zw 31, Arp 193, and IRAS 10565+2448, the CO position-velocity diagrams provide good evidence for rotating molecular rings with a central gap. In addition to the rotating central rings or disks, a new class of star formation region is identified, which we call an extreme starburst. These have a characteristic sizes of only 100 pc, with about 109 M⊙ of gas and an IR luminosity of ~3 × 1011 L⊙ from recently formed OB stars. Four extreme starbursts are identified in the 3 closest galaxies in the sample, including Arp 220, Arp 193, and Mrk 273. These are the most prodigious star formation events in the local universe, each representing about 1000 times as many OB stars as 30 Doradus. In Mrk 231, the CO (2-1) velocity diagram along the line of nodes shows a 1.2" diameter inner disk and a 3" diameter

  6. Localized photothermal infrared spectroscopy using a proximal probe

    NASA Astrophysics Data System (ADS)

    Bozec, L.; Hammiche, A.; Pollock, H. M.; Conroy, M.; Chalmers, J. M.; Everall, N. J.; Turin, L.

    2001-11-01

    A near-field thermal probe, as used in scanning thermal microscopy, is used to obtain photothermal Fourier transform infrared (FT-IR) spectra of polymers, as a first step toward developing FT-IR microscopy at a spatial resolution better than the diffraction limit. The signal from the probe after amplification provides an interferogram, and the resultant spectra are consistent with those obtained by means of the established technique of attenuated total reflection FT-IR spectroscopy. We have extended this technique to the analysis of "real-world" industrial samples, both solid (a fungicide in a fine powder form) and liquid (a concentrated surfactant solution). The overall shapes of the main peaks or bands reflect the fact that the spectrum is a convolution of different contributions from both optical and thermal properties. To confirm the feasibility of subsurface detection of polymers, we demonstrate the ability of the technique to perform spectroscopic detection of a model polymeric bilayer system, polyisobutylene on top of polystyrene. A quantitative analysis of the variation of peak height with coating thickness allows values of thermal diffusion length to be derived. This investigation provides a preliminary result for the understanding of the depth sensitivity of the current setup. Relative intensity distortions are seen, and are attributed to photothermal saturation. A complementary technique has been developed that uses tunable monochromatic radiation, using an optical parametric generator as the infrared source. Spectra have successfully been obtained using the same localized photothermal detection principle.

  7. Infrared face recognition based on intensity of local micropattern-weighted local binary pattern

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Liu, Guodong

    2011-07-01

    The traditional local binary pattern (LBP) histogram representation extracts the local micropatterns and assigns the same weight to all local micropatterns. To combine the different contributions of local micropatterns to face recognition, this paper proposes a weighted LBP histogram based on Weber's law. First, inspired by psychological Weber's law, intensity of local micropattern is defined by the ratio between two terms: one is relative intensity differences of a central pixel against its neighbors and the other is intensity of local central pixel. Second, regarding the intensity of local micropattern as its weight, the weighted LBP histogram is constructed with the defined weight. Finally, to make full use of the space location information and lessen the complexity of recognition, the partitioning and locality preserving projection are applied to get final features. The proposed method is tested on our infrared face databases and yields the recognition rate of 99.2% for same-session situation and 96.4% for elapsed-time situation compared to the 97.6 and 92.1% produced by the method based on traditional LBP.

  8. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K local starbursts, and Seyfert galaxies. Finally we find that the [Ne II]12.81 μm velocity fields for most of the LIRGs in our sample are compatible with a rotating disk at ~kpc scales, and they are in a good agreement with Hα velocity fields. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  9. Extended [C II] Emission in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Evans, A. S.; Mazzarella, J. M.; Surace, J. A.; van der Werf, P. P.; Xu, C. K.; Lu, N.; Meijerink, R.; Howell, J. H.; Petric, A. O.; Veilleux, S.; Sanders, D. B.

    2014-06-01

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ~1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios >=4 × 10-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] "deficits" found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, ΣIR, for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and ΣIR with measurements of high-redshift starbursting IR-luminous galaxies.

  10. Interactive intraoperative localization using an infrared-based system.

    PubMed

    Zamorano, L J; Nolte, L; Kadi, A M; Jiang, Z

    1993-10-01

    We discuss new methods of localizing and treating brain lesions for both the conventional method of a base-ring fixed to the patient's skull (referred to as frame-based procedures) and the new method of frameless procedures (no base ring). Frame-based procedures are used for finding a precise instrument position during neurosurgical procedures, such as stereotactic biopsy of deep-seated lesions, placing electrodes for functional stereotaxis or catheters with radioactive seeds for brachytherapy, or even the placement of a stereotactic retractor or endoscope for removal or internal decompression of lesions. In such procedures, the intraoperative image localization of instruments becomes useful as it tracks instruments as they travel through the preplanned trajectory. Additional intraoperative digitization of surgical instruments, e.g., bipolar suction, biopsy forceps, microscope, ultrasound probe, etc, can be achieved during the stereotactic resection of eloquent areas or deep intracranial lesions by adding an infrared-based system. Frameless procedures broaden the range of surgical approaches, image guidance planning, and operative procedures, since no ring is attached to the patient's head which might interfere with the surgical approach, and offers logistic advantages in scheduling diagnostic studies. Frameless diagnostic studies employ anatomical markers and/or surface matching techniques for data registration in the computer software surgical preplanning program. This simplifies scheduling of the procedures since the image study does not need to be acquired the same day as surgery. Frameless diagnostic studies allow for the use of more than one type of imaging data for planning and optimization of surgical procedures, and greatly improve patient tolerance and comfort during these procedures and during surgery, as compared with frame-based procedures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7905601

  11. Infrared moving point target detection based on spatial-temporal local contrast filter

    NASA Astrophysics Data System (ADS)

    Deng, Lizhen; Zhu, Hu; Tao, Chao; Wei, Yantao

    2016-05-01

    Infrared moving point target detection is a challenging task. In this paper, we define a novel spatial local contrast (SLC) and a novel temporal local contrast (TLC) to enhance the target's contrast. Based on the defined spatial local contrast and temporal local contrast, we propose a simple but powerful spatial-temporal local contrast filter (STLCF) to detect moving point target from infrared image sequences. In order to verify the performance of spatial-temporal local contrast filter on detecting moving point target, different detection methods are used to detect the target from several infrared image sequences for comparison. The experimental results show that the proposed spatial-temporal local contrast filter has great superiority in moving point target detection.

  12. Optically thick outflows in ultraluminous supersoft sources

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-02-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ˜0.1 keV, bolometric luminosities ˜ a few 1039 erg s-1, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disc outflow becomes effectively optically thick and forms a large photosphere, shrouding the inner regions from our view. Our model predicts that when the photosphere expands to ≳ 105 km and the temperature decreases below ≈50 eV, ULSs become brighter in the far-UV but undetectable in X-rays. Conversely, we find that harder emission components begin to appear in ULSs when the fitted size of the thermal emitter is smallest (interpreted as a shrinking of the photosphere). The observed short-term variability and absorption edges are also consistent with clumpy outflows. We suggest that the transition between ULXs (with a harder tail) and ULSs (with only a soft thermal component) occurs at blackbody temperatures of ≈150 eV.

  13. Real-time automatic small infrared target detection using local spectral filtering in the frequency

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Hong; Li, Jiafeng; Yuan, Ding; Sun, Mingui

    2014-11-01

    Accurate and fast detection of small infrared target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanism, an automatic detection algorithm for small infrared target is presented. In this paper, instead of searching for infrared targets, we model regular patches that do not attract much attention by our visual system. This is inspired by the property that the regular patches in spatial domain turn out to correspond to the spikes in the amplitude spectrum. Unlike recent approaches using global spectral filtering, we define the concept of local maxima suppression using local spectral filtering to smooth the spikes in the amplitude spectrum, thereby producing the pop-out of the infrared targets. In the proposed method, we firstly compute the amplitude spectrum of an input infrared image. Second, we find the local maxima of the amplitude spectrum using cubic facet model. Third, we suppress the local maxima using the convolution of the local spectrum with a low-pass Gaussian kernel of an appropriate scale. At last, the detection result in spatial domain is obtained by reconstructing the 2D signal using the original phase and the log amplitude spectrum by suppressing local maxima. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be further used for real-time detection and tracking.

  14. A Complete Sample of Ultraluminous X-ray Source Host Galaxies

    NASA Astrophysics Data System (ADS)

    Swartz, Douglas A.; Soria, Roberto; Tennant, Allyn F.; Yukita, Mihoko

    2011-11-01

    One hundred seven ultraluminous X-ray sources (ULXs) with 0.3-10.0 keV luminosities in excess of 1039 erg s-1 are identified in a complete sample of 127 nearby galaxies. The sample includes all galaxies within 14.5 Mpc above the completeness limits of both the Uppsala Galaxy Catalogue and the Infrared Astronomical Satellite survey. The galaxy sample spans all Hubble types, a four-decade range in mass, 7.5 < log (M/M sun) < 11.4, and in star formation rate, 0.0002 < SFR(M sun yr-1) <= 3.6. ULXs are detected in this sample at rates of one per 3.2 × 1010 M sun, one per ~0.5 M sun yr-1 star formation rate, and one per 57 Mpc3 corresponding to a luminosity density of ~2 × 1037 erg s-1 Mpc-3. At these rates we estimate as many as 19 additional ULXs remain undetected in fainter dwarf galaxies within the survey volume. An estimated 14 objects, or 13%, of the 107 ULX candidates are expected to be background sources. The differential ULX luminosity function shows a power-law slope α ~ -0.8 to -2.0 with an exponential cutoff at ~20 × 1039 erg s-1 with precise values depending on the model and on whether the ULX luminosities are estimated from their observed numbers of counts or, for a subset of candidates, from their spectral shapes. Extrapolating the observed luminosity function predicts at most one very luminous ULX, L X ~ 1041 erg s-1, within a distance as small as 100 Mpc. The luminosity distribution of ULXs within the local universe cannot account for the recent claims of luminosities in excess of 2 × 1041 erg s-1, requiring a new population class to explain these extreme objects.

  15. Localization of wood floor structure by infrared thermography

    NASA Astrophysics Data System (ADS)

    Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.

    2008-03-01

    One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.

  16. The universe at infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.

    1988-01-01

    This article discusses the status of infrared astronomy after the mission of the Infrared Astronomical Satellite (IRAS). Important scientific results from IRAS include: the origin of the interplanetary dust cloud, the formation of solar type stars, the energetics of the interstellar medium, the discovery of ultra-luminous infrared galaxies and their possible relation to the origin of quasars, and the large scale structure of the universe.

  17. Locally adaptive regression filter-based infrared focal plane array non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Li, Jia; Qin, Hanlin; Yan, Xiang; Huang, He; Zhao, Yingjuan; Zhou, Huixin

    2015-10-01

    Due to the limitations of the manufacturing technology, the response rates to the same infrared radiation intensity in each infrared detector unit are not identical. As a result, the non-uniformity of infrared focal plane array, also known as fixed pattern noise (FPN), is generated. To solve this problem, correcting the non-uniformity in infrared image is a promising approach, and many non-uniformity correction (NUC) methods have been proposed. However, they have some defects such as slow convergence, ghosting and scene degradation. To overcome these defects, a novel non-uniformity correction method based on locally adaptive regression filter is proposed. First, locally adaptive regression method is used to separate the infrared image into base layer containing main scene information and the detail layer containing detailed scene with FPN. Then, the detail layer sequence is filtered by non-linear temporal filter to obtain the non-uniformity. Finally, the high quality infrared image is obtained by subtracting non-uniformity component from original image. The experimental results show that the proposed method can significantly eliminate the ghosting and the scene degradation. The results of correction are superior to the THPF-NUC and NN-NUC in the aspects of subjective visual and objective evaluation index.

  18. Initial states and infrared physics in locally de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Larjo, Klaus; Lowe, David A.

    2012-02-01

    The long wavelength physics in a de Sitter region depends on the initial quantum state. While such long wavelength physics is under control for massive fields near the Hartle-Hawking vacuum state, such initial states make unnatural assumptions about initial data outside the region of causal contact of a local observer. We argue that a reasonable approximation to a maximum entropy state, one that makes minimal assumptions outside an observer’s horizon volume, is one where a cutoff is placed on a surface bounded by timelike geodesics, just outside the horizon. For sufficiently early times, such a cutoff induces secular logarithmic divergences with the expansion of the region. For massive fields, these effects sum to finite corrections at sufficiently late times. The difference between the cutoff correlators and Hartle-Hawking correlators provides a measure of the theoretical uncertainty due to lack of knowledge of the initial state in causally disconnected regions. These differences are negligible for primordial inflation, but can become significant during epochs with very long-lived de Sitter regions, such as we may be entering now.

  19. Regression models based on new local strategies for near infrared spectroscopic data.

    PubMed

    Allegrini, F; Fernández Pierna, J A; Fragoso, W D; Olivieri, A C; Baeten, V; Dardenne, P

    2016-08-24

    In this work, a comparative study of two novel algorithms to perform sample selection in local regression based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared and contrasted with global PLS calibrations. Validation results show a significant improvement in the prediction quality when local models implemented by the proposed algorithms are applied to large data bases. PMID:27496996

  20. A New Local Modelling Approach Based on Predicted Errors for Near-Infrared Spectral Analysis.

    PubMed

    Chang, Haitao; Zhu, Lianqing; Lou, Xiaoping; Meng, Xiaochen; Guo, Yangkuan; Wang, Zhongyu

    2016-01-01

    Over the last decade, near-infrared spectroscopy, together with the use of chemometrics models, has been widely employed as an analytical tool in several industries. However, most chemical processes or analytes are multivariate and nonlinear in nature. To solve this problem, local errors regression method is presented in order to build an accurate calibration model in this paper, where a calibration subset is selected by a new similarity criterion which takes the full information of spectra, chemical property, and predicted errors. After the selection of calibration subset, the partial least squares regression is applied to build calibration model. The performance of the proposed method is demonstrated through a near-infrared spectroscopy dataset of pharmaceutical tablets. Compared with other local strategies with different similarity criterions, it has been shown that the proposed local errors regression can result in a significant improvement in terms of both prediction ability and calculation speed. PMID:27446631

  1. A New Local Modelling Approach Based on Predicted Errors for Near-Infrared Spectral Analysis

    PubMed Central

    Chang, Haitao; Lou, Xiaoping; Meng, Xiaochen; Guo, Yangkuan; Wang, Zhongyu

    2016-01-01

    Over the last decade, near-infrared spectroscopy, together with the use of chemometrics models, has been widely employed as an analytical tool in several industries. However, most chemical processes or analytes are multivariate and nonlinear in nature. To solve this problem, local errors regression method is presented in order to build an accurate calibration model in this paper, where a calibration subset is selected by a new similarity criterion which takes the full information of spectra, chemical property, and predicted errors. After the selection of calibration subset, the partial least squares regression is applied to build calibration model. The performance of the proposed method is demonstrated through a near-infrared spectroscopy dataset of pharmaceutical tablets. Compared with other local strategies with different similarity criterions, it has been shown that the proposed local errors regression can result in a significant improvement in terms of both prediction ability and calculation speed. PMID:27446631

  2. Single infrared image super-resolution combining non-local means with kernel regression

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chen, Fu-sheng; Zhang, Zhi-jie; Wang, Chen-sheng

    2013-11-01

    In many infrared imaging systems, the focal plane array is not sufficient dense to adequately sample the scene with the desired field of view. Therefore, there are not enough high frequency details in the infrared image generally. Super-resolution (SR) technology can be used to increase the resolution of low-resolution (LR) infrared image. In this paper, a novel super-resolution algorithm is proposed based on non-local means (NLM) and steering kernel regression (SKR). Based on that there are a large number of similar patches within an infrared image, NLM method can abstract the non-local similarity information and then the value of high-resolution (HR) pixel can be estimated. SKR method is derived based on the local smoothness of the natural images. In this paper the SKR is used to give the regularization term which can restrict the image noise and protect image edges. The estimated SR image is obtained by minimizing a cost function. In the experiments the proposed algorithm is compared with state-of-the-art algorithms. The comparison results show that the proposed method is robust to the noise and it can restore higher quality image both in quantitative term and visual effect.

  3. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; U, V.; Mazzarella, J. M.; Kim, D.-C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.

    2016-07-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with {L}{IR}\\gt {10}11.5{L}ȯ ; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach {L}{IR}\\gt {10}12.0{L}ȯ until late in the merger process when both disks are near final coalescence. The mean MGF ({MGF} = {M}{{{H}}2}/({M}* +{M}{{{H}}2})) for non-interacting and early-stage major merger LIRGs is 18 ± 2%, which increases to 33 ± 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H2).

  4. [Local Regression Algorithm Based on Net Analyte Signal and Its Application in Near Infrared Spectral Analysis].

    PubMed

    Zhang, Hong-guang; Lu, Jian-gang

    2016-02-01

    Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.

  5. Analysis of local warm forming of high strength steel using near infrared ray energy

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Lee, K.; Lee, E. H.; Yang, D. Y.

    2013-12-01

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment.

  6. Analysis of local warm forming of high strength steel using near infrared ray energy

    SciTech Connect

    Yang, W. H.; Lee, K.; Lee, E. H. E-mail: dyyang@kaist.ac.kr; Yang, D. Y. E-mail: dyyang@kaist.ac.kr

    2013-12-16

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment.

  7. A mid-infrared look at the dusty nuclear environments of local active galaxies

    NASA Astrophysics Data System (ADS)

    Alonso Herrero, Almudena

    2016-08-01

    Active galactic nuclei are largely explained in the context of a unified theory, by which a geometrically and optically thick torus of gas and dust obscures the AGN central engine. The torus intercepts a substantial amount of flux from the central engine and and reradiates it in the infrared. There are still many open questions about the nature of the torus material and the role of nuclear (< 100 pc) starbursts in feeding and/or obscuring AGNs. Ground-based mid-infrared imaging and spectroscopy on 8-10m class telescopes allow us to study the dusty environments of nearby active galactic nuclei on physical scales of less than 100pc. In this talk I will present results from a mid-infrared sub-arcsecond resolution imaging and spectroscopy survey of a sample of local AGN. The observations were mostly taken with CanariCam on the 10.4m Gran Telescopio Canarias (GTC) through an ESO/GTC large programme and the CanariCam AGN guaranteed time program. I will discuss results on the torus properties of different types of AGN from the modelling of the unresolved infrared emission with the CLUMPY torus models. I will also show that the molecules responsible for the 11.3micron PAH feature survive in the vicinity of the active nucleus and thus this PAH feature can be used to study the nuclear star formation activity in AGN.

  8. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana.

    PubMed

    Deguchi, Tomonori; Itoh, Mariko; Urawa, Hiroko; Matsumoto, Tomohiro; Nakayama, Sohei; Kawasaki, Takashi; Kitano, Takeshi; Oda, Shoji; Mitani, Hiroshi; Takahashi, Taku; Todo, Takeshi; Sato, Junichi; Okada, Kiyotaka; Hatta, Kohei; Yuba, Shunsuke; Kamei, Yasuhiro

    2009-12-01

    Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR-LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR-LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.

  9. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Isić, Goran; Gajić, Radoš

    2013-01-01

    High confinement of surface plasmon polaritons in graphene at infrared frequencies enhances the light-matter interaction and can be used for the sensing of the environment. The considered sensing platform consists of parallel graphene ribbons which enables efficient coupling of an electromagnetic field into localized surface plasmons. Changes in the environment are then detected by measuring the resulting frequency shifts of the plasmonic resonances. It is shown that the graphene ribbons have the sensitivity comparable to the sensitivity of noble metal nanoparticles at visible frequencies, which enable sensing of only several nanometers thick films at wavelengths around ten microns. At the same time, the tunability of graphene plasmons enables a design of broadband substrates for surface enhanced infrared absorption of thin films. By changing the Fermi level in graphene, the plasmonic resonance of graphene ribbons can be adjusted to desired vibrational mode which facilitates detection of multiple absorption bands.

  10. Spectral response of localized surface plasmon in resonance with mid-infrared light

    SciTech Connect

    Kusa, Fumiya; Ashihara, Satoshi

    2014-10-21

    We study spectral responses of localized surface plasmons (LSPs) in gold nanorods, which resonate at mid-infrared frequencies, by transmission spectroscopy and electromagnetic field analyses. The resonance linewidth is found to be linearly proportional to the resonance frequency, indicating that the dephasing due to Drude relaxation is suppressed and that the overall dephasing is dominated by radiative damping. Owing to the reduced radiative/non-radiative damping and large geometrical length of the nanorod, near-field intensity enhancement exceeds several hundred times. Nonetheless the resonance linewidth is comparable with or larger than the bandwidth of a 100-fs pulse, and therefore the enhanced near-field as short as 100-fs can be created upon pulsed excitation. The large enhancements with appropriate bandwidths make LSPs promising for enhanced nonlinear spectroscopies, coherent controls, and strong-field light-matter interactions in the mid-infrared range.

  11. Local measurement of venous saturation in tissue with noninvasive near-infrared respiratory oximetry

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria-Angela; Zourabian, Anna; Moore, John B.; Arora, Aradhana; Fantini, Sergio; Boas, David A.

    2001-06-01

    We present preliminary results of non-invasive, near-infrared measurements of venous saturation (SvO2) on the leg muscle of three anesthetized piglets. We have quantified the local SvO2 by analyzing the optical spectrum of the amplitude of the absorption oscillations synchronous with breathing. To induce a variation in the muscle SvO2, we performed measurements during a protocol involving a cyclic change in the fraction of oxygen inspired by the piglet over the range 10-100% (by volume). In all three piglets, we have found a good agreement between the SvO2 values measured non-invasively with near-infrared spectroscopy (NIRS) and those measured invasively by the analysis of venous blood samples.

  12. An infrared small target detection algorithm based on high-speed local contrast method

    NASA Astrophysics Data System (ADS)

    Cui, Zheng; Yang, Jingli; Jiang, Shouda; Li, Junbao

    2016-05-01

    Small-target detection in infrared imagery with a complex background is always an important task in remote sensing fields. It is important to improve the detection capabilities such as detection rate, false alarm rate, and speed. However, current algorithms usually improve one or two of the detection capabilities while sacrificing the other. In this letter, an Infrared (IR) small target detection algorithm with two layers inspired by Human Visual System (HVS) is proposed to balance those detection capabilities. The first layer uses high speed simplified local contrast method to select significant information. And the second layer uses machine learning classifier to separate targets from background clutters. Experimental results show the proposed algorithm pursue good performance in detection rate, false alarm rate and speed simultaneously.

  13. A functional near-infrared spectroscopy study of sustained attention to local and global target features.

    PubMed

    De Joux, Neil; Russell, Paul N; Helton, William S

    2013-04-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a quadratic trend over time-on-task with performance levels returning to initial levels late in the task. This trend did not occur in the global shape discrimination task. Functional near-infrared spectroscopy (fNIRS) was utilized in this study as an index of cerebral activation. In both tasks there was increased right hemisphere relative to left hemisphere oxygenation and right hemisphere oxygenation increased with time-on-task. Left hemisphere oxygenation, however, decreased slightly in the global task, but increased significantly in the local task as task duration increased. Indeed, total oxygenation, averaging both right and left, increased more with time-on-task in the local discrimination task. Both the performance and physiological results of this study indicate increased utilization of bilateral cerebral resources with time-on-task in the local, but not the global discrimination vigil.

  14. Investigation of factors affecting backside hotspot localization in infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Koh, Nicholas Chiu Yen; Sim, Kok Swee; Hoe, Tiong Min

    2015-07-01

    Infrared lock-in thermography (IR-LIT) is a fault localization technique that serves the purpose of detecting a local heat source or hotspot emitted by the faulty area. Performing backside hotspot localization overcomes the limitation during frontside hotspot localization, especially for shorted areas that emit a low heat source. In order to produce better hotspot localization from the package backside, it is important to study more of the factors affecting backside hotspot localization, including the power settings of the device, the lock-in frequency, and the die thickness of the packages. Power packages are inspected using a tool with varying power and frequency settings. The results are collected by observing the size of the hotspot and by recording the time taken for the hotspot to appear. To investigate the die thickness, the die surface is grinded from the backside of the die and the thickness of the die was measured using x-rays. The relationship between the power settings, the frequency settings, and the die thickness does show significant changes to the hotspot size and the time taken to generate a hotspot.

  15. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Koc,H.; Wetzel, D.

    2008-01-01

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

  16. Deep near-infrared surface photometry and properties of Local Volume dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Young, T.; Jerjen, H.; López-Sánchez, Á. R.; Koribalski, B. S.

    2014-11-01

    We present deep H-band surface photometry and analysis of 40 Local Volume galaxies, a sample primarily composed of dwarf irregulars in the Cen A group, obtained using the Infrared Imager and Spectrograph 2 detector at the 3.9-m Anglo-Australian Telescope. We probe to a surface brightness of ˜25 mag arcsec-2, reaching a 40 times lower stellar density than the Two Micron All Sky Survey (2MASS). Employing extremely careful and rigorous cleaning techniques to remove contaminating sources, we perform surface photometry on 33 detected galaxies deriving the observed total magnitude, effective surface brightness and best-fitting Sérsic parameters. We make image quality and surface photometry comparisons to 2MASS and VISTA Hemisphere Survey demonstrating that deep targeted surveys are still the most reliable means of obtaining accurate surface photometry. We investigate the B - H colours with respect to mass for Local Volume galaxies, finding that the colours of dwarf irregulars are significantly varied, eliminating the possibility of using optical-near-infrared colour transformations to facilitate comparison to the more widely available optical data sets. The structure-luminosity relationships are investigated for our `clean' sample of dwarf irregulars. We demonstrate that a significant fraction of the Local Volume dwarf irregular population have underlying structural properties similar to both Local Volume and Virgo cluster dwarf ellipticals. Linear regressions to structure-luminosity relationships for the Local Volume galaxies and Virgo cluster dwarf ellipticals show significant differences in both slope and scatter around the established trend lines, suggesting that environment might regulate the structural scaling relationships of dwarf galaxies in comparison to their more isolated counterparts.

  17. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  18. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  19. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  20. VizieR Online Data Catalog: Subarcsecond mid-infrared atlas of local AGN (Asmus+, 2014)

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hoenig, S. F.; Gandhi, P.; Smette, A.; Duschl, W. J.

    2014-03-01

    The Subarcsecond mid-infrared (MIR) atlas of local active galactic nuclei (AGN) is a collection of all available N- and Q-band images obtained at ground-based 8-meter class telescopes with public archives (Gemini/Michelle, Gemini/T-ReCS, Subaru/COMICS, and VLT/VISIR). It includes in total 895 images, of which 60% are perviously unpublished. These correspond to 253 local AGN with a median redshift of 0.016. The atlas contains the uniformly processed and calibrated images and nuclear photometry obtained through Gauss and PSF fitting for all objects and filters. This also includes measurements of the nuclear extensions. In addition, the classifications of extended emission (if present) and derived nuclear monochromatic 12 and 18 micron continuum fluxes are available. Finally, flux ratios with the circumnuclear MIR emission (measured by Spitzer) and total MIR emission of the galaxy (measured by IRAS) are presented. The observations have been taken in the mid-infrared (N-band, 7-13micron, and Q-band, 17-20micron) between 2003-12-02 and 2011-06-15 and cover the whole sky. The objects have redshifts between -0.0001 and 0.3571. (2 data files).

  1. [Objective assessment of facial paralysis using local binary pattern in infrared thermography].

    PubMed

    Liu, Xulong; Hong, Wenxue; Zhang, Tao; Wu, Zhenying

    2013-02-01

    Facial paralysis is a frequently-occurring disease, which causes the loss of the voluntary muscles on one side of the face due to the damages the facial nerve and results in an inability to close the eye and leads to dropping of the angle of the mouth. There have been few objective methods to quantitatively diagnose it and assess this disease for clinically treating the patients so far. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Facial paralysis usually causes an alteration of the temperature distribution of body with the disease. This paper presents the use of the histogram distance of bilateral local binary pattern (LBP) in the facial infrared thermography to measure the asymmetry degree of facial temperature distribution for objective assessing the severity of facial paralysis. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results showed that the mean sensitivity and specificity of this method are 0.86 and 0.89 respectively. The correlation coefficient between the asymmetry degree of facial temperature distribution and the severity of facial paralysis is an average of 0.657. Therefore, the histogram distance of local binary pattern in the facial infrared thermography is an efficient clinical indicator with respect to the diagnosis and assessment of facial paralysis.

  2. Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.

    2016-07-01

    In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.

  3. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  4. Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes.

    PubMed

    Hanson-Heine, Magnus W D; Husseini, Fouad S; Hirst, Jonathan D; Besley, Nicholas A

    2016-04-12

    Nonlinear two-dimensional infrared spectroscopy (2DIR) is most commonly simulated within the framework of the exciton method. The key parameters for these calculations include the frequency of the oscillators within their molecular environments and coupling constants that describe the strength of coupling between the oscillators. It is shown that these quantities can be obtained directly from harmonic frequency calculations by exploiting a procedure that localizes the normal modes. This approach is demonstrated using the amide I modes of polypeptides. For linear and cyclic diamides and hexapeptide Z-Aib-L-Leu-(Aib)2-Gly-Aib-OtBu, the computed parameters are compared with those from existing schemes, and the resulting 2DIR spectra are consistent with experimental observations. The incorporation of conformational averaging of structures from molecular dynamics simulations is discussed, and a hybrid scheme wherein the Hamiltonian matrix from the quantum chemical local-mode approach is combined with fluctuations from empirical schemes is shown to be consistent with experiment. The work demonstrates that localized vibrational modes can provide a foundation for the calculation of 2DIR spectra that does not rely on extensive parametrization and can be applied to a wide range of systems. For systems that are too large for quantum chemical harmonic frequency calculations, the local-mode approach provides a convenient platform for the development of site frequency and coupling maps. PMID:26913672

  5. Infrared object detection using global and local cues based on LARK

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Object detection has become a challenging problem in computer vision. Locally Adaptive Regression Kernel (LARK) based detection methods are able to produce visually pleasing results without any training. We in this paper present an effective object detection method by exploring global and local cues based on LARK features. First, we encode the local context similarity by exploiting region Structural LARK (SLARK) features, which measure the likeness of a pixel to its surroundings in the query image and the test image. Second, a global constraint based on SLARK features via Heat equation is learned to detect similar features in the test image. Results from matrix cosine similarity are computed to estimate similar regions between these computed features. A compactness score is provided to refine these regions. Next, we detect the location of objects in the test image using non-maxima suppression. We show in experiments that the proposed method significantly outperforms other methods on the infrared image datasets, localizing the objects in the test images effectively.

