Science.gov

Sample records for local ultraluminous infrared

  1. Ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Neugebauer, G.; Scoville, N. Z.; Madore, B. F.; Danielson, G. E.; Elias, J. H.; Matthews, K.; Persson, C. J.; Persson, S. E.

    1987-01-01

    The IRAS survey of the local universe has revealed the existence of a class of ultraluminous infrared galaxies with L(8 to 1000 micrometer) greater than 10 to the 12th L sub 0 that are slightly more numerous, and as luminous as optically selected quasars at similar redshift. Optical CCD images of these infrared galaxies show that nearly all are advanced mergers. Millimeter wave CO observations indicate that these interacting systems are extremely rich in molecular gas with total H2 masses 1 to 3 x 10 to the 10th power M sub 0. Nearly all of the ultraluminous infrared galaxies show some evidence in their optical spectra for nonthermal nuclear activity. It is proposed that their infrared luminosity is powered by an embedded active nucleus and a nuclear starburst both of which are fueled by the tremendous reservoir of molecular gas. Once these merger nuclei shed their obscuring dust, allowing the AGN to visually dominate the decaying starburst, they become the optically selected quasars.

  2. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  3. Buried Quasars in Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2004-01-01

    We were awarded l00OkS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order io measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  4. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  5. STELLAR POPULATIONS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Hou, L. G.; Han, J. L.; Kong, M. Z.; Wu Xuebing

    2011-05-10

    Ultraluminous infrared galaxies (ULIRGs) are classified into several types depending on the dominance of starburst or active galactic nucleus (AGN) components. We conducted a stellar population analysis for a sample of 160 ULIRGs to study the evolution of ULIRGs. We found that the dominance of intermediate-age and old stellar populations increases along the sequence of H II-like ULIRGs, Seyfert-H II composite ULIRGs, and Seyfert 2 ULIRGs. Consequently, the typical mean stellar age and stellar mass increase along the sequence. Comparing the gas mass estimated from the CO measurements to the stellar mass estimated from the optical spectra, we found that the gas fraction is anti-correlated with stellar mass. Even so, the total masses of H II-like ULIRGs with small stellar masses and a large fraction of gas are not comparable to the small masses of Seyfert 2 ULIRGs. This indicates that H II-like ULIRGs with small stellar masses have no evolutionary connections with massive Seyfert 2 ULIRGs. Only massive ULIRGs may follow the evolution sequence toward AGNs, and massive H II-like ULIRGs are probably in an earlier stage of the sequence.

  6. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect

    Kilerci Eser, E.; Goto, T.; Doi, Y. E-mail: doi@ea.c.u-tokyo.ac.jp

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  7. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  8. ULTRALUMINOUS INFRARED GALAXIES IN THE WISE AND SDSS SURVEYS

    SciTech Connect

    Su, Shanshan; Kong, Xu; Li, Jinrong; Fang, Guanwen E-mail: xkong@ustc.edu.cn

    2013-11-20

    In this paper, we present a large catalog of 419 Ultraluminous infrared galaxies (ULIRGs), carefully selected from the Wide-field Infrared Survey Explorer mid-infrared data and the Sloan Digital Sky Survey eighth data release, and classify them into three subsamples, based on their emission line properties: H II-like ULIRGs, Seyfert 2 ULIRGs, and composite ULIRGs. We apply our new efficient spectral synthesis technique, which is based on mean field approach to Bayesian independent component analysis (MF-ICA) method, to the galaxy integrated spectra. We also analyze the stellar population properties, including percentage contribution, stellar age, and stellar mass, for these three types of ULIRGs, and explore the evolution among them. We find no significant difference between the properties of stellar populations in ULIRGs with or without active galactic nucleus components. Our results suggest that there is no evolutionary link among these three type ULIRGs.

  9. H(2) emission arises outside photodissociation regions in ultraluminous infrared galaxies.

    PubMed

    Zakamska, Nadia L

    2010-05-06

    Ultraluminous infrared galaxies are among the most luminous objects in the local Universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, but left unresolved was the source of excitation for this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultraluminous infrared galaxies and demonstrate that dust obscuration affects star formation indicators but not molecular hydrogen. I thereby establish that the emission of H(2) is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is unexpected in light of the standard view that H(2) emission is directly associated with star-formation activity. I propose the alternative view that H(2) emission in these objects traces shocks in the surrounding material that are excited by interactions with nearby galaxies. Large-scale shocks cooling by means of H(2) emission may accordingly be more common than previously thought. In the early Universe, a boost in H(2) emission by this process may have accelerated the cooling of matter as it collapsed to form the first stars and galaxies, and would make these first structures more readily observable.

  10. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158 μm line from a sample of intermediate redshift (0.2 ultra)-luminous infrared galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ☉}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158 μm line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) × 10{sup –3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ∼10 times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ∼ 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  11. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  12. Infrared Space Observatory Measurements of a [C II] 158 micron Line Deficit in Ultraluminous Infrared Galaxies

    DTIC Science & Technology

    1998-07-23

    INFRARED SPACE OBSERVATORY1 MEASUREMENTS OF A [C ii] 158 MICRON LINE DEFICIT IN ULTRALUMINOUS INFRARED GALAXIES M. L. Luhman ,2,3 S. Satyapal,4,5 J. Fischer...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 L12 LUHMAN ET AL. Vol. 504 TABLE 1 Observing Log Source a2000 d2000 AOT...e.g., Wolfire et al. 1990; Carral et al. 1994; Fischer et al. 1996), L14 LUHMAN ET AL. Vol. 504 which suggests that if [C ii] line saturation alone

  13. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew; Stern, Daniel; Alexander, D. M.; Bauer, Franz E.; Boggs, Stephen E.; Craig, William W.; Brandt, W. Niel; Luo, Bin; Christensen, Finn E.; Comastri, Andrea; Farrah, Duncan; Gandhi, Poshak; Hailey, Charles J.; Harrison, Fiona A.; Hickox, Ryan C.; Koss, Michael; and others

    2015-11-20

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.

  14. HST/WFPC2 Observations of Warm Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Surace, Jason A.; Sanders, D. B.; Vacca, William D.; Veilleux, Sylvain; Mazzarella, J. M.

    1998-01-01

    We present new high-resolution B- and I-band images of a nearly complete sample of nine ``warm'' (f25/f60 > 0.2), ultraluminous infrared galaxies (ULIGs) obtained with the Wide Field Planetary Camera of the Hubble Space Telescope (HST). The HST images clearly reveal the presence of tidal tails and other features associated with merging galaxies. All of the warm ULIGs show evidence of complex structures such as dust lanes and spiral features in their inner few kiloparsecs. Additionally, they show compact, blue ``knots'' of star formation (between 4 and 31 knots per object) that appear similar to those seen in more nearby merger systems. Spectral synthesis modeling is used to estimate mean upper age limits and masses: the median upper age limit for the knots in individual galaxies is ~3 × 108 yr (ranging from ~107 to 1 × 109 yr), and the range of knot masses is ~105-109 M⊙. We also argue that these starburst knots cannot be significant contributors to the extremely high bolometric luminosity of these galaxies. Additionally, each object contains one or two knots whose luminosity and color are implausible in terms of star formation; we identify these as putative active nuclei. These observations are consistent with the hypothesis that warm ULIGs may represent a critical transition stage in the evolution of ULIGs into optical quasi-stellar objects. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. H2O emission in high-z ultra-luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Omont, A.; Yang, C.; Cox, P.; Neri, R.; Beelen, A.; Bussmann, R. S.; Gavazzi, R.; van der Werf, P.; Riechers, D.; Downes, D.; Krips, M.; Dye, S.; Ivison, R.; Vieira, J. D.; Weiß, A.; Aguirre, J. E.; Baes, M.; Baker, A. J.; Bertoldi, F.; Cooray, A.; Dannerbauer, H.; De Zotti, G.; Eales, S. A.; Fu, H.; Gao, Y.; Guélin, M.; Harris, A. I.; Jarvis, M.; Lehnert, M.; Leeuw, L.; Lupu, R.; Menten, K.; Michałowski, M. J.; Negrello, M.; Serjeant, S.; Temi, P.; Auld, R.; Dariush, A.; Dunne, L.; Fritz, J.; Hopwood, R.; Hoyos, C.; Ibar, E.; Maddox, S.; Smith, M. W. L.; Valiante, E.; Bock, J.; Bradford, C. M.; Glenn, J.; Scott, K. S.

    2013-03-01

    Using the IRAM Plateau de Bure interferometer (PdBI), we report the detection of water vapor in six new lensed ultra-luminous starburst galaxies at high redshift, discovered in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The sources are detected either in the 202-111 or 211-202 H2O emission lines with integrated line fluxes ranging from 1.8 to 14 Jy km s-1. The corresponding apparent luminosities are μLH2O ~ 3-12 × 108 L⊙, where μ is the lensing magnification factor (3 < μ < 12). These results confirm that H2O lines are among the strongest molecular lines in high-z ultra-luminous starburst galaxies, with intensities almost comparable to those of the high-J CO lines, and similar profiles and line widths (~200-900 km s-1). With the current sensitivity of the PdBI, the water lines can therefore easily be detected in high-z lensed galaxies (with F(500 μm) > 100 mJy) discovered in the Herschel surveys. Correcting the luminosities for amplification, using existing lensing models, LH2O is found to have a strong dependence on the infrared luminosity, varying as ~LIR1.2. This relation, which needs to be confirmed with better statistics, may indicate a role of radiative (infrared) excitation of the H2O lines, and implies that high-z galaxies with LIR ≳ 1013 L⊙ tend to be very strong emitters in water vapor, that have no equivalent in the local universe. Herschel (Pilbratt et al. 2010) is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. OSSE observations of the ultraluminous infrared galaxies ARP 220 and MRK 273

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Shier, L. M.; Sturner, S. J.; McNaron-Brown, K.; Bland-Hawthorn, J.

    1997-01-01

    The results of oriented scintillation spectrometer experiment (OSSE) observations of the ultraluminous infrared galaxies Arp 220 and Mrk 273 are reported. The pointings of Arp 220 and Mrk 273 concentrated on their upper limits. The gamma ray luminosities from these sources were found to be between one and two orders of magnitude smaller than the infrared luminosities. Multiwavelength luminosity spectra are produced from the radio to the gamma ray regime, and are compared with the typical multiwavelength spectra of active galactic nuclei. The lack of measured gamma ray emission provides no evidence for the existence of buried active galactic nuclei in these ultraluminous infrared galaxies, but is consistent with an origin of the infrared luminosity from starburst activity.

  17. The Origin and Evolution of (Ultra)Luminous Infrared Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; CANDELS Collaboration

    2014-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR>10^12 L_sun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane.

  18. The Modes of Star Formation in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Candels Team

    2015-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, LIR>1012 Lsun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z~2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers?

  19. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  20. Evolutionary paths along the BPT diagram for luminous and ultraluminous infrared galaxies

    SciTech Connect

    Fiorenza, Stephanie L.; Takeuchi, Tsutomu T.; Małek, Katarzyna E.; Liu, Charles T.

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (10{sup 11} < L {sub IR} < 10{sup 13} L {sub ☉}) within the IRAS 2 Jy Redshift Survey with 0.05 ≲ z ≲ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving [N II]/Hα that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  1. Principal component analysis and radiative transfer modelling of Spitzer Infrared Spectrograph spectra of ultraluminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Hurley, P. D.; Oliver, S.; Farrah, D.; Wang, L.; Efstathiou, A.

    2012-08-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. We further investigate the principal components (PCs) of ULIRGs derived in Wang et al. We quantitatively show that five PCs are optimal for describing the Infrared Spectrograph spectra. These five components (PC1-PC5) and the mean spectrum provide a template basis set that reproduces spectra of all z < 0.35 ULIRGs within the noise. For comparison, the spectra are also modelled with a combination of radiative transfer models of both starbursts and the dusty torus surrounding active galactic nuclei (AGN). The five PCs typically provide better fits than the models. We argue that the radiative transfer models require a colder dust component and have difficulty in modelling strong polycyclic aromatic hydrocarbon features. Aided by the models we also interpret the physical processes that the PCs represent. The third PC is shown to indicate the nature of the dominant power source, while PC1 is related to the inclination of the AGN torus. Finally, we use the five PCs to define a new classification scheme using 5D Gaussian mixture modelling and trained on widely used optical classifications. The five PCs, average spectra for the four classifications and the code to classify objects are made available at: .

  2. The [C II] 158 Micron Line Deficit in Ultraluminous Infrared Galaxies Revisited

    DTIC Science & Technology

    2003-09-10

    THE [C ii] 158 MICRON LINE DEFICIT IN ULTRALUMINOUS INFRARED GALAXIES REVISITED1 M. L. Luhman ,2,3 S. Satyapal,4,5,6 J. Fischer,2 M. G.Wolfire,7 E...INTRODUCTION In a previous study ( Luhman et al. 1998, hereafter Paper I), we reported measurements of the 157.74 lm 2P3=2 2P1=2 fine-structure line of C+ in...4945, NGC 1068, and Circinus), in order to compare the ULIRG distribution with that of normal and starburst galaxies only. 762 LUHMAN ET AL. Vol. 594

  3. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  4. THE Lyα LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE

    SciTech Connect

    Martin, Crystal L.; Wong, Joseph; Dijkstra, Mark; Henry, Alaina; Soto, Kurt T.; Danforth, Charles W.

    2015-04-10

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Lyα emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Lyα profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding −1000 km s{sup −1} in three H ii-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Lyα line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Lyα attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Lyα photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Lyα and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Lyα emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1–1% of the radiative cooling from the hot winds in the H ii-dominated ULIRGs.

  5. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Spence, R.; Rose, M.; Mullaney, J.; Crowther, P.

    2017-03-01

    Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies 1 , are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many thousands of galaxies, and a relatively low rate of one event every 104-105 years per galaxy has been deduced 2-4 . However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. This particular combination of variabi­lity and post-flare emission line spectrum is unlike any known supernova or active galactic nucleus. The most plausible explanation is a TDE — the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests a much higher rate of TDEs in starburst galaxies than in the general galaxy population.

  6. Star Formation in Ultraluminous Infrared Galaxies Probed with AKARI Near-infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yano, Kenichi; Nakagawa, Takao; Isobe, Naoki; Shirahata, Mai

    2016-12-01

    We conducted systematic observations of the H i Brα line (4.05 μm) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 μm) in 50 nearby (z\\lt 0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. The Brα line is predicted to be the brightest among the H i lines under conditions of high dust extinction ({A}V\\gt 15 mag). The Brα line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Brα line in 33 ULIRGs. The luminosity of the line ({L}{Brα }) correlates well with that of the 3.3 μm PAH emission ({L}3.3). Thus we utilize {L}3.3 as an indicator of star formation in fainter objects where the Brα line is undetected. The mean {L}{Brα }/{L}{IR} ratio in LINERs/Seyferts is significantly lower than that in H ii galaxies. This difference is reconfirmed with the {L}3.3/{L}{IR} ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ∼ 67 % , and active galactic nuclei contribute the remaining ∼ 33 % . However, comparing the number of ionizing photons, {Q}{Brα }, derived from {L}{Brα } with that, Q IR, expected from the star formation rate required to explain {L}{IR}, we find that the mean {Q}{Brα }/{Q}{IR} ratio is only (55.5 ± 7.5)% even in H ii galaxies, which are thought to be energized by pure starburst. This deficit of ionizing photons traced by the Brα line is significant even taking heavy dust extinction into consideration. We propose that dust within H ii regions absorbs a significant fraction of ionizing photons.

  7. Hard X-Rays from a Complete Sample of the Brightest Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2003-01-01

    We were awarded 70kS of XMM-Newton spacecraft time using the Epic pn camera to observe three ultraluminous infrared galaxies (ULIGs) in order to measure the spectral shape of their hard X-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN), and to separate out the contributions from a putative starburst. By observing three objects we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the X-ray background. XMM-Newton was deemed to be better suited to our proposed measurements of ULIGs than the Chandra X-ray observatory due to its larger aperture and better sensitivity to hard (2-10 keV) X-rays.