  6. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  7. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  8. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  9. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  10. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  11. Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy.

    PubMed

    Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf

    2005-11-20

    We report experiments evaluating the feasibility of quantum-cascade lasers (QCLs) at mid-infrared wavelengths for use as local oscillators (LOs) in a heterodyne receiver. Performance tests with continuous-wave (cw) lasers around 9.6 and 9.2 microm were carried out investigating optical output power, laser linewidth, and tunability. A direct comparison with a CO2 gas laser LO is presented as well. The achieved system sensitivity in a heterodyne spectrometer of only a factor of 2 above the quantum limit together with the measured linewidth of less than 1.5 MHz shows that QCLs are suitable laser sources for heterodyne spectroscopy with sufficient output power to replace gas lasers as LOs even in high-sensitivity astronomical heterodyne receivers. In addition, our experiments show that the tunability of the lasers can be greatly enhanced by use of an external cavity.

  12. SPITZER OBSERVATIONS OF MF 16 NEBULA AND THE ASSOCIATED ULTRALUMINOUS X-RAY SOURCE

    SciTech Connect

    Berghea, C. T.; Dudik, R. P. E-mail: rpdudik@usno.navy.mil

    2012-06-01

    We present Spitzer Infrared Spectrograph observations of the ultraluminous X-ray source (ULX) NGC 6946 X-1 and its associated nebula MF 16. This ULX has very similar properties to the famous Holmberg II ULX, the first ULX to show a prominent infrared [O IV] emission line comparable to those found in active galactic nuclei. This paper attempts to constrain the ULX spectral energy distribution (SED) given the optical/UV photometric fluxes and high-resolution X-ray observations. Specifically, Chandra X-ray data and published Hubble optical/UV data are extrapolated to produce a model for the full optical to X-ray SED. The photoionization modeling of the IR lines and ratios is then used to test different accretion spectral models. While either an irradiated disk model or an O-supergiant plus accretion disk model fits the data very well, we prefer the latter because it fits the nebular parameters slightly better. In this second case the accretion disk alone dominates the extreme-UV and X-ray emission, while an O-supergiant is responsible for most of the far-UV emission.

  13. The Wide-Field Infrared Explorer

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Hacking, Perry

    1993-01-01

    More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.

  14. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    SciTech Connect

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

  15. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    DOE PAGES

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less

  16. Ultraluminous X-ray sources - three exciting years

    NASA Astrophysics Data System (ADS)

    Bachetti, M.

    2015-09-01

    Ultraluminous X-ray sources are off-nuclear extragalactic sources with (apparent) luminosities exceeding the Eddington limit for a stellar-mass black hole. This naturally suggests an association with the elusive class of intermediate-mass black holes, or with super-Eddington accreting black holes. As it turns out, this peculiar class of sources is actually a variegated zoo, including both classes of accreting black holes mentioned above and, rather unexpectedly, neutron stars. In this talk I will overview the astrophysical properties of these objects, and give an update on the many breakthroughs appeared in the literature in the last three years.

  17. The Subarcsecond Mid-infrared View of Local Active Galactic Nuclei. III. Polar Dust Emission

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-05-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs. Based on European Southern Observatory (ESO) observing programmes 60.A-9242, 074.A-9016, 075.B-0182, 075.B-0621, 075.B-0631, 075.B-0727, 075.B-0791, 075.B-0844, 076.B-0194, 076.B-0468, 076.B-0599, 076.B-0621, 076.B-0656, 076.B-0696, 076.B-0743, 077.B-0060, 077.B-0135, 077.B-0137, 077.B-0728, 078.B-0020, 078.B-0173, 078.B-0255, 078.B-0303, 080.B-0240, 080.B-0860, 081.B-0182, 082.B-0299, 083.B-0239, 083.B-0452, 083.B-0536, 083.B-0592, 084.B-0366, 084.B-0606, 084.B-0974, 085.B-0251, 085.B-0639, 086.B-0242, 086.B-0257, 086

  18. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  19. The local stellar luminosity function and mass-to-light ratio in the near-infrared

    NASA Astrophysics Data System (ADS)

    Just, A.; Fuchs, B.; Jahreiß, H.; Flynn, C.; Dettbarn, C.; Rybizki, J.

    2015-07-01

    A new sample of stars, representative of the solar neighbourhood luminosity function (LF), is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the Two Micron All Sky Survey catalogue so that for all stars individually determined near-infrared (NIR) photometry is available on a homogeneous system (typically Ks). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR LF of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 ± 0.004 LK⊙ pc-3, corresponding to a volumetric mass-to-light ratio (M/L) of M/L_K = 0.31 ± 0.02 {M}_{⊙}/L_{K⊙}, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 LK⊙ pc-2 with an uncertainty of approximately 10 per cent. This corresponds to an M/L for the solar cylinder of M/L_K = 0.34 {M}_{⊙}/L_{K⊙}. The M/L for the solar cylinder is only 10 per cent larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scaleheights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V - K = 2.89 mag compared to the local value of V - K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of MK = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher relations from the literature.

  20. Local changes in arterial oxygen saturation induced by visible and near-infrared light radiation.

    PubMed

    Yesman, S S; Mamilov, S O; Veligotsky, D V; Gisbrecht, A I

    2016-01-01

    In this study, we investigate the efficiency of laser radiation on oxyhemoglobin (HbO2) rate in blood vessels and its wavelength dependence. The results of in vivo experimental measurements of the laser-induced photodissociation of HbO2 in cutaneous blood vessels in the visible and near-infrared (IR) spectral range are presented. Arterial oxygen saturation (SpO2) was measured by a method of fingertip pulse oximetry, which is based on the measurement of the modulated pulse wave of the blood. The light irradiating the finger was provided by corresponding light-emitting diodes (LED) at 15 wavelengths in the 400-940 nm spectrum range. Statistical results with a value of p < 0.05 were viewed as being significant for all volunteers. The results show that there is a decrease in SpO2 in the blood under the influence of the transcutaneous laser irradiation. Three maxima in the spectral range (530, 600, and 850 nm) are revealed, wherein decrease in the relative concentration of SpO2 reaches 5 % ± 0.5 %. Near-IR radiation plays a dominant role in absorption of laser radiation by oxyhemoglobin in deeper layers of tissue blood vessels. The obtained data correlate with the processes of light propagation in biological tissue. The observed reduction in SpO2 indicates the process of photodissociation of HbO2 in vivo and may result in local increase in O2 in the tissue. Such laser-induced enrichment of tissue oxygenation can be used in phototherapy of pathologies, where the elimination of local tissue hypoxia is critical. PMID:26637304

  1. Local changes in arterial oxygen saturation induced by visible and near-infrared light radiation.

    PubMed

    Yesman, S S; Mamilov, S O; Veligotsky, D V; Gisbrecht, A I

    2016-01-01

    In this study, we investigate the efficiency of laser radiation on oxyhemoglobin (HbO2) rate in blood vessels and its wavelength dependence. The results of in vivo experimental measurements of the laser-induced photodissociation of HbO2 in cutaneous blood vessels in the visible and near-infrared (IR) spectral range are presented. Arterial oxygen saturation (SpO2) was measured by a method of fingertip pulse oximetry, which is based on the measurement of the modulated pulse wave of the blood. The light irradiating the finger was provided by corresponding light-emitting diodes (LED) at 15 wavelengths in the 400-940 nm spectrum range. Statistical results with a value of p < 0.05 were viewed as being significant for all volunteers. The results show that there is a decrease in SpO2 in the blood under the influence of the transcutaneous laser irradiation. Three maxima in the spectral range (530, 600, and 850 nm) are revealed, wherein decrease in the relative concentration of SpO2 reaches 5 % ± 0.5 %. Near-IR radiation plays a dominant role in absorption of laser radiation by oxyhemoglobin in deeper layers of tissue blood vessels. The obtained data correlate with the processes of light propagation in biological tissue. The observed reduction in SpO2 indicates the process of photodissociation of HbO2 in vivo and may result in local increase in O2 in the tissue. Such laser-induced enrichment of tissue oxygenation can be used in phototherapy of pathologies, where the elimination of local tissue hypoxia is critical.

  2. OT1_nlu_1: Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, N.

    2010-07-01

    We propose to survey CO spectral line energy distribution (SLED), from J=4-3 up to J=13-12, on 93 local luminous infrared galaxies (LIRGs; L_{IR} > 1.0E11 L_{sun}) with Herschel SPIRE FTS spectrometer. These galaxies, plus 32 additional LIRGs that will have similar data from existing Herschel programs (mainly the HerCULES project), form a flux-limited subset of the Great Observatories All-Sky LIRGs Survey (GOALS) sample. Our proposal is built on the legacy of GOALS and extends beyond the existing Herschel HerCULES program, which emphasizes more on ULIRGs, to a much needed sample coverage of the more numerous and diverse population of less luminous LIRGs. The data from the proposed observations will not only provide much needed local LIRG templates for future ALMA studies of high-redshift counterparts, but also lend us a powerful diagnostic tool to probe the warm and dense molecular gas that are more closely related to the starburst or AGN activity in the nuclei of LIRGs. The data from this proposal will provide important statistical clues to the interplay between the cold and warm molecular gas, IR luminosity, star formation rate and efficiency, and the diverse properties of LIRGs. Specifically, using the homogeneous CO SLED data from this proposal, together with ground-base, low-order CO line data (mainly J=1-0) and other data that have been compiled for the GOALS sample, we will address the following questions: (1) What is the dominant nuclear power source in individual sample galaxy: starburst or AGN? (2) What are the typical physical properties of warm molecular gas in the nuclei of LIRGs? (3) How do the nuclear warm gas components correlate to the cold gas component, star formation rate and efficiency, dust temperature, etc? and (4) How does molecular gas excitation change along a merger sequence?

  3. Vasorelaxation Study and Tri-Step Infrared Spectroscopy Analysis of Malaysian Local Herbs

    PubMed Central

    Tan, Chu Shan; Loh, Yean Chun; Ahmad, Mariam; Zaini Asmawi, Mohd.; Yam, Mun Fei

    2016-01-01

    Objectives: The aim of this paper is to investigate the activities of Malaysian local herbs (Clinacanthus nutans Lindau, Strobilanthes crispus, Murdannia bracteata, Elephantopus scaber Linn., Pereskia bleo, Pereskia grandifolia Haw., Vernonia amygdalina, and Swietenia macrophylla King) for anti-hypertensive and vasorelaxant activity. An infrared (IR) macro-fingerprinting technique consisting of conventional fourier transform IR (FTIR), second-derivative IR (SD-IR), and two-dimensional correlation IR (2D-correlation IR) analyses were used to determine the main constituents and the fingerprints of the Malaysian local herbs. Methods: The herbs were collected, ground into powder form, and then macerated by using three different solvents: distilled water, 50% ethanol, and 95% ethanol, respectively. The potentials of the extracts produced from these herbs for use as vasorelaxants were determined. Additionally, the fingerprints of these herbs were analyzed by using FTIR spectra, SD-IR spectra, and 2D-correlation IR spectra in order to identify their main constituents and to provide useful information for future pharmacodynamics studies. Results: Swietenia macrophylla King has the highest potential in terms of vasorelaxant activity, followed by Vernonia amygdalina, Pereskia bleo, Strobilanthes crispus, Elephantopus scaber Linn., Pereskia grandifolia Haw., Clinacanthus nutans Lindau, and Murdannia bracteata. The tri-step IR macro-fingerprint of the herbs revealed that most of them contained proteins. Pereskia bleo and Pereskia grandifolia Haw. were found to contain calcium oxalate while Swietenia macrophylla King was found to contain large amounts of flavonoids. Conclusion: The flavonoid content of the herbs affects their vasorelaxant activity, and the tri-step IR macro- fingerprint method can be used as an analytical tool to determine the activity of a herbal medicine in terms of its vasorelaxant effect. PMID:27386148

  4. Resolving Gas Flows in the Ultraluminous Starburst IRAS 23365+3604 with Keck LGSAO/OSIRIS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal L.; Soto, Kurt T.

    2016-03-01

    Keck OSIRIS/LGSAO observations of the ultraluminous galaxy IRAS 23365+3604 resolve a circumnuclear bar (or irregular disk) of semimajor axis 0.″42 (520 pc) in Paα emission. The line-of-sight velocity of the ionized gas increases from the northeast toward the southwest; this gradient is perpendicular to the photometric major axis of the infrared emission. Two pairs of bends in the zero-velocity line are detected. The inner bend provides evidence for gas inflow onto the circumnuclear disk/bar structure. We interpret the gas kinematics on kiloparsec scales in relation to the molecular gas disk and multiphase outflow discovered previously. In particular, the fast component of the ouflow (detected previously in line wings) is not detected, adding support to the conjecture that the fast wind originates well beyond the nucleus. These data directly show the dynamics of gas inflow and outflow in the central kiloparsec of a late-stage, gas-rich merger and demonstrate the potential of integral field spectroscopy to improve our understanding of the role of gas flows during the growth phase of bulges and supermassive black holes. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The data were obtained with the OH Supressing Infrared Spectrograph (OSIRIS) behind the Laser Guide Star Adaptive Optics System.

  5. SPATIALLY RESOLVED STAR FORMATION IMAGE AND THE ULTRALUMINOUS X-RAY SOURCE POPULATION IN NGC 2207/IC 2163

    SciTech Connect

    Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D. E-mail: sar@mit.edu E-mail: bsteinho@mit.edu E-mail: gilfanov@mpa-garching.mpg.de

    2013-07-10

    The colliding galaxy pair NGC 2207/IC 2163, at a distance of {approx}39 Mpc, was observed with Chandra, and an analysis reveals 28 well resolved X-ray sources, including 21 ultraluminous X-ray sources (ULXs) with L{sub X} {approx}> 10{sup 39} erg s{sup -1}, as well as the nucleus of NGC 2207. The number of ULXs is comparable with the largest numbers of ULXs per unit mass in any galaxy yet reported. In this paper we report on these sources, and quantify how their locations correlate with the local star formation rates seen in spatially resolved star formation rate density images that we have constructed using combinations of GALEX FUV and Spitzer 24 {mu}m images. We show that the numbers of ULXs are strongly correlated with the local star formation rate densities surrounding the sources, but that the luminosities of these sources are not strongly correlated with star formation rate density.

  6. A small dim infrared maritime target detection algorithm based on local peak detection and pipeline-filtering

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Dong, Lili; Zhao, Ming; Xu, Wenhai

    2015-12-01

    In order to realize accurate detection for small dim infrared maritime target, this paper proposes a target detection algorithm based on local peak detection and pipeline-filtering. This method firstly extracts some suspected targets through local peak detection and removes most of non-target peaks with self-adaptive threshold process. And then pipeline-filtering is used to eliminate residual interferences so that only real target can be retained. The experiment results prove that this method has high performance on target detection, and its missing alarm rate and false alarm rate can basically meet practical requirements.

  7. The NASA Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Gautier, T. N.

    1996-01-01

    The NASA Space Infrared Telescope Facility (SIRTF) will begin definition phase funding in November of 1996. The instrumentation is being designed to accomodate scientific investigation programs in four key areas: discovery and study of brown dwarfs and super planets, discovery and study of protoplanetary and planetary debris disks, study of ultra-luminous galaxies and active galactic nuclei (AGN) and study of the early universe.

  8. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts

  9. The SCUBA-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster

    SciTech Connect

    Smail, Ian; Swinbank, A. M.; Danielson, A. L. R.; Edge, A. C.; Simpson, J. M.; Geach, J. E.; Tadaki, K.; Arumugam, V.; Dunlop, J. S.; Ivison, R. J.; Hartley, W.; Almaini, O.; Conselice, C.; Bremer, M. N.; Chapin, E.; Chapman, S. C.; Scott, D.; Simpson, C. J.; Karim, A.; Kodama, T.; and others

    2014-02-10

    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities ≳10{sup 12} L {sub ☉} and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover one of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ∼ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, M{sub H} ∼ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ∼ 1.6 (M{sub H} ∼ –20.5 and M{sub H} ∼ –21.5, respectively, at z ∼ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.

  10. Probing the dusty inhabitants of the Local Group Galaxies: JWST/MIRI colors of infrared stellar populations

    NASA Astrophysics Data System (ADS)

    Jones, Olivia; Meixner, Margaret

    2016-01-01

    The assembly of galaxies involves the life cycle of mass, metal enrichment and dust that JWST will probe. Detailed studies of nearby galaxies provides guidance for interpreting the more distant forming galaxies. JWST/MIRI will enable stellar population studies akin to work done with HST on the Local Group galaxies but over a new wavelength range. MIRI's imaging capability over nine photometric bands from 5 to 28 microns is particularly suited to survey stars with an infrared excess and to detangle the extinction or thermal emission from various species of dust. These dusty stellar populations include young stellar objects, evolved stars and supernovae that are bright in the infrared. Using the rich Spitzer-IRS spectroscopic dataset and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of over a thousand objects in the Magellanic Clouds, we calculate the expected flux -densities and colors in the MIRI broadband filters for these prominent infrared sources. We uses these fluxes to illustrate what JWST will see in stellar population studies for other Local Group galaxies. JWST/MIRI observations of infrared sources in Local Group Galaxies will constrain the life cycle of galaxies through their dust emission. For example, how much of the interstellar dust is supplied by dying stars? Do the number of young stellar objects agree with star formation diagnostic for the galaxy? We discuss the locations of the post- and pre-main-sequence populations in MIRI color-color and color-magnitude space and examine which filters are best for identifying populations of sources. We connect these results to existing galaxies with HST data for instance Andromeda and M33.

  11. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Poulton, R.; Roche, P. F.; Hernán-Caballero, A.; Aretxaga, I.; Martínez-Paredes, M.; Ramos Almeida, C.; Pereira-Santaella, M.; Díaz-Santos, T.; Levenson, N. A.; Packham, C.; Colina, L.; Esquej, P.; González-Martín, O.; Ichikawa, K.; Imanishi, M.; Rodríguez Espinosa, J. M.; Telesco, C.

    2016-08-01

    We investigate the evolutionary connection between local IR-bright galaxies (log LIR ≥ 11.4 L⊙) and quasars. We use high angular resolution (˜ 0.3-0.4 arcsec˜ few hundred parsecs) 8 - 13 μm ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear 11.3 μm PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or projected nuclear separation. This suggests that the changes in the distribution of the nuclear obscuring material may be taking place rapidly and at different interaction stages washing out the evidence of an evolutionary path. When compared to normal AGN, the nuclear star formation activity of quasars appears to be dimming whereas it is enhanced in some IR-bright nuclei, suggesting that the latter are in an earlier star-formation dominated phase.

  12. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  13. SPECTROSCOPIC STUDIES OF AN ULTRALUMINOUS SUPERSOFT X-RAY SOURCE IN M81

    SciTech Connect

    Bai, Yu; Liu, JiFeng; Wang, Song

    2015-04-01

    Ultraluminous supersoft X-ray sources (ULSs) exhibit supersoft X-ray spectra with blackbody temperatures below 0.1 keV and bolometric luminosities above 10{sup 39} ergs s{sup −1}. In this Letter, we report the first optical spectroscopic observations of a ULS in M81 using the LRIS spectrograph on the Keck I telescope. The detected Balmer emission lines show a mean intrinsic velocity dispersion of 400 ± 80 km s{sup −1}, which is consistent with that from an accretion disk. The spectral index of the continuum on the blue side is also consistent with the multi-color disk model. The H{sub α} emission line exhibits a velocity of ∼180 km s{sup −1} relative to the local stellar environment, suggesting that this ULS may be a halo system in M81 belonging to an old population. No significant shift is found for the H{sub α} emission line between two observations separated by four nights.

  14. A Functional Near-Infrared Spectroscopy Study of Sustained Attention to Local and Global Target Features

    ERIC Educational Resources Information Center

    De Joux, Neil; Russell, Paul N.; Helton, William S.

    2013-01-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…

  15. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  16. Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel

    NASA Astrophysics Data System (ADS)

    Martínez, J. R.; Ruiz, F.; Vorobiev, Y. V.; Pérez-Robles, F.; González-Hernández, J.

    1998-11-01

    Infrared spectroscopy has been used to analyze the structural changes in samples prepared by the sol-gel method. Silica gels were prepared from alcoholic solutions of tetraethylorthosilicate (TEOS) with different H2O/TEOS molar ratios. The IR spectra of these gels, in the Si-O bond stretching region, shows that their structure strongly depends on the H2O/TEOS ratio. The relative change in intensity of the Si-O stretching modes, in samples prepared using different H2O/TEOS ratios, are interpreted in terms of different degrees of structural disorder. According to our infrared absorption data, a decrease in the H2O/TEOS ratio from about 7, the SiO2 structure evolves from a three-dimensional network toward a chainlike structure.

  17. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.

    PubMed

    Huber, A J; Ocelic, N; Hillenbrand, R

    2008-03-01

    We demonstrate that mid-infrared surface phonon polariton excitation, propagation and interference can be studied by scattering-type near-field optical microscopy (s-SNOM). In our experiments we image surface phonon polaritons (SPPs) propagating on flat SiC crystals. They are excited by weakly focused illumination of single or closely spaced metal disks we fabricated on the SiC surface by conventional photolithography. SPP imaging is performed by pseudo-heterodyne interferometric detection of infrared light scattered by the metal tip of our s-SNOM. The pseudo-heterodyne technique simultaneously yields optical amplitude and phase images which allows us to measure the SPP wave vector--including its sign--and the propagation length and further to study SPP interference. High resolution imaging of SPPs could be applied to investigate for example SPP focusing or heat transfer by SPPs in low dimensional nanostructures.

  18. Electrochemical redox-based tuning of near infrared localized plasmons of CuS nanoplates

    NASA Astrophysics Data System (ADS)

    Asami, Keisuke; Nishi, Hiroyasu; Tatsuma, Tetsu

    2016-07-01

    Fast and reversible control of the plasmonic properties of compound nanoparticles (i.e. CuS nanoplates) was achieved through electrochemical redox reactions. Their electrochemical tunability can be applied to fast-switching near infrared electrochromic devices, whose visible appearance is not changed by switching.Fast and reversible control of the plasmonic properties of compound nanoparticles (i.e. CuS nanoplates) was achieved through electrochemical redox reactions. Their electrochemical tunability can be applied to fast-switching near infrared electrochromic devices, whose visible appearance is not changed by switching. Electronic supplementary information (ESI) available: TEM images, absorption spectra and electrochromic response of CuS nanoplates and the relationship between the relative amount of CuS and absorbance change. See DOI: 10.1039/c6nr03709g

  19. Chilled disks in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuncic, Zdenka; Gonçalves, Anabela C.

    2007-04-01

    The "soft-excess" component fitted to the X-ray spectra of many ultraluminous X-ray sources (ULXs) remains a controversial finding, which may reveal fundamental information either on the black hole (BH) mass or on the state of the accretion flow. In the simplest model, it was explained as thermal emission from a cool accretion disk around an intermediate-mass BH (about 1000 solar masses). We argue that this scenario is highly implausible, and discuss and compare the two most likely alternatives. 1) The soft-excess does come from a cool disk; however, the temperature is low not because of a high BH mass but because most of the accretion power is drained from the inner disk via magnetic torques, and channelled into jets and outflows ("chilled disk" scenario). Using a phenomenological model, we infer that ULXs contain BHs of about 50 solar masses accreting gas at about 10 times their Eddington rate. 2) The soft excess is in fact a soft deficit, if the power-law continuum is properly fitted. Such broad absorption features are caused by smeared absorption lines in fast, highly ionized outflows. This scenario has already been successfully applied to the soft excess in AGN. If so, this spectral feature reveals details of disk outflows,but is unrelated to the BH mass.

  20. ULX behaviour: The ultraluminous state, winds and interesting anomalies

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Middleton, M. J.; Sutton, A. D.; Mezcua, M.; Walton, D. J.; Heil, L. M.

    2016-05-01

    Recent evidence - in particular the hard X-ray spectra obtained by {NuSTAR}, and the large amplitude hard X-ray variability observed when ULXs show soft spectra - reveals that common ultraluminous X-ray source (ULX) behaviour is inconsistent with known sub-Eddington accretion modes, as would be expected for an intermediate-mass black hole (IMBH). Instead, it appears that the majority of ULXs are powered by super-Eddington accretion onto stellar-mass black holes. Here, we will review work that delves deeper into ULX spectral-timing behaviour, demonstrating it remains consistent with the expectations of super-Eddington accretion. One critical missing piece from this picture is the direct detection of the massive, radiatively-driven winds expected from ULXs as atomic emission/absorption line features in ULX spectra; we will show it is very likely these have already been detected as residuals in the soft X-ray spectra of ULXs. Finally, we will discuss ULXs that do not appear to conform to the emerging ULX behaviour patterns. In particular we discuss the implications of the identification of a good IMBH candidate as a background QSO; and the confirmation of an IMBH/ULX candidate in the galaxy NGC 2276 via the radio/X-ray fundamental plane.

  1. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate. PMID:25719667

  2. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  3. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration.

  4. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration. PMID:26510480

  5. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  6. Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.

  7. Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging.

    PubMed

    Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Fiat, Françoise; Baghdadli, Nawel; Balooch, Guive; Luengo, Gustavo S

    2014-01-01

    Atomic force microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument (AFM-IR) capable of producing IR spectra and absorption images at a sub-micrometer spatial resolution. This new device enables human hair to be spectroscopically characterized at levels not previously possible. In particular, it was possible to determine the location of structural lipids in the cuticle and cortex of hair. Samples of human hair were embedded, cross-sectioned, and mounted on ZnSe prisms. A tunable IR laser generating pulses of the order of 10 ns was used to excite sample films. Short duration thermomechanical waves, due to infrared absorption and resulting thermal expansion, were studied by monitoring the resulting excitation of the contact resonance modes of the AFM cantilever. Differences are observed in the IR absorbance intensity of long-chain methylene-containing functional groups between the outer cuticle, middle cortex, and inner medulla of the hair. An accumulation of structural lipids is clearly observed at the individual cuticle layer boundaries. This method should prove useful in the future for understanding the penetration mechanism of substances into hair as well as elucidating the chemical nature of alteration or possible damage according to depth and hair morphology.

  8. Two Eclipsing Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-11-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M51: CXOM51 J132940.0+471237 (ULX-1, for simplicity) and CXOM51 J132939.5+471244 (ULX-2). Three eclipses were detected for ULX-1 and two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed toward us. Despite the similar viewing angles and luminosities ({L}{{X}}≈ 2× {10}39 erg s‑1 in the 0.3–8 keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature {{kT}}e≈ 1 {keV}. ULX-2 is harder, well fitted by a slim disk with {{kT}}{in}≈ 1.5–1.8 keV and normalization consistent with a ∼10 M ⊙ black hole. ULX-1 has a significant contribution from multi-temperature thermal-plasma emission ({L}{{X},{mekal}}≈ 2× {10}38 erg s‑1). About 10% of this emission remains visible during the eclipses, proving that the emitting gas comes from a region slightly more extended than the size of the donor star. From the sequence and duration of the Chandra observations in and out of eclipse, we constrain the binary period of ULX-1 to be either ≈ 6.3 days, or ≈12.5–13 days. If the donor star fills its Roche lobe (a plausible assumption for ULXs), both cases require an evolved donor, most likely a blue supergiant, given the young age of the stellar population in that Galactic environment.

  9. Accretion states of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Swartz, Doug

    2009-09-01

    Ultraluminous X-ray sources (ULXs) have extended our knowledge of accretion onto black holes, and in particular of their different ``states'' as a function of accretion rate. At moderate luminosities (˜ 1E39-1E40 erg/s), the X-ray spectra of most ULXs are either fitted by non-standard accretion disks (eg, slim disks) or by a power-law, consistent with inverse-Compton emission (probably an extension of the ``steep-power-law'' state of Galactic black holes). At the highest luminosities (>˜ 1E40 erg/s), most ULXs have a power-law dominated spectrum; in particular, about half of them have hard photon indices (high/hard state, Gamma <˜ 1.7). In addition, two more elements are often found: a thermal ``soft excess'' is the signature of the standard thin disk at large radii, which constrains the radial size of the inner Comptonizing/outflow region; and a break or downturn of the power-law at ˜ 5 keV provides a characteristic temperature of the electrons in the inner region. Thus, the physics of super-Eddington accretion states correlates with that of the low states, with different systems dominated either by energy advection, or mechanical output, or Comptonizing coronae. Another intriguing issue we will discuss is whether there is a cutoff in the luminosity distribution at ˜ a few E40 erg/s, which would still be consistent with stellar black holes formed from direct collapse in metal-poor environments (maximum mass ˜ 70 Msun). If the power-law distribution extends to higher luminosities, it requires more massive black holes, perhaps formed from mergers in dense stellar/protostellar cluster environments

  10. OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Gladstone, Jeanette C.; Heinke, Craig O.; Cartwright, Taylor F.; Copperwheat, Chris; Roberts, Timothy P.; Levan, Andrew J.; Goad, Mike R.