  8. Near-infrared counterparts of ultraluminous X-ray sources - towards dynamical mass measurements

    NASA Astrophysics Data System (ADS)

    Heida, Marianne; Jonker, Peter G; Torres, Manuel; Kool, Erik; Servillat, Mathieu; Roberts, Tim P; Groot, Paul J; Walton, Dom; Moon, Dae-Sik; Harrison, Fiona

    2014-08-01

    Are ultraluminous X-ray sources powered by stellar or intermediate mass black holes? To answer this question we need reliable mass measurements of these systems. The best way to do this would be to measure the radial velocity curves of the companion stars and thus derive the mass functions for these black holes. This has proven to be very difficult for ULXs because the optical light from these systems is dominated by the accretion disc. However, some ULXs may have red supergiant donor stars, that are intrinsically bright in the near-infrared and may enable us to measure their radial velocity curves in that part of the spectrum. We have conducted a survey of nearby ULXs to search for near-infrared counterparts. Of our 62 targets, 11 have a counterpart that could potentially be a red supergiant (Heida et al. 2014). I will present results of this survey and initial results of our NIR spectroscopic follow-up of several of the sources where we detected a NIR counterpart.

  9. C I Emission in Ultraluminous Infrared Galaxies as a Molecular Gas Mass Tracer

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padeli P.; Greve, Thomas R.

    2004-11-01

    We present new sensitive wide-band measurements of the fine-structure line 3P1-->3P0 (J=1-0, 492 GHz) of neutral atomic carbon (C I) in the two typical ultraluminous infrared galaxies (ULIRGs) NGC 6240 and Arp 220. We then use them along with several other C I measurements in similar objects found in the literature to estimate their global molecular gas content under the assumption of a full C I-H2 concomitance. We find excellent agreement between the H2 gas mass estimated with this method and the standard methods using 12CO. This may provide a new way to measure H2 gas mass in galaxies and one that may be very valuable in ULIRGs since in such systems the bright 12CO emission is known to systematically overestimate the gas mass while their 13CO emission (an often-used alternative) is usually very weak. At redshifts z>=1 the C I J=1-0 line shifts to much more favorable atmospheric windows and can become a viable alternative tracer of the H2 gas, fueling starburst events in the distant universe.

  10. FAINT CO LINE WINGS IN FOUR STAR-FORMING (ULTRA)LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Zschaechner, Laura; Bolatto, Alberto; Weiss, Axel

    2015-09-20

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s{sup −1}-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  11. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  12. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  13. Revealing an Energetic Galaxy-Wide Outflow in a z ≍ 2 Ultraluminous Infrared Galaxy

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Swinbank, A. M.; Smail, I.; McDermid, R.; Nesvadba, N. P. H.

    2010-10-01

    Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z > 2 radio galaxies. Here we present Gemini-North NIFS Intregral Field Unit (IFU) observations of the [O iii] λ5007 emission from a z ≍ 2 ultraluminous infrared galaxy (ULIRG; LIR > 1012 Lodot;) with an optically identified Active Galactic Nucleus (AGN). The spatial extent (≍ 4-8 kpc) of the high velocity and broad [O iii] emission are consistent with that found in z > 2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio- bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of order ≍ 1059 ergs over ≍ 30 Myrs) could be delivered by a wind radiatively driven by the AGN and/or supernovae winds from intense star formation. The energy injection required to drive the outflow is comparable to the estimated binding energy of the galaxy spheroid, suggesting that it can have a significant impact on the evolution of the galaxy. We argue that the outflow observed in this system is likely to be comparatively typical of the high-redshift ULIRG population and discuss the implications of these observations for galaxy formation models.

  14. The [C II] 158 Micron Line in Ultraluminous Infrared Galaxies Revisited

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Satyapal, S.; Fischer, J.; Wolfire, M. G.; Sturm, E.; Dudley, C. C.; Lutz, D.; Genzel, R.

    2003-01-01

    We present a study of the [C II] 157.74 micron fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (IR luminosity L(sub IR greater than or equal to 10(exp 12)L.; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [C II] line relative to the far-infrared (FIR) dust continuum emission found in our initial report, but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4 out of 5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([C II], [OI] 63 and 145 micron, and FIR continuum emission), which suggests that a high ultraviolet flux G(sub 0) incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [C I] (1-0), and 6.2 micron polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G(sub 0)/n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [C II] deficiency. Here, unusually high G(sub 0) and/ or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [C II] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [C II] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.

  15. High Resolution Optical/Near-Infrared Imaging of Cool Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Surace, J.; Sanders, D.; Evans, A.

    1999-01-01

    We present here new multiwavelength observations with 1.5 and 4x the spatial resolution of previous ground-based observations at optical and near-infrared wavelengths; despite being ground-based, they allow us to isolate interesting features such as the star-forming knots detected in the warm ULIG sample.

  16. Infrared 3-4 um Spectroscopic Investigation of a Large Sample of Nearby Ultraluminous Infrared Galaxies

    DTIC Science & Technology

    2005-09-27

    servable with small air masses from Mauna Kea , Hawaii, our main observing site. These selection criteria result in 24 ULIRGs classified optically as... Observatory , 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan; masa.imanishi@nao.ac.jp C. C. Dudley Naval Research Laboratory, Remote Sensing Division...data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. 2 Visiting Astronomer at the Infrared Telescope

  17. THE LOCAL ENVIRONMENT OF ULTRALUMINOUS X-RAY SOURCES VIEWED BY XMM-NEWTON's OPTICAL MONITOR

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Tincher, J.; Winter, L. M. E-mail: rachel.dudik@usno.navy.mil

    2013-10-20

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 ultraluminous X-ray sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition, the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for SFRs located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense superclusters, but some of these SFRs are massive enough to contain such clusters. Only three ULXs have no associated SFRs younger than ∼50 Myr. The age and mass estimates for clusters were used to test runaway scenarios. The data are, in general, compatible with stellar-mass binaries accreting at super-Eddington rates and ejected by natal kicks. We also tested the hypothesis that ULXs are sub-Eddington accreting intermediate mass black holes ejected by three-body interactions; however, this is not supported well by the data.

  18. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  19. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  20. First Detection of Mid-infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Heida, M.; Kasliwal, M. M.; Walton, D. J.

    2017-04-01

    We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the Spitzer Space Telescope at 3.6 and 4.5 μm in the Spitzer Infrared Intensive Transients Survey. The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature ({T}{{d}}∼ 600{--}800 {{K}}), IR luminosity ({L}{IR}∼ 3× {10}4 {L}ȯ ), mass ({M}{{d}}∼ 1{--}3× {10}-6 {M}ȯ ), and equilibrium temperature radius ({R}{eq}∼ 10{--}20 {au}). A comparison of X-1 with a sample of spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color–magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe ii] (λ =1.644 μ {{m}}) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to the increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX, given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.

  1. Searching for evidence of energetic feedback in distant galaxies: a galaxy wide outflow in a z ~ 2 ultraluminous infrared galaxy

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Swinbank, A. M.; Smail, Ian; McDermid, R.; Nesvadba, N. P. H.

    2010-03-01

    Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z > 2 radio galaxies. Here, we present Gemini-North Near-Infrared Field Spectrometer (NIFS) observations of the [OIII]λ5007 emission from a z ~ 2 ultraluminous infrared galaxy (ULIRG; LIR > 1012Lsolar) with an optically identified active galactic nuclei (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [OIII] emission is consistent with that found in z > 2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of the order of ~1059 erg over ~30 Myr) could be delivered by a wind radiatively driven by the AGN and/or supernovae winds from intense star formation. The energy injection required to drive the outflow is comparable to the estimated binding energy of the galaxy spheroid, suggesting that it can have a significant impact on the evolution of the galaxy. We argue that the outflow observed in this system is likely to be comparatively typical of the high-redshift ULIRG population and discuss the implications of these observations for galaxy formation models.

  2. NuSTAR reveals an intrinsically X-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    SciTech Connect

    Teng, Stacy H.; Rigby, J. R.; Brandt, W. N.; Luo, B.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Alexander, D. M.; Gandhi, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Hickox, R. C.; Ptak, A. F.; and others

    2014-04-10

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N{sub H}∼1.2{sub −0.3}{sup +0.3}×10{sup 23} cm{sup –2}) column. The intrinsic X-ray luminosity (L {sub 0.5–30} {sub keV} ∼ 1.0 × 10{sup 43} erg s{sup –1}) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is ∼0.03% compared to the typical values of 2%-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope (α{sub OX} ∼ –1.7). It is a local example of a low-ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  3. The Nature of Ultraluminous Galaxies: Infrared Space Observatory Analysis and Instrument Team

    NASA Technical Reports Server (NTRS)

    Satyapal, Shobita

    2001-01-01

    The scientific goal of the proposed research was to investigate the physical conditions in the nuclear regions of infrared luminous galaxies by carrying out detailed infrared spectroscopic observations of a large sample of infrared luminous galaxies. During the past year, these observations have been successfully analyzed and extensive modeling using photoionization and photodissociation codes has been carried out. Two first-author publications and a second-author publication have been submitted to the Astrophysical Journal and results were presented at two invited talks. Four additional journal papers are in preparation and will be submitted during year 2 of the grant. The secondary project included in this program was the development of a near-infrared cryogenic Fabry-Perot interferometer for use on future large aperture telescopes. System integration and room temperature testing was successfully carried out for this project during year 1.

  4. The blueshifted Pa alpha broad line component and the origin of strong iron emission in the ultraluminous infrared galaxy IRAS 07598+6508

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Kawara, Kimiaki; Murayama, Takashi; Sato, Yasunori

    1994-01-01

    We present the Pa alpha emission profile of the ultraluminous infrared galaxy (ULFIRG) IRAS 07598+6508 which is an unusually strong Fe II emitter in the optical. The Pa alpha emission line profile shows a blueshifted broad component (FWHM approximately equal to 3900 km/sec) together with a narrow core (FWHM less than or equal to 530 km/sec). The presence of the broad line component strongly suggests that IRAS 07598+6508 has an active galactic nucleus, supporting a scenario of merger-induced quasar formation proposed by Sanders et al. (1988), although we cannot rule out the possibility of a supernova-driven high speed wind. Possible detection of (Fe II) 1.893 micrometer emission is also reported. It is shown that strong Fe II emitters such as IRAS 07598+6508 have intermediate IRAS color properties between normal quasars and cold ultraluminous infrared galaxies. We thus suggest an evolutionary link from cold ULFIRG through warm ULFIRG and Fe II ULFIRG to quasars.

  5. Shedding Light on the Compton-thick Active Galactic Nucleus in the Ultraluminous Infrared Galaxy UGC 5101 with Broadband X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oda, Saeko; Tanimoto, Atsushi; Ueda, Yoshihiro; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio

    2017-02-01

    We report the broadband X-ray spectra of the ultraluminous infrared galaxy (ULIRG) UGC 5101 in the 0.25–100 keV band observed with the Swift/Burst Alert Telescope (BAT), Nuclear Spectroscopic Telescope Array (NuSTAR), Suzaku, XMM-Newton, and Chandra. A Compton-thick active galactic nucleus (AGN) obscured with a hydrogen column density of ≈ 1.3× {10}24 cm‑2 is detected above 10 keV. A spectral fit with a numerical torus model favors a large half-opening angle of the torus, > 41°, suggesting that the covering fraction of material heavily obscuring the X-ray source is moderate. The intrinsic 2–10 keV luminosity is determined to be ≈ 1.4× {10}43 erg s‑1, which is ≈ 2.5 times larger than the previous estimate using only data below 10 keV with a simple spectral model. We find that UGC 5101 shows the ratio between the [O iv] 26 μm line and 2–10 keV luminosities similar to those of normal Seyfert galaxies, along with other ULIRGs observed with NuSTAR, indicating that a significant portion of local ULIRGs are not really “X-ray faint” with respect to the flux of forbidden lines originating from the narrow-line region. We propose a possible scenario that (1) the AGN in UGC 5101 is surrounded not only by Compton-thick matter located close to the equatorial plane but also by Compton-thin ({N}{{H}}∼ {10}21 cm‑2) matter in the torus-hole region and (2) it is accreting at a high Eddington rate with a steep UV to X-ray spectral energy distribution. Nevertheless, we argue that AGNs in many ULIRGs do not look extraordinary (i.e., extremely X-ray faint), as suggested by recent works, compared with normal Seyferts.

  6. THE FIRST DETECTION OF GeV EMISSION FROM AN ULTRALUMINOUS INFRARED GALAXY: Arp 220 AS SEEN WITH THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Peng, Fang-Kun; Wang, Xiang-Yu; Liu, Ruo-Yu; Tang, Qing-Wen; Wang, Jun-Feng

    2016-04-20

    Cosmic rays (CRs) in starburst galaxies produce high-energy gamma-rays by colliding with the dense interstellar medium. Arp 220 is the nearest ultraluminous infrared galaxy that has star formation at extreme levels, so it has long been predicted to emit high-energy gamma-rays. However, no evidence of gamma-ray emission was found despite intense search efforts. Here we report the discovery of high-energy gamma-ray emission above 200 MeV from Arp 220 at a confidence level of ∼6.3σ using 7.5 years of Fermi Large Area Telescope observations. The gamma-ray emission shows no significant variability over the observation period and it is consistent with the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, suggesting that these gamma-rays arise from CR interactions. As the high-density medium of Arp 220 makes it an ideal CR calorimeter, the gamma-ray luminosity can be used to measure the efficiency of powering CRs by supernova (SN) remnants given a known supernova rate in Arp 220. We find that this efficiency is about 4.2 ± 2.6% for CRs above 1 GeV.

  7. Strong Evidence for a Buried Active Galactic Nucleus in UGC 5101: Implications for Liner-Type Ultraluminous Infrared Galaxies

    DTIC Science & Technology

    2001-09-10

    spectrum of UGC 5101 at the Infrared Tele- scope Facility on Mauna Kea , Hawaii, on the night of 2001 April 9 (UT). Sky conditions were photometric...Astronomical Observatory , Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan; imanishi@optik.mtk.nao.ac.jp C. C. Dudley2 Naval Research Laboratory, Remote...features, particularly the 7.7 mm PAH emission, in the rest-frame 5–11 mm spectra obtained with the Infrared Space Observatory (ISO), it has been argued

  8. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  9. Exploring the overabundance of ultraluminous X-ray sources in metal- and dust-poor local Lyman break analogs

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann E.; Zezas, Andreas; Yukita, Mihoko; Ptak, Andrew

    2016-01-01

    We have studied high mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z > 2) Lyman break galaxies, and within the larger sample of Lyman break analogs (LBAs) are sufficiently nearby (< 87 Mpc) to be spatially-resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12+log[O/H]=8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this talk, I present our in-depth study of the only two LBAs that have spatially-resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (LX>1039 erg s-1 ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on 8 detected ULXs. Comparing with the star-forming galaxy X-ray luminosity function (XLF), Haro 11 and VV 114 host ~4 times more LX>1040 erg s-1 sources than expected given their SFRs. We simulate the effects of source blending from crowded lower luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. Based on this analysis, we find that these LBAs have a shallower bright end slope than the standard XLF.

  10. Hidden quasars in ultraluminous infared galaxies

    SciTech Connect

    Brotherton, M S; Stanford, S A; Tran, H; van Breugel, W

    1998-08-27

    Abstract. Many ultraluminous infrared galaxies (ULIRGS) are pow- ered by quasars hidden in the center, but many are also powered by starbursts. A simply diagnostic diagram is proposed that can iden- tify obscured quasars in ULIRGs by their high-ionization emission lines ([O III]λ5007/Hβ ≳ 5), and "warm" IR color (ƒ2560 ≳ 0.25).

  11. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  12. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (THE SUPERANTENNAE): X-Ray Emission From the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.

  13. The properties of infrared galaxies in the local universe

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.

    1991-01-01

    The 60-micron selected IRAS Bright Galaxy Sample is used as a starting point to derive additional complete flux-limited samples of extragalactic objects at 12, 25, and 100 microns. With these complete samples the luminosity functions at all IRAS wavelengths are derived for the local universe. These luminosity functions are used to determine the infrared emission of the local universe. The maximum in the energy output of galaxies occurs at 100 microns. The infrared emission of galaxies at 12 and 25 micron represents about 30 percent of the total infrared luminosity in the local universe. The mean infrared colors of infrared selected galaxies vary systematically with infrared luminosity; the ratio S sub nu (60 microns)/S sub nu(100 microns) increases and S sub nu(12 microns)/S sub nu(25 microns) decreases with increasing infrared luminosity.