    2013-06-01

    We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope (HST) in nearby ({approx}<5 Mpc) galaxies. Of the 33 ULXs with HST and Chandra data, 9 have no visible counterpart, placing limits on their M{sub V} of {approx} -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 {+-} 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the spectral energy distribution and M{sub V} to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For seven ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes' mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1, and NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.

  11. ULTRALUMINOUS X-RAY SOURCES IN ARP 147

    SciTech Connect

    Rappaport, S.; Steinhorn, B.; Levine, A.; Pooley, D. E-mail: aml@space.mit.ed

    2010-10-01

    The Chandra X-Ray Observatory was used to image the collisional ring galaxy Arp 147 for 42 ks. We detect nine X-ray sources with luminosities in the range of (1.4-7) x 10{sup 39} erg s{sup -1} (assuming that the sources emit isotropically) in or near the blue knots of star formation associated with the ring. A source with an X-ray luminosity of 1.4 x 10{sup 40} erg s{sup -1} is detected in the nuclear region of the intruder galaxy. X-ray sources associated with a foreground star and a background quasar are used to improve the registration of the X-ray image with respect to Hubble Space Telescope (HST) high-resolution optical images. The intruder galaxy, which apparently contained little gas before the collision, shows no X-ray sources other than the one in the nuclear bulge which may be a poorly fed supermassive black hole. These observations confirm the conventional wisdom that collisions of gas-rich galaxies trigger large rates of star formation which, in turn, generate substantial numbers of X-ray sources, some of which have luminosities above the Eddington limit for accreting stellar-mass black holes (i.e., ultraluminous X-ray sources, 'ULXs'). We also utilize archival Spitzer and Galex data to help constrain the current star formation rate in Arp 147 to {approx}7 M{sub sun} yr{sup -1}. All of these results, coupled with binary evolution models for ULXs, allow us to tentatively conclude that the most intense star formation may have ended some 15 Myr in the past.

  12. SPECTRAL STATES AND EVOLUTION OF ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Feng Hua; Kaaret, Philip

    2009-05-10

    We examined spectral evolution in ultraluminous X-ray sources (ULXs) with apparent luminosities of about 10{sup 40} erg s{sup -1}. Based on new results in this paper, and those reported in the literature, two common spectral behaviors were found. Some ULXs in starburst galaxies have varying luminosity (L) but remain in the hard state with power-law spectra and a constant, hard photon index ({gamma}). Other ULXs, such as NGC 5204 X-1, show a correlation between L and {gamma}. We interpret this L-{gamma} correlated phase as an intermediate state with hybrid properties from the thermal dominant and steep power-law states. When the spectra of NGC 5204 X-1 are fitted with a multicolor disk blackbody plus power-law model, the X-ray luminosity increases with the effective temperature of the accretion disk in a manner similar to that found in stellar-mass black hole X-ray binaries, suggesting that the emission arises from an accretion disk. The luminosity, disk size, and temperature suggest that NGC 5204 X-1 harbors a compact object more massive than stellar-mass black holes. In contrast, the disk model in IC 342 X-1 is ruled out because the luminosity decreases as the temperature increases; sources with such behavior may represent a class of objects with super-Eddington accretion. Also, we report a peculiar soft spectral feature from IC 342 X-2 and variability on a timescale of 20 ks from Holmberg II X-1. More observations are needed to test these results.

  13. Finger Vein Segmentation from Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding

    PubMed Central

    Vlachos, Marios; Dermatas, Evangelos

    2015-01-01

    A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern. PMID:26120357

  14. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping.

    PubMed

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-01-01

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED. PMID:27578199

  15. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping

    NASA Astrophysics Data System (ADS)

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-08-01

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED.

  16. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping

    PubMed Central

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-01-01

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED. PMID:27578199

  17. Determination of subsurface tumor localization in animal models with near-infrared (NIR) fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Blessington, Dana M.; Zhang, Zhihong; Liu, Qian; Zhou, Lanlan; Mu, Chenpeng; Intes, Xavier; Achilefu, Samuel I.; Li, Hui; Zhang, Min Z.; Zheng, Gang; Chance, Britton

    2003-07-01

    We have developed a novel imaging system for determining the localization of tumors labeled by fluorescent contrast agents and embedded several centimeters inside the highly scattered medium. This frequency-domain system utilizes the phased cancellation configuration with a goniometric probe. The instrumentation performance on the phantom test can detect 3 mm diameter sphere filled with 1 nM fluorescent dye, Indocyanine Green (ICG), and 3 cm deep inside the scattering medium with similar optical properties as human breast tissue within a 1 mm localization confidence. Mouse tumor model immersed in appropriate scattering/absorbing medium is used for animal test. Intra-tumor injection of ICG demonstrates the localization of the tumor (5 mm in diameter) submerged 3 cm deep inside the highly scattered medium with 2 mm position error. Results with NIR804-D-Glucosamide on the AR42J tumor bearing nude mouse are also presented with 3 mm localization error. The accuracy of the localization suggest that this system would be helpful to guide the clinical fine-needle biopsy for early breast cancer detection.

  18. Localization of near-infrared contrast agents in tumors by intravital microscopy

    NASA Astrophysics Data System (ADS)

    Becker, Andreas; Schneider, Guenther; Riefke, Bjoern; Licha, Kai; Semmler, Wolfhard

    1999-01-01

    In this contribution we use intravital microscopy to study the dynamics of extravasation into normal and tumor tissue of several hydrophilic cyanine dyes used as near-infrared (NIR) contrast agents. The technique provides information about the angiographic properties of the dyes and about their interaction with tumor tissue under dynamic conditions in vivo. In our previous work we demonstrated that several NIR- absorbing fluorescent dyes enable in vivo fluorescence detection of tumors in mice and rats. However, the mechanism leading to dye accumulation and enhanced fluorescence in tumors is not fully understood. Increased extravasation of dyes into tumor tissue due to pathologically altered tumor vessels may be an important factor in this process. Indocyanine green (ICG) displayed predominantly intravascular distribution and rapid elimination resulting in enhanced fluorescence signal of vessels during the first 15 min after administration only. No elevated extravasation into tumor tissue was observed with ICG. A hydrophilic indotricarbocyanine derivative with a high molecular weight displayed prolonged intravascular distribution and increased fluorescence signal of the vasculature compared to surrounding tissue for up to five hours. Rapid extravasation and accumulation in tumor areas, yielding elevated contrast of tumors up to 15 min after administration, was observed with hydrophilic, low molecular weight indotricarbocyanine derivatives.

  19. The local structure, infrared phonon modes and the origin of the dielectric constant in La2Hf2O7 thin film

    NASA Astrophysics Data System (ADS)

    Qi, Zeming; Cheng, Xuerui; Zhang, Guobin; Li, Tingting; Wang, Yuyin; Shao, Tao; Li, Chengxiang; He, Bo

    2012-03-01

    The local structure and dielectric properties of crystalline and amorphous La2Hf2O7 (LHO) thin film were studied by X-ray absorption spectroscopy and infrared spectroscopy. The basic infrared phonon modes with most contributions to the static dielectric constant of crystal LHO are preserved, which causes the considerable value of the static dielectric constant in the amorphous thin film. The preservation of the main infrared phonon modes in the amorphous thin film is because it has similar the nearest local structures around Hf and La atoms as the crystal LHO. This inheritance of the local structural and vibrational features of the crystal phase is the origin of the dielectric constant of the LHO thin film.

  20. Ultraluminous X-ray Sources in NGC 6946.

    NASA Astrophysics Data System (ADS)

    Sánchez Cruces, Mónica; Rosado, Margarita; Fuentes-Carrera, Isaura L.

    2016-07-01

    Ultra-luminous X-ray sources (ULXs) are the most X-ray luminous off-nucleus objects in nearby galaxies with X-ray luminosities between 10^{39} - 10^{41} erg s^{-1} in the 0.5-10 keV band. Since these luminosities cannot be explained by the standard accretion of a stellar mass black hole, these sources are often associated with intermediate-mass black holes (IMBHs, 10^{2}-10^{4} solar masses). However significantly beamed stellar binary systems could also explain these luminosities. Observational knowledge of the angular distribution of the source emission is essential to decide between these two scenarios. In this work, we present the X-ray analysis of five ULXs in the spiral galaxy NGC 6949, along with the kinematical analysis of the ionized gas surrounding each of these sources. For all sources, X-ray observations reveal a typical ULX spectral shape (with a soft excess below 2 keV and a hard curvature above 2 keV) which can be fit with a power-law + multi-color disk model. However, even if ULXs are classified as point-like objects, one of the sources in this galaxy displays an elongated shape in the Chandra images. Regarding the analysis of the emission lines of the surrounding ˜300 pc around each ULX, scanning Fabry-Perot observations show composite profiles for three of the five ULXs. The main component of these profiles follows the global rotation of the galaxy, while the faint secondary component seems to be associated with asymmetrical gas expansion. These sources have also been located in archive images of NGC 6946 in different wavelengths in order to relate them to different physical processes occurring in this galaxy. Though ULXs are usually located in star formation regions, we find that two of the sources lie a few tenths of parsecs away from different HII regions. Based on the X-ray morphology of each ULX, the velocities and distribution of the surrounding gas, as well as the location of the source in the context of the whole galaxy, we give the most

  1. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers.

    PubMed

    Xie, Bin; Singh, Ravi; Torti, F M; Keblinski, Pawel; Torti, Suzy

    2012-09-21

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (∼ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ∼2 s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy.

  2. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers

    NASA Astrophysics Data System (ADS)

    Xie, Bin; Singh, Ravi; Torti, F. M.; Keblinski, Pawel; Torti, Suzy

    2012-09-01

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (∼ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ∼2 s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy.

  3. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  4. Specific local induction of DNA strand breaks by infrared multi-photon absorption

    PubMed Central

    Träutlein, D.; Deibler, M.; Leitenstorfer, A.; Ferrando-May, E.

    2010-01-01

    Highly confined DNA damage by femtosecond laser irradiation currently arises as a powerful tool to understand DNA repair in live cells as a function of space and time. However, the specificity with respect to damage type is limited. Here, we present an irradiation procedure based on a widely tunable Er/Yb : fiber femtosecond laser source that favors the formation of DNA strand breaks over that of UV photoproducts by more than one order of magnitude. We explain this selectivity with the different power dependence of the reactions generating strand breaks, mainly involving reactive radical intermediates, and the direct photochemical process leading to UV-photoproducts. Thus, localized multi-photon excitation with a wavelength longer than 1 µm allows for the selective production of DNA strand breaks at sub-micrometer spatial resolution in the absence of photosensitizers. PMID:19906733

  5. Local tunneling spectroscopy and infrared spectroscopy of the electron-doped cuprate Sm2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Zimmers, A.; Noat, Y.; Cren, T.; Sacks, W.; Roditchev, D.; Liang, B.; Greene, R. L.; Lobo, R. P. S. M.; Bontemps, N.

    2008-03-01

    We present infrared and local tunneling spectroscopy of the electron-doped cuprate Sm2-xCexCuO4. In STM, at optimal doping x=0.15, a clear signature of the superconducting gap is observed with an amplitude ranging from place to place and from sample to sample (δ˜ 3.5-6meV). Another spectroscopic feature is simultaneously observed at high energy above ±50meV. Its energy scale and temperature evolution is found to be compatible with previous photoemission and optical experiments. If interpreted as the signature of antiferromagnetic order in the samples, these results could suggest the coexistence on the local scale of antiferromagnetism and superconductivity on the electron-doped side of cuprate superconductors. Using optical spectroscopy, we analyzed the effects of the normal state gap opening (the higher energy gap seen in STM) and phonon structure as a function of temperature and doping from the underdoped to the metallic composition.

  6. Robust detection of small infrared objects in maritime scenarios using local minimum patterns and spatio-temporal context

    NASA Astrophysics Data System (ADS)

    Qi, Baojun; Wu, Tao; He, Hangen

    2012-02-01

    Here, we describe a novel approach for small surface object detection with an onboard infrared (IR) camera working in maritime scenes. First, we propose a simple but effective tool called the local minimum patterns (LMP), which are theoretically the approximated coefficients of some stationary wavelet transforms, for single image background estimation. Second, potential objects are segmented by an adaptive threshold estimated from the saliency map, which is obtained by background subtraction. Using the LMP based wavelet transforms and the histogram of the saliency map, the threshold can be automatically determined by singularity analysis. Next, we localize potential objects by our proposed fast clustering algorithm, which, compared with popular K-Means, is much faster and less sensitive to noises. To make the surveillance system more reliable, we finally discuss how to integrate multiple cues, such as scene geometry constraints and spatio-temporal context, into detections by Bayesian inference. The proposed method has shown to be both effective and efficient by our extensive experiments on some challenging data sets with a competitive performance over some state-of-the-art techniques.

  7. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    PubMed Central

    Iso, Naoki; Moriuchi, Takefumi; Sagari, Akira; Kitajima, Eiji; Iso, Fumiko; Tanaka, Koji; Kikuchi, Yasuki; Tabira, Takayuki; Higashi, Toshio

    2016-01-01

    The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME) and motor imagery (MI) by using near-infrared spectroscopy (NIRS), as this technique is more clinically expedient than established methods (e.g., fMRI). Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb) concentration. Oxy-Hb in the somatosensory motor cortex (SMC) increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA) and premotor area (PMA), oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS. PMID:26793118

  8. Near-Infrared Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots

    SciTech Connect

    Jain, Prashant K.; Luther, Joey; Ewers, Trevor; Alivisatos, A. Paul

    2010-10-12

    Quantum confinement of electronic wavefunctions in semiconductor quantum dots (QDs) yields discrete atom-like and tunable electronic levels, thereby allowing the engineering of excitation and emission spectra. Metal nanoparticles, on the other hand, display strong resonant interactions with light from localized surface plasmon resonance (LSPR) oscillations of free carriers, resulting in enhanced and geometrically tunable absorption and scattering resonances. The complementary attributes of these nanostructures lends strong interest toward integration into hybrid nanostructures to explore enhanced properties or the emergence of unique attributes arising from their interaction. However, the physicochemical interface between the two components can be limiting for energy transfer and synergistic coupling within such a hybrid nanostructure. Therefore, it is advantageous to realize both attributes, i.e., LSPRs and quantum confinement within the same nanostructure. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots. This opens up possibilities for light harvesting, non-linear optics, optical sensing and manipulation of solid-state processes in single nanocrystals.

  9. The Herschel Exploitation of Local Galaxy Andromeda (HELGA). I. Global far-infrared and sub-mm morphology

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Gentile, G.; Smith, M. W. L.; Gear, W. K.; Braun, R.; Duval, J. Roman; Bendo, G. J.; Baes, M.; Eales, S. A.; Verstappen, J.; Blommaert, J. A. D. L.; Boquien, M.; Boselli, A.; Clements, D.; Cooray, A. R.; Cortese, L.; De Looze, I.; Ford, G. P.; Galliano, F.; Gomez, H. L.; Gordon, K. D.; Lebouteiller, V.; O'Halloran, B.; Kirk, J.; Madden, S. C.; Page, M. J.; Remy, A.; Roussel, H.; Spinoglio, L.; Thilker, D.; Vaccari, M.; Wilson, C. D.; Waelkens, C.

    2012-10-01

    Context. We have obtained Herschel images at five wavelengths from 100 to 500 μm of a ~5.5 × 2.5 degree area centred on the local galaxy M 31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project "HELGA". The main goals of HELGA are to study the characteristics of the extended dust emission, focusing on larger scales than studied in previous observations of Andromeda at an increased spatial resolution, and the obscured star formation. Aims: In this paper we present data reduction and Herschel maps, and provide a description of the far-infrared morphology, comparing it with features seen at other wavelengths. Methods: We used high-resolution maps of the atomic hydrogen, fully covering our fields, to identify dust emission features that can be associated to M 31 with confidence, distinguishing them from emission coming from the foreground Galactic cirrus. Results: Thanks to the very large extension of our maps we detect, for the first time at far-infrared wavelengths, three arc-like structures extending out to ~21, ~26 and ~31 kpc respectively, in the south-western part of M 31. The presence of these features, hosting ~2.2 × 106 M⊙ of dust, is safely confirmed by their detection in HI maps. Overall, we estimate a total dust mass of ~5.8 × 107 M⊙, about 78% of which is contained in the two main ring-like structures at 10 and 15 kpc, at an average temperature of 16.5 K. We find that the gas-to-dust ratio declines exponentially as a function of the galacto-centric distance, in agreement with the known metallicity gradient, with values ranging from 66 in the nucleus to ~275 in the outermost region. Conclusions: Dust in M 31 extends significantly beyond its optical radius (~21 kpc) and what was previously mapped in the far-infrared. An annular-like segment, located approximately at R25, is clearly detected on both sides of the galaxy, and two other similar annular structures are undoubtedly detected on the south

  10. Sub-kpc star formation law in the local luminous infrared galaxy IC 4687 as seen by ALMA

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Planesas, P.; Usero, A.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Villar-Martín, M.

    2016-03-01

    We analyze the spatially resolved (250 pc scales) and integrated star formation (SF) law in the local luminous infrared galaxy (LIRG) IC 4687. This is one of the first studies of the SF law on a starburst LIRG at these small spatial scales. We combined new interferometric ALMA CO(2-1) data with existing HST/NICMOS Paα narrowband imaging and VLT/SINFONI near-IR integral field spectroscopy to obtain accurate extinction-corrected SF rate (SFR) and cold molecular gas surface densities (Σgas and ΣSFR). We find that IC 4687 forms stars very efficiently with an average depletion time (tdep) of 160 Myr for the individual 250 pc regions. This is approximately one order of magnitude shorter than the tdep of local normal spirals and also shorter than that of main-sequence high-z objects, even when we use a Galactic αCO conversion factor. This result suggests a bimodal SF law in the ΣSFR∝ΣgasN representation. A universal SF law is recovered if we normalize the Σgas by the global dynamical time. However, at the spatial scales studied here, we find that the SF efficiency (or tdep) does not depend on the local dynamical time for this object. Therefore, an alternative normalization (e.g., free-fall time) should be found if a universal SF law exists at these scales. A FITS file for the reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A44

  11. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations.

    PubMed

    Song, Xiaowei; Fagiani, Matias R; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R; Bischoff, Florian A; Berger, Fabian; Sauer, Joachim

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4 (-) and Al2O3-6 (-) are measured in the region from 400 to 1200 cm(-1). Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6 (-) anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3 (-). Terminal Al-O stretching modes are found between 1140 and 960 cm(-1). Superoxo and peroxo stretching modes are found at higher (1120-1010 cm(-1)) and lower energies (850-570 cm(-1)), respectively. Four modes in-between 910 and 530 cm(-1) represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al-(O)2-Al ring. PMID:27369513

  12. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Fagiani, Matias R.; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R.; Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim

    2016-06-01

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4- and Al2O3-6- are measured in the region from 400 to 1200 cm-1. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6- anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3-. Terminal Al-O stretching modes are found between 1140 and 960 cm-1. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm-1) and lower energies (850-570 cm-1), respectively. Four modes in-between 910 and 530 cm-1 represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al-(O)2-Al ring.

  13. A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy.

    PubMed

    Binzoni, Tiziano; Cooper, Chris E; Wittekind, Anna L; Beneke, Ralph; Elwell, Clare E; Van De Ville, Dimitri; Leung, Terence S

    2010-09-01

    Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during rhythmically contracting exercising skeletal muscle. We found that the saturation of the blood during the contraction phase was lower than that during the relaxation phase. The calculated oxygen drop was then divided by the contraction time to generate a value for the muscle oxygen consumption in the optical region of interest. As a test we measured the muscle oxygen consumption in the human vastus lateralis during exercise on a cycle ergometer by 11 trained male athletes (32 +/- 11 years old) at 40% and 110% peak aerobic power. We saw an increase from 13.78 micromol 100 g(-1) min(-1) to 19.72 micromol 100 g(-1) min(-1) with the increase in power. The measurements are theoretically exempt from usual NIRS confounders such as myoglobin and adipose tissue and could provide a useful tool for studying human physiology.

  14. Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy.

    PubMed

    Stupar, Dusan; Krieg, Jürgen; Krötz, Peter; Sonnabend, Guido; Sornig, Manuela; Giesen, Thomas F; Schieder, Rudolf

    2008-06-01

    To our knowledge we present the first experiments with a fully reflective external-cavity quantum-cascade laser system at mid-infrared wavelengths for use as a local oscillator in a heterodyne receiver. The performance of the presented setup was investigated using absorption spectroscopy as well as heterodyne techniques. Tunability over approximately 30 cm(-1) at 1130 cm(-1) was demonstrated using a grating spectrometer. A continuous tuning range of 0.28 cm(-1) was verified by observing the spectra of an internally coupled confocal Fabry-Pérot interferometer and the absorption lines of gas phase SO(2). In a second step the output from the system was used as a local oscillator signal for a heterodyne setup. We show that spectral stability and side mode suppression are excellent and that a compact external-cavity quantum-cascade laser system is well suited to be used as a local oscillator in infrared heterodyne spectrometers.

  15. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-01

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  16. Integral field spectroscopy of the ultraluminous X-ray source Holmberg II X-1

    NASA Astrophysics Data System (ADS)

    Lehmann, I.; Becker, T.; Fabrika, S.; Roth, M.; Miyaji, T.; Afanasiev, V.; Sholukhova, O.; Sánchez, S. F.; Greiner, J.; Hasinger, G.; Costantini, E.; Surkov, A.; Burenkov, A.

    2005-03-01

    We present optical integral field observations of the H II region containing the ultraluminous X-ray source Holmberg II X-1. We confirm the existence of an X-ray ionized nebula as the counterpart of the source owing to the detection of an extended He II λ4686 region (21× 47 pc) at the Chandra ACIS-S position. An extended blue object with a size of 11× 14 pc is coincident with the X-ray/He II λ4686 region, which could indicate that it is either a young stellar complex or a cluster. We have derived an X-ray to optical luminosity ratio of L_X/LB≥170, and presumable it is L_X/LB˜300{-}400 using the recent HST ACS data. We find a complex velocity dispersion at the position of the ULX. In addition, there is a radial velocity variation in the X-ray ionized region found in the He II emission of ±50 km s-1 on spatial scales of 2 3primeprime. We believe that the putative black hole not only ionizes the surrounding HII gas, but also perturbs it dynamically (via jets or the accretion disk wind). The spatial analysis of the public Chandra ACIS-S data reveals a point-like X-ray source and gives marginal indication of an extended component (ll15% of the total flux). The XMM-Newton EPIC-PN spectrum of HoII X-1 is best fitted with an absorbed power law in addition to either a thermal thick plasma or a thermal thin plasma or a multi-colour disk black body (MCD). In all cases, the thermal component shows a relatively low temperature (kT˜0.14{-}0.22 keV). Finally we discuss the optical/X-ray properties of HoII X-1 with regards to the possible nature of the source. The existence of an X-ray ionized nebula coincident with the ULX and the soft X-ray component with a cool accretion disk favours the interpretation as an intermediate-mass black hole (IMBH). However, the complex velocity behaviour at the position of the ULX indicates a dynamical influence of the black hole on the local HII gas.

  17. XMM-Newton reveals extreme winds in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Middleton, M.; Fabian, A.

    2016-06-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources with X-ray luminosities above 10^{39} erg/s, thought to be powered by accretion onto compact objects. Viable solutions include accretion onto neutron stars with strong magnetic fields, stellar-mass black holes at or in excess of the Eddington limit or intermediate-mass black holes. The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. In this talk, I will show the discovery of rest-frame emission and blueshifted (˜0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The blueshifted absorption lines occurs in a fast outflowing gas, whereas the emission lines originate in slow-moving gas around the source. The compact object is therefore surrounded by powerful winds with an outflow velocity of about 0.2c as predicted by models of hyper-accreting black holes. Further, deep, XMM-Newton observations will reveal powerful winds in many other ultraluminous X-ray sources and provide important hints to estimate the energetics of the wind, the geometry of the system, and the black hole masses.

  18. A Spitzer Survey of Mid-infrared Molecular Emission from Protoplanetary Disks. II. Correlations and Local Thermal Equilibrium Models

    NASA Astrophysics Data System (ADS)

    Salyk, C.; Pontoppidan, K. M.; Blake, G. A.; Najita, J. R.; Carr, J. S.

    2011-04-01

    We present an analysis of Spitzer Infrared Spectrograph observations of H2O, OH, HCN, C2H2, and CO2 emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions for this mid-infrared line forest. Aside from the remarkable differences in molecular line strengths between T Tauri, Herbig Ae/Be, and transitional disks discussed in Pontoppidan et al., we note that the line detection efficiency is anti-correlated with the 13/30 μm spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and Hα equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H2O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L sstarf. However, significant sample variation, especially in molecular line ratios, remains, and its origin has yet to be explained. Local thermal equilibrium (LTE) models of the H2O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H2O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near ~1018 cm-2 and 450 K for all sources, suggesting a high abundance of H2O in many planet-forming regions. Other molecules have a range of excitation temperatures from ~500to1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of ~10-3 for all molecules, with the exception of CO, for which n(CO)/n(H2O) ~ 1. However, LTE fitting caveats and differences in the way thermo-chemical modeling results are reported make comparisons with

  19. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. II. CORRELATIONS AND LOCAL THERMAL EQUILIBRIUM MODELS

    SciTech Connect

    Salyk, C.; Pontoppidan, K. M.; Blake, G. A.; Najita, J. R.; Carr, J. S.

    2011-04-20

    We present an analysis of Spitzer Infrared Spectrograph observations of H{sub 2}O, OH, HCN, C{sub 2}H{sub 2}, and CO{sub 2} emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions for this mid-infrared line forest. Aside from the remarkable differences in molecular line strengths between T Tauri, Herbig Ae/Be, and transitional disks discussed in Pontoppidan et al., we note that the line detection efficiency is anti-correlated with the 13/30 {mu}m spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and H{alpha} equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H{sub 2}O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L{sub *}. However, significant sample variation, especially in molecular line ratios, remains, and its origin has yet to be explained. Local thermal equilibrium (LTE) models of the H{sub 2}O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H{sub 2}O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near {approx}10{sup 18} cm{sup -2} and 450 K for all sources, suggesting a high abundance of H{sub 2}O in many planet-forming regions. Other molecules have a range of excitation temperatures from {approx}500to1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of {approx}10{sup -3} for all molecules, with the exception of CO, for which n(CO)/n(H{sub 2}O) {approx} 1. However, LTE

  20. The Far-Infrared Energy Distributions of Seyfert and Starburst Galaxies in the Local Universe: Infrared Space Observatory Photometry of the 12 Micron Active Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Andreani, Paola; Malkan, Matthew A.

    2002-06-01

    New far-infrared photometry with ISOPHOT aboard the Infrared Space Observatory (ISO) is presented for 58 galaxies with homogeneous published data for another 32 galaxies, all belonging to the 12 μm galaxy sample-in total, 29 Seyfert 1 galaxies, 35 Seyfert 2 galaxies, and 12 starburst galaxies, or about half of the 12 μm active galaxy sample, plus 14 normal galaxies for comparison. ISO and Infrared Astronomical Satellite (IRAS) data are used to define color-color diagrams and spectral energy distributions (SEDs). Thermal dust emission at two temperatures (one cold at 15-30 K and one warm at 50-70 K) can fit the 60-200 μm SED, with a dust emissivity law proportional to the inverse square of the wavelength. Seyfert 1 galaxies and Seyfert 2 galaxies are indistinguishable longward of 100 μm, while, as already seen by IRAS, the former have flatter SEDs shortward of 60 μm. A mild anticorrelation is found between the [200-100] color and the ``60 μm excess.'' We infer that this is due to the fact that galaxies with a strong starburst component and thus a strong 60 μm flux have a steeper far-infrared turnover. In non-Seyfert galaxies, increasing the luminosity corresponds to increasing the star formation rate, which enhances the 25 and 60 μm emission. This shifts the peak emission from around 150 μm in the most quiescent spirals to shorter than 60 μm in the strongest starburst galaxies. To quantify these trends further, we identified with the IRAS colors three idealized infrared SEDs: pure quiescent disk emission, pure starburst emission, and pure Seyfert nucleus emission. Even between 100 and 200 μm, the quiescent disk emission remains much cooler than the starburst component. Seyfert galaxies have 100-200 μm SEDs ranging from pure disks to pure starbursts, with no apparent contribution from their active nuclei at those wavelengths. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France

  1. The subarcsecond mid-infrared view of local active galactic nuclei - I. The N- and Q-band imaging atlas

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.; Smette, A.; Duschl, W. J.

    2014-04-01

    We present the first subarcsecond-resolution mid-infrared (MIR) atlas of local active galactic nuclei (AGN). Our atlas contains 253 AGN with a median redshift of z = 0.016, and includes all publicly available MIR imaging performed to date with ground-based 8-m class telescopes, a total of 895 independent measurements. Of these, more than 60 per cent are published here for the first time. We detect extended nuclear emission in at least 21 per cent of the objects, while another 19 per cent appear clearly point-like, and the remaining objects cannot be constrained. Where present, elongated nuclear emission aligns with the ionization cones in Seyferts. Subarcsecond resolution allows us to isolate the AGN emission on scales of a few tens of parsecs and to obtain nuclear photometry in multiple filters for the objects. Median spectral energy distributions (SEDs) for the different optical AGN types are constructed and individual MIR 12 and 18 μm continuum luminosities are computed. These range over more than six orders of magnitude. In comparison to the arcsecond-scale MIR emission as probed by Spitzer, the continuum emission is much lower on subarcsecond scales in many cases. The silicate feature strength is similar on both scales and generally appears in emission (absorption) in type I (II) AGN. However, the polycyclic aromatic hydrocarbon emission appears weaker or absent on subarcsecond scales. The differences of the MIR SEDs on both scales are particularly large for AGN/starburst composites and close-by (and weak) AGN. The nucleus dominates over the total emission of the galaxy only at luminosities ≳1044 erg s-1. The AGN MIR atlas is well suited not only for detailed investigation of individual sources but also for statistical studies of AGN unification.

  2. Ammonia as a Temperature Tracer in the Ultraluminous Galaxy Merger Arp 220

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Henkel, Christian; Braatz, James A.; Weiß, Axel

    2011-12-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH3) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH3(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 ± 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from ~0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH3(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold (lsim 20 K) gas layer with an estimated column density of <~ 2 × 1014 cm-2. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are ~120-430 km s-1, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to ~1800 km s-1 previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 ± 19) K, corresponding to a kinetic temperature of T kin = (186 ± 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH3) = (1.7 ± 0.1) × 1016 cm-2 and (8.4 ± 0.5) × 1016 cm-2, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are consistent with an ortho-to-para-ammonia ratio of unity, implying that the ammonia formation temperature exceeds ~30 K. In the context of a model with a molecular ring that

  3. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. II. Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.

  4. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. 2; Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.

  5. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  6. Exploratory Chandra Observation of the Ultraluminous Quasar SDSS J010013.02+280225.8 at Redshift 6.30

    NASA Astrophysics Data System (ADS)

    Ai, Yanli; Dou, Liming; Fan, Xiaohui; Wang, Feige; Wu, Xue-Bing; Bian, Fuyan

    2016-06-01

    We report exploratory Chandra observations of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. The quasar is clearly detected by Chandra with a possible component of extended emission. The rest-frame 2–10 keV luminosity is {9.0}-4.5+9.1 × 1045 erg s‑1 with an inferred photon index of Γ = {3.03}-0.70+0.78. This quasar is X-ray bright, with an inferred X-ray-to-optical flux ratio {α }{ox} = -{1.22}-0.05+0.07, higher than the values found in other quasars of comparable ultraviolet luminosity. The properties inferred from this exploratory observation indicate that this ultraluminous quasar might be growing with super-Eddington accretion and probably viewed with a small inclination angle. Deep X-ray observations will help to probe the plausible extended emission and better constrain the spectral features for this ultraluminous quasar.

  7. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2005-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H(sub 2)O, CH, NH, and NH(sub 3), as well as in the [O I] 63 micron line and emission in the [C II] 158 micron line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 microns is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus (2 - 6 x 10(exp 17) cm(exp -2)) and the extended region (approximately 2 x 10(exp 17) cm(exp -2)). The H(sub 2)O column density is also high toward the nucleus (2 - 10 x 10(exp 17) cm(exp -2)) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH(sub 3) toward the nucleus, with values of approximately 1.5 x 10(exp 16) cm(exp -2) and approximately 3 x 10(exp 16) cm(exp -2), respectively, whereas the NH(sub 2) column density is lower than approximately 2 x 10(exp 15) cm(exp -2). A combination of PDRs in the extended region and hot cores with enhanced H(sub 2)O photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H(sub 2)O, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 micron line is well reproduced by our models and its deficit relative to the CII/FIR ratio in normal and starburst galaxies is suggested to

  8. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2004-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H 2 0 , CH, NH, and "3, well as in the [0 I] 63 pm line and emission in the [C 111 158 pm line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 pm is modeled AS A WARM (106 K) NUCLEAR REGION THAT IS OPTICALLY THICK IN THE FAR-INFRARED, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region (about 2 x 10 sup 17 cm sup-2). The H2O column density is also high toward the nucleus (2 - 10 x 1017 cm-2) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH3 toward the nucleus, with values of about 1.5 x 10supl6 cmsup-2 and about 3 x 10supl6 cmsup-2, respectively, whereas the NH2 column density is lower than about 2 x 10sup15 cmsup-2. A combination of PDRs in the extended region and hot cores with enhanced H20 photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H20, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 pm line is well reproduced by our models and its "deficit" relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far- infrared radiation, ALTHOUGH OUR MODELS ALONE CANNOT RULE OUT EXTINCTION EFFECTS IN THE

  9. Over half of the far-infrared background light comes from galaxies at z >or= 1.2.

    PubMed

    Devlin, Mark J; Ade, Peter A R; Aretxaga, Itziar; Bock, James J; Chapin, Edward L; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Marsden, Gaelen; Martin, Peter G; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Ngo, Henry; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V

    2009-04-01

    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microm in the rest frame. At 1 infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microm. Combining our results at 500 microm with those at 24 microm, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >or= 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.

  10. An Ultraluminous Lyα Emitter with a Blue Wing at z = 6.6

    NASA Astrophysics Data System (ADS)

    Hu, E. M.; Cowie, L. L.; Songaila, A.; Barger, A. J.; Rosenwasser, B.; Wold, I. G. B.

    2016-07-01

    We report the detection of the most luminous high-redshift Lyα emitting galaxy (LAE) yet seen, with {log}L({{Ly}}α )=43.9\\quad {erg} {{{s}}}-1. The galaxy—COSMOS Lyα1, or COLA1—was detected in a search for ultraluminous LAEs with Hyper Suprime-Cam on the Subaru telescope. It was confirmed as lying at z = 6.593, based on a Lyα line detection obtained from follow-up spectroscopy with the DEIMOS spectrograph on Keck II. COLA1 is the first very high-redshift LAE to show a multi-component Lyα line profile with a blue wing, which suggests that it could lie in a highly ionized region of the intergalactic medium (IGM) and could have significant infall. If this interpretation is correct, then ultraluminous LAEs like COLA1 offer a unique opportunity to determine the properties of the H ii regions around these galaxies, which will help in understanding the ionization of the z ˜ 7 IGM.

  11. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. I. Observational Results for Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.

  12. Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization

    PubMed Central

    Mattson, Eric C.; Aboualizadeh, Ebrahim; Barabas, Marie E.; Stucky, Cheryl L.; Hirschmugl, Carol J.

    2013-01-01

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells. PMID:24256815

  13. DEEP K{sub s} -NEAR-INFRARED SURFACE PHOTOMETRY OF 80 DWARF IRREGULAR GALAXIES IN THE LOCAL VOLUME

    SciTech Connect

    Fingerhut, Robin L.; McCall, Marshall L.; Argote, Mauricio; Cluver, Michelle E.; Nishiyama, Shogo; Rekola, Rami T. F.; Richer, Michael G.; Vaduvescu, Ovidiu; Woudt, Patrick A. E-mail: mccall@yorku.c E-mail: mcluver@ipac.caltech.ed E-mail: rareko@utu.f E-mail: ovidiuv@ing.iac.e

    2010-06-10

    We present deep near-infrared (K{sub s}) images and surface photometry for 80 dwarf irregular galaxies (dIs) within {approx}5 Mpc of the Milky Way. The galaxy images were obtained at five different facilities between 2004 and 2006. The image reductions and surface photometry have been performed using methods specifically designed for isolating faint galaxies from the high and varying near-infrared sky level. Fifty-four of the 80 dIs have surface brightness profiles which could be fit to a hyperbolic-secant (sech) function, while the remaining profiles could be fit to the sum of a sech and a Gaussian function. From these fits, we have measured central surface brightnesses, scale lengths, and integrated magnitudes. This survey is part of a larger study of the connection between large-scale structure and the global properties of dIs, the hypothesized building-blocks of more massive galaxies.

  14. ULTRA-DEEP MID-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES AT z{approx} 1 AND z {approx} 2

    SciTech Connect

    Fadda, Dario; Yan Lin; Frayer, David T.; Helou, George; Lagache, Guilaine; Marcillac, Delphine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew E-mail: lyan@ipac.caltech.ed

    2010-08-10

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 {mu}m) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z {approx} 1 and 12% at z {approx} 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z {approx} 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z {approx} 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 {mu}m PAH equivalent widths (EW) reach a plateau of {approx} 1 {mu}m for L {sub 24{mu}m} {approx}< 10{sup 11} L{sub sun}. At higher luminosities, EW{sub 6.2{mu}m} anti-correlates with L{sub 24{mu}m}. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW{sub 6.2{mu}m}-L{sub 24{mu}m} relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z {approx} 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L{sub FIR}/L{sub 1600A} ratios higher than those of starburst galaxies at a given UV slope. The 'IR

  15. Ultra-deep Mid-infrared Spectroscopy of Luminous Infrared Galaxies at z ~ 1 and z ~ 2

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Yan, Lin; Lagache, Guilaine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Frayer, David T.; Marcillac, Delphine; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew; Helou, George

    2010-08-01

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 μm) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z ~ 1 and 12% at z ~ 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z ~ 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z ~ 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 μm PAH equivalent widths (EW) reach a plateau of ~ 1 μm for L 24 μm <~ 1011 L sun. At higher luminosities, EW6.2 μm anti-correlates with L 24 μm. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW6.2 μm-L 24 μm relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z ~ 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L FIR/L 1600 Å ratios higher than those of starburst galaxies at a given UV slope. The "IR excess" is mostly due to strong 7.7 μm PAH emission and underestimation of UV dust extinction. On the basis of

  16. CS (5-4) survey towards nearby infrared bright galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Junzhi; Zhang, Zhiyu; Shi, Yong

    2011-09-01

    With the observations of the CS (5-4) line towards a sample of 24 infrared bright galaxies using Heinrich Hertz Submillimeter Telescope (HHSMT), we detected CS (5-4) emission in 14 galaxies, including 12 ultraluminous infrared galaxies (ULIRGs)/luminous infrared galaxies (LIRGs) and two nearby normal galaxies. As a good dense gas tracer, which has been well used for studying star formation in the Milky Way, CS (5-4) can trace the active star-forming gas in galaxies. The correlation between CS (5-4) luminosity, which is estimated with detected CS (5-4) line emission, and the infrared luminosity in these 14 galaxies, is fitted with a correlation coefficient of 0.939 and a slope close to unity. This correlation confirms that dense gas, which is closely linked to star formation, is very important for understanding star formation in galaxies.

  17. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer: Evidence of High Unbeamed Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2008-01-01

    We present the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 micron emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation, usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the Holmberg II ULX. We find that the luminosity and the morphology of the line emission is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is radiation bounded both in the line of sight direction and to the west, and probably matter bounded to the east. Evidence for a massive black hole (BH) in this ULX is mounting. Detailed photoionization models favor an intermediate mass black hole of at least 85 Solar Mass as the ionization source for the [OIV] emission. We find that the spectral type of the companion star strongly affects the expected strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst galaxies containing black hole binaries.

  18. What Shapes the Far-infrared Spectral Energy Distributions of Galaxies?

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Hayward, Christopher C.; Ferguson, Henry C.; Somerville, Rachel S.

    2016-02-01

    To explore the connection between the global physical properties of galaxies and their far-infrared (FIR) spectral energy distributions (SEDs), we study the variation in the FIR SEDs of a set of 51 hydrodynamically simulated galaxies, both mergers and isolated systems representative of low- and high-redshift galaxies, that are generated by performing dust radiative transfer in post-processing. We study the FIR SEDs using principal component (PC) analysis, and find that 97% of the variance in the sample can be explained by two PCs. The first PC characterizes the wavelength of the peak of the FIR SED, and the second encodes the breadth of the SED. We find that the coefficients of both PCs can be predicted well using a double power law in terms of the IR luminosity and dust mass, which suggests that these two physical properties are the primary determinants of galaxies’ FIR SED shapes. Incorporating galaxy sizes does not significantly improve our ability to predict the FIR SEDs. Our results suggest that the observed redshift evolution in the effective dust temperature at a fixed IR luminosity is not driven by geometry: the SEDs of z∼ 2-3 ultraluminous IR galaxies (ULIRGs) are cooler than those of local ULIRGs, not because the high-redshift galaxies are more extended, but rather because they have higher dust masses at fixed IR luminosity. Finally, based on our simulations, we introduce a two-parameter set of SED templates that depend on both IR luminosity and dust mass.

  19. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  20. Implications of the Observed Ultraluminous X-Ray Source Luminosity Function

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko

    2012-01-01

    We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.

  1. Propeller effect in action in the ultraluminous accreting magnetar M82 X-2

    NASA Astrophysics Data System (ADS)

    Tsygankov, Sergey S.; Mushtukov, Alexander A.; Suleimanov, Valery F.; Poutanen, Juri

    2016-03-01

    We present here the first convincing observational manifestation of a magnetar-like magnetic field in an accreting neutron star in binary system - the first pulsating ultraluminous X-ray source X-2 in the galaxy M82. Using the Chandra X-ray observatory data, we show that the source exhibit the bimodal distribution of the luminosity with two well-defined peaks separated by a factor of 40. This behaviour can be interpreted as the action of the `propeller regime' of accretion. The onset of the propeller in a 1.37 s pulsar at luminosity of ˜1040 erg s-1 implies the dipole component of the neutron star magnetic field of ˜1014 G.

  2. Accretion mode of the ultraluminous X-ray source M82 X-2

    NASA Astrophysics Data System (ADS)

    Karino, S.; Miller, J. C.

    2016-11-01

    Periodic pulsations have been found in emission from the ultraluminous X-ray source M82 X-2, strongly suggesting that the emitter is a rotating neutron star rather than a black hole. However, the radiation mechanisms and accretion mode involved have not yet been clearly established. In this paper, we examine the applicability to this object of standard accretion modes for high mass X-ray binaries (HMXBs). We find that spherical wind accretion, which drives OB-type HMXBs, cannot apply here but that there is a natural explanation in terms of an extension of the picture for standard Be-type HMXBs. We show that a neutron star with a moderately strong magnetic field, accreting from a disc-shaped wind emitted by a Be-companion, could be compatible with the observed relation between spin and orbital period. A Roche lobe overflow picture is also possible under certain conditions.

  3. [INTRAOPERATIVE DETECTION OF SENTINEL LYMPH NODES USING INFRARED IMAGING SYSTEM IN LOCAL NON-SMALL CELL CARCINOMA OF LUNG].

    PubMed

    Akopov, A L; Papayan, G V; Chistyakov, I V; Karlson, A; Gerasin, A V; Agishev, A S

    2015-01-01

    The article presents the results of the first domestic experience of intraoperative fluorescence mapping of sentinel lymph nodes in lung cancer. The research included 10 patients, who underwent surgery over the period of time from September 2013 to May 2014. After performing thoracotomy, the solution of indocyanine green (ICG) was injected using subpleural position above the tumor in 3-4 points. Fluorescence (ICG) image guided surgery was carried out by using infrared radiation (wave length 808 nm) on lung surface, root of lung, mediastinum in real time. Fluorescence lymph nodes were mapped. In case that metastatic lesions weren't revealed in sentinel lymph nodes, they weren't noted in other nodes. Method specificity consisted of 100%. Biopsy and histological study of sentinel lymph nodes mapped during fluorescence (ICG) image guided surgery could be useful for prevention of lymphodissection in patients with non-small cell carcinoma of lung. PMID:26601511

  4. [Applying local neural network and visible/near-infrared spectroscopy to estimating available nitrogen, phosphorus and potassium in soil].

    PubMed

    Wu, Qian; Yang, Yu-hong; Xu, Zhao-li; Jin, Yan; Guo, Yan; Lao, Cai-lian

    2014-08-01

    To establish the quantitative relationship between soil spectrum and the concentration of available nitrogen, phosphorus and potassium in soil, the critical procedures of a new analysis method were examined, involving spectral preprocessing, wavebands selection and adoption of regression methods. As a result, a soil spectral analysis model was built using VIS/NIRS bands, with multiplicative scatter correction and first-derivative for spectral preprocessing, and local nonlinear regression method (Local regression method of BP neural network). The coefficients of correlation between the chemically determined and the modeled available nitrogen, phosphorus and potassium for predicted samples were 0.90, 0.82 and 0.94, respectively. It is proved that the prediction of local regression method of BP neural network has better accuracy and stability than that of global regression methods. In addition, the estimation accuracy of soil available nitrogen, phosphorus and potassium was increased by 40.63%, 28.64% and 28.64%, respectively. Thus, the quantitative analysis model established by the local regression method of BP neural network could be used to estimate the concentration of available nitrogen, phosphorus and potassium rapidly. It is innovative for using local nonlinear method to improve the stability and reliability of the soil spectrum model for nutrient diagnosis, which provides technical support for dynamic monitoring and process control for the soil nutrient under different growth stages of field-growing crops.

  5. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes. PMID:27120159

  6. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  7. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, Ciro; Middleton, Matthew J.; Fabian, Andrew C.

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 1039 ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (103-105 solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  8. Near-infrared imaging of Markarian 231: Evidence for a double nucleus

    NASA Technical Reports Server (NTRS)

    Armus, L.; Surace, J. A.; Soifer, B. T.; Matthews, K.; Graham, J. R.; Larkin, J. E.

    1994-01-01

    Near-infrared (1.2-2.4 micrometers) images are presented for the central 10 arcsec of the Seyfert 1 galaxy Markarian 231. We find a faint, but intrinsically luminous (M(sub k) approximately -20.7) secondary peak in the near-infrared light distribution approximately 3.5 arcsec (2.7 kpc) south of the primary Seyfert 1 nucleus. Since there is no optical or infrared evidence for ongoing star formation at the location of this secondary peak, and its near-infrared luminosity and color are comparable to slightly reddened spiral bulges or elliptical nuclei, we identify this peak with the stripped nucleus of the companion galaxy involved in the Mrk 231 merger event. Depending upon the exact ratio of the masses of the primary and secondary nucleus in the Mrk 231 system we estimate a merger time scale of less than or equal to 10(exp 9) yr. The morphology of the southern nucleus suggests that it may have recently survived a close passage (r less than 200 pc) with the Seyfert 1 nucleus on a highly elliptical orbit, in which case the merger time scale may be significantly shorter (approximately 10(exp 7) yr. We re-calculate the average merger time scale for the seven ultraluminous infrared galaxies with double nuclei in the Bright Galaxy Sample (the BGS) of Soifer et al. (AJ, 98, 766 (1989)) and derive a value of approximately 10(exp 8) yr. Since seven of ten of the ultraluminous infrared galaxies in the BGS are now known to be double, we estimate the ultraluminous 'phase' may be close to this value. Along with Arp 220 and Mrk 273, Mrk 231 is the third member of the class to possess a high brightness temperature non-thermal radio core and a double nucleus, suggesting the time scale for the generation or fueling of the active nucleus can be much less than the dynamical time scale for the merger of the progenitor nuclei.

  9. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  10. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    NASA Astrophysics Data System (ADS)

    Montes-Rodríguez, María de los Ángeles; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Mitsoura, Eleni; Santiago-Concha, Bernardino Gabriel

    2014-11-01

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  11. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    SciTech Connect

    Montes-Rodríguez, María de los Ángeles Mitsoura, Eleni; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Santiago-Concha, Bernardino Gabriel

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  12. Measurement of the local muscular metabolism by time-domain near infrared spectroscopy during knee flex-extension induced by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Contini, D.; Spinelli, L.; Torricelli, A.; Ferrante, S.; Pedrocchi, A.; Molteni, F.; Ferrigno, G.; Cubeddu, R.

    2009-02-01

    We present a preliminary study that combines functional electrical stimulation and time-domain near infrared spectroscopy for a quantitative measurement of the local muscular metabolism during rehabilitation of post-acute stroke patients. Seven healthy subjects and nine post-acute stroke patients underwent a protocol of knee flex-extension of the quadriceps induced by functional electrical stimulation. During the protocol time-domain near infrared spectroscopy measurement were performed on both left and right muscle. Hemodynamic parameters (concentration of oxy- and deoxy-genated hemoglobin) during baseline did not show any significant differences between healthy subject and patients, while functional performances (knee angle amplitude) were distinctly different. Nevertheless, even if their clinical histories were noticeably different, there was no differentiation among functional performances of patients. On the basis of the hemodynamic parameters measured during the recovery phase, instead, it was possible to identify two classes of patients showing a metabolic trend similar or very different to the one obtained by healthy subjects. The presented results suggest that the combination of functional and metabolic information can give an additional tool to the clinicians in the evaluation of the rehabilitation in post-acute stroke patients.

  13. Localization and orientation of functional water molecules in bacteriorhodopsin as revealed by polarized Fourier transform infrared spectroscopy.

    PubMed

    Hatanaka, M; Kandori, H; Maeda, A

    1997-08-01

    Linear dichroic difference Fourier transform infrared spectra upon formation of the M photointermediate were recorded with oriented purple membranes. The purpose was to determine the angle of the directions of the dipole moments of 1) the water molecule whose O-H stretching vibration appears at 3643 cm-1 for the unphotolyzed state and 3671 cm-1 for the M intermediate, and 2) the C=O bond of protonated Asp85 in the M intermediate. The angle of 36 degrees we find for the C=O of the protonated Asp85 in the M intermediate is not markedly different from 26 degrees for unprotonated Asp85 in the model based on cryoelectron diffraction, indicating the absence of gross orientation changes in Asp85 upon its protonation. The O-H band at 3671 cm-1 of a water molecule in the M intermediate, although its position has not determined, is fixed almost parallel to the membrane plane. For the unphotolyzed state the angle of the water O-H to the membrane normal was determined to be 60 degrees. On the basis of these data and the structural model, we place the water molecule in the unphotolyzed state at a position where it forms hydrogen bonds with the Schiff base, Asp85, Asp212, and Trp86.

  14. High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator.

    PubMed

    Schmülling, F; Klumb, B; Harter, M; Schieder, R; Vowinkel, B; Winnewisser, G

    1998-08-20

    A new mid-IR heterodyne spectrometer, which is intended to be applied for atmospheric and astrophysical studies, is presented. The spectrometer uses a frequency-stabilized tunable diode laser as a local oscillator. Owing to the low output power of available single-mode diode lasers, a newly developed confocal-ring resonator, the diplexer, is used to superimpose the source signal efficiently with that of the local oscillator. Additionally, the diplexer serves as an optical filter that establishes controlled optical feedback between the laser diode and the detector, which allows stable laser operation with linewidths of the order of 1 MHz. The heterodyne signal from the HgCdTe detector is analyzed by means of a 1.4-GHz acousto-optical spectrometer. With this setup we find system temperatures as low as 4400 K (double sideband), that is, approximately a factor of 6 of the quantum limit.

  15. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  16. Evaluation of the local homogeneity fluctuation of sinter of the small chip size MLCCs by means of mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsuzuku, Koichiro; Hagiwara, Tomoya; Takeoka, Shunsuke; Ikemoto, Yuka

    2008-05-01

    Vibration bands of dielectric ceramics appear at a mid-infrared (MIR) and those position and shape are changed owing to change environment of crystal lattice. Therefore, micro-focus MIR spectroscopy is a one of useful tool to evaluate very small size capacitor (e.g. smaller than 0.5 mm in chip size). Very small size multi-layer capacitor: MLCC are one of very important device to produce high quality electrical products such as cell phone, etc. Quality and reliability of MLCC are corresponding to not only average dielectric properties but also local fluctuation of them. Furthermore, local fluctuation of dielectric properties of MLCC could evaluate with MIR spectroscopy. It is possible to obtain a satisfied MIR spectrum from small size samples performed by a micro-focus spectrometer combined with synchrotron radiation as a high luminance light source at beam line BL43IR of SPring-8. From the above result, it is possible to evaluate the degree of homogeneity by comparing the shape change of Ti-O peak on IR spectra.

  17. The role of localized junction leakage in the temperature-dependent laser-beam-induced current spectra for HgCdTe infrared focal plane array photodiodes

    SciTech Connect

    Feng, A. L.; Li, G. E-mail: xschen@mail.sitp.ac.cn; He, G.; Sun, Z. Q.; Hu, W. D.; Chen, X. S. E-mail: xschen@mail.sitp.ac.cn; Yin, F.; Zhang, B.; Lu, W.

    2013-11-07

    We have performed the study on the dependence of laser beam induced current (LBIC) spectra on the temperature for the vacancy-doped molecular beam epitaxy grown Hg{sub 1−x}Cd{sub x}Te (x = 0.31) photodiodes by both experiment and numerical simulations. It is found that the measured LBIC signal has different distributions for different temperature extents. The LBIC profile tends to be more asymmetric with increasing temperature below 170 K. But the LBIC profile becomes more symmetric with increasing temperature above 170 K. Based on a localized leakage model, it is indicated that the localized junction leakage can lead to asymmetric LBIC signal, in good agreement with the experimental data. The reason is that the trap-assisted tunneling current is the dominant leakage current at the cryogenic temperature below 170 K while the diffusion current component becomes dominant above the temperature of 170 K. The results are helpful for us to better clarify the mechanism of the dependence of LBIC spectra on temperature for the applications of HgCdTe infrared photodiodes.

  18. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects. PMID:25297433

  19. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  20. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  5. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC1313

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Makishima, K.; Ngc 1313 Team

    We report about the Suzaku observation oftwo ultraluminous X-ray sources (ULXs), X-1 and X-2, in NGC1313, together with their spectra by XMM-Newton. During the observation, both showed intensity-correlated spectral changes. The brighter source, X-1, exhibited the highest luminosity (˜ 3 × 1040 erg s-1) ever recorded from this source. Its spectral variation is ascribed to a strong power-law like component with a mild high energy curvature, while about 10 modeled by a cool disk emission. These properties suggest that the source was in the ``very high'' state, wherein the disk emission is strongly Comptonized and the optically-thick disk is truncated at a large radii or cooled off. The spectrum of X-2 is best represented, in its fainter phase, by a multicolor disk model with the innermost disk temperature of 1.2-1.3 keV, and becomes flatter as the source gets brighter. Hence X-2 is interpreted to be in a slim disk state. These results suggest that the two ULXs host black holes of a few tens to a few hundreds solar masses.

  6. Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M 33 X-8

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Wang, Jun-Xian; Gu, Wei-Min; Lu, Ju-Fu

    2009-12-01

    We provide a detailed analysis of 12 XMM observations of the nearest persistent extragalactic ultraluminous X-ray source (ULX), M 33 X-8. No significant spectral evolution has been detected for the period of the observations, and therefore we combine the individual observations to increase the signal-to-noise ratio for a spectral fitting. The combined spectra are best fitted by a self-consistent p-free disk plus power-law component model with p = 0.571+0.032-0.030, kTin (inner disk temperature) = 1.38+0.09-0.08 keV, and the flux ratio of the p-free disk component to the power-law component being 0.63 : 0.37 in the 0.3-10 keV band. The fitting indicates that the black hole in M 33 X-8 is of ˜10odot, and accretes at a super-Eddington rate (˜1.5LEdd); also, the phase of the accretion disk is close to that of a slim disk (p = 0.5). We report, for the first time, that an extra power-law component is required in addition to the p-free disk model for ULXs. In super-Eddington cases, the power-law component may possibly result from an optically thin inner region of the disk or a Comptonized corona, similar to that of a standard thin disk.

  7. The Slim-disk State of the Ultraluminous X-Ray Source in M83

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuntz, K. D.; Long, Knox S.; Blair, William P.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 1039 erg s-1 (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ~ 10-20 M ⊙. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  8. DYNAMICAL MASS CONSTRAINTS ON THE ULTRALUMINOUS X-RAY SOURCE NGC 1313 X-2

    SciTech Connect

    Liu Jifeng; Orosz, Jerome; Bregman, Joel N.

    2012-01-20

    Dynamical mass measurements hold the key to answering whether ultraluminous X-ray sources (ULXs) are intermediate-mass black holes (IMBHs) or stellar-mass black holes with special radiation mechanisms. NGC 1313 X-2 is so far the only ULX with Hubble Space Telescope light curves, the orbital period, and the black hole's radial velocity amplitude based on the He II {lambda}4686 disk emission line shift of {approx}200 km s{sup -1}. We constrain its black hole mass and other parameters by fitting observations to a binary light curve code with accommodations for X-ray heating of the accretion disk and the secondary. Given the dynamical constraints from the observed light curves and the black hole radial motion and the observed stellar environment age, the only acceptable models are those with 40-50 Myr old intermediate-mass secondaries in their helium core and hydrogen shell burning phase filling 40%-80% of their Roche lobes. The black hole can be a massive black hole of a few tens of M{sub Sun} that can be produced from stellar evolution of low-metallicity stars, or an IMBH of a few hundred to above 1000 M{sub Sun} if its true radial velocity 2K' < 40 km s{sup -1}. Further observations are required to better measure the black hole radial motion and the light curves in order to determine whether NGC 1313 X-2 is a stellar-mass black hole or an IMBH.

  9. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies.

    PubMed

    Irwin, Jimmy A; Maksym, W Peter; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-10-19

    A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 10(39) erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 10(40) erg per second; the other flared five times to 10(40) erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.

  10. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy A.; Maksym, W. Peter; Sivakoff, Gregory R.; Romanowsky, Aaron J.; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M.

    2016-10-01

    A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 1039 erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 1040 erg per second; the other flared five times to 1040 erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.

  11. REVISITING PUTATIVE COOL ACCRETION DISKS IN ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Miller, J. M.; King, A. L.; Reynolds, M. T.; Reis, R. C.; Walton, D. J.; Fabian, A. C.; Miller, M. C.