  14. A comparison of the morphological properties between local and z ∼ 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ∼8% from local to z ≲ 1, and it is consistent with the reduction between local and redshifted data sets (6{sub −6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ∼20% lower compared to published results, and the reduction due to redshifting is 15{sub −8}{sup +10}%. Consequently, the differences of merger fractions between local and z ≲ 1 (U)LIRGs is only ∼17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ∼ 1. At z > 1, the morphology types of ∼30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  15. A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry Between Energy Sources and Dust

    DTIC Science & Technology

    2007-07-01

    luminosity function (Soifer et al. 1987 ). The impor- tance of the ULIRG population i.e., the comoving infrared en- ergy density, increases rapidly with...classi- fied as Seyfert 2; Veilleux&Osterbrock 1987 ) or high-resolution infrared spectroscopy (Genzel et al. 1998; Armus et al. 2007). Since the gas...1.42 12.1 0.10 (C) H ii IRAS 012980744 ........................................ 0.136 ɘ.12 0.19 2.47 2.08 12.3 0.08 (C) H ii IRAS 01569 2939

  16. Ultraluminous galaxies: monsters or babies? Proceedings. Workshop, Schloss Ringberg (Germany), 20 - 26 Sep 1998.

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Tacconi, L. J.

    The following topics were dealt with: ultraluminous infrared galaxies, surveys, galaxy formation, Stratospheric Observatory for Infrared Astronomy, (SOFIA), X-ray observations, optical spectroscopy, IR spectroscopy, photometry, interacting galaxies, radio observations, starbursts, AGN, morphological classification, ULIRGs, theoretical aspects, and the link to high redshift.

  17. The ultraluminous GRB 110918A

    SciTech Connect

    Frederiks, D. D.; Svinkin, D. S.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Mazets, E. P.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Kokomov, A. A.; Hurley, K.; Mangano, V.; Burrows, D. N.; Sbarufatti, B.; Siegel, M. H.; Oates, S.; Cline, T. L.; Krimm, H. A.; Pagani, C.; Mitrofanov, I. G. [Space Research Institute, Profsoyuznaya 84 and others

    2013-12-20

    GRB 110918A is the brightest long gamma-ray burst (GRB) detected by Konus-WIND during its almost 19 yr of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final Interplanetary Network localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderate peak energy of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z = 0.984, a huge isotropic-equivalent energy release E {sub iso} = (2.1 ± 0.1) × 10{sup 54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity L {sub iso} = (4.7 ± 0.2) × 10{sup 54} erg s{sup –1}. A tail of the soft γ-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. The Swift/X-Ray Telescope and the Swift/Ultraviolet Optical Telescope observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and interstellar-medium-like circumburst environment implied. We conclude that, among the multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.°7-3.°4 results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z ∼ 7.5 for Konus-WIND and z ∼ 12 for the Swift/Burst Alert Telescope, which stresses the importance of GRBs as probes of the early

  18. Electrically excited, localized infrared emission from single carbon nanotubes.

    PubMed

    Freitag, Marcus; Tsang, James C; Kirtley, John; Carlsen, Autumn; Chen, Jia; Troeman, Aico; Hilgenkamp, Hans; Avouris, Phaedon

    2006-07-01

    Carbon nanotube field-effect transistors (CNTFETs) produce band gap derived infrared emission under both ambipolar and unipolar transport conditions. We demonstrate here that heterogeneities/defects in the local environment of a CNTFET perturb the local potentials and, as a result, the characteristic bias dependent motion of the ambipolar light emission. Such defects can also introduce localized infrared emission due to impact excitation by carriers accelerated by a voltage drop at the defect. The correlation of the change in the motion of the ambipolarlight emission and of the stationary electroluminescence with the electrical characteristics of the CNTFETs shows that stationaryelectroluminescence can identify "environmental defects" in carbon nanotubes and help evaluate their influence on electrical transport and device operation. A number of different defects are studied involving local dielectric environment changes (partially polymer-covered nanotubes), nanotube-nanotube contacts in looped nanotubes, and nanotube segments close to the electronic contacts. Random defects due to local charging are also observed.

  19. The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    NASA Astrophysics Data System (ADS)

    Dale, Daniel; LVL Team

    2010-01-01

    The survey description and infrared properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS and ANGST. LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  20. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  1. The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    NASA Astrophysics Data System (ADS)

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Gil de Paz, A.; Kennicutt, R. C.; Lee, J. C.; Begum, A.; Block, M.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Marble, A. R.; Sakai, S.; Skillman, E. D.; van Zee, L.; Walter, F.; Weisz, D. R.; Williams, B.; Wu, S.-Y.; Wu, Y.

    2009-09-01

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  2. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    SciTech Connect

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-09-20

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Halpha, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Halpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 {mu}m polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  3. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    SciTech Connect

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi; Ita, Yoshifusa; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Nakashima, Asami; and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  4. Ultraluminous X-ray Sources.

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Sholukhova, O.; Abolmasov, P.

    2008-12-01

    We discuss a new type of X-ray sources discovered in galaxies -- ultraluminous X-ray sources (ULXs). They are of two order of magnitude brighter in X-rays than the brightest Galactic black holes. Two mod- els of ULXs are discussed: "intermediate mass" black holes, 100 - 10000 solar masses, with standard accretion disks, and "stellar mass" black holes with su- percritical accretion disks like that in the Galactic object SS 433. A study of gas nebulae surrounding these objects gives us a new important information on the central sources. The observed X-ray radiation of ULXs is not enough to power their nebulae. To understand both spectra and power of the nebulae one needs a powerful UV source. The ULXs must be such bright in UV range as they are in X-rays. Spectroscopy of gas filaments surrounding SS 433 proves that the intrinsic face-on luminosity of the supercritical accretion disk in the far UV region to be "sim; 10^40 erg/s. We expect that observations of ULXs with the WSO-UV Observatory, measurements their UV fluxes and spectral slopes solve the problem of ULXs between the two known models of these sources.

  5. An infrared imaging study of galaxies in the local universe

    NASA Technical Reports Server (NTRS)

    Grauer, Albert D.; Rieke, Marcia J.; Mcleod, Kim K.

    1995-01-01

    This poster was a preliminary report on a survey of galaxies in the local universe at J and K using a NICMOS3 256 x 256 infrared photometric camera attached to the 61 inch telescope on Mt. Bigelow. Deep images are being obtained for a representative sample of galaxies in the Uppsala General Catalogue. Structural and color parameters are determined for a wide variety of galactic types. These data should prove to be valuable in characterizing stellar populations within disks and bulges, determining if IR-active galaxies have unusual global as well as- nuclear properties, and understanding the effects of evolution and redshift dimming in distant galaxies.

  6. PDR modeling of the LWS fine-structure lines in ultraluminous galaxies

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Satyapal, S.; Fischer, J.; Wolfire, M. G.

    1997-01-01

    The observations performed onboard the Infrared Space Observatory (ISO) long wavelength spectrometer (LWS) on the fine structure lines in ultraluminous galaxies are reported on. The C II 158 micrometer, the O I 63 and 146 micrometer fine structure lines were detected. These lines were compared to the results of the revised theoretical models of extragalactic photodissociation regions (PDRs). The PDR origin of the fine structure lines and the physical properties of the PDR component are discussed.

  7. Infrared face recognition based on intensity of local micropattern-weighted local binary pattern

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Liu, Guodong

    2011-07-01

    The traditional local binary pattern (LBP) histogram representation extracts the local micropatterns and assigns the same weight to all local micropatterns. To combine the different contributions of local micropatterns to face recognition, this paper proposes a weighted LBP histogram based on Weber's law. First, inspired by psychological Weber's law, intensity of local micropattern is defined by the ratio between two terms: one is relative intensity differences of a central pixel against its neighbors and the other is intensity of local central pixel. Second, regarding the intensity of local micropattern as its weight, the weighted LBP histogram is constructed with the defined weight. Finally, to make full use of the space location information and lessen the complexity of recognition, the partitioning and locality preserving projection are applied to get final features. The proposed method is tested on our infrared face databases and yields the recognition rate of 99.2% for same-session situation and 96.4% for elapsed-time situation compared to the 97.6 and 92.1% produced by the method based on traditional LBP.

  8. LOCAL LUMINOUS INFRARED GALAXIES. I. SPATIALLY RESOLVED OBSERVATIONS WITH THE SPITZER INFRARED SPECTROGRAPH

    SciTech Connect

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Colina, Luis; Diaz-Santos, Tanio; Rieke, George H.; Engelbracht, Charles W.; Smith, J.-D. T.; Perez-Gonzalez, Pablo G.

    2010-06-15

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 {mu}m silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 {mu}m and [Ne III]15.56 {mu}m emissions. The behavior of the integrated PAH emission and 9.7 {mu}m silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 {mu}m/[Ne II]12.81 {mu}m ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 {mu}m/[Ne II]12.81 {mu}m ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 {mu}m PAH emission appears more extended than the dust 5.5 {mu}m continuum emission. We find a dependency of the 11.3 {mu}m PAH/7.7 {mu}m PAH and [Ne II]12.81 {mu}m/11.3 {mu}m PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K local starbursts, and Seyfert galaxies. Finally we find that the [Ne II]12.81 {mu}m velocity fields for most of the LIRGs in our sample are compatible with a rotating disk at {approx}kpc scales, and they are in a good agreement with H{alpha} velocity fields.

  9. Optically thick outflows in ultraluminous supersoft sources

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-02-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ˜0.1 keV, bolometric luminosities ˜ a few 1039 erg s-1, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disc outflow becomes effectively optically thick and forms a large photosphere, shrouding the inner regions from our view. Our model predicts that when the photosphere expands to ≳ 105 km and the temperature decreases below ≈50 eV, ULSs become brighter in the far-UV but undetectable in X-rays. Conversely, we find that harder emission components begin to appear in ULSs when the fitted size of the thermal emitter is smallest (interpreted as a shrinking of the photosphere). The observed short-term variability and absorption edges are also consistent with clumpy outflows. We suggest that the transition between ULXs (with a harder tail) and ULSs (with only a soft thermal component) occurs at blackbody temperatures of ≈150 eV.

  10. Infrared moving point target detection based on spatial-temporal local contrast filter

    NASA Astrophysics Data System (ADS)

    Deng, Lizhen; Zhu, Hu; Tao, Chao; Wei, Yantao

    2016-05-01

    Infrared moving point target detection is a challenging task. In this paper, we define a novel spatial local contrast (SLC) and a novel temporal local contrast (TLC) to enhance the target's contrast. Based on the defined spatial local contrast and temporal local contrast, we propose a simple but powerful spatial-temporal local contrast filter (STLCF) to detect moving point target from infrared image sequences. In order to verify the performance of spatial-temporal local contrast filter on detecting moving point target, different detection methods are used to detect the target from several infrared image sequences for comparison. The experimental results show that the proposed spatial-temporal local contrast filter has great superiority in moving point target detection.

  11. Mid-Infrared Spectral Properties of IR QSOs

    SciTech Connect

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-10-10

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from {approx}5 to 30 {mu}m, including the spectral slopes, 6.2 {mu}m PAH emission strengths and [NeII] 12.81 {mu}m luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 {mu}m) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  12. Local Signal Impedes the Definition of the Cosmic Infrared Background

    NASA Astrophysics Data System (ADS)

    Kelsall, Thomas

    2010-01-01

    It was noted (ApJ 508, 44, 1998) when developing a COBE/DIRBE-data-based model for the infrared (IR) signal from the interplanetary dust cloud (IPD) that there were clear evidences of unexpected time-variable wavelength-dependent signals in all the ten DIRBE bands (1.2 to 240 μm). The amplitudes of these signals range in magnitude from the order of one-half to a few percent of the respective-wavelength IPD signal. This presentation provides selected details on the nature of these signals as regards their wavelength-dependent periodicities, time-variable amplitudes, and complex spatial configurations. Particular attention is devoted to describing the consequences imposed by these signals which impede the observational determination of and/or the setting of limits on the cosmic IR background.

  13. Target tracking and localization using infrared video imagery

    NASA Astrophysics Data System (ADS)

    Barsamian, Alex; Berk, Vincent H.; Cybenko, George V.

    2006-05-01

    One of the significant problems in visual tracking of objects is the requirement for a human analyst to post-process and interpret the data. For instance, consider the task of tracking a target, in this case a moving person, using video imagery. When this person hides behind an obstruction, and is therefore no longer visible by the camera, conventional tracking systems quickly lose track of the target and are no longer able to indicate where the target is or where it was headed. A human interpreter is then needed to conclude that the person is hiding, and probably (with certain probability) is still there. A Process Query System (PQS) is able to track and predict the path of arbitrary objects, based only on a description of their dynamic behavior, thus eliminating the need for precise identification of each object in every frame. The PQS is therefore able to draw human-like conclusions, allowing the system to track the person even when he/she is out of view. Additionally, using dynamic descriptions of tracked objects allows for low-quality video signals, or even infrared video, to be used for tracking. In this paper we introduce a novel way of implementing a video-based tracking system using a Process Query System to predict the position of objects in the environment, even after they have disappeared from view. Although the image processing pipeline is trivial, tracking accuracy is remarkably high, suggesting that overall performance can be improved even further with the use of more sophisticated video processing and image recognition technology.

  14. A portable mid-range localization system using infrared LEDs for visually impaired people

    NASA Astrophysics Data System (ADS)

    Park, Suhyeon; Choi, In-Mook; Kim, Sang-Soo; Kim, Sung-Mok

    2014-11-01

    A versatile indoor/outdoor pedestrian guidance system with good mobility is necessary in order to aid visually impaired pedestrians in indoor and outdoor environments. In this paper, distance estimation methods for portable wireless localization systems are verified. Two systems of a fixed active beacon and a receiver using an ultrasound time-of-flight method and a differential infrared intensity method are proposed. The infrared localization system was appropriate for the goal of this study. It was possible to use the infrared intensity method to generate a uniform signal field that exceeded 30 m. Valid distance estimations which were within 30 m of coverage indoors and within 20 m of coverage outdoors were made. Also, a pocket-sized receiver which can be adapted to a smartphone was found to be suitable for use as a portable device.

  15. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Nakagawa, Takao; Matsuta, Keiko

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  16. The Spitzer Local Volume Legacy Survey: Infrared Imaging and Photometry for 258 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; LVL Team

    2009-01-01

    Near-, mid-, and far-infrared flux properties are presented for the Local Volume Legacy survey, a Spitzer Space Telescope legacy program built upon a foundation of GALEX ultraviolet and ground-based Hα imaging of 258 galaxies within 11 Mpc. The Local Volume Legacy survey covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the faintest absolute depth and highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies (such as from SINGS, the Spitzer Infrared Nearby Galaxies Survey) with improved sampling of the low-luminosity dwarf galaxy population. LVL's unique sample selection results in a large spread in mid-infrared colors, likely due to the conspicuous deficiency of PAH emission from low-metallicity galaxies. Conversely, the LVL sample shows a tighter correlation in the infrared-to-ultraviolet ratio versus ultraviolet spectral slope, due in large part to the lack of luminous early-type galaxies in the Local Volume.

  17. Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Stiegler, J. M.; Tena-Zaera, R.; Idigoras, O.; Chuvilin, A.; Hillenbrand, R.

    2012-10-01

    High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared-electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure. While transmission electron microscopy provides structural information up to the atomic level, infrared near-field imaging yields nanoscale maps of chemical composition and conductivity. We demonstrate the method's potential by studying the relation between conductivity and crystal structure in ZnO nanowire cross-sections. The combination of infrared conductivity maps and the local crystal structure reveals a radial free-carrier gradient, which inversely correlates to the density of extended crystalline defects. Our method opens new avenues for studying the local interplay between structure, conductivity and chemical composition in widely different material systems.