    2013-10-20

    Soft, potentially thermal spectral components observed in some ultra-luminous X-ray sources (ULXs) can be fit with models for emission from cool, optically thick accretion disks. If that description is correct, the low temperatures that are observed imply accretion onto 'intermediate-mass' black holes. Subsequent work has found that these components may follow an inverse relationship between luminosity and temperature, implying a non-blackbody origin for this emission. We have re-analyzed numerous XMM-Newton spectra of extreme ULXs. Crucially, observations wherein the source fell on a chip gap were excluded owing to their uncertain flux calibration, and the neutral column density along the line of sight to a given source was jointly determined by multiple spectra. The luminosity of the soft component is found to be positively correlated with temperature, and to be broadly consistent with L∝T {sup 4} in the measured band pass, as per blackbody emission from a standard thin disk. These results are nominally consistent with accretion onto black holes with masses above the range currently known in Galactic X-ray binaries, though there are important caveats. Emission from inhomogeneous or super-Eddington disks may also be consistent with the data.

  12. A POPULATION OF ULTRALUMINOUS X-RAY SOURCES WITH AN ACCRETING NEUTRON STAR

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2015-04-01

    Most ultraluminous X-ray sources (ULXs) are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star (NS) accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized NS. In this work we model the formation history of NS ULXs in an M82- or Milky Way (MW)-like Galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birth rate is around 10{sup −4} yr{sup −1} for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass–orbital period plane. Our results suggest that, compared with black hole X-ray binaries, NS X-ray binaries may significantly contribute to the ULX population, and high-mass and intermediate-mass X-ray binaries dominate the NS ULX population in M82- and MW-like Galaxies, respectively.

  13. VizieR Online Data Catalog: Ultraluminous X-ray sources in nearby galaxies (Liu+, 2005)

    NASA Astrophysics Data System (ADS)

    Liu, J.-F.; Bregman, J. N.

    2005-08-01

    X-ray observations have revealed in other galaxies a class of extranuclear X-ray point sources with X-ray luminosities of 1039-1041ergs/s, exceeding the Eddington luminosity for stellar mass X-ray binaries. These ultraluminous X-ray sources (ULXs) may be powered by intermediate-mass black holes of a few thousand MSun or stellar mass black holes with special radiation processes. In this paper, we present a survey of ULXs in 313 nearby galaxies with D25>1 within 40Mpc with 467 ROSAT High Resolution Imager (HRI) archival observations. The HRI observations are reduced with uniform procedures, refined by simulations that help define the point source detection algorithm employed in this survey. A sample of 562 extragalactic X-ray point sources with LX=1038-1043ergs/s is extracted from 173 survey galaxies, including 106 ULX candidates within the D25 isophotes of 63 galaxies and 110 ULX candidates between 1D25 and 2D25 of 64 galaxies, from which a clean sample of 109 ULXs is constructed to minimize the contamination from foreground or background objects. (3 data files).

  14. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows. PMID:26605521

  15. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  16. THE SLIM-DISK STATE OF THE ULTRALUMINOUS X-RAY SOURCE IN M83

    SciTech Connect

    Soria, Roberto; Kuntz, K. D.; Blair, William P.; Long, Knox S.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 10{sup 39} erg s{sup –1} (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ∼ 10-20 M {sub ☉}. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  17. On the Thermal Line Emission from the Outflows in Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Di; Cao, Xinwu

    2016-08-01

    The atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) may be associated with the outflow, which may provide a way to explore the physics of the ULXs. We construct a conical outflow model and calculate the thermal X-ray Fe emission lines from the outflows. Our results show that thermal line luminosity decreases with increasing outflow velocity and/or opening angle of the outflow for a fixed kinetic power of the outflows. Assuming the kinetic power of the outflows to be comparable with the accretion power in the ULXs, we find that the equivalent width can be several eV for the thermal X-ray Fe emission line from the outflows in the ULXs with stellar-mass black holes. The thermal line luminosity is proportional to 1/M bh (M bh is the black hole mass of the ULX). The equivalent width decreases with the black hole mass, which implies that the Fe line emission from the outflows can hardly be detected if the ULXs contain intermediate-mass black holes. Our results suggest that the thermal X-ray Fe line emission should be preferentially be detected in the ULXs with high kinetic power slowly moving outflows from the accretion disks surrounding stellar-mass black holes/neutron stars. The recently observed X-ray atomic features of the outflows in a ULX may imply that it contains a stellar-mass black hole.

  18. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission. PMID:23235823

  19. Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Fielding, Drummond; Faucher-Giguère, Claude-André; Quataert, Eliot

    2016-07-01

    We use local Cartesian simulations with a vertical gravitational potential to study how supernova (SN) feedback in stratified galactic discs drives turbulence and launches galactic winds. Our analysis includes three disc models with gas surface densities ranging from Milky Way-like galaxies to gas-rich ultraluminous infrared galaxies (ULIRGs), and two different SN driving schemes (random and correlated with local gas density). In order to isolate the physics of SN feedback, we do not include additional feedback processes. We find that, in these local box calculations, SN feedback excites relatively low mass-weighted gas turbulent velocity dispersions ≈3-7 km s-1 and low wind mass loading factors η ≲ 1 in all the cases we study. The low turbulent velocities and wind mass loading factors predicted by our local box calculations are significantly below those suggested by observations of gas-rich and rapidly star-forming galaxies; they are also in tension with global simulations of disc galaxies regulated by stellar feedback. Using a combination of numerical tests and analytic arguments, we argue that local Cartesian boxes cannot predict the properties of galactic winds because they do not capture the correct global geometry and gravitational potential of galaxies. The wind mass loading factors are in fact not well defined in local simulations because they decline significantly with increasing box height. More physically realistic calculations (e.g. including a global galactic potential and disc rotation) will likely be needed to fully understand disc turbulence and galactic outflows, even for the idealized case of feedback by SNe alone.

  20. MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT

    SciTech Connect

    Perley, D. A.; Morgan, A. N.; Miller, A. A.; Bloom, J. S.; Cenko, S. B.; Li, W.; Filippenko, A. V.; Butler, N. R.; Christian, P.; Updike, A.; Hartmann, D. H.; Yuan, F.; Akerlof, C. W.; Prochaska, J. X.; Tanvir, N. R.; Levan, A. J.; Milne, P.; Rujopakarn, W.; Rykoff, E. S.

    2011-02-15

    We present early-time optical through infrared photometry of the bright Swift gamma-ray burst (GRB) 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometric data set allows us to solve for the extinction properties of the redshift 3.036 sightline, giving perhaps the most detailed information to date on the ultraviolet continuum absorption properties of any sightline outside our Local Group. The extinction properties are not adequately modeled by any ordinary extinction template (including the average Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud curves), partially because the 2175 A feature (while present) is weaker by about a factor of two than when seen under similar circumstances locally. However, the spectral energy distribution is exquisitely fitted by the more general Fitzpatrick and Massa parameterization of Local-Group extinction, putting it in the same family as some peculiar Milky Way extinction curves. After correcting for this (considerable, A{sub V} = 3.3 {+-} 0.4 mag) extinction, GRB 080607 is revealed to have been among the most optically luminous events ever observed, comparable to the naked-eye burst GRB 080319B. Its early peak time (t{sub rest} < 6 s) indicates a high initial Lorentz factor ({Gamma}>600), while the extreme luminosity may be explained in part by a large circumburst density. Only because of its early high luminosity could the afterglow of GRB 080607 be studied in such detail in spite of the large attenuation and great distance, making this burst an excellent prototype for the understanding of other highly obscured extragalactic objects, and of the class of 'dark' GRBs in particular.

  1. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    PubMed

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population. PMID:24551200

  2. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    PubMed

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.

  3. A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Esquej, P.; Roche, P. F.; Ramos Almeida, C.; González-Martín, O.; Packham, C.; Levenson, N. A.; Mason, R. E.; Hernán-Caballero, A.; Pereira-Santaella, M.; Alvarez, C.; Aretxaga, I.; López-Rodríguez, E.; Colina, L.; Díaz-Santos, T.; Imanishi, M.; Rodríguez Espinosa, J. M.; Perlman, E.

    2016-01-01

    We present an atlas of mid-infrared (mid-IR) ˜ 7.5-13 μm spectra of 45 local active galactic nuclei (AGN) obtained with CanariCam on the 10.4 m Gran Telescopio CANARIAS (GTC) as part of an ESO/GTC large programme. The sample includes Seyferts and other low-luminosity AGN (LLAGN) at a median distance of 35 Mpc and luminous AGN, namely PG quasars, (U)LIRGs, and radio galaxies (RG) at a median distance of 254 Mpc. To date, this is the largest mid-IR spectroscopic catalogue of local AGN at sub-arcsecond resolution (median 0.3 arcsec). The goal of this work is to give an overview of the spectroscopic properties of the sample. The nuclear 12 μm luminosities of the AGN span more than four orders of magnitude, νL12 μm ˜ 3 × 1041-1046 erg s-1. In a simple mid-IR spectral index versus strength of the 9.7 μm silicate feature diagram most LLAGN, Seyfert nuclei, PG quasars, and RGs lie in the region occupied by clumpy torus model tracks. However, the mid-IR spectra of some might include contributions from other mechanisms. Most (U)LIRG nuclei in our sample have deeper silicate features and flatter spectral indices than predicted by these models suggesting deeply embedded dust heating sources and/or contribution from star formation. The 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature is clearly detected in approximately half of the Seyfert nuclei, LLAGN, and (U)LIRGs. While the RG, PG quasars, and (U)LIRGs in our sample have similar nuclear νL12 μm, we do not detect nuclear PAH emission in the RGs and PG quasars.

  4. THE ARAUCARIA PROJECT. A DISTANCE DETERMINATION TO THE LOCAL GROUP SPIRAL M33 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES

    SciTech Connect

    Gieren, Wolfgang; Pietrzynski, Grzegorz; Graczyk, Dariusz E-mail: pietrzyn@hubble.cfm.udec.cl; and others

    2013-08-10

    Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO Very Large Telescope. From the data, we constructed period-luminosity relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of {+-}0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B - V) = 0.19 {+-} 0.02, in agreement with the value used by the Hubble Space Telescope Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our derived M33 distance modulus is extremely insensitive to the adopted reddening law. We show that the possible effects of metallicity and crowding on our present distance determination are both at the 1%-2% level and therefore minor contributors to the total uncertainty of our distance result for M33.

  5. Multi-kernel aggregation of local and global features in long-wave infrared for detection of SWAT teams in challenging environments

    NASA Astrophysics Data System (ADS)

    Arya, Ankit S.; Anderson, Derek T.; Bethel, Cindy L.; Carruth, Daniel

    2013-05-01

    A vision system was designed for people detection to provide support to SWAT team members operating in challenging environments such as low-to-no light, smoke, etc. When the vision system is mounted on a mobile robot platform: it will enable the robot to function as an effective member of the SWAT team; to provide surveillance information; to make first contact with suspects; and provide safe entry for team members. The vision task is challenging because SWAT team members are typically concealed, carry various equipment such as shields, and perform tactical and stealthy maneuvers. Occlusion is a particular challenge because team members operate in close proximity to one another. An uncooled electro-opticaljlong wav e infrared (EO/ LWIR) camera, 7.5 to 13.5 m, was used. A unique thermal dataset was collected of SWAT team members from multiple teams performing tactical maneuvers during monthly training exercises. Our approach consisted of two stages: an object detector trained on people to find candidate windows, and a secondary feature extraction, multi-kernel (MK) aggregation and classification step to distinguish between SWAT team members and civilians. Two types of thermal features, local and global, are presented based on ma ximally stable extremal region (MSER) blob detection. Support vector machine (SVM) classification results of approximately [70, 93]% for SWAT team member detection are reported based on the exploration of different combinations of visual information in terms of training data.

  6. Searching for molecular outflows in hyperluminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Calderón, D.; Bauer, F. E.; Veilleux, S.; Graciá-Carpio, J.; Sturm, E.; Lira, P.; Schulze, S.; Kim, S.

    2016-08-01

    We present constraints on the molecular outflows in a sample of five hyperluminous infrared galaxies using Herschel observations of the OH doublet at 119 μm. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ˜1500 km s-1. Our analysis shows that this system is in general agreement with previous results on ultraluminous infrared galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead, the galaxy outflow likely arises from an embedded active galactic nuclei.

  7. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes. PMID:25297432

  8. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  10. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  11. On The Nature of the Ultraluminous X-Ray Transient in Cen A (NGC 5128)

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Finger, Mark H.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah

    2005-01-01

    We combine 20 ROSAT, Chandra, and XMM-Newton observations of the Cen A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F(sub X) > 10(exp -12) ergs/sq cm/s during a 10 day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 x 10(exp 39) ergs/s, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected at the 3 sigma level during a second bright episode (F(sub x) > 3 x 10(exp -13) ergs/sq cm/s) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m(sub F555W) approx. 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in Hubble images taken 195 days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. The X-ray and optical behavior of 1RXH J132519.8-430312 is therefore similar to the transient Be/X-ray pulsar A 0538-66.

  12. An environmental study of the ultraluminous X-ray source population in early-type galaxies

    SciTech Connect

    Plotkin, Richard M.; Gallo, Elena; Miller, Brendan P.; Baldassare, Vivienne F.; Treu, Tommaso; Woo, Jong-Hak

    2014-01-01

    Ultraluminous X-ray sources (ULXs) are some of the brightest phenomena found outside of a galaxy's nucleus, and their explanation typically invokes accretion of material onto a black hole. Here, we perform the largest population study to date of ULXs in early-type galaxies, focusing on whether a galaxy's large-scale environment can affect its ULX content. Using the AMUSE survey, which includes homogeneous X-ray coverage of 100 elliptical galaxies in the Virgo cluster and a similar number of elliptical galaxies in the field (spanning stellar masses of 10{sup 8}-10{sup 12} M {sub ☉}), we identify 37.9 ± 10.1 ULXs in Virgo and 28.1 ± 8.7 ULXs in the field. Across both samples, we constrain the number of ULXs per unit stellar mass, i.e., the ULX specific frequency, to be 0.062 ± 0.013 ULXs per 10{sup 10} M {sub ☉} (or about 1 ULX per 1.6 × 10{sup 11} M {sub ☉} of galaxy stellar mass). We find that the number of ULXs, the specific frequency of ULXs, and the average ULX spectral properties are all similar in both cluster and field environments. Contrary to late-type galaxies, we do not see any trend between specific ULX frequency and host galaxy stellar mass, and we show that dwarf ellipticals host fewer ULXs than later-type dwarf galaxies at a statistically meaningful level. Our results are consistent with ULXs in early-type galaxies probing the luminous tail of the low-mass X-ray binary population, and are briefly discussed in context of the influence of gravitational interactions on the long-term evolution of a galaxy's (older) stellar population.

  13. LARGE HIGHLY IONIZED NEBULAE AROUND ULTRA-LUMINOUS X-RAY SOURCES

    SciTech Connect

    Moon, Dae-Sik; Shariff, Jamil A.; Harrison, Fiona A.; Cenko, S. Bradley E-mail: shariff@astro.utoronto.ca E-mail: cenko@astro.berkeley.edu

    2011-04-20

    We present the results of deep optical spectroscopic observations using the LRIS spectrograph on the Keck I 10 m telescope of three ultra-luminous X-ray sources (ULXs): Ho IX X-1, M81 X-6, and Ho II X-1. Our observations reveal the existence of large (100-200 pc diameter) highly ionized nebulae, identified by diffuse He II {lambda}4686 emission, surrounding these sources. Our results are the first to find highly ionized nebulae of this extent, and the detection in all three objects indicates this may be a common feature of ULXs. In addition to the extended emission, Ho IX X-1 has an unresolved central component containing about one-third of the total He II flux, with a significant velocity dispersion of {approx_equal}370 km s {sup -1}, suggestive of the existence of a photoionized accretion disk or an extremely hot early-type stellar counterpart. Most of the He II emission appears to be surrounded by significantly more extended H{beta} emission, and the intensity ratios between the two lines, which range from 0.12 to 0.33, indicate that photoionization is the origin of the He II emission. Sustaining these extended nebulae requires substantial X-ray emission, in the range {approx}10{sup 39}-10{sup 40} erg s {sup -1}, comparable to the measured X-ray luminosities of the sources. This favors models where the X-ray emission is isotropic, rather than beamed, which includes the interpretation that ULXs harbor intermediate-mass black holes.

  14. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; Griffiths, R. E.; Haba, Y.; Kokubun, M.; Kotoku J.; Makishima, K.; Matsushita, K.; Mushotzky, R. F.; Namiki, M.; Petre, R.; Takahashi, H.; Tamagaw, T.; Terashima, Y.

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  15. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-09-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}}˜ 10^{2-3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  16. On the physical nature of the source of ultraluminous X-ray pulsations

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.

    2016-01-01

    To reconcile the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 with the most extreme violation of the Eddington limit, and in view that the persistent X-ray radiation from M82X-2 almost precludes the possibility of common pulsars, we tackle the problem by the implications of microscopic theory of black hole (MTBH). The preceding developments of MTBH are proved to be quite fruitful for the physics of ultra-high energy (UHE) cosmic-rays. Namely, replacing a central singularity by the infrastructures inside event horizon, subject to certain rules, MTBH explains the origin of ZeV-neutrinos which are of vital interest for the source of UHE-particles. The M82X-2 is assumed to be a spinning intermediate mass black hole resided in final stage of growth. Then, the thermal blackbody X-ray emission, arisen due to the rotational kinetic energy of black hole, escapes from event horizon through the vista to outside world, which is detected as ultraluminous X-ray pulsations. The M82X-2 indeed releases ˜99.6 % of its pulsed radiative energy predominantly in the X-ray bandpass 0.3-30 keV. We derive a pulse profile and give a quantitative account of energetics and orbital parameters of the semi-detached X-ray binary containing a primary accretor M82X-2 of inferred mass M≃138.5-226 M_{⊙} and secondary massive, M2> 48.3-64.9 M_{⊙}, O/B-type donor star with radius of R> 22.1-25.7 R_{⊙}, respectively. We compute the torque added to M82X-2 per unit mass of accreted matter which yields the measured spin-up rate.

  17. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    SciTech Connect

    Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N. A.; Harrison, F. A.; Walton, D. J.; Rana, V.; Fabian, A. C.

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.

  18. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  19. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  20. Synchrotron-based Infrared and X-ray Imaging Shows Focalized Accumulation of Cu and Zn Co-localized With Beta-amyloid Deposits in Alzheimer's Disease

    SciTech Connect

    Miller,L.; Wang, Q.; Telivala, T.; Smith, R.; Lanzirotti, A.; Miklossy, J.

    2006-01-01

    Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains 'hot spots' of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The 'hot spots' of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD.

  1. Submillimeter H2O emission in infrared bright galaxies near and far

    NASA Astrophysics Data System (ADS)

    Yang, Chentao

    2015-08-01

    We conduct the first systematic study of the submillimeter H2O rotational emission lines in the infrared bright galaxies from local to high redshift universe observed by FTS/Herschel and PdBI. Among the 176 local galaxies, 45 have at least one H2O emission line detected. And H2O is found to be the strongest molecular emitter after CO in FTS spectra. For the five most detected H2O lines, the luminosity is near-linearly correlated with LIR no matter strong AGN signature is present or not. However, the luminosity of H2O (211-202) and H2O (220-211) appears to increase slightly faster than linear with LIR. Although the slope turns out to be slightly steeper when z˜2-4 ULIRGs (Ultra-Luminous InfraRed Galaxies) are included, the correlation is still not far from linear. We find that LH2O/LIR decreases with increasing infrared color f25/f60, but nearly no dependence on f60/f100, possibly indicating that very warm dust contributes little to the excitation of submillimeter H2O lines, and this is consistent with later modeling studies. The average spectral line energy distribution (SLED) of entire sample is consistent with individual SLEDs and the IR pumping plus collisional excitation model, showing that the strongest lines are H2O (202-111) and H2O (321-312). Moreover, we have detected J=2 and J=3 H2O lines in 17 high-z lensed ULIRGs that picked from H-ATLAS survey. Most of their line profiles are similar to those of the high-J CO lines, indicating the similar location. By comparing the map of H2O and dust continuum emission, the emission from H2O is more compact than dust. A slightly faster than linear correlation has been found in these high-z ULIRGs. However, high resolution study by the telescopes, e.g., NOEMA and ALMA, is still need for studying the spatial distribution of the water vapor.

  2. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm‑2. The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L2–10,int = (0.8–1.7) × 1042 erg s‑1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1.

  3. A possible 55-d X-ray period of the ultraluminous accreting pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Kong, Albert K. H.; Hu, Chin-Ping; Lin, Lupin Chun-Che; Li, K. L.; Jin, Ruolan; Liu, C. Y.; Yen, David Chien-Chang

    2016-10-01

    We report on the possible detection of a 55-d X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-d orbital period, if the 55-d period is real, then it will be the superorbital period of the system. We also investigated variabilities of three other nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data, and we did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-d periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we have confirmed that the 62-d period is not stable, suggesting that it is not the orbital period of M82 X-1; this is in agreement with previous work.

  4. TRANSITION TO THE DISK DOMINANT STATE OF A NEW ULTRALUMINOUS X-RAY SOURCE IN M82

    SciTech Connect

    Jin Jing; Feng Hua; Kaaret, Philip

    2010-06-10

    We report on the identification of a third, new ultraluminous X-ray source in the starburst galaxy M82. Previously, the source was observed at fluxes consistent with the high state of Galactic black hole binaries (BHBs). We observe fluxes up to (6.5 {+-} 0.3) x 10{sup 39} erg s{sup -1} in the ultraluminous regime. When the source is not in the low/hard state, spectral fitting using a multicolor disk model shows that the disk luminosity varies as the disk inner temperature raised to the power 4.8 {+-} 0.9, consistent with the behavior of Galactic BHBs in the thermal dominant state. Fitting the spectrum with a multicolor disk model with general relativistic corrections suggests that the source harbors a rapidly spinning black hole with a mass less than 100 solar masses. A soft excess was found in the source spectrum that could be blackbody emission from a photosphere created by a massive outflow. The source also showed soft dips during a flare.

  5. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  6. New flaring of an ultraluminous X-ray source in NGC1365

    NASA Astrophysics Data System (ADS)

    Soria, R.; Baldi, A.; Risaliti, G.; Fabbiano, G.; King, A.; La Parola, V.; Zezas, A.

    2007-08-01

    We have studied a highly variable ultraluminous X-ray source (ULX) in the Fornax galaxy NGC1365, with a series of 12 Chandra and XMM-Newton observations between 2002 and 2006. In 2006 April, the source peaked at a luminosity ~3 × 1040erg s-1 in the 0.3-10 keV band (similar to the maximum luminosity found by ASCA in 1995), and declined on an e-folding time-scale ~3 d. The X-ray spectrum is always dominated by a broad power-law-like component. When the source is seen at X-ray luminosities ~1040 erg s-1, an additional soft thermal component (which we interpret as emission from the accretion disc) contributes ~1/4 of the X-ray flux; when the luminosity is higher, ~3 × 1040erg s-1, the thermal component is not detected and must contribute <10per cent of the flux. At the beginning of the decline, ionized absorption is detected around ~0.5-2 keV; it is a possible signature of a massive outflow. The power law is always hard, with a photon index Γ ~ 1.7 (and even flatter at times), as is generally the case with bright ULXs. We speculate that this source and perhaps most other bright ULXs are in a high/hard state: as the accretion rate increases well above the Eddington limit, more and more power is extracted from the inner region of the inflow through non-radiative channels, and is used to power a Comptonizing corona, jet or wind. The observed thermal component comes from the standard outer disc; the transition radius between outer standard disc and Comptonizing inner region moves further out and to lower disc temperatures as the accretion rate increases. This produces the observed appearance of a large, cool disc. Based on X-ray luminosity and spectral arguments, we suggest that this accreting black hole has a likely mass ~50-150Msolar (even without accounting for possible beaming).

  7. Discovery of a highly variable dipping ultraluminous X-ray source in M94

    SciTech Connect

    Lin, Dacheng; Irwin, Jimmy A.; Webb, Natalie A.; Barret, Didier; Remillard, Ronald A.

    2013-12-20

    We report the discovery of a new ultraluminous X-ray source (ULX) 2XMM J125048.6+410743 within the spiral galaxy M94. The source has been observed by ROSAT, Chandra, and XMM-Newton on several occasions, exhibiting as a highly variable persistent source or a recurrent transient with a flux variation factor of ≳100, a high duty cycle (at least ∼70%), and a peak luminosity of L {sub X} ∼ 2 × 10{sup 39} erg s{sup –1} (0.2-10 keV, absorbed). In the brightest observation, the source is similar to typical low-luminosity ULXs, with the spectrum showing a high-energy cutoff but harder than that from a standard accretion disk. There are also sporadical short dips, accompanied by spectral softening. In a fainter observation with L {sub X} ∼ 3.6 × 10{sup 38} erg s{sup –1}, the source appears softer and is probably in the thermal state seen in Galactic black hole X-ray binaries (BHBs). In an even fainter observation (L {sub X} ∼ 9 × 10{sup 37} erg s{sup –1}), the spectrum is harder again, and the source might be in the steep-power-law state or the hard state of BHBs. In this observation, the light curve might exhibit ∼7 hr (quasi-)periodic large modulations over two cycles. The source also has a possible point-like optical counterpart from Hubble Space Telescope images. In terms of the colors and the luminosity, the counterpart is probably a G8 supergiant or a compact red globular cluster containing ∼2 × 10{sup 5} K dwarfs, with some possible weak UV excess that might be ascribed to accretion activity. Thus, our source is a candidate stellar-mass BHB with a supergiant companion or with a dwarf companion residing in a globular cluster. Our study supports that some low-luminosity ULXs are supercritically accreting stellar-mass BHBs.

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  16. Dynamic quasi-energy-band modulation and exciton effects in biased superlattices driven by a two-color far-infrared field: Disappearance of dynamic localization

    NASA Astrophysics Data System (ADS)

    Yashima, Kenta; Hino, Ken-Ichi; Toshima, Nobuyuki

    2003-12-01

    A theoretical study of the optical and electronic properties of semiconductor superlattices in ac-dc fields, termed the dynamic Wannier-Stark ladder (DWSL), is done. The biased superlattices are driven by two far-infrared fields with different frequencies and relative phase of δ. Here, the frequency of the first laser is equal to the Bloch frequency ωB of the system under study, while that of the second laser is equal to 2ωB. Quasienergies of the DWSL are calculated based on the Floquet theorem, and the associated linear photoabsorption spectra are evaluated. For δ=0, a gourd-shaped quasi-energy structure characteristic of both dynamic localization (DL) and delocalization (DDL), similar to the usual DWSL driven by a single laser, appears. By changing the ratio of the two laser strengths, however, the width of the quasi-energy band and the locations of both DL and DDL vary noticeably. As for δ≠0, on the other hand, band collapse and the associated DL do not necessarily follow. In fact, DL vanishes and the quasi-energy degeneracy is lifted in a certain range of δ. Just DDL remains over the entire range of the laser strength, eventually resulting in a plateaulike band structure in the linear absorption spectra. The basic physics underlying this phenomenon, which can be readily interpreted in terms of a closed analytical expression, is that all quasi-energies for given crystal momenta are out of phase with each other as a function of laser strength without converging to a single point of energy. This is a feature of this DWSL which sharply distinguishes it from a conventional DWSL generated using a single laser to drive it. Furthermore, an exciton effect is incorporated with the above noninteracting problem, so that exciton dressed states are formed. It is found that this effect gives rise to more involved quasi-energy structures and a more pronounced release of the energy degeneracy of DL, leading again to the formation of a band structure in the absorption

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  20. Single-conformation infrared spectra of model peptides in the amide I and amide II regions: Experiment-based determination of local mode frequencies and inter-mode coupling

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; James, William H.; Choi, Soo Hyuk; Guo, Li; Gellman, Samuel H.; Müller, Christian W.; Zwier, Timothy S.

    2012-09-01

    Single-conformation infrared spectra in the amide I and amide II regions have been recorded for a total of 34 conformations of three α-peptides, three β-peptides, four α/β-peptides, and one γ-peptide using resonant ion-dip infrared spectroscopy of the jet-cooled, isolated molecules. Assignments based on the amide NH stretch region were in hand, with the amide I/II data providing additional evidence in favor of the assignments. A set of 21 conformations that represent the full range of H-bonded structures were chosen to characterize the conformational dependence of the vibrational frequencies and infrared intensities of the local amide I and amide II modes and their amide I/I and amide II/II coupling constants. Scaled, harmonic calculations at the DFT M05-2X/6-31+G(d) level of theory accurately reproduce the experimental frequencies and infrared intensities in both the amide I and amide II regions. In the amide I region, Hessian reconstruction was used to extract local mode frequencies and amide I/I coupling constants for each conformation. These local amide I frequencies are in excellent agreement with those predicted by DFT calculations on the corresponding 13C = 18O isotopologues. In the amide II region, potential energy distribution analysis was combined with the Hessian reconstruction scheme to extract local amide II frequencies and amide II/II coupling constants. The agreement between these local amide II frequencies and those obtained from DFT calculations on the N-D isotopologues is slightly worse than for the corresponding comparison in the amide I region. The local mode frequencies in both regions are dictated by a combination of the direct H-bonding environment and indirect, "backside" H-bonds to the same amide group. More importantly, the sign and magnitude of the inter-amide coupling constants in both the amide I and amide II regions is shown to be characteristic of the size of the H-bonded ring linking the two amide groups. These amide I/I and

  1. Clustering of very luminous infrared galaxies and their environment

    NASA Technical Reports Server (NTRS)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  2. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z Almost-Equal-To 0.9

    SciTech Connect

    Chomiuk, L.; Chornock, R.; Soderberg, A. M.; Berger, E.; Foley, R. J.; Kirshner, R. P.; Czekala, I.; Chevalier, R. A.; Huber, M. E.; Gezari, S.; Riess, A.; Rodney, S. A.; Narayan, G.; Stubbs, C. W.; Rest, A.; Smartt, S. J.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Wood-Vasey, W. M.; and others

    2011-12-20

    We present the discovery of two ultraluminous supernovae (SNe) at z Almost-Equal-To 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M{sub bol} Almost-Equal-To -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) Multiplication-Sign 10{sup 51} erg. We find photospheric velocities of 12,000-19,000 km s{sup -1} with no evidence for deceleration measured across {approx}3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.