  18. Luminous Infrared Sources in the Local Group: Identifying the Missing Links in Massive Star Evolution

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Bonanos, A. Z.; Mehner, A.

    2015-01-01

    We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.

  19. The complex evolutionary paths of local infrared bright galaxies: a high-angular resolution mid-infrared view

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Poulton, R.; Roche, P. F.; Hernán-Caballero, A.; Aretxaga, I.; Martínez-Paredes, M.; Ramos Almeida, C.; Pereira-Santaella, M.; Díaz-Santos, T.; Levenson, N. A.; Packham, C.; Colina, L.; Esquej, P.; González-Martín, O.; Ichikawa, K.; Imanishi, M.; Rodríguez Espinosa, J. M.; Telesco, C.

    2016-12-01

    We investigate the evolutionary connection between local infrared (IR)-bright galaxies (log LIR ≥ 11.4 L⊙) and quasars. We use high-angular resolution (˜0.3-0.4 arcsec ˜ few hundred parsecs) 8-13 μm ground-based spectroscopy to disentangle the active galactic nuclei (AGN) mid-IR properties from those of star formation. The comparison between the nuclear 11.3 μm polycyclic aromatic hydrocarbon feature emission and that measured with Spitzer/Spitzer Infrared Spectrograph indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or projected nuclear separation. This suggests that the changes in the distribution of the nuclear obscuring material may be taking place rapidly and at different interaction stages washing out the evidence of an evolutionary path. When compared to normal AGN, the nuclear star formation activity of quasars appears to be dimming, whereas it is enhanced in some IR-bright nuclei, suggesting that the latter are in an earlier star formation-dominated phase.

  20. A mid-infrared look at the dusty nuclear environments of local active galaxies

    NASA Astrophysics Data System (ADS)

    Alonso Herrero, Almudena

    2016-08-01

    Active galactic nuclei are largely explained in the context of a unified theory, by which a geometrically and optically thick torus of gas and dust obscures the AGN central engine. The torus intercepts a substantial amount of flux from the central engine and and reradiates it in the infrared. There are still many open questions about the nature of the torus material and the role of nuclear (< 100 pc) starbursts in feeding and/or obscuring AGNs. Ground-based mid-infrared imaging and spectroscopy on 8-10m class telescopes allow us to study the dusty environments of nearby active galactic nuclei on physical scales of less than 100pc. In this talk I will present results from a mid-infrared sub-arcsecond resolution imaging and spectroscopy survey of a sample of local AGN. The observations were mostly taken with CanariCam on the 10.4m Gran Telescopio Canarias (GTC) through an ESO/GTC large programme and the CanariCam AGN guaranteed time program. I will discuss results on the torus properties of different types of AGN from the modelling of the unresolved infrared emission with the CLUMPY torus models. I will also show that the molecules responsible for the 11.3micron PAH feature survive in the vicinity of the active nucleus and thus this PAH feature can be used to study the nuclear star formation activity in AGN.

  1. An infrared small target detection algorithm based on high-speed local contrast method

    NASA Astrophysics Data System (ADS)

    Cui, Zheng; Yang, Jingli; Jiang, Shouda; Li, Junbao

    2016-05-01

    Small-target detection in infrared imagery with a complex background is always an important task in remote sensing fields. It is important to improve the detection capabilities such as detection rate, false alarm rate, and speed. However, current algorithms usually improve one or two of the detection capabilities while sacrificing the other. In this letter, an Infrared (IR) small target detection algorithm with two layers inspired by Human Visual System (HVS) is proposed to balance those detection capabilities. The first layer uses high speed simplified local contrast method to select significant information. And the second layer uses machine learning classifier to separate targets from background clutters. Experimental results show the proposed algorithm pursue good performance in detection rate, false alarm rate and speed simultaneously.

  2. Spectral response of localized surface plasmon in resonance with mid-infrared light

    SciTech Connect

    Kusa, Fumiya; Ashihara, Satoshi

    2014-10-21

    We study spectral responses of localized surface plasmons (LSPs) in gold nanorods, which resonate at mid-infrared frequencies, by transmission spectroscopy and electromagnetic field analyses. The resonance linewidth is found to be linearly proportional to the resonance frequency, indicating that the dephasing due to Drude relaxation is suppressed and that the overall dephasing is dominated by radiative damping. Owing to the reduced radiative/non-radiative damping and large geometrical length of the nanorod, near-field intensity enhancement exceeds several hundred times. Nonetheless the resonance linewidth is comparable with or larger than the bandwidth of a 100-fs pulse, and therefore the enhanced near-field as short as 100-fs can be created upon pulsed excitation. The large enhancements with appropriate bandwidths make LSPs promising for enhanced nonlinear spectroscopies, coherent controls, and strong-field light-matter interactions in the mid-infrared range.

  3. A local attenuation filter for accurate photometry of near-infrared bright stars

    NASA Astrophysics Data System (ADS)

    Nagayama, Takahiro

    2016-07-01

    I have developed a special ND filter (Local Attenuation Filter) for observing bright near-infrared stars. This filter is a 60mm diameter with a 4mm thickness, on which an attenuation (0.02% transparency) patch with an 8mm diameter is coated. This filter is expected to be installed near the focal plane of telescope, and the flux through this patch is attenuated. Using this filter, we can observe the attenuated bright star together with not affected field stars as reference for relative photometry. This filter has been installed to the IRSF 1.4m telescope and used for the monitoring of NIR bright stars, for example, η Car.

  4. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Koc,H.; Wetzel, D.

    2008-01-01

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

  5. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  6. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  7. Extraction of Curcumin Pigment from Indonesian Local Turmeric with Its Infrared Spectra and Thermal Decomposition Properties

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Ana; Widiaty, I.; Hurriyati, R.

    2017-03-01

    Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

  8. Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.

    2016-07-01

    In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.

  9. [Objective assessment of facial paralysis using local binary pattern in infrared thermography].

    PubMed

    Liu, Xulong; Hong, Wenxue; Zhang, Tao; Wu, Zhenying

    2013-02-01

    Facial paralysis is a frequently-occurring disease, which causes the loss of the voluntary muscles on one side of the face due to the damages the facial nerve and results in an inability to close the eye and leads to dropping of the angle of the mouth. There have been few objective methods to quantitatively diagnose it and assess this disease for clinically treating the patients so far. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Facial paralysis usually causes an alteration of the temperature distribution of body with the disease. This paper presents the use of the histogram distance of bilateral local binary pattern (LBP) in the facial infrared thermography to measure the asymmetry degree of facial temperature distribution for objective assessing the severity of facial paralysis. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results showed that the mean sensitivity and specificity of this method are 0.86 and 0.89 respectively. The correlation coefficient between the asymmetry degree of facial temperature distribution and the severity of facial paralysis is an average of 0.657. Therefore, the histogram distance of local binary pattern in the facial infrared thermography is an efficient clinical indicator with respect to the diagnosis and assessment of facial paralysis.

  10. VizieR Online Data Catalog: Subarcsecond mid-infrared atlas of local AGN (Asmus+, 2014)

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hoenig, S. F.; Gandhi, P.; Smette, A.; Duschl, W. J.

    2014-03-01

    The Subarcsecond mid-infrared (MIR) atlas of local active galactic nuclei (AGN) is a collection of all available N- and Q-band images obtained at ground-based 8-meter class telescopes with public archives (Gemini/Michelle, Gemini/T-ReCS, Subaru/COMICS, and VLT/VISIR). It includes in total 895 images, of which 60% are perviously unpublished. These correspond to 253 local AGN with a median redshift of 0.016. The atlas contains the uniformly processed and calibrated images and nuclear photometry obtained through Gauss and PSF fitting for all objects and filters. This also includes measurements of the nuclear extensions. In addition, the classifications of extended emission (if present) and derived nuclear monochromatic 12 and 18 micron continuum fluxes are available. Finally, flux ratios with the circumnuclear MIR emission (measured by Spitzer) and total MIR emission of the galaxy (measured by IRAS) are presented. The observations have been taken in the mid-infrared (N-band, 7-13micron, and Q-band, 17-20micron) between 2003-12-02 and 2011-06-15 and cover the whole sky. The objects have redshifts between -0.0001 and 0.3571. (2 data files).

  11. Improved local ternary patterns for automatic target recognition in infrared imagery.

    PubMed

    Wu, Xiaosheng; Sun, Junding; Fan, Guoliang; Wang, Zhiheng

    2015-03-16

    This paper presents an improved local ternary pattern (LTP) for automatic target recognition (ATR) in infrared imagery. Firstly, a robust LTP (RLTP) scheme is proposed to overcome the limitation of the original LTP for achieving the invariance with respect to the illumination transformation. Then, a soft concave-convex partition (SCCP) is introduced to add some flexibility to the original concave-convex partition (CCP) scheme. Referring to the orthogonal combination of local binary patterns (OC_LBP), the orthogonal combination of LTP (OC_LTP) is adopted to reduce the dimensionality of the LTP histogram. Further, a novel operator, called the soft concave-convex orthogonal combination of robust LTP (SCC_OC_RLTP), is proposed by combing RLTP, SCCP and OC_LTP. Finally, the new operator is used for ATR along with a blocking schedule to improve its discriminability and a feature selection technique to enhance its efficiency. Experimental results on infrared imagery show that the proposed features can achieve competitive ATR results compared with the state-of-the-art methods.

  12. Recombination at laser-processed local base contacts by dynamic infrared lifetime mapping

    NASA Astrophysics Data System (ADS)

    Müller, Jens; Bothe, Karsten; Gatz, Sebastian; Haase, Felix; Mader, Christoph; Brendel, Rolf

    2010-12-01

    Laser-processed local metal contacts to Si solar cells are a promising approach, to combine high efficiency and low production cost. Understanding carrier transport and recombination in locally contacted solar cells requires numerical simulations with experimentally verified input parameters. One of these input parameters is the reverse saturation current density J0,cont at the local base contact. We determine J0,cont by means of area averaged charge carrier lifetime measurements and an analytical model, which distinguishes between recombination at the metal contacts and at the passivated interface in between the contacts. The calibration-free dynamic infrared lifetime mapping technique is used. We measure local reverse saturation current densities J0,cont=2×103 to 2×107 fA/cm2 at metal contacts to p-type float-zone material with resistivities ρ =0.5 to 200 Ω cm. Laser contact openings (LCOs) formed by laser ablation of an amorphous Si/SiNx passivation stack and subsequent physical vapor deposition of aluminum are used as contact formation technique. As well laser fired contacts (LFCs) are applied to the same passivation stack and metallization. We observe no difference in J0,cont between LCO and LFC. Our results indicate degradation of the passivation stack by the laser treatment in the vicinity of the LCO and LFC.

  13. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  14. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  15. The Wide-Field Infrared Explorer

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Hacking, Perry

    1993-01-01

    More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.

  16. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  17. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  18. Mapping the gas kinematics and ionization structure of four ultraluminous IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Wilman, R. J.; Crawford, C. S.; Abraham, R. G.

    1999-10-01

    We present a study of the morphology, kinematics and ionization structure of the extended emission-line regions in four intermediate-redshift (0.118ultraluminous infrared galaxies, derived from ARGUS two-dimensional fibre spectroscopy. The gas kinematics in the hyperluminous system IRAS F20460+1925 lack coherent structure, with a full width at half-maximum (FWHM) >1000kms-1 within 1arcsec of the nucleus, suggesting that any merger is well-advanced. Emission-line intensity ratios point to active galactic nucleus (AGN) photoionization for the excitation of this gas at the systemic velocity. An isolated blob ~8kpc from the nucleus with a much smaller velocity dispersion may lie in a structure similar to the photoionization cones seen in lower-luminosity objects. A second, spatially unresolved, narrow-line component is also present on nucleus, blueshifted by ~=990kms-1 from the systemic and plausibly powered by photoionizing shocks. IRAS F23060+0505 has more ordered kinematics, with a region of increased FWHM coincident with the blue half of a dipolar velocity field. The systemic velocity rotation curve is asymmetric in appearance, as a result either of the on-going merger or of nuclear dust obscuration. From a higher-resolution ISIS spectrum, we attribute the blue asymmetry in the narrow-line profiles to a spatially resolved nuclear outflow. Emission-line intensity ratios suggest shock+precursor ionization for the systemic component, consistent with the X-ray view of a heavily obscured AGN. The lower-luminosity objects IRAS F01217+0122 and F01003-2238 complete the sample. The former has a featureless velocity field with a high FWHM, a high-ionization AGN spectrum and a ~1Gyr old starburst continuum. IRAS F01003-2238 has a dipolar velocity field and an Hii region emission-line spectrum with a strong blue continuum. After correction for intrinsic extinction, the latter can be reproduced with ~107 O5 stars, sufficient to power the bolometric luminosity of the

  19. Ultraluminous X-ray sources - three exciting years

    NASA Astrophysics Data System (ADS)

    Bachetti, M.

    2015-09-01

    Ultraluminous X-ray sources are off-nuclear extragalactic sources with (apparent) luminosities exceeding the Eddington limit for a stellar-mass black hole. This naturally suggests an association with the elusive class of intermediate-mass black holes, or with super-Eddington accreting black holes. As it turns out, this peculiar class of sources is actually a variegated zoo, including both classes of accreting black holes mentioned above and, rather unexpectedly, neutron stars. In this talk I will overview the astrophysical properties of these objects, and give an update on the many breakthroughs appeared in the literature in the last three years.

  20. Optical and Near-Infrared Imaging of Infrared-Excess Palomar-Green Quasars

    NASA Astrophysics Data System (ADS)

    Surace, Jason A.; Sanders, D. B.; Evans, A. S.

    2001-12-01

    Ground-based high spatial resolution (FWHM<0.3"-0.8") optical and near-infrared imaging (0.4-2.2 μm) is presented for a complete sample of optically selected Palomar-Green QSOs with far-infrared excesses at least as great as those of ``warm'' AGN-like ultraluminous infrared galaxies (Lir/LBBB>0.46). In all cases, the host galaxies of the QSOs were detected, and most have discernible two-dimensional structure. The QSO host galaxies and the QSO nuclei are similar in magnitude at H band. H-band luminosities of the hosts range from 0.5-7.5 L*, with a mean of 2.3 L*, and are consistent with those found in ultraluminous infrared galaxies. Both the QSO nuclei and the host galaxies have near-infrared excesses, which may be the result of dust associated with the nucleus and of recent dusty star formation in the host. These results suggest that some, but not all, optically selected QSOs may have evolved from an infrared active state triggered by the merger of two similarly sized L* galaxies, in a manner similar to that of the ultraluminous infrared galaxies.

  1. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  2. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    SciTech Connect

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

  3. Handheld low-frequency phased array near-infrared (NIR) breast cancer localizer

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Chen, Yu; Luo, Qingming

    2003-07-01

    A system for rapid and precise localization of breast cancer using low frequency phased array near-infrared technique has been developed. In this system, in-phase and out-of-phase of sine-wave signals at 3 kHz modulate two light emitting diode (LED) sources respectively. And amplitude cancellation of two photon density waves will occur in the silicon-detector at the mid-plane of two sources reference. Cancellation signal is displayed by an embedded amplitude and phase detector and is displayed acoustically. The whole system is pocket-size, handheld with the dimension of 6.0cm×5.0cm×2.5cm and the weight is 140g. Experiments with phantom and animals show that the system can provide real time detection and localization of small hidden absorbing-fluorescent objects inside the highly scattering medium at the depth of 2cm with high accuracy of +/-1 ~ 2mm. The limit of object detection with 20 mA LED current is 1cm and with 40 mA is 2cm. The potential application is that it can be used for early breast cancer detection as a convenient self-examination device.

  4. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    DOE PAGES

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; ...

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less

  5. Intraoperative Localization of Insulinoma and Normal Pancreas using Invisible Near-Infrared Fluorescent Light

    PubMed Central

    Winer, Joshua; Choi, Hak Soo; Gibbs-Strauss, Summer L.; Ashitate, Yoshitomo; Colson, Yolonda L.; Frangioni, John V.

    2009-01-01

    Background: Neuroendocrine tumors of the pancreas, such as insulinoma, are difficult to localize and complete resection is essential for cure. Our hypothesis is that a near-infrared (NIR) fluorophore exhibiting uptake in insulinoma could provide high sensitivity detection intraoperatively. Methods: The optical properties of methylene blue (MB) were measured in vitro in 100% serum at 37°C, and in vivo after tissue uptake. MB was injected as a rapid intravenous bolus at doses ranging from 0.25 to 2 mg/kg into wildtype rats and pigs, and into insulinoma-bearing transgenic mice. The FLARE™ imaging system was used to acquire color video and NIR fluorescence images simultaneously, and in real-time. The signal-to-background ratios (SBR) of tissues and tumors were quantified using FLARE™ software. Results: When appropriately diluted, MB exhibits moderate NIR fluorescence emission peaking at 688 nm. At doses ≥ 1 mg/kg, certain normal tissues, such as pancreas, accumulate MB and remain NIR fluorescent for up to 1 hr with an SBR ≥ 1.6. MB spectral properties are maintained after uptake into tissue. Interestingly, insulinoma exhibits even higher uptake for MB than normal pancreas, resulting in insulinoma-to-pancreas ratios of 3.7 and insulinoma-to-muscle ratios of 16.2. MB permitted high-sensitivity, real-time localization of primary, multi-centric, and metastatic insulinoma, and permitted differentiation among tumor, normal pancreas, and other abdominal structures. Conclusion: A single intravenous injection of a clinically available, commonly used NIR fluorophore provides prolonged intraoperative localization of normal pancreas and insulinoma using invisible NIR fluorescent light. PMID:20033320

  6. TESTING FOR A LARGE LOCAL VOID BY INVESTIGATING THE NEAR-INFRARED GALAXY LUMINOSITY FUNCTION

    SciTech Connect

    Keenan, R. C.; Wang, W.-H.; Barger, A. J.; Wold, I.; Cowie, L. L.; Trouille, L.

    2012-08-01

    Recent cosmological modeling efforts have shown that a local underdensity on scales of a few hundred Mpc (out to z {approx} 0.1) could produce the apparent acceleration of the expansion of the universe observed via Type Ia supernovae. Several studies of galaxy counts in the near-infrared (NIR) have found that the local universe appears underdense by {approx}25%-50% compared with regions a few hundred Mpc distant. Galaxy counts at low redshifts sample primarily L {approx} L* galaxies. Thus, if the local universe is underdense, then the normalization of the NIR galaxy luminosity function (LF) at z > 0.1 should be higher than that measured for z < 0.1. Here we present a highly complete (>90%) spectroscopic sample of 1436 galaxies selected in the H band (1.6 {mu}m) to study the normalization of the NIR LF at 0.1 < z < 0.3 and address the question of whether or not we reside in a large local underdensity. Our survey sample consists of all galaxies brighter than 18th magnitude in the H band drawn from six widely separated fields at high Galactic latitudes, which cover a total of {approx}2 deg{sup 2} on the sky. We find that for the combination of our six fields, the product {phi}*L* at 0.1 < z < 0.3 is {approx}30% higher than that measured at lower redshifts. While our statistical errors in this measurement are on the {approx}10% level, we find the systematics due to cosmic variance may be larger still. We investigate the effects of cosmic variance on our measurement using the COSMOS cone mock catalogs from the Millennium Simulation and recent empirical estimates of cosmic variance. We find that our survey is subject to systematic uncertainties due to cosmic variance at the 15% level (1{sigma}), representing an improvement by a factor of {approx}2 over previous studies in this redshift range. We conclude that observations cannot yet rule out the possibility that the local universe is underdense at z < 0.1. The fields studied in this work have a large amount of publicly

  7. The local stellar luminosity function and mass-to-light ratio in the near-infrared

    NASA Astrophysics Data System (ADS)

    Just, A.; Fuchs, B.; Jahreiß, H.; Flynn, C.; Dettbarn, C.; Rybizki, J.

    2015-07-01

    A new sample of stars, representative of the solar neighbourhood luminosity function (LF), is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the Two Micron All Sky Survey catalogue so that for all stars individually determined near-infrared (NIR) photometry is available on a homogeneous system (typically Ks). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR LF of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 ± 0.004 LK⊙ pc-3, corresponding to a volumetric mass-to-light ratio (M/L) of M/L_K = 0.31 ± 0.02 {M}_{⊙}/L_{K⊙}, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 LK⊙ pc-2 with an uncertainty of approximately 10 per cent. This corresponds to an M/L for the solar cylinder of M/L_K = 0.34 {M}_{⊙}/L_{K⊙}. The M/L for the solar cylinder is only 10 per cent larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scaleheights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V - K = 2.89 mag compared to the local value of V - K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of MK = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher relations from the literature.

  8. RESOLVING GAS FLOWS IN THE ULTRALUMINOUS STARBURST IRAS 23365+3604 WITH KECK LGSAO/OSIRIS

    SciTech Connect

    Martin, Crystal L.; Soto, Kurt T.

    2016-03-01

    Keck OSIRIS/LGSAO observations of the ultraluminous galaxy IRAS 23365+3604 resolve a circumnuclear bar (or irregular disk) of semimajor axis 0.″42 (520 pc) in Paα emission. The line-of-sight velocity of the ionized gas increases from the northeast toward the southwest; this gradient is perpendicular to the photometric major axis of the infrared emission. Two pairs of bends in the zero-velocity line are detected. The inner bend provides evidence for gas inflow onto the circumnuclear disk/bar structure. We interpret the gas kinematics on kiloparsec scales in relation to the molecular gas disk and multiphase outflow discovered previously. In particular, the fast component of the ouflow (detected previously in line wings) is not detected, adding support to the conjecture that the fast wind originates well beyond the nucleus. These data directly show the dynamics of gas inflow and outflow in the central kiloparsec of a late-stage, gas-rich merger and demonstrate the potential of integral field spectroscopy to improve our understanding of the role of gas flows during the growth phase of bulges and supermassive black holes.

  9. Local changes in arterial oxygen saturation induced by visible and near-infrared light radiation.

    PubMed

    Yesman, S S; Mamilov, S O; Veligotsky, D V; Gisbrecht, A I

    2016-01-01

    In this study, we investigate the efficiency of laser radiation on oxyhemoglobin (HbO2) rate in blood vessels and its wavelength dependence. The results of in vivo experimental measurements of the laser-induced photodissociation of HbO2 in cutaneous blood vessels in the visible and near-infrared (IR) spectral range are presented. Arterial oxygen saturation (SpO2) was measured by a method of fingertip pulse oximetry, which is based on the measurement of the modulated pulse wave of the blood. The light irradiating the finger was provided by corresponding light-emitting diodes (LED) at 15 wavelengths in the 400-940 nm spectrum range. Statistical results with a value of p < 0.05 were viewed as being significant for all volunteers. The results show that there is a decrease in SpO2 in the blood under the influence of the transcutaneous laser irradiation. Three maxima in the spectral range (530, 600, and 850 nm) are revealed, wherein decrease in the relative concentration of SpO2 reaches 5 % ± 0.5 %. Near-IR radiation plays a dominant role in absorption of laser radiation by oxyhemoglobin in deeper layers of tissue blood vessels. The obtained data correlate with the processes of light propagation in biological tissue. The observed reduction in SpO2 indicates the process of photodissociation of HbO2 in vivo and may result in local increase in O2 in the tissue. Such laser-induced enrichment of tissue oxygenation can be used in phototherapy of pathologies, where the elimination of local tissue hypoxia is critical.

  10. Vasorelaxation Study and Tri-Step Infrared Spectroscopy Analysis of Malaysian Local Herbs

    PubMed Central

    Tan, Chu Shan; Loh, Yean Chun; Ahmad, Mariam; Zaini Asmawi, Mohd.; Yam, Mun Fei

    2016-01-01

    Objectives: The aim of this paper is to investigate the activities of Malaysian local herbs (Clinacanthus nutans Lindau, Strobilanthes crispus, Murdannia bracteata, Elephantopus scaber Linn., Pereskia bleo, Pereskia grandifolia Haw., Vernonia amygdalina, and Swietenia macrophylla King) for anti-hypertensive and vasorelaxant activity. An infrared (IR) macro-fingerprinting technique consisting of conventional fourier transform IR (FTIR), second-derivative IR (SD-IR), and two-dimensional correlation IR (2D-correlation IR) analyses were used to determine the main constituents and the fingerprints of the Malaysian local herbs. Methods: The herbs were collected, ground into powder form, and then macerated by using three different solvents: distilled water, 50% ethanol, and 95% ethanol, respectively. The potentials of the extracts produced from these herbs for use as vasorelaxants were determined. Additionally, the fingerprints of these herbs were analyzed by using FTIR spectra, SD-IR spectra, and 2D-correlation IR spectra in order to identify their main constituents and to provide useful information for future pharmacodynamics studies. Results: Swietenia macrophylla King has the highest potential in terms of vasorelaxant activity, followed by Vernonia amygdalina, Pereskia bleo, Strobilanthes crispus, Elephantopus scaber Linn., Pereskia grandifolia Haw., Clinacanthus nutans Lindau, and Murdannia bracteata. The tri-step IR macro-fingerprint of the herbs revealed that most of them contained proteins. Pereskia bleo and Pereskia grandifolia Haw. were found to contain calcium oxalate while Swietenia macrophylla King was found to contain large amounts of flavonoids. Conclusion: The flavonoid content of the herbs affects their vasorelaxant activity, and the tri-step IR macro- fingerprint method can be used as an analytical tool to determine the activity of a herbal medicine in terms of its vasorelaxant effect. PMID:27386148

  11. The Dynamics and Cold Gas Content of Luminous Infrared Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Privon, George C.

    2014-01-01

    Many of the most luminous galaxies in the local universe are understood to be the product of mergers and interactions between disk galaxies. These encounters trigger enhanced star formation and accretion onto supermassive black holes; the bulk of which is hidden behind significant extinction from dust. Dynamical simulations matched to individual systems can provide great insight into the merger-driven activity by placing objects on a dynamically-determined merger timeline and by enabling follow-up hydrodynamic simulations which can be used to compare simulations directly with observations. New dynamical models will be presented for luminous infrared galaxies drawn from the Great Observatories All-sky LIRG survey, along with a dynamically-motivated merger stage classification system; these are facilitating a detailed comparison of simulated and observed properties of star formation. New observations of the cold ISM in these systems will also be shown,investigating the influence of AGN activity on tracers of high density (> 10^5 cm^-3) molecular gas.

  12. SPATIALLY RESOLVED STAR FORMATION IMAGE AND THE ULTRALUMINOUS X-RAY SOURCE POPULATION IN NGC 2207/IC 2163

    SciTech Connect

    Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D. E-mail: sar@mit.edu E-mail: bsteinho@mit.edu E-mail: gilfanov@mpa-garching.mpg.de

    2013-07-10

    The colliding galaxy pair NGC 2207/IC 2163, at a distance of {approx}39 Mpc, was observed with Chandra, and an analysis reveals 28 well resolved X-ray sources, including 21 ultraluminous X-ray sources (ULXs) with L{sub X} {approx}> 10{sup 39} erg s{sup -1}, as well as the nucleus of NGC 2207. The number of ULXs is comparable with the largest numbers of ULXs per unit mass in any galaxy yet reported. In this paper we report on these sources, and quantify how their locations correlate with the local star formation rates seen in spatially resolved star formation rate density images that we have constructed using combinations of GALEX FUV and Spitzer 24 {mu}m images. We show that the numbers of ULXs are strongly correlated with the local star formation rate densities surrounding the sources, but that the luminosities of these sources are not strongly correlated with star formation rate density.

  13. Resolving Gas Flows in the Ultraluminous Starburst IRAS 23365+3604 with Keck LGSAO/OSIRIS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal L.; Soto, Kurt T.

    2016-03-01

    Keck OSIRIS/LGSAO observations of the ultraluminous galaxy IRAS 23365+3604 resolve a circumnuclear bar (or irregular disk) of semimajor axis 0.″42 (520 pc) in Paα emission. The line-of-sight velocity of the ionized gas increases from the northeast toward the southwest; this gradient is perpendicular to the photometric major axis of the infrared emission. Two pairs of bends in the zero-velocity line are detected. The inner bend provides evidence for gas inflow onto the circumnuclear disk/bar structure. We interpret the gas kinematics on kiloparsec scales in relation to the molecular gas disk and multiphase outflow discovered previously. In particular, the fast component of the ouflow (detected previously in line wings) is not detected, adding support to the conjecture that the fast wind originates well beyond the nucleus. These data directly show the dynamics of gas inflow and outflow in the central kiloparsec of a late-stage, gas-rich merger and demonstrate the potential of integral field spectroscopy to improve our understanding of the role of gas flows during the growth phase of bulges and supermassive black holes. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The data were obtained with the OH Supressing Infrared Spectrograph (OSIRIS) behind the Laser Guide Star Adaptive Optics System.

  14. The SCUBA-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster

    SciTech Connect

    Smail, Ian; Swinbank, A. M.; Danielson, A. L. R.; Edge, A. C.; Simpson, J. M.; Geach, J. E.; Tadaki, K.; Arumugam, V.; Dunlop, J. S.; Ivison, R. J.; Hartley, W.; Almaini, O.; Conselice, C.; Bremer, M. N.; Chapin, E.; Chapman, S. C.; Scott, D.; Simpson, C. J.; Karim, A.; Kodama, T.; and others

    2014-02-10

    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities ≳10{sup 12} L {sub ☉} and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover one of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ∼ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, M{sub H} ∼ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ∼ 1.6 (M{sub H} ∼ –20.5 and M{sub H} ∼ –21.5, respectively, at z ∼ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.

  15. Resonant Enhancement of Second-Harmonic Generation in the Mid-Infrared Using Localized Surface Phonon Polaritons in Subdiffractional Nanostructures.

    PubMed

    Razdolski, Ilya; Chen, Yiguo; Giles, Alexander J; Gewinner, Sandy; Schöllkopf, Wieland; Hong, Minghui; Wolf, Martin; Giannini, Vincenzo; Caldwell, Joshua D; Maier, Stefan A; Paarmann, Alexander

    2016-11-09

    We report on the strong enhancement of mid-infrared second-harmonic generation (SHG) from SiC nanopillars due to the resonant excitation of localized surface phonon polaritons within the Reststrahlen band. A strong dependence of the SHG enhancement upon the optical mode distribution was observed. One such mode, the monopole, exhibits an enhancement that is beyond what is anticipated from field localization and dispersion of the linear and nonlinear SiC optical properties. Comparing the results for the identical nanostructures made of 4H and 6H SiC polytypes, we demonstrate the interplay of localized surface phonon polaritons with zone-folded weak phonon modes of the anisotropic crystal. Tuning the monopole mode in and out of the region where the zone-folded phonon is excited in 6H-SiC, we observe a further prominent increase of the already enhanced SHG output when the two modes are coupled. Envisioning this interplay as one of the showcase features of mid-infrared nonlinear nanophononics, we discuss its prospects for the effective engineering of nonlinear-optical materials with desired properties in the infrared spectral range.

  16. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  17. SPECTROSCOPIC STUDIES OF AN ULTRALUMINOUS SUPERSOFT X-RAY SOURCE IN M81

    SciTech Connect

    Bai, Yu; Liu, JiFeng; Wang, Song

    2015-04-01

    Ultraluminous supersoft X-ray sources (ULSs) exhibit supersoft X-ray spectra with blackbody temperatures below 0.1 keV and bolometric luminosities above 10{sup 39} ergs s{sup −1}. In this Letter, we report the first optical spectroscopic observations of a ULS in M81 using the LRIS spectrograph on the Keck I telescope. The detected Balmer emission lines show a mean intrinsic velocity dispersion of 400 ± 80 km s{sup −1}, which is consistent with that from an accretion disk. The spectral index of the continuum on the blue side is also consistent with the multi-color disk model. The H{sub α} emission line exhibits a velocity of ∼180 km s{sup −1} relative to the local stellar environment, suggesting that this ULS may be a halo system in M81 belonging to an old population. No significant shift is found for the H{sub α} emission line between two observations separated by four nights.

  18. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts

  19. Thermal monitoring of transport infrastructures by infrared thermography coupled with inline local atmospheric conditions survey

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.