  3. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  4. XMM-Newton View of the Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Dewangan, Gulab C.; Griffiths, Richard E.; Choudhury, Manojendu; Miyaji, Takamitsu; Schurch, Nicholas J.

    2005-12-01

    We present results based on XMM-Newton observations of the nearby spiral galaxy M51 (NGC 5194 and NGC 5195). We confirm the presence of the seven known ultraluminous X-ray sources (ULXs) with luminosities exceeding the Eddington luminosity for a 10 Msolar black hole, a low-luminosity active galactic nucleus (LLAGN) with 2-10 keV luminosity of 1.6×1039 ergs s-1, and soft thermal extended emission from NGC 5194 detected with Chandra. In addition, we also detected a new ULX with luminosity of ~1039 ergs s-1. We have studied the spectral and temporal properties of the LLAGN and eight ULXs in NGC 5194 and an ULX in NGC 5195. Two ULXs in NGC 5194 show evidence for short-term variability, and all but two ULXs vary on long timescales (over a baseline of ~2.5 yr), providing strong evidence that these are accreting sources. One ULX in NGC 5194, source 69, shows possible periodic behavior in its X-ray flux. We derive a period of 5925+/-200 s at a confidence level of 95% on the basis of three cycles. This period is lower than the period of 7620+/-500 s derived from a Chandra observation in 2000. The higher effective area of XMM-Newton enables us to identify multiple components in the spectra of ULXs. Most ULXs require at least two components, a power law and a soft X-ray excess component that is modeled by an optically thin plasma or a multicolor disk blackbody (MCD). However, the soft excess emissions inferred from all ULXs except source 69 are unlikely to be physically associated with the ULXs, as their strengths are comparable to that of the surrounding diffuse emission. The soft excess emission of source 69 is well described either by a two-temperature MEKAL plasma or a single-temperature MEKAL plasma (kT~690 eV) and an MCD (kT~170 eV). The MCD component suggests a cooler accretion disk compared to those in Galactic X-ray binaries, consistent with those expected for intermediate-mass black holes (IMBHs). An iron Kα line (EW~700 eV) or K absorption edge at ~7.1 keV is

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  15. Nature of the Soft ULX in NGC 247: Super-Eddington Outflow and Transition between the Supersoft and Soft Ultraluminous Regimes

    NASA Astrophysics Data System (ADS)

    Feng, Hua; Tao, Lian; Kaaret, Philip; Grisé, Fabien

    2016-11-01

    We report on XMM-Newton/Chandra/Swift/Hubble Space Telescope observations of the ultraluminous X-ray source (ULX) in NGC 247, which is found to make transitions between the supersoft ultraluminous (SSUL) regime with a spectrum dominated by a cool (∼0.1 keV) blackbody component and the soft ultraluminous (SUL) regime with comparable luminosities shared by the blackbody and power-law components. Multi-epoch observations revealed an anti-correlation between the blackbody radius and temperature, {R}{bb}\\propto {T}{bb}-2.8+/- 0.3, ruling out a standard accretion disk as the origin of the soft X-ray emission. The soft X-ray emission is much more variable on both short and long timescales in the SSUL regime than in the SUL regime. We suggest that the SSUL regime may be an extension of the ultraluminous state toward the high accretion end, being an extreme case of the SUL regime, with the blackbody emission arising from the photosphere of thick outflows and the hard X-rays being emission leaked from the embedded accretion disk via the central low-density funnel or advected through the wind. However, the scenario that the supersoft ULXs are standard ULXs viewed nearly edge-on cannot be ruled out. Flux dips on a timescale of 200 s were observed. The dips cannot be explained by an increase of absorption, but could be due to the change of accretion rate or related to thermal fluctuations in the wind or disk. The optical emission of NGC 247 ULX exhibits a blackbody spectrum at a temperature of 19,000 K with a radius of 20 {R}ȯ , likely arising from an OB supergiant companion star.

  16. Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.

    2016-05-01

    We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C ii] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C ii] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C ii], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C ii] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s-1) OH outflow. The FWHM of the broad [C ii] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C ii] show a 1:1 relation. The main conclusion is therefore that broad [C ii] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na i D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na i D show a trend with OH velocity and broad [C ii] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.

  17. Infrared Spectrometry.

    ERIC Educational Resources Information Center

    McDonald, Robert S.

    1984-01-01

    This review on infrared spectrometry covering the period from late 1981 to late 1983, is divided into nine sections. Topic areas include: books; reviews; analytical applications; biochemical applications; environmental applications; polymer applications; infrared instrumentation; sampling techniques; and software and algorithms. (JN)

  18. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    SciTech Connect

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Moro, A. Del; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Brightman, M.; Harrison, F. A.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Christensen, F. E.; Hailey, C. J.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; and others

    2015-12-10

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N{sub H} ≳ 5 × 10{sup 24} cm{sup −2}. The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L{sub 2–10,int} = (0.8–1.7) × 10{sup 42} erg s{sup −1}, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1.

  19. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  20. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    1991-01-01

    This task supports the application of infrared heterodyne spectroscopy and other high resolution techniques, as well as infrared arrays to ultra-high resolution studies of molecular constituents of planetary atmospheres. High spectral and spatial resolution measurement and analysis of individual spectral lines permits the retrieval of distributions of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10(exp -8) permits direct measurement of gas velocities to a few m/sec and thus, the study of dynamics. Observations are made from ground based observatories.

  1. The Spectral Energy Distributions and Infrared Luminosities of z ≈ 2 Dust-obscured Galaxies from Herschel and Spitzer

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey

    2012-05-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙ 1013 L ⊙. The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR(8-1000 μm)/νL ν(8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  2. Infrared Measurement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Jet Propulsion Laboratory Technical Support Package (TSP) describing a technique for processing data from an infrared radiometer assisted a manufacturer of laminates for printed circuit boards. To reduce emissions and lower the cost of producing prepreg (a continuous glass cloth, or web, impregnated with epoxy resin and partially cured by applying heat), Norplex Oak switched to infrared treating towers. The TSP confirmed the company's computer prediction of heat flux patterns, provided information that allowed the company to modify infrared treaters for consistency, and furnished a basis for development of optimal heater placements. The treaters are now successfully operating at increased speeds with improved product consistency.

  3. Suzaku Investigation into the Nature of the Nearest Ultraluminous X-Ray Source, M33 X-8

    NASA Astrophysics Data System (ADS)

    Isobe, Naoki; Kubota, Aya; Sato, Hiroshi; Mizuno, Tsunefumi

    2012-12-01

    The X-ray spectrum of the nearest ultraluminous X-ray source, M 33 X-8, obtained by Suzaku during 2010 January 11-13, was closely analyzed in order to examine its nature. It is, by far, the only data with the highest signal statistic in the 0.4-10 keV range. Despite being able to reproduce the X-ray spectrum, Comptonization of the disk photons failed to give a physically meaningful solution. A modified version of the multi-color disk model, in which the dependence of the disk temperature on the radius is described as r-p, with p being a free parameter, can also approximate the spectrum. From this model, the innermost disk temperature and bolometric luminosity were obtained as Tin = 2.00+0.06-0.05 keV and Ldisk = 1.36 × 1039 (cos i )-1 erg s-1, respectively, where i is the disk inclination. A small temperature gradient of p = 0.535-0.004-0.005, together with the high disk temperature, is regarded as signatures of the slim accretion disk model, suggesting that M 33 X-8 was accreting at a high mass-accretion rate. With a correction factor for the slim-disk taken into account, the innermost disk radius, Rin = 81.9+5.9-6.5 (cos i )-0.5 km, corresponds to a black-hole mass of M˜ 10⊙ (cos i )-0.5. Accordingly, the bolometric disk luminosity is estimated to be about 80(cos i )-0.5% of the Eddington limit. A numerically calculated slim-disk spectrum was found to reach a similar result. Thus, the extremely super-Eddington luminosity is not required to explain the nature of M 33 X-8. This conclusion is utilized to argue for the existence of intermediate-mass black holes with M gtrsim 100⊙ radiating at the sub/trans-Eddington luminosity, among ultraluminous X-ray sources with Ldisc gtrsim 1040 erg s-1.

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  2. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  3. Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses

    PubMed Central

    Yücel, Meryem A.; Selb, Juliette; Aasted, Christopher M.; Petkov, Mike P.; Becerra, Lino; Borsook, David; Boas, David A.

    2015-01-01

    Abstract. Autonomic nervous system response is known to be highly task-dependent. The sensitivity of near-infrared spectroscopy (NIRS) measurements to superficial layers, particularly to the scalp, makes it highly susceptible to systemic physiological changes. Thus, one critical step in NIRS data processing is to remove the contribution of superficial layers to the NIRS signal and to obtain the actual brain response. This can be achieved using short separation channels that are sensitive only to the hemodynamics in the scalp. We investigated the contribution of hemodynamic fluctuations due to autonomous nervous system activation during various tasks. Our results provide clear demonstrations of the critical role of using short separation channels in NIRS measurements to disentangle differing autonomic responses from the brain activation signal of interest. PMID:26835480

  4. Swift-XRT six-year monitoring of the ultraluminous X-ray source M33 X-8

    NASA Astrophysics Data System (ADS)

    La Parola, V.; D'Aí, A.; Cusumano, G.; Mineo, T.

    2015-08-01

    Context. The long-term evolution of ultraluminous X-ray sources (ULX) with their spectral and luminosity variations in time give important clues on the nature of ULX and on the accretion process that powers them. Aims: We report here the results of a Swift-XRT six-year monitoring campaign of the closest example of a persistent ULX, M33 X-8, that extends the monitoring of this source in the soft X-rays to 16 years. The luminosity of this source is a few 1039 erg s-1, marking the faint end of the ULX luminosity function. Methods: We analyzed the set of 15 observations collected during the Swift monitoring. We searched for differences in the spectral parameters at different observing epochs, adopting several models commonly used to fit the X-ray spectra of ULX. Results: The source exhibits flux variations of about 30%. No significant spectral variations are observed during the monitoring. The average 0.5-10 keV spectrum can be well described by a thermal model, either in the form of a slim disk, or as a combination of a Comptonized corona and a standard accretion disk.

  5. NuSTAR and XMM-Newton observations of the ultraluminous X-ray source NGC 5643 X-1

    NASA Astrophysics Data System (ADS)

    Krivonos, Roman; Sazonov, Sergey

    2016-11-01

    We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in 2014 May-June. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of its host galaxyNGC 5643 located 0.8 arcmin away. Together with long XMM-Newton observations performed in 2009 July and 2014 August, the NuSTAR data confidently reveal a high-energy cutoff in the spectrum of NGC 5643 X-1 above ˜10 keV, which is a characteristic signature of ULXs. The NuSTAR and XMM-Newton data are consistent with the source having a constant luminosity ˜1.5 × 1040 erg s-1 (0.2-12 keV) in all but the latest observation (2014 August) when it brightened to ˜3 × 1040 erg s-1. This increase is associated with the dominant, hard spectral component (presumably collimated emission from the inner regions of a supercritical accretion disc), while an additional, soft component (with a temperature ˜0.3 keV if described by multicolour disc emission), possibly associated with a massive wind outflowing from the disc, is also evident in the spectrum but does not exhibit significant variability.

  6. On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Poutanen, Juri

    2015-12-01

    We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can reach values of the order of 1040 erg s-1 for the magnetar-like magnetic field (B ≳ 1014 G) and long spin periods (P ≳ 1.5 s). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that L ≃ 1040 erg s-1 is a good estimate for the limiting accretion luminosity of an NS. Because this luminosity coincides with the cut-off observed in the high-mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultraluminous X-ray sources are accreting neutron stars in binary systems.

  7. X-ray spectral and optical properties of an ultraluminous X-ray source in NGC 4258 (M106)

    NASA Astrophysics Data System (ADS)

    Avdan, Hasan; Balman, Solen; Akyuz, Aysun; Avdan, Senay; Aksaker, Nazim; Akkaya Oralhan, İnci

    2016-07-01

    We report the X-ray and optical properties of an ultraluminous X-ray source (ULX) in the nearby galaxy NGC 4258 (M106). The XMM-Newton and Chandra archival observations were used to examine the X-ray spectral properties of the source. Throughout the X-ray observations, we discuss that the source appears to exhibit possible spectral changes by considering the hardness ratios and the spectral model parameters. The luminosity of the source varies a factor of two during the observations and has a peak value of ˜2x10^{39} erg s^{-1}. In the optical band, the source seems to belong to a star cluster. The archival HST images were used to search the optical counterpart of the ULX and three possible candidates were found within the 1σ error radius of 0.3". Also the mass for the compact object is estimated in the range of 10-15 M _{sun} which indicates a stellar-mass black hole.

  8. NuSTAR and XMM-Newton observations of the ultraluminous X-ray source NGC 5643 X-1

    NASA Astrophysics Data System (ADS)

    Krivonos, Roman; Sazonov, Sergey

    2016-08-01

    We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in May-June 2014. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of its host galaxy NGC 5643 located 0.8 arcmin away. Together with long XMM-Newton observations performed in July 2009 and August 2014, the NuSTAR data confidently reveal a high-energy cutoff in the spectrum of NGC 5643 X-1 above ˜10 keV, which is a characteristic signature of ULXs. The NuSTAR and XMM-Newton data are consistent with the source having a constant luminosity ˜1.5 × 1040 erg s-1 (0.2-12 keV) in all but the latest observation (August 2014) when it brightened to ˜3 × 1040 erg s-1. This increase is associated with the dominant, hard spectral component (presumably collimated emission from the inner regions of a supercritical accretion disk), while an additional, soft component (with a temperature ˜0.3 keV if described by multicolor disk emission), possibly associated with a massive wind outflowing from the disk, is also evident in the spectrum but does not exhibit significant variability.

  9. Discovery of a 115 Day Orbital Period in the Ultraluminous X-ray Source NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2009-01-01

    We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.

  10. THE NATURE OF THE UV/OPTICAL EMISSION OF THE ULTRALUMINOUS X-RAY SOURCE IN HOLMBERG II

    SciTech Connect

    Tao Lian; Feng Hua; Kaaret, Philip; Grise, Fabien

    2012-05-10

    We report on UV and X-ray spectroscopy and broadband optical observations of the ultraluminous X-ray source in Holmberg II. Fitting various stellar spectral models to the combined, non-simultaneous data set, we find that normal metallicity stellar spectra are ruled out by the data, while low-metallicity, Z = 0.1 Z{sub Sun }, late O-star spectra provide marginally acceptable fits, if we allow for the fact that X-ray ionization from the compact object may reduce or eliminate UV absorption/emission lines from the stellar wind. By contrast, an irradiated disk model fits both UV and optical data with {chi}{sup 2}/dof = 175.9/178, and matches the nebular extinction with a reddening of E(B - V) = 0.05{sup +0.05}{sub -0.04}. These results suggest that the UV/optical flux of Holmberg II X-1 may be dominated by X-ray irradiated disk emission.

  11. Is SS 433 a misaligned ultraluminous X-ray source? Constraints from its reflected signal in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Khabibullin, I.; Sazonov, S.

    2016-04-01

    We evaluate the emission that must arise due to reflection of the putative collimated X-ray radiation of SS 433 by atomic gas and molecular clouds in the Galactic plane and compare the predicted signal with existing RXTE and ASCA data for the region of interest. Assuming that the intrinsic X-ray spectrum of SS 433 is similar to that of ultraluminous X-ray sources (ULXs), we obtain an upper limit of ˜2 × 1039 erg s-1 on its total (angular-integrated) luminosity in the 2-10 keV energy band, which is only weakly dependent on the half-opening angle, Θr, of the emission cone. In contrast, the upper limit on the apparent luminosity of SS 433 (that would be perceived by an observer looking at its supercritical accretion disc face-on) decreases with increasing Θr and is ˜3 × 1040 erg s-1 for Θr ≳ Θp = 21°, where Θp is the precession angle of the baryonic jets (assuming that the emission cones precess in the same manner as the jets). This leaves open the possibility that SS 433 is a misaligned ULX. Further investigation of the reflection signal from the molecular clouds using higher angular resolution observations could improve these constraints with the potential to break the degeneracy between Θr and the apparent luminosity.

  12. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  13. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than -50 km s-1 and/or blueshifted wings with 84% velocities less than -300 km s-1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s-1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than ‑50 km s‑1 and/or blueshifted wings with 84% velocities less than ‑300 km s‑1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s‑1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  15. Measuring Star Formation Rate and Far-infrared Color in High-redshift Galaxies Using the CO(7-6) and [N II] 205 μm Lines

    NASA Astrophysics Data System (ADS)

    Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin; Gao, Yu; Díaz-Santos, Tanio; Charmandaris, Vassilis; Inami, Hanae; Howell, Justin; Liu, Lijie; Armus, Lee; Mazzarella, Joseph M.; Privon, George C.; Lord, Steven D.; Sanders, David B.; Schulz, Bernhard; van der Werf, Paul P.

    2015-03-01

    To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60-100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7-6) at 372 μm and [N ii] at 205 μm([N ii]205μm). For local (U)LIRGs, the ratios of the CO(7-6) luminosity (LCO(7-6)) to the total infrared luminosity (LIR; 8-1000 μm) are fairly tightly distributed (to within ˜0.12 dex) and show little dependence on C(60/100). This makes LCO(7-6) a good SFR tracer, which is less contaminated by active galactic nuclei than LIR and may also be much less sensitive to metallicity than LCO(1-0). Furthermore, the logarithmic [N ii]205μm/CO(7-6) luminosity ratio depends fairly strongly (at a slope of ˜ -1.4) on C(60/100), with a modest scatter (˜0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ˜0.15 (or ≲4 K in the dust temperature (Tdust) in the case of a graybody emission with Tdust ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ˜6.5. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. MEASURING STAR FORMATION RATES AND FAR-INFRARED COLORS OF HIGH-REDSHIFT GALAXIES USING THE CO(7–6) AND [N II] 205 μm LINES

    SciTech Connect

    Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin; Howell, Justin; Mazzarella, Joseph M.; Schulz, Bernhard; Gao, Yu; Liu, Lijie; Díaz-Santos, Tanio; Armus, Lee; Charmandaris, Vassilis; Inami, Hanae; Privon, George C.; Lord, Steven D.; Sanders, David B.; Van der Werf, Paul P.

    2015-03-20

    To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios of the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.

  17. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  18. Infrared Thermometer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  19. Infrared Images

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Earth objects emit natural radiation invisible to the unaided human eye, but visible to infrared scanning devices such as the device developed by Inframetrics, Inc. Such devices serve a number of purposes ranging from detection of heat loss in buildings for energy conservation measures, to examining heat output of industrial machinery for trouble shooting and preventive maintenance. Representative of system is Model 525, a small, lightweight field instrument that scans infrared radiation and translates its findings to a TV picture of the temperature pattern in the scene being viewed. An accessory device permits viewing the thermal radiation in color.

  20. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  1. Herschel far-infrared photometry of the swift burst alert telescope active galactic nuclei sample of the local universe. I. PACS observations

    SciTech Connect

    Meléndez, M.; Mushotzky, R. F.; Shimizu, T. T.; Barger, A. J.; Cowie, L. L.

    2014-10-20

    Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from star formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F {sub 70}/F {sub 160} ratios.

  2. Herschel Far-infrared Photometry of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. PACS Observations

    NASA Astrophysics Data System (ADS)

    Meléndez, M.; Mushotzky, R. F.; Shimizu, T. T.; Barger, A. J.; Cowie, L. L.

    2014-10-01

    Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from star formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F 70/F 160 ratios. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  4. Infrared Thermometers

    ERIC Educational Resources Information Center

    Schaefers, John

    2006-01-01

    An infrared (IR) thermometer lab offers the opportunity to give science students a chance to measure surface temperatures, utilizing off-the-shelf technology. Potential areas of study include astronomy (exoplanets), electromagnetic spectrum, chemistry, evaporation rates, anatomy, crystal formation, and water or liquids. This article presents one…

  5. Calculating (14)N(16)O2 spectral line parameters in an infrared range: A comparison of "global" and "local" effective operator methods.

    PubMed

    Voitsekhovskaya, O K; Egorov, O V; Kashirskii, D E

    2016-08-01

    Nitrogen dioxide, (14)N(16)O2, line positions and intensities calculated by us based on a "local" effective operator method are compared to the recent results of the "global" calculation. The comparison was made for theoretical absorption coefficients in the spectral range of 600-3700cm(-1) using the measured data taken from the Pacific Northwest National Laboratory. In order to conduct the calculations, empirical parameters of the effective rotational Hamiltonian of the twenty-one vibrational states were applied from the most recent experimental works. The second order parameters of the dipole moment function of (14)N(16)O2 were determined for the first time. The "local" line list in this research consists of one hundred and four bands and includes the line intensities of the v1+v2+v3 band of (14)N(16)O2 that have not yet been investigated in the literature. Among these bands, only eleven bands are included in HITRAN2012. The reasons behind the disagreements between the theoretical and measured absorption coefficients of (14)N(16)O2 are discussed. PMID:27111152

  6. Calculating 14N16O2 spectral line parameters in an infrared range: A comparison of "global" and "local" effective operator methods

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.

    2016-08-01

    Nitrogen dioxide, 14N16O2, line positions and intensities calculated by us based on a "local" effective operator method are compared to the recent results of the "global" calculation. The comparison was made for theoretical absorption coefficients in the spectral range of 600-3700 cm- 1 using the measured data taken from the Pacific Northwest National Laboratory. In order to conduct the calculations, empirical parameters of the effective rotational Hamiltonian of the twenty-one vibrational states were applied from the most recent experimental works. The second order parameters of the dipole moment function of 14N16O2 were determined for the first time. The "local" line list in this research consists of one hundred and four bands and includes the line intensities of the v1 + v2 + v3 band of 14N16O2 that have not yet been investigated in the literature. Among these bands, only eleven bands are included in HITRAN2012. The reasons behind the disagreements between the theoretical and measured absorption coefficients of 14N16O2 are discussed.

  7. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates.

    PubMed

    Sato, Kazuhide; Gorka, Alexander P; Nagaya, Tadanobu; Michie, Megan S; Nakamura, Yuko; Nani, Roger R; Coble, Vince L; Vasalatiy, Olga V; Swenson, Rolf E; Choyke, Peter L; Schnermann, Martin J; Kobayashi, Hisataka

    2016-10-20

    Near-infrared (NIR) fluorophores show superior in vivo imaging properties than visible-light fluorophores because of the increased light penetration in tissue and lower autofluorescence of these wavelengths. We have recently reported that new NIR cyanine dyes containing a novel C4'-O-alkyl linker exhibit greater chemical stability and excellent optical properties relative to existing C4'-O-aryl variants. In this study, we synthesized two NIR cyanine dyes with the same core structure and charge but different indolenine substituents: FNIR-Z-759 bearing a combination of two sulfonates and two quaternary ammonium cations, and FNIR-G-765 bearing a combination of two sulfonates and two guanidines, resulting in zwitterionic charge with distinct cationic moieties. In this study, we compare the in vitro and in vivo optical imaging properties of monoclonal antibody (mAb) conjugates of FNIR-Z-759 and FNIR-G-765 with panitumumab (pan) at antibody-to-dye ratios of 1 : 2 or 1 : 5. One-to-five conjugation of pan-to-FNIR-G-765 was not successful due to aggregate formation during the conjugation reaction. Conjugates of both dyes to pan (2 : 1) demonstrated similar quenching capacity, stability, and brightness in target cells in vitro. However, FNIR-Z-759 conjugates showed significantly lower accumulation in the mouse liver, resulting in higher tumor-to-liver ratio. Thus, FNIR-Z-759 conjugates appear to have superior in vivo imaging characteristics compared with FNIR-G-765 conjugates, especially in the abdominal region. Moreover, from a chemistry point of view, mAb conjugation with FNIR-Z-759 has an advantage over FNIR-G-765, because it does not form aggregates at high dye-to-mAb ratio. These results suggest that zwitterionic cyanine dyes are a superior class of fluorophores for conjugating with mAbs for fluorescence imaging applications due to improving target-to-background contrast in vivo. However, zwitterionic cyanine dyes should be designed carefully, as small

  8. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Walton, Dominic J.; Fabian, Andrew; Roberts, Timothy P.; Heil, Lucy; Pinto, Ciro; Anderson, Gemma; Sutton, Andrew

    2015-12-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen in several sources and appear extremely similar in shape, implying a common origin. Via simple arguments we assert that emission from extreme colliding winds, absorption in a shell of material associated with the ULX nebula and thermal plasma emission associated with star formation are all highly unlikely to provide an origin. Whilst CCD spectra lack the energy resolution necessary to directly determine the nature of the features (i.e. formed of a complex of narrow lines or intrinsically broad lines), studying the evolution of the residuals with underlying spectral shape allows for an important, indirect test for their origin. The ULX NGC 1313 X-1 provides the best opportunity to perform such a test due to the dynamic range in spectral hardness provided by archival observations. We show through highly simplified spectral modelling that the strength of the features (in either absorption or emission) appears to anticorrelate with spectral hardness, which would rule out an origin via reflection of a primary continuum and instead supports a picture of atomic transitions in a wind or nearby material associated with such an outflow.

  9. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1

    NASA Astrophysics Data System (ADS)

    Luangtip, Wasutep; Roberts, Timothy P.; Done, Chris

    2016-08-01

    We present a new analysis of X-ray spectra of the archetypal ultraluminous X-ray source (ULX) Holmberg IX X-1 obtained by the Swift, XMM-Newton and NuSTAR observatories. This ULX is a persistent source, with a typical luminosity of ˜1040 erg s-1, that varied by a factor of 4-5 over eight years. We find that its spectra tend to evolve from relatively flat or two-component spectra in the medium energy band (1-6 keV), at lower luminosities, to a spectrum that is distinctly curved and disc-like at the highest luminosities, with the peak energy in the curved spectrum tending to decrease with increased luminosity. We argue that the spectral evolution of the ULX can be explained by super-Eddington accretion models, where in this case we view the ULX down the evacuated funnel along its rotation axis, bounded by its massive radiatively driven wind. The spectral changes then originate in enhanced geometric beaming as the accretion rate increases and wind funnel narrows, causing the scattered flux from the central regions of the supercritical flow to brighten faster than the isotropic thermal emission from the wind, and so the curved hard spectral component to dominate at the highest luminosities. The wind also Compton down-scatters photons at the edge of the funnel, resulting in the peak energy of the spectrum decreasing. We also confirm that Holmberg IX X-1 displays spectral degeneracy with luminosity, and suggest that the observed differences are naturally explained by precession of the black hole rotation axis for the suggested wind geometry.

  10. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    SciTech Connect

    Cseh, David; Corbel, Stephane; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-04-10

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  11. An active M star with X-ray double flares disguised as an ultra-luminous X-ray source

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Ji-Feng; Wang, Song; Wu, Yue; Qin, Yu-Xiang

    2016-02-01

    Here we present research on an ultra-luminous X-ray source (ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star. More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray (0.3-11.0 keV) flux of the first peak was derived from the two-temperature APEC model as ˜ 1.1 ± 0.1 × 10-12 erg cm-2 s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences. By optical spectral fitting, it is confirmed to be a late type dMe2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ˜ 133.4 ± 14.2 pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.

  12. A Stellar-mass Black Hole in the Ultra-luminous X-ray Source M82 X-1

    NASA Technical Reports Server (NTRS)

    Okajima, Takashi; Ebisawa, Ken; Kawaguchi, Toshihiro

    2007-01-01

    We have analyzed the archival XMM-Newton data of the archetypal Ultra-Luminous X-ray Source (ULX) M82 X-1 with an LO5 ksec exposure when the source was in the steady state. Thanks to the high photon statistics from the large effective area and long exposure, we were able to discriminate different X-ray continuum spectral models. Neither the standard accretion disk model (where the radial dependency of the disk effective temperature is T(r) proportional to r(sup -3/4)) nor a power-law model gives a satisfactory fit. In fact, observed curvature of the M82 X-1 spectrum was just between those of the two models. When the exponent of the radial dependence (p in T(r) proportional to r(sup -P)) of the disk temperature is allowed to be free, we obtained p = 0.61 (sup +0.03)(sub -0.02). Such a reduction of p from the standard value 3/4 under extremely high mass accretion rates is predicted from the accretion disk theory as a consequence of the radial energy advection. Thus, the accretion disk in M82 X-1 is considered to be in the Slim disk state, where an optically thick Advection Dominant Accretion Flow (ADAF) is taking place. We have applied a theoretical slim disk spectral model to M82 X-1, and estimated the black hole mass approximately equal to 19 - 32 solar mass. We conclude that M82 X-1 is a stellar black hole which has been produced through evolution of an extremely massive star, shining at a several times the super-Eddington luminosity.

  13. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  14. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    SciTech Connect

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-06-10

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  15. Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.

    2005-03-01

    X-ray observations have revealed in other galaxies a class of extranuclear X-ray point sources with X-ray luminosities of 1039-1041 ergs s-1, exceeding the Eddington luminosity for stellar mass X-ray binaries. These ultraluminous X-ray sources (ULXs) may be powered by intermediate-mass black holes of a few thousand Msolar or stellar mass black holes with special radiation processes. In this paper, we present a survey of ULXs in 313 nearby galaxies with D25>1' within 40 Mpc with 467 ROSAT High Resolution Imager (HRI) archival observations. The HRI observations are reduced with uniform procedures, refined by simulations that help define the point source detection algorithm employed in this survey. A sample of 562 extragalactic X-ray point sources with LX=1038-1043 ergs s-1 is extracted from 173 survey galaxies, including 106 ULX candidates within the D25 isophotes of 63 galaxies and 110 ULX candidates between 1D25 and 2D25 of 64 galaxies, from which a clean sample of 109 ULXs is constructed to minimize the contamination from foreground or background objects. The strong connection between ULXs and star formation is confirmed based on the striking preference of ULXs to occur in late-type galaxies, especially in star-forming regions such as spiral arms. ULXs are variable on timescales over days to years and exhibit a variety of long term variability patterns. The identifications of ULXs in the clean sample show some ULXs identified as supernovae (remnants), H II regions/nebulae, or young massive stars in star-forming regions, and a few other ULXs identified as old globular clusters. In a subsequent paper, the statistic properties of the survey will be studied to calculate the occurrence frequencies and luminosity functions for ULXs in different types of galaxies to shed light on the nature of these enigmatic sources.

  16. Testing the Paradigm that Ultra-Luminous X-Ray Sources as a Class Represent Accreting Intermediate

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-01-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity > or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.

  17. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  18. NuSTAR results on Ultra-Luminous X-ray sources: black holes or neutron stars?

    NASA Astrophysics Data System (ADS)

    Fuerst, Felix

    2015-04-01

    Ultraluminous X-ray sources (ULXs) are extremely bright, off-nuclear point sources in nearby galaxies. The only process known to power them is a very high accretion rate onto a compact object. If the compact object is similar to those observed in our own galaxy, i.e., a standard stellar remnant, the accretion rate has to exceed the Eddington rate by a factor of 10-100 in a so-called super-Eddington accretion regime. If on the other hand the compact were more massive, ULXs would be the only known evidence for intermediate mass black holes with masses of 100's or 1000's solar masses. Broadband spectral studies of a sample of ULXs, making full use of the hard X-ray sensitivity of the Nuclear Spectroscopic Telescope Array (NuSTAR), are suggestive of super-Eddington accretion. A definitive answer has, however, not yet been reached owing to continued difficulty constraining ULX masses. I will report on recent, multi-epoch NuSTAR observations, which allow us to examine the evolution of these enigmatic sources and their accretion process by studying their time variability and hard X-ray spectrum above 10keV. In a surprising discovery we have recently shown that the ULX M82 X-2 harbors a neutron star, the first evidence for a neutron star in a ULX. I will discuss possible modes of super-Eddington accretion on neutron stars and compare M82 X-2 to known accreting neutron stars in our galaxy. On behalf of the NuSTAR ULX science team led by Fiona Harrison.

  19. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8-100 GeV) of 2.4 × 10-10 phot cm-2 s-1 with a photon index of 2.23 (8.2 × 1041 erg s-1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray-IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray-radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  20. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8–100 GeV) of 2.4 × 10‑10 phot cm‑2 s‑1 with a photon index of 2.23 (8.2 × 1041 erg s‑1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray–IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray–radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  1. The far-infrared emission of the radio-loud quasar 3C 318

    NASA Astrophysics Data System (ADS)

    Podigachoski, P.; Barthel, P. D.; Peletier, R. F.; Steendam, S.

    2016-01-01

    3C 318, a radio-loud quasar at z = 1.574, is a subgalactic-sized radio source, and a good test-bed for the interplay between black hole and galaxy growth in the high-z Universe. Based on its IRAS, ISO, and SCUBA detections, it has long been considered as one of the most intrinsically luminous (LIR > 1013 L⊙) infrared sources in the Universe. Recent far-infrared data from the Herschel Space Observatory reveal that most of the flux associated with 3C 318, measured with earlier instruments, in fact comes from a bright nearby source. Optical imaging and spectroscopy show that this infrared-bright source is a strongly star-forming pair of interacting galaxies at z = 0.35. Adding existing Spitzer and SDSS photometry, we perform a spectral energy distribution analysis of the pair, and find that it has a combined infrared luminosity of LIR = 1.5 × 1012 L⊙, comparable to other intermediate-redshift ultra-luminous infrared galaxies studied with Herschel. Isolating the emission from 3C 318's host, we robustly constrain the level of star formation to a value a factor of three lower than that published earlier, which is more in line with the star formation activity found in other Herschel-detected 3CR objects at similar redshift.

  2. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S. E-mail: bts@submm.caltech.edu E-mail: lee@ipac.caltech.edu E-mail: pope@astro.umass.edu E-mail: jannuzi@noao.edu

    2012-05-15

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. The rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of

  3. The infrared continuum spectrum of x ray illuminated molecular gas

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1990-01-01

    In starburst galaxies, active galaxies, and the mysterious ultraluminous infrared galaxies, x rays are likely to interact with molecular gas and dust, thereby inducing infrared emission. X ray heated thermal dust will emit the IR continuum, and x ray photoelectrons will excite an IR emission-line spectrum. Here, researchers model the IR continuum emission characteristic of some selected x ray spectral fluxes, in particular the x ray bremsstrahlung characteristic of supernova and stellar wind bubble shocks in dense media and the power law spectra characteristic of active galactic nuclei. These models are part of a larger project to determine the complete IR spectra, lines plus continuum, of x ray sources embedded in molecular gas. They modeled the thermal emission from grains by calculating a grain temperature/size/composition distribution function, f(T,a,Comp.), which accounts for temperature fluctuations by averaging over all grain thermal histories. In determining the grain thermal distribution, researchers account for both direct grain heating (by x ray absorption and subsequent electron energy deposition) and indirect grain heating (by absorption of the UV emission stimulated by non-thermal photo- and Auger electrons in the gas phase). We let the grain size distribution be proportional to a(exp -3.5), and they consider two types of grain composition: graphites, which we assume to be pure carbon, and silicates, which contain all other depleted heavy elements. They derive the grain composition distribution function from solar abundances and interstellar depletion data.

  4. Infrared floodlight

    DOEpatents

    Levin, Robert E.; English, George J.

    1986-08-05

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  5. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  6. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  7. Infrared retina

    DOEpatents

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  8. Multiwavelength Observations and State Transitions of an Ultra-luminous Supersoft X-ray Source: Evidence for an Intermediate-Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.; Rupen, M. P.; Sjouwerman, L. O.; di Stefano, R.

    We report the results of Chandra and XMM-Newton observations of an ultra-luminous supersoft X-ray source in M101. M101 ULX-1 underwent 2 outbursts in 2004 during which the peak bolometric luminosities reached 1041 ergs s-1. The outburst spectra were very soft and can generally be fitted with a blackbody model with temperatures of 50-160 eV. In two of the observations, absorption edges at 0.33 keV, 0.56 keV, 0.66 keV, and 0.88 keV were found. A cool accretion disk was also found in the 2004 December outburst. During the low luminosity state, a power-law tail was seen up to 7 keV. It is clear the source changed from a low/hard state to a high/soft state. In addition, it showed at least 5 outbursts between 1996 and 2004. This is the first ultraluminous X-ray source for which recurrent outbursts with state transitions similar to Galactic X-ray binaries have been observed. From the Hubble Space Telescope data, we found an optical counterpart to the source. During the 2004 outbursts, we also performed radio and ground-based optical observations. All the results strongly suggest that the accreting object is a > 2800M⊙ black hole.

  9. An Ultra-luminous Quasar at z = 5.363 with a Ten Billion Solar Mass Black Hole and a Metal-rich DLA at z ∼ 5

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Cai, Zheng; Yi, Weimin; Zuo, Wenwen; Wang, Ran; McGreer, Ian D.; Ho, Luis C.; Kim, Minjin; Yang, Qian; Bian, Fuyan; Jiang, Linhua

    2015-07-01

    We report the discovery of an ultra-luminous quasar J030642.51+185315.8 (hereafter J0306+1853) at redshift 5.363, which hosts a supermassive black hole with {M}{BH}=(1.07+/- 0.27)× {10}10 {M}ȯ . With an absolute magnitude {M}1450=-28.92 and a bolometric luminosity {L}{bol}∼ 3.4× {10}14{L}ȯ , J0306+1853 is one of the most luminous objects in the early universe. It is not likely to be a beamed source based on its small flux variability, low radio loudness, and normal broad emission lines. In addition, a z=4.986 damped Lyα system (DLA) with [{{M}}/{{H}}]=-1.3+/- 0.1, among the most metal-rich DLAs at z≳ 5, is detected in the absorption spectrum of this quasar. This ultra-luminous quasar puts strong constraints on the bright end of the quasar luminosity function and massive end of the black hole mass function. It will provide a unique laboratory for the study of BH growth and the co-evolution between a BH and the host galaxy with multi-wavelength follow-up observations. The future high-resolution spectra will give more insight into the DLA and other absorption systems along the line of sight of J0306+1853.

  10. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  11. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    SciTech Connect

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.

  12. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  13. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  14. Observability of localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of far-infrared, Raman, and electron-energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem (GKT) in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energies capable of being explored with the FIR, Raman, and/or electron-energy-loss spectroscopy. This implies that either of these probes is competent in observing the localized magnetoplasmons in the system. As an application of the rigorous analytical diagnosis of the system, we have presented various pertinent single-particle, such as Fock-Darwin spectrum, Fermi energy, zigzag excitation spectrum, and magneto-optical transitions, and the many-particle phenomena, such as magneto-optical absorption, Raman intensity, and electron energy-loss probability. In the latter, the energy position of the resonance peaks is observed to be independent of the electron-electron interactions and hence of the number of electrons in the quantum dot in compliance with the GKT. It is found that both confinement potential and magnetic field play a decisive role in influencing the aforementioned many-particle phenomena. Specifically, increasing (decreasing) the strength of the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots and results into a blue (red) shift in the respective spectra. Intensifying the magnetic field has two-fold effects in the resonance

  15. AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi; Nakagawa, Takao; Shirahata, Mai; Kaneda, Hidehiro; Oyabu, Shinki

    2014-10-20

    We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction of buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.

  16. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Far Infrared Supplement: catalog of infrared observations summarizes all infrared astronomical observations at far infrared wavelengths published in the scientific literature between 1965 and 1982. The Supplement list contains 25% of the observations in the full catalog of infrared observations (C10), and essentially eliminates most visible stars from the listings. The Supplement is more compact than the main Catalog (it does not contain the bibliography and position index of the C10), and is intended for easy reference during astronomical observations.

  17. The star-forming environment of an ultraluminous X-ray source in NGC4559: an optical study

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Cropper, Mark; Pakull, Manfred; Mushotzky, Richard; Wu, Kinwah

    2005-01-01

    We have studied the candidate optical counterparts and the stellar population in the star-forming complex around the bright ultraluminous X-ray source (ULX) in the western part of the spiral galaxy NGC4559, using the HST Wide Field Planetary Camera 2 (WFPC2), XMM-Newton/Optical Monitor and ground-based data. We find that the ULX is located near a small group of OB stars, but is not associated with any massive young clusters nor with any extraordinary massive stars. The brightest point source in the Chandra error circle is consistent with a single blue supergiant (BSG) of mass ~20Msolar and age ~10 Myr. A few other stars are resolved inside the error circle: mostly BSGs and red supergiants (RSGs) with inferred masses ~10-15Msolar and ages ~20 Myr. This is consistent with the interpretation of this ULX as a black hole (BH) accreting from a high-mass donor star in its supergiant phase, with mass transfer occurring via Roche-lobe overflow. The observed optical colours and the blue-to-red supergiant ratio suggest a low metal abundance for the stellar population: 0.2 <~Z/Zsolar<~ 0.4 (using the Padua tracks), or 0.05 <~Z/Zsolar<~ 0.2 (using the Geneva tracks). The age of the star-forming complex is <~30 Myr. Hα images show that this star-forming region has a ring-like appearance. We propose that it is an expanding wave of star formation, triggered by an initial density perturbation, in a region where the gas was only marginally stable to gravitational collapse. We also suggest that the most likely trigger was a collision with a satellite dwarf galaxy going through the gas-rich outer disc of NGC4559 less than 30 Myr ago. The culprit could be the dwarf galaxy visible a few arcsec north-west of the complex. If this is the case, this system is a scaled-down version of the Cartwheel galaxy. The X-ray data favour a BH more massive (M > 50Msolar) than typical Milky Way BH candidates. The optical data favour a young BH originating in the recent episode of massive star formation

  18. Ultraluminous X-ray source XMMUJ132218.3-164247 is in fact a type I Quasar

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Masetti, N.; Cappi, M.; Malaguti, G.; Miniutti, G.; Ponti, G.; Gandhi, P.; De Marco, B.

    2013-11-01

    Context. The true nature of ultraluminous X-ray sources (ULX) is still currently vigorously debated. One of the most interesting possibilities is that these sources are intermediate-mass (M ~ 103 - 105 M⊙) black holes. The most luminous ULX (L2 - 10 keV ~ 1041 erg s-1) are the most suitable candidates for being genuine intermediate-mass black holes (IMBH). Aims: XMMUJ132218.3-164247 was proposed to be the most luminous ULX known so far. For this reason a firm assessment of its intrinsic nature is needed and pursued in this work. Methods: We precisely defined the position of XMMUJ132218.3-164247 using a short Chandra pointing of the field. Then, we obtained high quality optical spectra of the source with the FORS2 instrument on the VLT to define its nature and distance. We then used unpublished data obtained with XMM-Newton to investigate its nature and emission properties in more detail. Results: Features in its optical spectrum place XMMUJ132218.3-164247 at a redshift of z ~ 1, implying that it is a background QSO instead of an ULX. We clearly detected some emission lines typical of a QSO, including OIII lines and a broad Mg II line that indicates that the source is a type I AGN. The X-ray spectrum of the source is well modeled by a simple power-law with absorption slightly in excess to the Galactic value. No emission feature at the energy of the FeKα is present in the data. Finally, the source has been detected at a X-ray flux level higher (by ~40%) than previously measured and reported in its discovery work. Conclusions: XMMUJ132218.3-164247 is not a ULX but a type I QSO. It shows a standard X-ray spectrum and exhibits a variability pattern that is typical of QSOs. A very rough estimate of its black-hole mass yields a value of MBH ~ 2 × 107 M⊙. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (program 079.D-0299(A)) and on observations obtained with XMM-Newton, an ESA science mission

  19. An extremely luminous and variable ultraluminous X-ray source in the outskirts of Circinus observed with NuSTAR

    SciTech Connect

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Grefenstette, B. W.; Madsen, K. K.; Rana, V.; Bachetti, M.; Barret, D.; Webb, N. A.; Bauer, F.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Hailey, C. J.; Miller, J. M.; Ptak, A.; Zhang, W. W.

    2013-12-20

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ∼5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10{sup 40} erg s{sup –1}). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L∝T {sup 1.70±0.17}, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ∼90 M {sub ☉} for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is

  20. An Extremely Luminous and Variable Ultraluminous X-ray Source in the Outskirts of Circinus Observed with Nustar

    NASA Technical Reports Server (NTRS)

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Miller, J. M.; Ptak, Andrew Francis; Rana, V.; Webb, N. A.; Zhang, W. W.

    2013-01-01

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multiepoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E greater than 10 keV) X-rays. CircinusULX5is variable on long time scales by at least a factor of approx. 5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10(exp 40) erg s(exp-1)). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L alpha T (exp 1.70+/-0.17), flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of approx. 90M for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass

  1. X-ray QPOs from the Ultra-luminous X-ray Source in M82: Evidence Against Beaming

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2003-01-01

    We report the discovery with the European Photon Imaging Camera (EPIC) CCD cameras onboard XMM-Newton of a 54 mHz quasiperiodic oscillation (QPO) in the greater than 2 keV X-ray flux from the ultra-luminous X-ray source (ULX) X41.4+60 in the starburst galaxy M82. This is the first detection of a QPO in the X-ray flux from an extra-Galactic ULX, and confirms that the source is a compact object. The QPO is detected in the combined PN and MOS data at the approx. 6sigma level, and separately at lower significances in both the PN and MOS instruments. It had a centroid frequency of 54.3 +/- 0.9 mHz, a coherence Q is identical with nu(sub 0)/Delta nu(sub fwhm) is approx. 5, and an amplitude (rms) in the 2 - 10 keV band of 8.5%. Below about 0.2 Hz the power spectrum can be described by a power-law with index approx. 1, and integrated amplitude (rms) of 13.5%. The X-ray spectrum requires a curving continuum, with a disk-blackbody (diskbb) at T = 3.1 keV providing an acceptable, but not unique, fit. A broad Fe line centered at 6.55 keV is required in all fits, but the equivalent width (EW) of the line is sensitive to the choice of continuum model. There is no evidence of a reflection component. The implied bolometric luminosity is approx. 4 - 5 x 10(exp 40) ergs/s. Data from several archival Rossi X-ray Timing Explorer (RXTE) pointings at M82 also show evidence for QPOs in the 50 - 100 mHz frequency range. Several Galactic black hole candidates (BHCs), including GRS 1915+105, GRO J1655-40, and XTE 1550-564, show QPOs in the same frequency range as the 50 - 100 mHz QPOs in X41.4+60, which at first glance suggests a possible connection with such objects. However, strong, narrow QPOs provide solid evidence for disk emission, and thus present enormous theoretical difficulties for models which rely on either geometrically or relativistically beamed emission to account for the high X-ray luminosities. We discuss the implications of our findings for models of the ULX sources.

  2. New maxillofacial infrared detection technologies

    SciTech Connect

    Reshetnikov, A. P.; Kopylov, M. V.; Nasyrov, M. R. Fisher, E. L.; Chernova, L. V.; Soicher, E. M.

    2015-11-17

    At the dental clinic the infrared range radiation spectrum of tissues was used to study the dynamics of local temperature and structure of the skin, subcutaneous fat, and other tissues of the maxillofacial area in adult healthy volunteers and patients. In particular, we studied the dynamics of local temperature of mucous membranes of the mouth, teeth, and places in the mouth and dental structures in the norm and in various pathological conditions of the lips, gums, teeth, tongue, palate, and cheeks before, during and after chewing food, drinking water, medication, and inhalation of air. High safety and informational content of infrared thermography are prospective for the development of diagnostics in medicine. We have 3 new methods for infrared detection protected by patents in Russia.

  3. New maxillofacial infrared detection technologies

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. P.; Kopylov, M. V.; Nasyrov, M. R.; Soicher, E. M.; Fisher, E. L.; Chernova, L. V.

    2015-11-01

    At the dental clinic the infrared range radiation spectrum of tissues was used to study the dynamics of local temperature and structure of the skin, subcutaneous fat, and other tissues of the maxillofacial area in adult healthy volunteers and patients. In particular, we studied the dynamics of local temperature of mucous membranes of the mouth, teeth, and places in the mouth and dental structures in the norm and in various pathological conditions of the lips, gums, teeth, tongue, palate, and cheeks before, during and after chewing food, drinking water, medication, and inhalation of air. High safety and informational content of infrared thermography are prospective for the development of diagnostics in medicine. We have 3 new methods for infrared detection protected by patents in Russia.

  4. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  5. Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wehling, Randy L.

    Infrared (IR) spectroscopy refers to measurement of the absorption of different frequencies of IR radiation by foods or other solids, liquids, or gases. IR spectroscopy began in 1800 with an experiment by Herschel. When he used a prism to create a spectrum from white light and placed a thermometer at a point just beyond the red region of the spectrum, he noted an increase in temperature. This was the first observation of the effects of IR radiation. By the 1940s, IR spectroscopy had become an important tool used by chemists to identify functional groups in organic compounds. In the 1970s, commercial near-IR reflectance instruments were introduced that provided rapid quantitative determinations of moisture, protein, and fat in cereal grains and other foods. Today, IR spectroscopy is used widely in the food industry for both qualitative and quantitative analysis of ingredients and finished foods.

  6. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  7. CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH WISE AND SDSS

    SciTech Connect

    Yan Lin; Donoso, E.; Tsai, Chao-Wei; Cutri, R.; Jarrett, T.; Stern, D.; Assef, R. J.; Eisenhardt, P.; Blain, A. W.; Stanford, S. A.; Wright, E.; Bridge, C.; Riechers, D. A.

    2013-03-01

    The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey in four channels at 3.4-22 {mu}m, detecting hundreds of millions of objects. We merge the WISE mid-infrared data with optical data from the Sloan Digital Sky Survey (SDSS) and provide a phenomenological characterization of WISE extragalactic sources. WISE is most sensitive at 3.4 {mu}m (W1) and least sensitive at 22 {mu}m (W4). The W1 band probes massive early-type galaxies out to z {approx}> 1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4 {mu}m sources have faint or no r-band counterparts (r > 22.2). In contrast, 92%-95% of 12 {mu}m and 22 {mu}m sources have SDSS optical counterparts with r {<=} 22.2. WISE 3.4 {mu}m detects 89.8% of the entire SDSS QSO catalog at S/N{sub W1} >7{sigma}, but only 18.9% at 22 {mu}m with S/N{sub W4} > 5{sigma}. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies, and strong active galactic nuclei (AGNs)/QSOs at z {approx}< 3. We highlight three major applications of WISE colors: (1) Selection of strong AGNs/QSOs at z {<=} 3 using W1 - W2 > 0.8 and W2 < 15.2 criteria, producing a better census of this population. The surface density of these strong AGN/QSO candidates is 67.5 {+-} 0.14 deg{sup -2}. (2) Selection of dust-obscured, type-2 AGN/QSO candidates. We show that WISE W1 - W2 > 0.8, W2 < 15.2 combined with r - W2 > 6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is one-third of all WISE color-selected AGNs. (3) Selection of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red colors, r - W4 > 14 or well-detected 22 {mu}m sources lacking detections in the 3.4 and 4.6 {mu}m bands. The surface density of z {approx} 2 ULIRG candidates selected with r - W4 > 14 is 0.9 {+-} 0.07 deg{sup -2} at S/N{sub W4} {>=} 5 (the corresponding, lowest flux density of

  8. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Deming, Drake; Mumma, M.

    1988-01-01

    This task supports the application of infrared heterodyne and Fourier transform spectroscopy to ultra-high resolution studies of molecular constituents of planetary astomspheres and cometary comae. High spectral and spatial resolutions are especially useful for detection and study of localized, non-thermal phenomena in low temperature and low density regions, for detection of trace constituents and for measurement of winds and dynamical phenomena such as thermal tides. Measurement and analysis of individual spectial lines permits retrieval of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10 to the minus eighth power permits direct measurements of gas velocity to a few meters/sec. Observations are made from ground based heterodyne spectrometers at the Kitt Peak McMath solar telescope and from the NASA infrared Telescope Facility on Mauna Kea, Hawaii. Wind velocities at 110km altitude on Venus were extracted approximately 1 m/sec from measurements of non-thermal emission cores of 10.3 micron CO2 lines. Results indicate a subsolar to antisolar circulationwith a small zonal retrograde component.

  9. Mid-infrared designer metals.

    PubMed

    Law, S; Adams, D C; Taylor, A M; Wasserman, D

    2012-05-21

    We demonstrate the potential of highly-doped semiconductor epilayers as building blocks for mid-infrared plasmonic structures. InAs epilayers are grown by molecular beam epitaxy and characterized by Hall measurements and optical techniques. We show that the plasma frequency of our material can be controlled across a broad range of mid-infrared frequencies. Subwavelength disks are fabricated out of our material, and localized plasmonic resonances are observed from these structures. Experimental results are compared to both numerical simulations and a simple quasistatic dipole model of our disks with good agreement.

  10. The Diffuse Emission and a Variable Ultraluminous X-Ray Point Source in the Elliptical Galaxy NGC 3379

    NASA Astrophysics Data System (ADS)

    David, Laurence P.; Jones, Christine; Forman, William; Murray, Steven S.

    2005-12-01

    A Chandra observation of the intermediate-luminosity (MB=-20) elliptical galaxy NGC 3379 resolves 75% of the X-ray emission within the central 5 kpc into point sources. Spectral analysis of the remaining unresolved emission within the central 770 pc indicates that 90% of the emission probably arises from undetected point sources, while 10% arises from thermal emission from kT=0.6 keV gas. Assuming a uniform density distribution in the central region of the galaxy gives a gas mass of 5×105 Msolar. Such a small amount of gas can be supplied by stellar mass loss in only 107 yr. Thus, the gas must be accreting into the central supermassive black hole at a very low radiative efficiency as in the ADAF or RIAF models, or it is being expelled in a galactic wind driven by the same AGN feedback mechanism as that observed in cluster cooling flows. If the gas is being expelled in an AGN-driven wind, then the ratio of mechanical to radio power of the AGN must be 104, which is comparable to that measured in cluster cooling flows that have recently been perturbed by radio outbursts. Only 8% of the detected point sources are coincident with globular cluster positions, which is significantly less than that found among other elliptical galaxies observed by Chandra. The low specific frequency of globular clusters and the small fraction of X-ray point sources associated with globular clusters in NGC 3379 is more similar to the properties of lenticular galaxies rather than elliptical galaxies. The brightest point source in NGC 3379 is located 360 pc from the central AGN with a peak luminosity of 3.5×1039 ergs s-1, which places it in the class of ultraluminous X-ray point sources (ULXs). Analysis of an archival ROSAT HRI observation of NGC 3379 shows that this source was at a comparable luminosity 5 yr prior to the Chandra observation. The spectrum of the ULX is well described by a power-law model with Γ=1.6+/-0.1 and galactic absorption, similar to other ULXs observed by Chandra and

  11. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  12. Tidal interactions and infrared-bright QSOs

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1988-01-01

    Deep direct images of five IRAS-selected QSOs with similar IR luminosities and spectral indices have been analyzed. The present objects possess IR luminosities similar to those of the IRAS flux-lined sample of ultraluminous galaxies, but have IR spectral indices similar to those of normal QSOs. Four of the objects are in strong tidal interaction and have blue host galaxies and reddened nuclei. It is suggested that these objects are QSOs and AGN in an intermediate stage of their activity, which lies between that of ultraluminous galaxies and optically selected QSOs.

  13. Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Mampaso, A.; Prieto, M.; Sánchez, F.

    2004-01-01

    What do we understand of the birth and death of stars? What is the nature of the tiny dust grains that permeate our Galaxy and other galaxies? And how likely is the existence of brown dwarfs, extrasolar planets or other sub-stellar mass objects? These are just a few of the questions that can now be addressed in a new era of infrared observations. IR astronomy has been revolutionised over the past few years by the widespread availability of large, very sensitive IR arrays and the success of IR satellites (IRAS in particular). Several IR space missions due for launch over the next few years promise an exciting future too. For these reasons, the IV Canary Islands Winter School of Astrophysics was dedicated to this burgeoning field. Its primary goal was to introduce graduate students and researchers from other areas to the important new observations and physical ideas that are emerging in this wide-ranging field of research. Lectures from nine leading researchers, renowned for their teaching abilities, are gathered in this volume. These nine chapters provide an excellent introduction as well as a thorough and up-to-date review of developments - essential reading for graduate students entering IR astronomy, and professionals from other areas who realise the importance that IR astronomy may have on their research.

  14. A far-infrared spectral sequence of galaxies: trends and models

    SciTech Connect

    Fischer, Jacqueline; Abel, N. P.; González-Alfonso, E.; Dudley, C. C.; Satyapal, S.; Van Hoof, P. A. M.

    2014-11-10

    We present a framework for the interpretation of the far-infrared spectra of galaxies in which we have expanded the model parameters compared with previous work by varying the ionization parameter U, column density N(H), and gas density at the cloud face n(H{sup +}) for a central starburst or active galactic nucleus (AGN). We compare these models carried out with the Cloudy spectral synthesis code to trends in line-to-total far-infrared luminosity ratios, far-infrared fine-structure line ratios, IRAS colors, and OH and H{sub 2}O column densities found in the well-studied sample of 10 nearby galaxies from the IRAS Bright Galaxy Sample with infrared luminosities greater than 10{sup 10} L {sub ☉} and IRAS 60 μm fluxes equal to or greater than that of the nearby ultraluminous infrared galaxy (ULIRG) Arp 220. We find that the spectral sequence extending from normal starburst-type emission-line-dominated spectra to ULIRG-type absorption-dominated spectra with significant absorption from excited levels can be best explained by simultaneously increasing the hydrogen column density, from as low as 10{sup 21} cm{sup –2} to as high as 10{sup 24.8} cm{sup –2} or greater, and the ionization parameter, from as low as 10{sup –4} to as high as 1. The starburst models best reproduce most of the sequence, while AGN models are somewhat better able to produce the high OH and H{sub 2}O column densities in Arp 220. Our results suggest that the molecular interstellar medium in ULIRG-like, molecular-absorption-dominated systems is located close to and at least partially obscures the source of power throughout much of the far-infrared, which must be taken into account in order to properly interpret diagnostics of both their sources of power and of feedback.

  15. A Far-infrared Spectral Sequence of Galaxies: Trends and Models

    NASA Astrophysics Data System (ADS)

    Fischer, Jacqueline; Abel, N. P.; González-Alfonso, E.; Dudley, C. C.; Satyapal, S.; van Hoof, P. A. M.