    2013-09-01

    An infrared system architecture (software and hardware) has been studied and developed to allow long term monitoring of transport infrastructures in a standalone configuration. It is based on the implementation of low cost infrared thermal cameras (equipped with uncooled microbolometer focal plane array) available on the market coupled with other measurement systems. All data collected feed simplified radiative models running on GPU available on small PC to produce corrected thermal map of the surveyed structure at selected time step. Furthermore, added Web-enabled capabilities of this new infrared measurement system are also presented and discussed. A prototype of this system was tested and evaluated on real infrastructure opened to traffic. Results obtained by image and signal processing are presented. Finally, conclusions and perspectives for new implementation and new functionalities are presented and discussed.

  20. DIAGNOSIS OF EDGE LOCALIZED MODE EVOLUTION IN DIII-D USING FAST-GATED CID AND INFRARED CAMERAS

    SciTech Connect

    M. GROTH; M.E. FENSTERMACHER; C.J. LASNIER; R. HERNANDEZ; J.M. MOELLER; R.A. STURZ

    2002-08-01

    The tangentially viewing visible and vertically viewing infrared cameras systems on DIII-D were upgraded to permit emission measurements during edge localized modes (ELMs) with integration times as short as 1 and 100 {micro}s respectively. The visible system was used to obtain 2-D poloidal profiles of CIII (465 nm) and D{sub {alpha}} (656.3 nm) emission with 20 {micro}s integration during various stages of ELM events in the lower DIII-D divertor. The infrared (IR) system was used to measure the heat flux to the divertor targets at 10 kHz with 100 {micro}s exposure. Upgrades to the data processing and storage systems permitted efficient comparison of the temporal evolution of these measurements.

  1. A Functional Near-Infrared Spectroscopy Study of Sustained Attention to Local and Global Target Features

    ERIC Educational Resources Information Center

    De Joux, Neil; Russell, Paul N.; Helton, William S.

    2013-01-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…

  2. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  3. The Lack of Halo Ultraluminous X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.

    2006-01-01

    The premise that Ultraluminous X-ray sources (ULXs) exist beyond the optical extent of nearby galaxies is investigated. A published catalog containing 41 ULX candidates located between 1 and approx. 3 times the standard D-{25} isophotal radius of their putative host galaxies is examined. Twenty-one of these sources have spectroscopically-confirmed distances. All 21 are background objects giving a 95\\% probability that at least 37 of the 41 candidates are background sources. Thirty-nine of the 41 sources have X-ray-to-optical flux ratios, -1.61.6.) The uniform spatial distribution of the sample is also consistent with a background population. This evidence suggests that ULXs rarely, if at all, exist beyond the distribution of luminous matter in nearby galaxies and, as a consequence, there is no correlation between the population of ULXs and halo objects such as old globular clusters or Population III remnants.

  4. What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    NASA Astrophysics Data System (ADS)

    Dunne, B. C.; Gruendl, R. A.; Chu, Y.-H.

    1999-05-01

    The ultra-luminous supernova remnant (SNR) in NGC 6946 is the brightest X-ray SNR known, ~ 1000 times as luminous as Cas A. However, high-velocity gas with Vexp > 600 km/s has not been detected, as expected for a young remnant. HST WFPC2 images of this SNR show multiple loops. This morphology has been used as evidence of colliding SNRs of different ages, in order to explain the X-ray luminosity (Blair, Fesen, & Schlegel 1997), We have obtained high-dispersion echelle spectra of this SNR with the KPNO 4-m telescope. The SNR is detected in Hα , [N II]lambda 6584, and [O III]lambda 5007 lines. The emission lines show a narrow component (FWHM ~ 40 km/s) superposed on a broad component (FWZI ~ 360 km/s). The total [N II] flux is comparable to the Hα flux. The broad component contains ~ 1.5 times as much flux as the narrow component, and the broad component has slightly higher [N II]/Hα ratio than the narrow component. These spectral properties are qualitatively similar to some small SNRs in M33. The strong [N II] line in the narrow component suggests an anomalous nitrogen abundance usually associated with circumstellar material. The nitrogen abundance and small remnant size imply that the supernova progenitor was a WN star and the supernova exploded in a dense circumstellar bubble.

  5. What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    NASA Astrophysics Data System (ADS)

    Dunne, Bryan C.; Gruendl, Robert A.; Chu, You-Hua

    2000-03-01

    The ultraluminous supernova remnant (SNR) in NGC 6946 is the brightest known SNR in X-rays, about 1000 times brighter than Cas A. To probe the nature of this remnant and its progenitor, we have obtained high-dispersion optical echelle spectra. The echelle spectra detect Hα, [N II], and [O III] lines and resolve these lines into a narrow (FWHM ~20-40 km s-1) component from unshocked material and a broad (FWHM ~250 km s-1) component from shocked material. Both narrow and broad components have unusually high [N II]/Hα ratios, about 1. Using the echelle observation, archival Hubble Space Telescope images, and archival ROSAT X-ray observations, we conclude that the SNR was produced by a normal supernova whose progenitor was a massive star, either a WN star or a luminous blue variable. The high luminosity of the remnant is caused by the supernova ejecta expanding into a dense, nitrogen-rich circumstellar nebula created by the progenitor.

  6. Chilled disks in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuncic, Zdenka; Gonçalves, Anabela C.

    2007-04-01

    The "soft-excess" component fitted to the X-ray spectra of many ultraluminous X-ray sources (ULXs) remains a controversial finding, which may reveal fundamental information either on the black hole (BH) mass or on the state of the accretion flow. In the simplest model, it was explained as thermal emission from a cool accretion disk around an intermediate-mass BH (about 1000 solar masses). We argue that this scenario is highly implausible, and discuss and compare the two most likely alternatives. 1) The soft-excess does come from a cool disk; however, the temperature is low not because of a high BH mass but because most of the accretion power is drained from the inner disk via magnetic torques, and channelled into jets and outflows ("chilled disk" scenario). Using a phenomenological model, we infer that ULXs contain BHs of about 50 solar masses accreting gas at about 10 times their Eddington rate. 2) The soft excess is in fact a soft deficit, if the power-law continuum is properly fitted. Such broad absorption features are caused by smeared absorption lines in fast, highly ionized outflows. This scenario has already been successfully applied to the soft excess in AGN. If so, this spectral feature reveals details of disk outflows,but is unrelated to the BH mass.

  7. Compact Optical Counterparts of Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Tao, Lian; Feng, Hua; Grisé, Fabien; Kaaret, Philip

    2011-08-01

    Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at timescales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low-mass X-ray binaries. For most sources, the optical spectrum is a power law, F νvpropνα with α in the range 1.0-2.0 and the optically emitting region has a size on the order of 1012 cm. Exceptions are NGC 2403 X-1 and M83 IXO 82, which show optical spectra consistent with direct emission from a standard thin disk, M101 ULX-1 and M81 ULS1, which have X-ray to optical flux ratios more similar to high-mass X-ray binaries, and IC 342 X-1, in which the optical light may be dominated by the companion star. Inconsistent extinction between the optical counterpart of NGC 5204 X-1 and the nearby optical nebulae suggests that they may be unrelated.

  8. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  9. Electrochemical redox-based tuning of near infrared localized plasmons of CuS nanoplates

    NASA Astrophysics Data System (ADS)

    Asami, Keisuke; Nishi, Hiroyasu; Tatsuma, Tetsu

    2016-07-01

    Fast and reversible control of the plasmonic properties of compound nanoparticles (i.e. CuS nanoplates) was achieved through electrochemical redox reactions. Their electrochemical tunability can be applied to fast-switching near infrared electrochromic devices, whose visible appearance is not changed by switching.Fast and reversible control of the plasmonic properties of compound nanoparticles (i.e. CuS nanoplates) was achieved through electrochemical redox reactions. Their electrochemical tunability can be applied to fast-switching near infrared electrochromic devices, whose visible appearance is not changed by switching. Electronic supplementary information (ESI) available: TEM images, absorption spectra and electrochromic response of CuS nanoplates and the relationship between the relative amount of CuS and absorbance change. See DOI: 10.1039/c6nr03709g

  10. From local to global analysis of defect detectability in infrared non-destructive testing

    NASA Astrophysics Data System (ADS)

    Florez-Ospina, J. F.; Benitez, H. D.

    2014-03-01

    Several image processing techniques are employed in Infrared Non-Destructive Testing (IRNDT) to enhance defect detectability. To date, there is no adequate global measurement that objectively assesses defect visibility in processed frames. In this work, a Global Signal to Noise Ratio (GSNR) that comprehensively evaluates defect detectability in processed infrared (IR) images is proposed, as well as a defect visibility measure named Infrared Image Quality Index (IRIQI) that compares the structural information of defective and sound areas. In addition, GSNR and IRIQI are validated by using the area under ROC curve (AUC). AUC quantitatively assesses defect visibility by comparing the outcomes of processing techniques to human judgements. The remarkable benefit of this global approach is that it allows one to determine the frame at which processing techniques reveals the majority of the defects by evaluating the times at which AUC curves reach their maxima. The test pieces were a Carbon-Fiber Reinforced Plastic (CFRP) sample containing delaminations and a honeycomb specimen with delaminations, skin unbonds, excessive adhesive, and crushed core.

  11. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Zampieri, L.; Stella, L.; Wolter, A.; Mereghetti, S.; Israel, G. L.

    2017-02-01

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M ⊙ black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  12. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration.

  13. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  14. ULTRALUMINOUS X-RAY SOURCES IN ARP 147

    SciTech Connect

    Rappaport, S.; Steinhorn, B.; Levine, A.; Pooley, D. E-mail: aml@space.mit.ed

    2010-10-01

    The Chandra X-Ray Observatory was used to image the collisional ring galaxy Arp 147 for 42 ks. We detect nine X-ray sources with luminosities in the range of (1.4-7) x 10{sup 39} erg s{sup -1} (assuming that the sources emit isotropically) in or near the blue knots of star formation associated with the ring. A source with an X-ray luminosity of 1.4 x 10{sup 40} erg s{sup -1} is detected in the nuclear region of the intruder galaxy. X-ray sources associated with a foreground star and a background quasar are used to improve the registration of the X-ray image with respect to Hubble Space Telescope (HST) high-resolution optical images. The intruder galaxy, which apparently contained little gas before the collision, shows no X-ray sources other than the one in the nuclear bulge which may be a poorly fed supermassive black hole. These observations confirm the conventional wisdom that collisions of gas-rich galaxies trigger large rates of star formation which, in turn, generate substantial numbers of X-ray sources, some of which have luminosities above the Eddington limit for accreting stellar-mass black holes (i.e., ultraluminous X-ray sources, 'ULXs'). We also utilize archival Spitzer and Galex data to help constrain the current star formation rate in Arp 147 to {approx}7 M{sub sun} yr{sup -1}. All of these results, coupled with binary evolution models for ULXs, allow us to tentatively conclude that the most intense star formation may have ended some 15 Myr in the past.

  15. Two Eclipsing Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-11-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M51: CXOM51 J132940.0+471237 (ULX-1, for simplicity) and CXOM51 J132939.5+471244 (ULX-2). Three eclipses were detected for ULX-1 and two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed toward us. Despite the similar viewing angles and luminosities ({L}{{X}}≈ 2× {10}39 erg s-1 in the 0.3-8 keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature {{kT}}e≈ 1 {keV}. ULX-2 is harder, well fitted by a slim disk with {{kT}}{in}≈ 1.5-1.8 keV and normalization consistent with a ˜10 M ⊙ black hole. ULX-1 has a significant contribution from multi-temperature thermal-plasma emission ({L}{{X},{mekal}}≈ 2× {10}38 erg s-1). About 10% of this emission remains visible during the eclipses, proving that the emitting gas comes from a region slightly more extended than the size of the donor star. From the sequence and duration of the Chandra observations in and out of eclipse, we constrain the binary period of ULX-1 to be either ≈ 6.3 days, or ≈12.5-13 days. If the donor star fills its Roche lobe (a plausible assumption for ULXs), both cases require an evolved donor, most likely a blue supergiant, given the young age of the stellar population in that Galactic environment.

  16. Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging.

    PubMed

    Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Fiat, Françoise; Baghdadli, Nawel; Balooch, Guive; Luengo, Gustavo S

    2014-01-01

    Atomic force microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument (AFM-IR) capable of producing IR spectra and absorption images at a sub-micrometer spatial resolution. This new device enables human hair to be spectroscopically characterized at levels not previously possible. In particular, it was possible to determine the location of structural lipids in the cuticle and cortex of hair. Samples of human hair were embedded, cross-sectioned, and mounted on ZnSe prisms. A tunable IR laser generating pulses of the order of 10 ns was used to excite sample films. Short duration thermomechanical waves, due to infrared absorption and resulting thermal expansion, were studied by monitoring the resulting excitation of the contact resonance modes of the AFM cantilever. Differences are observed in the IR absorbance intensity of long-chain methylene-containing functional groups between the outer cuticle, middle cortex, and inner medulla of the hair. An accumulation of structural lipids is clearly observed at the individual cuticle layer boundaries. This method should prove useful in the future for understanding the penetration mechanism of substances into hair as well as elucidating the chemical nature of alteration or possible damage according to depth and hair morphology.

  17. Finger Vein Segmentation from Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding.

    PubMed

    Vlachos, Marios; Dermatas, Evangelos

    2015-01-01

    A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern.

  18. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping

    PubMed Central

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-01-01

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED. PMID:27578199

  19. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping.

    PubMed

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-08-31

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED.

  20. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering.

    PubMed

    Zhang, Xian; Noah, Jack Adam; Hirsch, Joy

    2016-01-01

    Global systemic effects not specific to a task can be prominent in functional near-infrared spectroscopy (fNIRS) signals and the separation of task-specific fNIRS signals and global nonspecific effects is challenging due to waveform correlations. We describe a principal component spatial filter algorithm for separation of the global and local effects. The effectiveness of the approach is demonstrated using fNIRS signals acquired during a right finger-thumb tapping task where the response patterns are well established. Both the temporal waveforms and the spatial pattern consistencies between oxyhemoglobin and deoxyhemoglobin signals are significantly improved, consistent with the basic physiological basis of fNIRS signals and the expected pattern of activity associated with the task.

  1. Is a local bar a good place to find a companion? The near infrared morphology of Maffei 2

    NASA Technical Reports Server (NTRS)

    Hurt, Robert L.; Merrill, K. Michael; Gatley, Ian; Turner, Jean L.

    1993-01-01

    Maffei 2 is one of the closest large spiral galaxies lying just beyond the Local Group. It would probably be one of the most heavily studied galaxies in the sky were it not for the approximately 5 magnitudes of visual extinction resulting from its position behind the Galactic plane. It is the site of a burst of nuclear star formation indicated by strong infrared and radii continuum emission. Interferometric maps of CO-12 and CO-13 emission indicate that star formation is associated with a barlike structure consisting of arms of molecular gas that extend from within approximately 50 pc of the dynamical center out to a radius of at least 500 pc. HI maps have shown the galaxy to have an angular extent of approximately 15 feet and a neutral gas mass typical of a large spiral galaxy.

  2. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  3. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    PubMed Central

    Iso, Naoki; Moriuchi, Takefumi; Sagari, Akira; Kitajima, Eiji; Iso, Fumiko; Tanaka, Koji; Kikuchi, Yasuki; Tabira, Takayuki; Higashi, Toshio

    2016-01-01

    The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME) and motor imagery (MI) by using near-infrared spectroscopy (NIRS), as this technique is more clinically expedient than established methods (e.g., fMRI). Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb) concentration. Oxy-Hb in the somatosensory motor cortex (SMC) increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA) and premotor area (PMA), oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS. PMID:26793118

  4. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy.