    2014-11-01

    We present a framework for the interpretation of the far-infrared spectra of galaxies in which we have expanded the model parameters compared with previous work by varying the ionization parameter U, column density N(H), and gas density at the cloud face n(H+) for a central starburst or active galactic nucleus (AGN). We compare these models carried out with the Cloudy spectral synthesis code to trends in line-to-total far-infrared luminosity ratios, far-infrared fine-structure line ratios, IRAS colors, and OH and H2O column densities found in the well-studied sample of 10 nearby galaxies from the IRAS Bright Galaxy Sample with infrared luminosities greater than 1010 L ⊙ and IRAS 60 μm fluxes equal to or greater than that of the nearby ultraluminous infrared galaxy (ULIRG) Arp 220. We find that the spectral sequence extending from normal starburst-type emission-line-dominated spectra to ULIRG-type absorption-dominated spectra with significant absorption from excited levels can be best explained by simultaneously increasing the hydrogen column density, from as low as 1021 cm-2 to as high as 1024.8 cm-2 or greater, and the ionization parameter, from as low as 10-4 to as high as 1. The starburst models best reproduce most of the sequence, while AGN models are somewhat better able to produce the high OH and H2O column densities in Arp 220. Our results suggest that the molecular interstellar medium in ULIRG-like, molecular-absorption-dominated systems is located close to and at least partially obscures the source of power throughout much of the far-infrared, which must be taken into account in order to properly interpret diagnostics of both their sources of power and of feedback.

  16. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  17. The middle infrared properties of OH megamaser host galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Wang, J. Z.; Di, G. X.; Zhu, Q. F.; Guo, Q.; Wang, J.

    2014-10-01

    We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH> 10 L⊙) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ~40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1 - W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support

  18. IRAS 14348-1447, an Ultraluminous Pair of Colliding, Gas-Rich Galaxies: The Birth of a Quasar?

    PubMed

    Sanders, D B; Scoville, N Z; Soifer, B T

    1988-02-01

    Ground-based observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at far-infrared wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of our galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dustenshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected. The derived mass of interstellar molecular hydrogen is 6 x 10(10) solar masses. This value is approximately 20 times that of the molecular gas content of the Milky Way and is similar to the largest masses of atomic hydrogen found in galaxies. A large mass of molecular gas may be a prerequisite for the formation of quasars during strong galactic collisions.

  19. Infrared: Beyond the Visible

    NASA Video Gallery

    Infrared: Beyond the Visible, is a fast, fun look at why infrared light matters to astronomy, and what the Webb Space Telescope will search for once it's in orbit. Caption file available at: http:/...

  20. IRAS 14348-1447, an ultraluminous pair of colliding, gas-rich galaxies - The birth of a quasar?

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Scoville, N. Z.

    1988-01-01

    Ground-baed observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at FIR wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of the Galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dust-enshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected.

  1. PMAS optical integral field spectroscopy of luminous infrared galaxies. II. Spatially resolved stellar populations and excitation conditions

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; García-Marín, M.; Rodríguez Zaurín, J.; Monreal-Ibero, A.; Colina, L.; Arribas, S.

    2010-11-01

    Context. The general properties (e.g., activity class, star formation rates, metallicities, extinctions, average ages, etc.) of luminous (LIRGs) and ultraluminous infrared galaxies (ULIRGs) in the local universe are well known because large samples of these objects have been the subject of numerous spectroscopic works over the past three decades. There are, however, relatively few studies of the spatially-resolved spectroscopic properties of large samples of LIRGs and ULIRGs using integral field spectroscopy (IFS). Aims: We are carrying out an IFS survey of local (z<0.26) samples of LIRGs and ULIRGs to characterize their two-dimensional spectroscopic properties. The main goal of this paper is to study the spatially resolved properties of the stellar populations and the excitation conditions in a sample of LIRGs. Methods: We analyze optical (3800-7200 Å) IFS data taken with the Potsdam Multi-Aperture Spectrophotometer (PMAS) of the central few kiloparsecs of eleven LIRGs. To study these stellar populations, we fit the optical stellar continuum and the hydrogen recombination lines of selected regions in the galaxies. We analyzed the excitation conditions of the gas using the spatially resolved properties of the brightest optical emission lines. We complemented the PMAS observations with existing HST/NICMOS near-infrared continuum and Paα imaging. Results: The optical continua of selected regions in our LIRGs are well fitted with a combination of an evolved (~0.7-10 Gyr) stellar population with an ionizing stellar population (1-20 Myr). The latter population is more obscured than the evolved population, and has visual extinctions in good agreement with those obtained from the Balmer decrement. Except for NGC 7771, we find no clear that there is an important contribution to the optical light from an intermediate-aged stellar population (~100-500 Myr). Even after correcting for the presence of stellar absorption, a large number of spaxels with low observed equivalent

  2. Accurate positions for the ultraluminous X-ray sources NGC 7319-X4 and NGC 5474-X1 and limiting magnitudes for their optical counterparts

    NASA Astrophysics Data System (ADS)

    Heida, M.; Jonker, P. G.; Torres, M. A. P.; Mineo, S.

    2012-08-01

    In this paper, we report accurate Chandra positions for two ultraluminous X-ray sources (ULXs): NGC 7319-X4 at Right Ascension (RA) = 339?029 17(2), Declination (Dec.) = 33?974 76(2) and NGC 5474-X1 at RA = 211?248 59(3), Dec. = 53?635 84(3). We perform bore-sight corrections on the Chandra X-ray satellite observations of these sources to get these accurate positions of the X-ray sources and match these positions with archival optical data from the Wide Field Planetary Camera 2 (WFPC2) onboard the Hubble Space Telescope. We do not find the optical counterparts; the limiting absolute magnitudes of the observations in the WFPC2 standard magnitude system are B=-7.9, V=-8.7 and I=-9.3 for NGC 7319-X4 and U=-6.4 for NGC 5474-X1. We report on the X-ray spectral properties and find evidence for X-ray variability in NGC 5474-X1. Finally, we briefly discuss several options for the nature of these ULXs.

  3. The ultraluminous X-ray sources NGC 1313 X-1 and X-2: A broadband study with NuSTAR and XMM-Newton

    SciTech Connect

    Bachetti, Matteo; Barret, Didier; Webb, Natalie A.; Rana, Vikram; Walton, Dominic J.; Harrison, Fiona A.; Fürst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Fabian, Andrew C.; Hailey, Charles J.; Hornschemeier, Ann; Ptak, Andrew F.; Zhang, William W.; Miller, Jon M.; Stern, Daniel

    2013-12-01

    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ∼0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.

  4. Improved collision strengths and line ratios for forbidden [O III] far-infrared and optical lines

    NASA Astrophysics Data System (ADS)

    Palay, Ethan; Nahar, Sultana N.; Pradhan, Anil K.; Eissner, Werner

    2012-06-01

    Far-infrared and optical [O III] lines are useful temperature-density diagnostics of nebular as well as dust obscured astrophysical sources. Fine-structure transitions among the ground state levels 1 s22 s22 p33 P 0,1,2 give rise to the 52- and 88-?m lines, whereas transitions among the 3 P 0,1,2, 1 D 2, 1 S 0 levels yield the well-known optical lines λλ4363, 4959 and 5007 Å. These lines are excited primarily by electron impact excitation. However, despite their importance in nebular diagnostics collision strengths for the associated fine-structure transitions have not been computed taking full account of relativistic effects. We present Breit-Pauli R-matrix calculations for the collision strengths with highly resolved resonance structures. We find significant differences of up to 20 per cent in the Maxwellian averaged rate coefficients from previous works. We also tabulate these to lower temperatures down to 100 K to enable determination of physical conditions in cold dusty environments such photodissociation regions and ultraluminous infrared galaxies observed with the Herschel Space Observatory. We also examine the effect of improved collision strengths on temperature- and density-sensitive line ratios.

  5. Preliminary Results from the Wide-field Infrared Survey Explorer's NEOWISE Search for Minor Planets

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Bauer, J. M.; Grav, T.; Masiero, J.; McMillan, R. S.; Walker, R.; Tholen, D. J.; Wright, E.; Eisenhardt, P.; Cutri, R.; Neowise Team

    2011-12-01

    The Wide-Field Infrared Survey Explorer (WISE) imaged the entire sky twice between January, 2010 and January, 2011 at four wavelengths spanning the near through mid-IR at sensitivities hundreds of times greater than previous surveys [1]. The WISE band-passes (3.4, 4.6, 12 and 22mm) sample the flux from most inner-solar-system bodies near the peak of their thermal emission. Overlapping sky regions were sampled repeatedly at 3 hour intervals. The same region of sky was observed a minimum of 8 times. While the primary WISE science objectives focus on ultra-luminous infrared galaxies and brown dwarfs, additions to the baseline WISE pipeline (collectively known as "NEOWISE") have enabled the detection of undiscovered moving objects, as well as previously known bodies [2]. NEOWISE has detected more than 155,000 minor planets, including more than 500 near-Earth objects (NEOs), ~2000 Jupiter Trojans, ~120 comets, and ~20 outer Solar System objects such as Centaurs. The survey has discovered ~34,000 new minor planets, including 130 new NEOs and 20 new comets. The NEOWISE data will drive a wide range of new Solar System investigations. NEOWISE allows precise determination of IR-derived diameters and albedos for minor planets throughout the Solar System [3],[4]. We will summarize the latest results from the project, including studies of the statistical properties of asteroid populations such as the NEOs, and comparisons between albedo and asteroid taxonomic classification.

  6. The Milky Way, the Local Group & the IR Tully-Fisher Diagram

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Spergel, D.; Rhoads, J.; Li, J.

    1996-01-01

    Using the near infrared fluxes of local group galaxies derived from Cosmic Background Explorer/Diffuse Infrared Background Experiment band maps and published Cepheid distances, we construct Tully-Fisher diagrams for the Local Group.

  7. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  8. Merged infrared catalogue

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.

    1978-01-01

    A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.

  9. Infrared in automotive applications

    NASA Astrophysics Data System (ADS)

    Predmesky, Ronald L.; Zaluzec, Matthew J.

    1997-04-01

    As the automotive industry continues to develop advanced materials and manufacturing processes, infrared imaging has the potential to become a major tool in process monitoring and closed loop process control. This paper reviews five novel applications of infrared imaging in applications such as product testing, component manufacture, and vehicle assembly. Infrared was found to be effective as a diagnostics tool for characterizing disc brake systems and electronic engine control sensors. The effectiveness of infrared to qualify fuel nozzle backspray was used to optimize hardware design for fuel systems. Finally, infrared was found to be useful in vehicle assembly operations in the installation of windshield glass and instrument panel hardware where visual inspection was impractical. The speed of image capture and the availability of image processing software for real time image processing and closed loop process control will no doubt find more applications as infrared imaging finds its niche in the automotive industry.

  10. Isotope-edited infrared spectroscopy.

    PubMed

    Buchner, Ginka S; Kubelka, Jan

    2012-01-01

    Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.

  11. Optical and infrared masers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Ongoing research progress in the following areas is described: (1) tunable infrared light sources and applications; (2) precision frequency and wavelength measurements in the infrared with applications to atomic clocks; (3) zero-degree pulse propagation in resonant medium; (4) observation of Dicke superradiance in optically pumped HF gas; (5) unidirectional laser amplifier with built-in isolator; and (6) progress in infrared metal-to-metal point contact tunneling diodes.

  12. Early infrared astronomy

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2009-07-01

    I present a short history of infrared astronomy, from the first scientific approaches of the ‘radiant heat’ in the seventeenth century to the 1970's, the time when space infrared astronomy was developing very rapidly. The beginning of millimeter and submillimeter astronomy is also covered. As the progress of infrared astronomy was strongly dependent on detectors, some details are given on their development.

  13. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  14. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  15. Far infrared supplement: Catalog of infrared observations, second edition

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1988-01-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  16. Far infrared supplement: Catalog of infrared observations, second edition

    NASA Astrophysics Data System (ADS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1988-08-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  17. Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The infrared astronomical data base and its principal data product, the catalog of Infrared Observations (CIO), comprise a machine readable library of infrared (1 microns to 1000 microns astronomical observations. To date, over 1300 journal articles and 10 major survey catalogs are included in this data base, which contains about 55,000 individual observations of about 10,000 different infrared sources. Of these, some 8,000 sources are identifiable with visible objects, and about 2,000 do not have known visible counterparts.

  18. Catalog of infrared observations

    NASA Astrophysics Data System (ADS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-05-01

    The infrared astronomical data base and its principal data product, the catalog of Infrared Observations (CIO), comprise a machine readable library of infrared (1 microns to 1000 microns astronomical observations. To date, over 1300 journal articles and 10 major survey catalogs are included in this data base, which contains about 55,000 individual observations of about 10,000 different infrared sources. Of these, some 8,000 sources are identifiable with visible objects, and about 2,000 do not have known visible counterparts.

  19. Chandra ACIS Survey of X-Ray Point Sources in Nearby Galaxies. II. X-Ray Luminosity Functions and Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Wang, Song; Qiu, Yanli; Liu, Jifeng; Bregman, Joel N.

    2016-09-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α ˜ 1.50 ± 0.07) to elliptical (˜1.21 ± 0.02), to spirals (˜0.80 ± 0.02), to peculiars (˜0.55 ± 0.30), and to irregulars (˜0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D 25 and 2D 25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 1040 erg s-1, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M ⊙ black holes with super-Eddington radiation and intermediate mass black holes.

  20. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  1. Milliarcsec-scale radio emission of ultraluminous X-ray sources: steady jet emission from an intermediate-mass black hole?

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Farrell, S. A.; Gladstone, J. C.; Lobanov, A. P.

    2013-12-01

    The origin of the high X-ray luminosities of most ultraluminous X-ray sources (ULXs) still remains poorly understood. Most of the scenarios proposed to explain their nature assume that ULXs are powered by accretion on to a black hole (BH). In this case, the detection of compact radio emission and the location of the ULXs in the Fundamental Plane (X-ray versus radio-luminosity plane) can provide an estimate of the ULX BH mass and help address the question of their physical nature. We present the results of a high-resolution (very long baseline interferometry) radio observational campaign aimed at detecting and studying compact radio emission in four ULXs with known radio counterparts. We find that one of the targets (N4559-X4) was previously misclassified: its low X-ray luminosity indicates that the source is not a ULX. No milliarcsec-scale radio emission is detected for N4559-X4 nor for the ULXs N4490-X1 and N5194-X2, for which upper limits on the radio luminosities are estimated. These limits argue strongly against the presence of supermassive BHs in these three systems. For N4559-X4, the low X-ray luminosity and the ratio of the radio and X-ray luminosities suggest the presence of an X-ray binary. Compact radio emission is detected for the ULX N5457-X9 within its Chandra positional error, making N5457-X9 a potential intermediate-mass BH with steady jet emission.

  2. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    SciTech Connect

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  3. NUSTAR AND XMM-NEWTON OBSERVATIONS OF THE EXTREME ULTRALUMINOUS X-RAY SOURCE NGC 5907 ULX1: A VANISHING ACT

    SciTech Connect

    Walton, D. J.; Stern, D.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Rana, V.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Middleton, M. J.; Roberts, T. P.; Sutton, A. D.; Zhang, W.

    2015-02-01

    We present results obtained from two broadband X-ray observations of the extreme ultraluminous X-ray source (ULX) NGC 5907 ULX1, known to have a peak X-ray luminosity of ∼5 × 10{sup 40} erg s{sup –1}. These XMM-Newton and NuSTAR observations, separated by only ∼4 days, revealed an extreme level of short-term flux variability. In the first epoch, NGC 5907 ULX1 was undetected by NuSTAR, and only weakly detected (if at all) with XMM-Newton, while in the second NGC 5907 ULX1 was clearly detected at high luminosity by both missions. This implies an increase in flux of ∼2 orders of magnitude or more during this ∼4 day window. We argue that this is likely due to a rapid rise in the mass accretion rate, rather than to a transition from an extremely obscured to an unobscured state. During the second epoch we observed the broadband 0.3-20.0 keV X-ray luminosity to be (1.55 ± 0.06) × 10{sup 40} erg s{sup –1}, similar to the majority of the archival X-ray observations. The broadband X-ray spectrum obtained from the second epoch is inconsistent with the low/hard accretion state observed in Galactic black hole binaries, but is well modeled with a simple accretion disk model incorporating the effects of photon advection. This strongly suggests that when bright, NGC 5907 ULX1 is a high-Eddington accretor.

  4. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D.; Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Parker, M. L.; Hailey, C. J.; Ptak, A.; Zhang, W. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  5. The Broadband XMM-Newton and NuSTAR X-Ray Spectra of Two Ultraluminous X-Ray Sources in the Galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Rana, Vikram; Harrison, Fiona A.; Bachetti, Matteo; Walton, Dominic J.; Furst, Felix; Barret, Didier; Miller, Jon M.; Fabian, Andrew C.; Boggs, Steven E.; Christensen, Finn C.; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Madsen, Kristin K.; Ptak, Andrew F.; Stern, Daniel; Webb, Natalie A.; Zhang, William W.

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ~7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04+0.08-0.06 × 1040 erg s-1 for IC 342 X-1 and 7.40 ± 0.20 × 1039 erg s-1 for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  6. A Multi-Epoch Timing and Spectral Study of the Ultraluminous X-Ray NGC 5408 X-1 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Dheeraj, Pasham; Strohmayer, Tod E.

    2012-01-01

    We present results of new XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic oscillations (QPOs). We detect QPOs in each of four new (approximately equal to 100 ks) pointings, expanding the range of frequencies observed from 10 to 40 mHz. We compare our results with the timing and spectral correlations seen in stellar-mass black hole systems, and find that the qualitative nature of the timing and spectral behavior of NGC 5408 X-1 is similar to systems in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency-photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of greater than or equal to 800 solar mass. Alternatively, the QPO frequency is largely independent of the spectral parameters, in which case a close analogy with the Type-C QPOs in stellar system is problematic. Measurement of the source's timing properties over a wider range of energy spectral index is needed to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high-frequency QPO analogs (0.1- 1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6-7 keV band and of the amplitude (rms) of a high-frequency QPO analog of approximately equal to 10 eV and approximately equal to 4%, respectively.

  7. Discovery of a Large Population of Ultraluminous X-Ray Sources in the Bulgeless Galaxies NGC 337 and ESO 501-23

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Mathur, Smita; Martini, Paul; Watson, Linda; Grier, Catherine J.; Ferrarese, Laura

    2013-11-01

    We have used Chandra observations of eight bulgeless disk galaxies to identify new ultraluminous X-ray source (ULX) candidates, study their high-mass X-ray binary (HMXB) population, and search for low-luminosity active galactic nuclei (AGNs). We report the discovery of 16 new ULX candidates in our sample of galaxies. Eight of these are found in the star forming galaxy NGC 337, none of which are expected to be background contaminants. The HMXB luminosity function of NGC 337 implies a star formation rate (SFR) of 6.8^{+4.4}_{-3.5} M ⊙ yr-1, consistent at 1.5σ with a recent state of the art SFR determination. We also report the discovery of a bright ULX candidate (X-1) in ESO 501-23. X-1's spectrum is well fit by an absorbed power law with \\Gamma = 1.18^{+0.19}_{-0.11} and N H = 1.13^{+7.07}_{-1.13} \\times 10^{20} cm-2, implying a 0.3-8 keV flux of 1.08^{+0.05}_{-0.07} \\times 10^{-12} erg s-1 cm-2. Its X-ray luminosity (LX ) is poorly constrained due to uncertainties in the host galaxy's distance, but we argue that its spectrum implies LX > 1040 erg s-1. An optical counterpart to this object may be present in an Hubble Space Telescope image. We also identify ULX candidates in IC 1291, PGC 3853, NGC 5964, and NGC 2805. We find no evidence of nuclear activity in the galaxies in our sample, placing a flux upper limit of 4 × 10-15 erg s-1 cm-2 on putative AGN. Additionally, the Type II-P supernova SN 2011DQ in NGC 337, which exploded two months before our X-ray observation, is undetected.

  8. THE SECOND ULTRALUMINOUS X-RAY SOURCE TRANSIENT IN M31: CHANDRA, HUBBLE SPACE TELESCOPE, AND XMM OBSERVATIONS, AND EVIDENCE FOR AN EXTENDED CORONA

    SciTech Connect

    Barnard, R.; Garcia, M.; Murray, S. S.

    2013-08-01

    XMMU J004243.6+412519 is a transient X-ray source in M31, first discovered 2012 January 15. Different approaches to fitting the brightest follow-up observation gave luminosities 1.3-2.5 Multiplication-Sign 10{sup 39} erg s{sup -1}, making it the second ultraluminous X-ray source (ULX) in M31, with a probable black hole accretor. These different models represent different scenarios for the corona: optically thick and compact, or optically thin and extended. We obtained Chandra ACIS and Hubble Space Telescope Advanced Camera for Surveys observations of this object as part of our transient monitoring program, and also observed it serendipitously in a 120 ks XMM-Newton observation. We identify an optical counterpart at J2000 position 00:42:43.70 +41:25:18.54; its F435W ({approx}B band) magnitude was 25.97 {+-} 0.03 in the 2012 March 7 observation, and >28.4 at the 4{sigma} level during the 2012 September 7 observation, indicating a low-mass donor. We created two alternative light curves, using the different corona scenarios, finding linear decay for the compact corona and exponential decay for the extended corona; linear decay implies a disk that is >5 mag brighter than we observed. We therefore favor the extended corona scenario, but caution that there is no statistical preference for this model in the X-ray spectra alone. Using two empirical relations between the X-ray to optical ratio and the orbital period, we estimate a period of {approx}9-30 hr; this period is consistent with that of the first ULX in M31 (18{sup +5}{sub -6} hr)

  9. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  10. The Infrared Sky.

    ERIC Educational Resources Information Center

    Habing, Harm J.; Neugebauer, Gerry

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) is a survey instrument that has provided an overall view of the infrared sky and identified objects that merit further investigation. A description of the IRAS and examples of the types of astronomical data collected are presented. (JN)

  11. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  12. Daylight coloring for monochrome infrared imagery

    NASA Astrophysics Data System (ADS)

    Gabura, James

    2015-05-01

    The effectiveness of infrared imagery in poor visibility situations is well established and the range of applications is expanding as we enter a new era of inexpensive thermal imagers for mobile phones. However there is a problem in that the counterintuitive reflectance characteristics of various common scene elements can cause slowed reaction times and impaired situational awareness-consequences that can be especially detrimental in emergency situations. While multiband infrared sensors can be used, they are inherently more costly. Here we propose a technique for adding a daylight color appearance to single band infrared images, using the normally overlooked property of local image texture. The simple method described here is illustrated with colorized images from the visible red and long wave infrared bands. Our colorizing process not only imparts a natural daylight appearance to infrared images but also enhances the contrast and visibility of otherwise obscure detail. We anticipate that this colorizing method will lead to a better user experience, faster reaction times and improved situational awareness for a growing community of infrared camera users. A natural extension of our process could expand upon its texture discerning feature by adding specialized filters for discriminating specific targets.

  13. Infrared small target detection based on visual attention

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Hong; Cheng, Feiyang; Yuan, Ding; Sun, Mingui

    2015-03-01

    Detecting dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. In this paper, we proposed a real-time target detection approach in infrared imagery. This method combined saliency detection technology and local average filtering. First, we compute the log amplitude spectrum of infrared image. Second, we find the spikes of the amplitude spectrum using cubic facet model and suppress the sharp spikes using local average filtering. At last, the detection result in spatial domain is obtained by reconstructing the 2D signal using the original phase and the filtered amplitude spectrum. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect the dim and small targets.

  14. Microthermomechanical infrared sensors

    NASA Astrophysics Data System (ADS)

    Steffanson, M.; Rangelow, I. W.

    2014-03-01

    We present a state-of-the-art overview of microthermomechanical infrared sensor technology. The working principle of this sensor is based on a bi-material actuated micromechanical deflection, generated by an induced temperature rise due to incident infrared radiation absorption. In order to generate a thermal image the thermomechanical deflections of the freestanding microstructures are read by either capacitive, piezoresistive or optical means. Research and development activities in this field began in the early 1990s. The development of this technology within the last 20 years has resulted in innovations such as uncooled multiband infrared detection, high-speed infrared sensing and uncooled THz imaging. This paper outlines representative milestones of this technology and analyses important results of notable groups. Significant activities on capacitive and optical readout techniques of thermomechanical infrared arrays are presented. Furthermore the advantages of microthermomechanical infrared sensors over current well-established uncooled infrared technologies are summarized. In conclusion the latest developments of this technology offer a highly potential solution for a variety of important energy-saving, safety and security applications.

  15. Mauna Kea Observatory infrared observations

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1974-01-01

    Galactic and solar system infrared observations are reported using a broad variety of radiometric and spectroscopic instrumentation. Infrared programs and papers published during this period are listed.

  16. Deep Mid-Infrared Silicate Absorption as a Diagnostic of Obscuring Geometry toward Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Levenson, N. A.; Sirocky, M. M.; Hao, L.; Spoon, H. W. W.; Marshall, J. A.; Elitzur, M.; Houck, J. R.

    2007-01-01

    The silicate cross section peak near 10 μm produces emission and absorption features in the spectra of dusty galactic nuclei observed with the Spitzer Space Telescope. Especially in ultraluminous infrared galaxies, the observed absorption feature can be extremely deep, as IRAS 08572+3915 illustrates. A foreground screen of obscuration cannot reproduce this observed feature, even at a large optical depth. Instead, the deep absorption requires a nuclear source to be deeply embedded in a smooth distribution of material that is both geometrically and optically thick. In contrast, a clumpy medium can produce only shallow absorption or emission, which are characteristic of optically identified active galactic nuclei. In general, the geometry of the dusty region and the total optical depth, rather than the grain composition or heating spectrum, determine the silicate feature's observable properties. The apparent optical depth calculated from the ratio of line to continuum emission generally fails to accurately measure the true optical depth. The obscuring geometry, not the nature of the embedded source, also determines the far-IR spectral shape.

  17. LONG-TERM SPECTRAL VARIATIONS OF ULTRALUMINOUS X-RAY SOURCES IN THE INTERACTING GALAXY SYSTEMS M 51 AND NGC 4490/85

    SciTech Connect

    Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro; Matsushita, Kyoko; Kawaguchi, Toshihiro

    2010-10-10

    Variable ultraluminous X-ray sources (ULXs), which are considered to be black hole binaries (BHBs), are known to show state transitions similar to Galactic BHBs. However, the relation between the ULX states and the Galactic BHB states is still unclear, primarily due to the less well-understood behaviors of ULXs in contrast to the Galactic BHBs. Here, we report a statistical X-ray spectral study of 34 energy spectra from seven bright ULXs in the interacting galaxy systems M 51 and NGC 4490/85, using archive data from multiple Chandra and XMM-Newton observations spanning a few years. In order to compare them with Galactic BHB states, we applied representative spectral models of BHBs-a power-law (PL), a multi-color disk blackbody (MCD), and a slim-disk model-to all the ULX spectra. We found a hint of a bimodal structure in the luminosity distribution of the samples, suggesting that ULXs have two states that respectively have typical luminosities of (3-6)x 10{sup 39} and (1.5-3)x 10{sup 39} ergs s{sup -1}. Most spectra in the brighter state are explained by the MCD or the slim-disk model, whereas those in the fainter state are explained by the PL model. In particular, the slim-disk model successfully explains the observed spectral variations of NGC 4490/85 ULX-6 and ULX-8 by changes of the mass accretion rate to a black hole of an estimated mass of <40 M{sub sun}. From the best-fit model parameters of each state, we speculate that the brighter state in these two ULXs corresponds to the brightest state of Galactic BHBs, which is often called the 'apparently standard state'. The fainter state of the ULXs has a PL-shaped spectrum, but the photon index range is much wider than that seen in any single state of Galactic BHBs. We thus speculate that it is a state unique to ULXs. Some sources show much fainter and steeper spectra than the faint state, which we identified as yet another state.

  18. Long-term Spectral Variations of Ultraluminous X-ray Sources in the Interacting Galaxy Systems M 51 and NGC 4490/85

    NASA Astrophysics Data System (ADS)

    Yoshida, Tessei; Ebisawa, Ken; Matsushita, Kyoko; Tsujimoto, Masahiro; Kawaguchi, Toshihiro

    2010-10-01

    Variable ultraluminous X-ray sources (ULXs), which are considered to be black hole binaries (BHBs), are known to show state transitions similar to Galactic BHBs. However, the relation between the ULX states and the Galactic BHB states is still unclear, primarily due to the less well-understood behaviors of ULXs in contrast to the Galactic BHBs. Here, we report a statistical X-ray spectral study of 34 energy spectra from seven bright ULXs in the interacting galaxy systems M 51 and NGC 4490/85, using archive data from multiple Chandra and XMM-Newton observations spanning a few years. In order to compare them with Galactic BHB states, we applied representative spectral models of BHBs—a power-law (PL), a multi-color disk blackbody (MCD), and a slim-disk model—to all the ULX spectra. We found a hint of a bimodal structure in the luminosity distribution of the samples, suggesting that ULXs have two states that respectively have typical luminosities of (3-6)× 1039 and (1.5-3)× 1039 ergs s-1. Most spectra in the brighter state are explained by the MCD or the slim-disk model, whereas those in the fainter state are explained by the PL model. In particular, the slim-disk model successfully explains the observed spectral variations of NGC 4490/85 ULX-6 and ULX-8 by changes of the mass accretion rate to a black hole of an estimated mass of <40 M sun. From the best-fit model parameters of each state, we speculate that the brighter state in these two ULXs corresponds to the brightest state of Galactic BHBs, which is often called the "apparently standard state." The fainter state of the ULXs has a PL-shaped spectrum, but the photon index range is much wider than