    PubMed

    Iso, Naoki; Moriuchi, Takefumi; Sagari, Akira; Kitajima, Eiji; Iso, Fumiko; Tanaka, Koji; Kikuchi, Yasuki; Tabira, Takayuki; Higashi, Toshio

    2015-01-01

    The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME) and motor imagery (MI) by using near-infrared spectroscopy (NIRS), as this technique is more clinically expedient than established methods (e.g., fMRI). Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb) concentration. Oxy-Hb in the somatosensory motor cortex (SMC) increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA) and premotor area (PMA), oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  5. Near-Infrared Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots

    SciTech Connect

    Jain, Prashant K.; Luther, Joey; Ewers, Trevor; Alivisatos, A. Paul

    2010-10-12

    Quantum confinement of electronic wavefunctions in semiconductor quantum dots (QDs) yields discrete atom-like and tunable electronic levels, thereby allowing the engineering of excitation and emission spectra. Metal nanoparticles, on the other hand, display strong resonant interactions with light from localized surface plasmon resonance (LSPR) oscillations of free carriers, resulting in enhanced and geometrically tunable absorption and scattering resonances. The complementary attributes of these nanostructures lends strong interest toward integration into hybrid nanostructures to explore enhanced properties or the emergence of unique attributes arising from their interaction. However, the physicochemical interface between the two components can be limiting for energy transfer and synergistic coupling within such a hybrid nanostructure. Therefore, it is advantageous to realize both attributes, i.e., LSPRs and quantum confinement within the same nanostructure. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots. This opens up possibilities for light harvesting, non-linear optics, optical sensing and manipulation of solid-state processes in single nanocrystals.

  6. The Herschel Exploitation of Local Galaxy Andromeda (HELGA). I. Global far-infrared and sub-mm morphology

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Gentile, G.; Smith, M. W. L.; Gear, W. K.; Braun, R.; Duval, J. Roman; Bendo, G. J.; Baes, M.; Eales, S. A.; Verstappen, J.; Blommaert, J. A. D. L.; Boquien, M.; Boselli, A.; Clements, D.; Cooray, A. R.; Cortese, L.; De Looze, I.; Ford, G. P.; Galliano, F.; Gomez, H. L.; Gordon, K. D.; Lebouteiller, V.; O'Halloran, B.; Kirk, J.; Madden, S. C.; Page, M. J.; Remy, A.; Roussel, H.; Spinoglio, L.; Thilker, D.; Vaccari, M.; Wilson, C. D.; Waelkens, C.

    2012-10-01

    Context. We have obtained Herschel images at five wavelengths from 100 to 500 μm of a ~5.5 × 2.5 degree area centred on the local galaxy M 31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project "HELGA". The main goals of HELGA are to study the characteristics of the extended dust emission, focusing on larger scales than studied in previous observations of Andromeda at an increased spatial resolution, and the obscured star formation. Aims: In this paper we present data reduction and Herschel maps, and provide a description of the far-infrared morphology, comparing it with features seen at other wavelengths. Methods: We used high-resolution maps of the atomic hydrogen, fully covering our fields, to identify dust emission features that can be associated to M 31 with confidence, distinguishing them from emission coming from the foreground Galactic cirrus. Results: Thanks to the very large extension of our maps we detect, for the first time at far-infrared wavelengths, three arc-like structures extending out to ~21, ~26 and ~31 kpc respectively, in the south-western part of M 31. The presence of these features, hosting ~2.2 × 106 M⊙ of dust, is safely confirmed by their detection in HI maps. Overall, we estimate a total dust mass of ~5.8 × 107 M⊙, about 78% of which is contained in the two main ring-like structures at 10 and 15 kpc, at an average temperature of 16.5 K. We find that the gas-to-dust ratio declines exponentially as a function of the galacto-centric distance, in agreement with the known metallicity gradient, with values ranging from 66 in the nucleus to ~275 in the outermost region. Conclusions: Dust in M 31 extends significantly beyond its optical radius (~21 kpc) and what was previously mapped in the far-infrared. An annular-like segment, located approximately at R25, is clearly detected on both sides of the galaxy, and two other similar annular structures are undoubtedly detected on the south

  7. INFRARED NARROWBAND TOMOGRAPHY OF THE LOCAL STARBURST NGC 1569 WITH THE LARGE BINOCULAR TELESCOPE/LUCIFER

    SciTech Connect

    Pasquali, A.; Zibetti, S.; Brandner, W.; Rix, H.-W.; Laun, W.; Lehmitz, M.; Lenzen, R.; Mall, U.; Ageorges, N.; Buschkamp, P.; Gemperlein, H.; Hofmann, R.; Lederer, R.; Seifert, W.; Feiz, C.; Germeroth, A.; Mandel, H.; Juette, M.; Knierim, V.; Bik, A.

    2011-04-15

    We used the near-IR imager/spectrograph LUCIFER mounted on the Large Binocular Telescope to image, with subarcsecond seeing, the local dwarf starburst NGC 1569 in the JHK bands and He I 1.08 {mu}m, [Fe II] 1.64 {mu}m, and Br{gamma} narrowband filters. We obtained high-quality spatial maps of He I 1.08 {mu}m, [Fe II] 1.64 {mu}m, and Br{gamma} emission across the galaxy, and used them together with Hubble Space Telescope/Advanced Camera for Surveys images of NGC 1569 in the H{alpha} filter to derive the two-dimensional spatial map of the dust extinction and surface star formation rate (SFR) density. We show that dust extinction (as derived from the H{alpha}/Br{gamma} flux ratio) is rather patchy and, on average, higher in the northwest (NW) portion of the galaxy (E{sub g}(B - V) {approx_equal} 0.71 mag) than in the southeast (E{sub g}(B - V) {approx_equal} 0.57 mag). Similarly, the surface density of SFR (computed from either the dereddened H{alpha} or dereddened Br{gamma} image) peaks in the NW region of NGC 1569, reaching a value of about 4 x 10{sup -6} M{sub sun} yr{sup -1} pc{sup -2}. The total SFR as estimated from the integrated, dereddened H{alpha} (or, alternatively, Br{gamma}) luminosity is about 0.4 M{sub sun} yr{sup -1}, and the total supernova rate from the integrated, dereddened [Fe II] 1.64 {mu}m luminosity is about 0.005 yr{sup -1} (assuming a distance of 3.36 Mpc). The azimuthally averaged [Fe II] 1.64 {mu}m/Br{gamma} flux ratio is larger at the edges of the central, gas-deficient cavities (encompassing the superstar clusters A and B) and in the galaxy outskirts. If we interpret this line ratio as the ratio between the average past star formation (as traced by supernovae) and ongoing activity (represented by OB stars able to ionize the interstellar medium), it would then indicate that star formation has been quenched within the central cavities and lately triggered in a ring around them. The number of ionizing hydrogen and helium photons as computed

  8. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  9. XMM-Newton reveals extreme winds in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Middleton, M.; Fabian, A.

    2016-06-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources with X-ray luminosities above 10^{39} erg/s, thought to be powered by accretion onto compact objects. Viable solutions include accretion onto neutron stars with strong magnetic fields, stellar-mass black holes at or in excess of the Eddington limit or intermediate-mass black holes. The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. In this talk, I will show the discovery of rest-frame emission and blueshifted (˜0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The blueshifted absorption lines occurs in a fast outflowing gas, whereas the emission lines originate in slow-moving gas around the source. The compact object is therefore surrounded by powerful winds with an outflow velocity of about 0.2c as predicted by models of hyper-accreting black holes. Further, deep, XMM-Newton observations will reveal powerful winds in many other ultraluminous X-ray sources and provide important hints to estimate the energetics of the wind, the geometry of the system, and the black hole masses.

  10. The Nobeyama 45 m 12CO(J=1-0) Survey of local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Stierwalt, Sabrina; Arimatsu, Ko; Evans, Aaron

    2015-08-01

    Cold molecular gas and star formation in local Luminous Infrared Galaxies (LIRGs) are studied along the stage of the galaxy merger sequence. Most local LIRGs are starbursting and are involved with galaxy-galaxy interactions or mergers. The evolution and the direct trigger of the merger-driven starbursts are not clear observationally, although there are several theoretical explanations. In order to address these issues, information of the molecular gas, which is traced by a 12CO(J=1-0) emission line, of an unbiased LIRG sample is required. To this end, a CO survey of 79 galaxies in 62 LIRG systems were conducted with the Nobeyama 45 m telescope. A method is developed to estimate the extent of CO gas in galaxies using combinations of two single-aperture telescopes with different beam sizes. The majority of the sources have the CO radius of less than ~ 4 kpc. The CO extent is found to possibly decrease from the early stage to the late stage of the merger. The molecular gas mass in the central several kilo-parsecs is constant throughout the merger sequence. These results statistically support a theoretically predicted scenario where the global gas inflow towards the galaxy center is common in merging LIRGs. The star formation efficiencies (SFE) in the central regions are derived and are high compared to disk star-forming galaxies as is well known. The SFE are found to be fairly independent of the merger stage. The star formation of merging LIRGs may be controlled by a common relation from gas to stars regardless of the merger stage, where SFR and resultant IR luminosity are determined by the amount of the molecular gas supplied by global inflow.

  11. Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy.

    PubMed

    Myers, Dean E; Anderson, LeAnn D; Seifert, Roxanne P; Ortner, Joseph P; Cooper, Chris E; Beilman, Greg J; Mowlem, John D

    2005-01-01

    A simple continuous wave near-infrared algorithm for estimating local hemoglobin oxygen saturation in tissue (%StO2) is described using single depth attenuation measurements at 680, 720, 760, and 800 nm. Second derivative spectroscopy was used to reduce light scattering effects, chromophores with constant absorption, baseline/instrumentation drift, and movement artifacts. Unlike previous second derivative methods which focused primarily on measuring deoxyhemoglobin concentration; a wide 40 nm wavelength gap used for calculating second derivative attenuation significantly improved sensitivity to oxyhemoglobin absorption. Scaled second derivative attenuation at 720 nm was correlated to in vitro hemoglobin oxygen saturation to generate a %StO2 calibration curve. The calibration curve was insensitive to total hemoglobin, optical path length, and optical scattering. Measurement error due to normal levels of carboxyhemoglobin, methemoglobin, and water absorption were less than 10 %StO2 units. Severe methemoglobinemia or edema combined with low blood volume could cause StO2 errors to exceed 10 StO2 units. Both a broadband and commercial four-wavelength spectrometer (InSpectra) measured %StO2. The InSpectra tissue spectrometer readily detected limb ischemia on 26 human volunteers for hand, forearm, and leg muscles. A strong linear correlation, r2>0.93, between StO2 and microvascular %SO2 was observed for isolated animal hind limb, kidney, and heart.

  12. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. II. CORRELATIONS AND LOCAL THERMAL EQUILIBRIUM MODELS

    SciTech Connect

    Salyk, C.; Pontoppidan, K. M.; Blake, G. A.; Najita, J. R.; Carr, J. S.

    2011-04-20

    We present an analysis of Spitzer Infrared Spectrograph observations of H{sub 2}O, OH, HCN, C{sub 2}H{sub 2}, and CO{sub 2} emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions for this mid-infrared line forest. Aside from the remarkable differences in molecular line strengths between T Tauri, Herbig Ae/Be, and transitional disks discussed in Pontoppidan et al., we note that the line detection efficiency is anti-correlated with the 13/30 {mu}m spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and H{alpha} equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H{sub 2}O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L{sub *}. However, significant sample variation, especially in molecular line ratios, remains, and its origin has yet to be explained. Local thermal equilibrium (LTE) models of the H{sub 2}O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H{sub 2}O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near {approx}10{sup 18} cm{sup -2} and 450 K for all sources, suggesting a high abundance of H{sub 2}O in many planet-forming regions. Other molecules have a range of excitation temperatures from {approx}500to1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of {approx}10{sup -3} for all molecules, with the exception of CO, for which n(CO)/n(H{sub 2}O) {approx} 1. However, LTE

  13. The AGN content of ultraluminous IR galaxies: High resolution VLA imaging of the IRAS 1 Jy ULIRG sample

    NASA Astrophysics Data System (ADS)

    Nagar, N. M.; Wilson, A. S.; Falcke, H.; Veilleux, S.; Maiolino, R.

    2003-10-01

    This paper presents the results of a high resolution radio imaging survey of 83 of the 118 ultraluminous infrared galaxies (ULIRGs) in the IRAS 1 Jy ULIRG sample. We have observed these ULIRGs at 15 GHz with the Very Large Array (VLA). We find that ~ 75% of Seyferts (both type 1 and 2) and LINERs have radio nuclei which are compact at our 150 mas resolution. The detection rate of H II nuclei is significantly lower (32%); the detections among these are preferentially H II + LINER/Seyfert composite nuclei. Among ULIRGs with multiple optical or near-IR nuclei our observations detected only one (or no) nucleus; in these the radio detection is typically towards the brightest near-IR nucleus. The compactness of the radio sources, the higher detection rates in AGN-type nuclei than H II nuclei, the preferential detection of nuclei with unresolved point sources in the near-IR, the low soft X-ray to nuclear radio luminosity ratio (arguing against thermal emission powering the radio nuclei), and the lack of correlation between radio power and Hα luminosity, all support an origin of the detected radio nuclei in AGN related activity. This result is especially interesting for LINER ULIRGs for which signatures of AGNs have often been ambiguous in other wavebands. Such a high incidence of AGN would provide, for the first time, a large sample in which to study the interplay between AGN, starbursts, and galaxy mergers. Table 1 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/a+A/409/115

  14. Ammonia as a Temperature Tracer in the Ultraluminous Galaxy Merger Arp 220

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Henkel, Christian; Braatz, James A.; Weiß, Axel

    2011-12-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH3) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH3(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 ± 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from ~0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH3(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold (lsim 20 K) gas layer with an estimated column density of <~ 2 × 1014 cm-2. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are ~120-430 km s-1, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to ~1800 km s-1 previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 ± 19) K, corresponding to a kinetic temperature of T kin = (186 ± 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH3) = (1.7 ± 0.1) × 1016 cm-2 and (8.4 ± 0.5) × 1016 cm-2, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are consistent with an ortho-to-para-ammonia ratio of unity, implying that the ammonia formation temperature exceeds ~30 K. In the context of a model with a molecular ring that

  15. AMMONIA AS A TEMPERATURE TRACER IN THE ULTRALUMINOUS GALAXY MERGER Arp 220

    SciTech Connect

    Ott, Juergen; Henkel, Christian; Weiss, Axel; Braatz, James A. E-mail: chenkel@mpifr-bonn.mpg.de E-mail: jbraatz@nrao.edu

    2011-12-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH{sub 3}) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH{sub 3}(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 {+-} 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from {approx}0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH{sub 3}(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold ({approx}< 20 K) gas layer with an estimated column density of {approx}< 2 Multiplication-Sign 10{sup 14} cm{sup -2}. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are {approx}120-430 km s{sup -1}, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to {approx}1800 km s{sup -1} previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 {+-} 19) K, corresponding to a kinetic temperature of T{sub kin} = (186 {+-} 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH{sub 3}) = (1.7 {+-} 0.1) Multiplication-Sign 10{sup 16} cm{sup -2} and (8.4 {+-} 0.5) Multiplication-Sign 10{sup 16} cm{sup -2}, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are

  16. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. II. Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.

  17. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. 2; Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.

  18. The First Detection of (O IV) from an Ultraluminous X-Ray Source with Spitzer. 2. Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C T.; Dudik, R P.; Weaver, K A.; Kallman, T R.

    2010-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here, we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [Oiv] 25.89 micronmeters emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter bounded both in the line-of-sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg s(exp -1) would be needed to produce the measured [O iv] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all,to the high-ionization line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O iv] emission. This finding could explain the origin of [O iv] in some starburst systems containing black hole binaries.

  19. Exploratory Chandra Observation of the Ultraluminous Quasar SDSS J010013.02+280225.8 at Redshift 6.30

    NASA Astrophysics Data System (ADS)

    Ai, Yanli; Dou, Liming; Fan, Xiaohui; Wang, Feige; Wu, Xue-Bing; Bian, Fuyan

    2016-06-01

    We report exploratory Chandra observations of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. The quasar is clearly detected by Chandra with a possible component of extended emission. The rest-frame 2-10 keV luminosity is {9.0}-4.5+9.1 × 1045 erg s-1 with an inferred photon index of Γ = {3.03}-0.70+0.78. This quasar is X-ray bright, with an inferred X-ray-to-optical flux ratio {α }{ox} = -{1.22}-0.05+0.07, higher than the values found in other quasars of comparable ultraviolet luminosity. The properties inferred from this exploratory observation indicate that this ultraluminous quasar might be growing with super-Eddington accretion and probably viewed with a small inclination angle. Deep X-ray observations will help to probe the plausible extended emission and better constrain the spectral features for this ultraluminous quasar.

  20. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  1. The Dense Molecular Gas and Nuclear Activity in the Local ULIRG IRAS 13120-5453

    NASA Astrophysics Data System (ADS)

    Privon, George C.; Aalto, Susanne; Falstad, Niklas; Muller, Sebastien; González-Alfonso, Eduardo; Sliwa, Kazimierz; Treister, Ezequiel; Costagliola, Francesco; Armus, Lee; Evans, Aaron S.; Garcia-Burillo, Santiago; Izumi, Takuma; Sakamoto, Kazushi; van der Werf, Paul

    2017-01-01

    Ultraluminous infrared galaxies (ULIRGs) are the most luminous and concentrated star-forming galaxies in the local Universe. With a galaxy's worth of gas in the central kiloparsec and star formation rates in excess of 100 solar masses per year, these systems can have infrared surface densities that approach predictions for radiation pressure-limited starbursts. We will present a case study of a local ULIRG, IRAS 13120-5453, using ALMA observations of dense gas tracers HCN and HCO+, and the 330 GHz continuum emission. We find the HCN/HCO+ ratio to be elevated above typical values for star-forming galaxies and suggest the enhancement can be explained by increased HCN abundance driven by mechanical heating from supernovae in the starburst. The 330 GHz continuum size is resolved, with a size of ~500 pc. Using this as a measure of the starburst size, we show the IR luminosity surface density is below that for a radiation pressure-limited starburst. We also find tentative evidence for non-virial motions of HCN, suggesting dense molecular gas may be entrained the molecular wind (previously detected in OH).

  2. Revisiting the ultraluminous supersoft source in M 101: an optically thick outflow model

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kong, Albert

    2016-02-01

    The M 101 galaxy contains the best-known example of an ultraluminous supersoft source (ULS), dominated by a thermal component at kT ≈ 0.1 keV. The origin of the thermal component and the relation between ULSs and standard (broad-band spectrum) ultraluminous X-ray sources are still controversial. We re-examined the X-ray spectral and timing properties of the M 101 ULS using archival Chandra and XMM-Newton observations. We show that the X-ray time-variability and spectral properties are inconsistent with standard-disc emission. The characteristic radius Rbb of the thermal emitter varies from epoch to epoch between ≈10 000 and ≈100 000 km; the colour temperature kTbb varies between ≈50 and ≈140 eV and the two quantities scale approximately as R_bb ∝ T_bb^{-2}. In addition to the smooth continuum, we also find (at some epochs) spectral residuals well fitted with thermal-plasma models and absorption edges: we interpret this as evidence that we are looking at a clumpy, multitemperature outflow. We suggest that at sufficiently high accretion rates and inclination angles, the supercritical, radiatively driven outflow becomes effectively optically thick and completely thermalizes the harder X-ray photons from the inner part of the inflow, removing the hard spectral tail. We develop a simple, spherically symmetric outflow model and show that it is consistent with the observed temperatures, radii and luminosities. A larger, cooler photosphere shifts the emission peak into the far-UV and makes the source dimmer in X-rays but possibly ultraluminous in the UV. We compare our results and interpretation with those of Liu et al.

  3. THE BIRTH OF AN ULTRALUMINOUS X-RAY SOURCE IN M83

    SciTech Connect

    Soria, Roberto; Kuntz, K. D.; Blair, William P.; Winkler, P. Frank; Long, Knox S.; Whitmore, Bradley C.; Plucinsky, Paul P. E-mail: kuntz@pha.jhu.edu E-mail: winkler@middlebury.edu E-mail: long@stsci.edu

    2012-05-10

    A previously undetected (L{sub X} < 10{sup 36} erg s{sup -1}) source in the strongly star-forming galaxy M83 entered an ultraluminous state between 2009 August and 2010 December. It was first seen with Chandra on 2010 December 23 at L{sub X} Almost-Equal-To 4 Multiplication-Sign 10{sup 39} erg s{sup -1} and has remained ultraluminous through our most recent observations in 2011 December, with typical flux variation of a factor of two. The spectrum is well fitted by a combination of absorbed power-law and disk blackbody models. While the relative contributions of the models vary with time, we have seen no evidence for a canonical state transition. The luminosity and spectral properties are consistent with accretion powered by a black hole with M{sub BH} Almost-Equal-To 40-100 M{sub Sun }. In 2011 July we found a luminous, blue optical counterpart that had not been seen in deep Hubble Space Telescope observations obtained in 2009 August. These optical observations suggest that the donor star is a low-mass star undergoing Roche lobe overflow, and that the blue optical emission seen during the outburst is coming from an irradiated accretion disk. This source shows that ultraluminous X-ray sources (ULXs) with low-mass companions are an important component of the ULX population in star-forming galaxies and provides further evidence that the blue optical counterparts of some ULXs need not indicate a young, high-mass companion, but rather that they may indicate X-ray reprocessing.

  4. AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lee, Jong Chul; Lee, Myung Gyoon; Hwang, Ho Seong

    2012-09-01

    We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

  5. RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE

    SciTech Connect

    Murphy, E. J.; Stierwalt, S.; Armus, L.; Condon, J. J.; Evans, A. S.

    2013-05-01

    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

  6. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2005-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H(sub 2)O, CH, NH, and NH(sub 3), as well as in the [O I] 63 micron line and emission in the [C II] 158 micron line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 microns is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus (2 - 6 x 10(exp 17) cm(exp -2)) and the extended region (approximately 2 x 10(exp 17) cm(exp -2)). The H(sub 2)O column density is also high toward the nucleus (2 - 10 x 10(exp 17) cm(exp -2)) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH(sub 3) toward the nucleus, with values of approximately 1.5 x 10(exp 16) cm(exp -2) and approximately 3 x 10(exp 16) cm(exp -2), respectively, whereas the NH(sub 2) column density is lower than approximately 2 x 10(exp 15) cm(exp -2). A combination of PDRs in the extended region and hot cores with enhanced H(sub 2)O photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H(sub 2)O, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 micron line is well reproduced by our models and its deficit relative to the CII/FIR ratio in normal and starburst galaxies is suggested to

  7. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2004-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H 2 0 , CH, NH, and "3, well as in the [0 I] 63 pm line and emission in the [C 111 158 pm line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 pm is modeled AS A WARM (106 K) NUCLEAR REGION THAT IS OPTICALLY THICK IN THE FAR-INFRARED, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region (about 2 x 10 sup 17 cm sup-2). The H2O column density is also high toward the nucleus (2 - 10 x 1017 cm-2) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH3 toward the nucleus, with values of about 1.5 x 10supl6 cmsup-2 and about 3 x 10supl6 cmsup-2, respectively, whereas the NH2 column density is lower than about 2 x 10sup15 cmsup-2. A combination of PDRs in the extended region and hot cores with enhanced H20 photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H20, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 pm line is well reproduced by our models and its "deficit" relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far- infrared radiation, ALTHOUGH OUR MODELS ALONE CANNOT RULE OUT EXTINCTION EFFECTS IN THE

  8. Over half of the far-infrared background light comes from galaxies at z >or= 1.2.

    PubMed

    Devlin, Mark J; Ade, Peter A R; Aretxaga, Itziar; Bock, James J; Chapin, Edward L; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Marsden, Gaelen; Martin, Peter G; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Ngo, Henry; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V

    2009-04-09

    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microm in the rest frame. At 1 infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microm. Combining our results at 500 microm with those at 24 microm, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >or= 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.

  9. An Ultraluminous Lyα Emitter with a Blue Wing at z = 6.6

    NASA Astrophysics Data System (ADS)

    Hu, E. M.; Cowie, L. L.; Songaila, A.; Barger, A. J.; Rosenwasser, B.; Wold, I. G. B.

    2016-07-01

    We report the detection of the most luminous high-redshift Lyα emitting galaxy (LAE) yet seen, with {log}L({{Ly}}α )=43.9\\quad {erg} {{{s}}}-1. The galaxy—COSMOS Lyα1, or COLA1—was detected in a search for ultraluminous LAEs with Hyper Suprime-Cam on the Subaru telescope. It was confirmed as lying at z = 6.593, based on a Lyα line detection obtained from follow-up spectroscopy with the DEIMOS spectrograph on Keck II. COLA1 is the first very high-redshift LAE to show a multi-component Lyα line profile with a blue wing, which suggests that it could lie in a highly ionized region of the intergalactic medium (IGM) and could have significant infall. If this interpretation is correct, then ultraluminous LAEs like COLA1 offer a unique opportunity to determine the properties of the H ii regions around these galaxies, which will help in understanding the ionization of the z ˜ 7 IGM.

  10. A VARIABLE ULTRALUMINOUS X-RAY SOURCE IN A GLOBULAR CLUSTER IN NGC 4649

    SciTech Connect

    Roberts, T. P.; Middleton, M. J.; Fabbiano, G.; Luo, B.; Kim, D.-W.; Strader, J.; Fragos, T.; Brodie, J. P.; Kalogera, V.; King, A. R.; Zezas, A.

    2012-12-01

    We report the discovery of a new ultraluminous X-ray source associated with a globular cluster in the elliptical galaxy NGC 4649. The X-ray source was initially detected with a luminosity below 5 Multiplication-Sign 10{sup 38} erg s{sup -1}, but in subsequent observations 7 and 11 years later it had brightened substantially to 2-3 Multiplication-Sign 10{sup 39} erg s{sup -1}. Over the course of six separate observations it displayed significant spectral variability, in both continuum slope and absorption column. Short-term variability in the X-ray flux was also present in at least one observation. The properties of this object appear consistent with a stellar-mass black hole accreting at super-Eddington rates (i.e., in the ultraluminous accretion state), although a highly super-Eddington neutron star cannot be excluded. The coincidence of an increase in absorption column with a possible enhancement in short-term variability in at least one observation is suggestive of a clumpy, radiatively driven wind crossing our line of sight to the object.

  11. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. I. Observational Results for Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.

  12. The Nature of Hard X-Ray (3–24 keV) Detected Luminous Infrared Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Ueda, Yoshihiro

    2017-04-01

    We investigate the nature of far-infrared (70 μm) and hard X-ray (3–24 keV) selected galaxies in the COSMOS field detected with both Spitzer and the Nuclear Spectroscopic Telescope Array (NuSTAR). By matching the Spitzer-COSMOS catalog with the NuSTAR-COSMOS catalog, we obtain a sample consisting of a hyperluminous infrared galaxy with {log}({L}{IR}/{L}ȯ )≥slant 13, 12 ultraluminous infrared galaxies with 12≤slant {log} ({L}{IR}/{L}ȯ )≤slant 13, and 10 luminous infrared galaxies with 11≤slant {log} ({L}{IR}/{L}ȯ )≤slant 12, i.e., 23 Hy/U/LIRGs in total. Using their X-ray hardness ratios, we find that 12 sources are obscured active galactic nuclei (AGNs) with absorption column densities of {N}{{H}}> {10}22 cm‑2, including several Compton-thick ({N}{{H}}∼ {10}24 cm‑2) AGN candidates. On the basis of the infrared (60 μm) and intrinsic X-ray luminosities, we examine the relation between star formation (SF) and AGN luminosities of the 23 Hy/U/LIRGs. We find that the correlation is similar to that of the optically selected AGNs reported by Netzer, whereas local, far-infrared selected U/LIRGs show higher SF-to-AGN luminosity ratios than the average of our sample. This result suggests that our Hy/U/LIRGs detected both with Spitzer and NuSTAR are likely situated in a transition epoch between AGN-rising and cold-gas diminishing phases in SF-AGN evolutional sequences. The nature of a Compton-thick AGN candidate newly detected above 8 keV with NuSTAR (ID 245 in Civano et al.) is briefly discussed.

  13. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer: Evidence of High Unbeamed Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2008-01-01

    We present the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 micron emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation, usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the Holmberg II ULX. We find that the luminosity and the morphology of the line emission is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is radiation bounded both in the line of sight direction and to the west, and probably matter bounded to the east. Evidence for a massive black hole (BH) in this ULX is mounting. Detailed photoionization models favor an intermediate mass black hole of at least 85 Solar Mass as the ionization source for the [OIV] emission. We find that the spectral type of the companion star strongly affects the expected strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst galaxies containing black hole binaries.

  14. Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization

    PubMed Central

    Mattson, Eric C.; Aboualizadeh, Ebrahim; Barabas, Marie E.; Stucky, Cheryl L.; Hirschmugl, Carol J.

    2013-01-01

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells. PMID:24256815

  15. Opportunities for live cell FT-infrared imaging: macromolecule identification with 2D and 3D localization.

    PubMed

    Mattson, Eric C; Aboualizadeh, Ebrahim; Barabas, Marie E; Stucky, Cheryl L; Hirschmugl, Carol J

    2013-11-19

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells.

  16. DEEP K{sub s} -NEAR-INFRARED SURFACE PHOTOMETRY OF 80 DWARF IRREGULAR GALAXIES IN THE LOCAL VOLUME

    SciTech Connect

    Fingerhut, Robin L.; McCall, Marshall L.; Argote, Mauricio; Cluver, Michelle E.; Nishiyama, Shogo; Rekola, Rami T. F.; Richer, Michael G.; Vaduvescu, Ovidiu; Woudt, Patrick A. E-mail: mccall@yorku.c E-mail: mcluver@ipac.caltech.ed E-mail: rareko@utu.f E-mail: ovidiuv@ing.iac.e

    2010-06-10

    We present deep near-infrared (K{sub s}) images and surface photometry for 80 dwarf irregular galaxies (dIs) within {approx}5 Mpc of the Milky Way. The galaxy images were obtained at five different facilities between 2004 and 2006. The image reductions and surface photometry have been performed using methods specifically designed for isolating faint galaxies from the high and varying near-infrared sky level. Fifty-four of the 80 dIs have surface brightness profiles which could be fit to a hyperbolic-secant (sech) function, while the remaining profiles could be fit to the sum of a sech and a Gaussian function. From these fits, we have measured central surface brightnesses, scale lengths, and integrated magnitudes. This survey is part of a larger study of the connection between large-scale structure and the global properties of dIs, the hypothesized building-blocks of more massive galaxies.

  17. HERUS: A CO Atlas from SPIRE Spectroscopy of Local ULIRGs

    NASA Astrophysics Data System (ADS)

    Pearson, Chris; Rigopoulou, Dimitra; Hurley, Peter; Farrah, Duncan; Afonso, Jose; Bernard-Salas, Jeronimo; Borys, Colin; Clements, David L.; Cormier, Diane; Efstathiou, Andreas; Gonzalez-Alfonso, Eduardo; Lebouteiller, Vianney; Spoon, Henrik

    2016-11-01

    We present the Herschel SPIRE Fourier Transform Spectroscopy (FTS) atlas for a complete flux-limited sample of local ultraluminous infrared galaxies (ULIRGs) as part of the HERschel Ultra Luminous InfraRed Galaxy Survey (HERUS). The data reduction is described in detail and was optimized for faint FTS sources ,with particular care being taken for the subtraction of the background, which dominates the continuum shape of the spectra. To improve the final spectra, special treatment in the data reduction has been given to any observation suffering from artifacts in the data caused by anomalous instrumental effects. Complete spectra are shown covering 200-671 μm, with photometry in the SPIRE bands at 250, 350, and 500 μm. The spectra include near complete CO ladders for over half of our sample, as well as fine structure lines from [C i] 370 μm, [C i] 609 μm, and [N ii] 205 μm. We also detect H2O lines in several objects. We construct CO spectral line energy distributions (SLEDs) for the sample, and compare their slopes with the far-infrared (FIR) colors and luminosities. We show that the CO SLEDs of ULIRGs can be broadly grouped into three classes based on their excitation. We find that the mid-J (5 < J < 8) lines are better correlated with the total FIR luminosity, suggesting that the warm gas component is closely linked to recent star formation. The higher J transitions do not linearly correlate with the FIR luminosity, consistent with them originating in hotter, denser gas that is unconnected to the current star formation. We conclude that in most cases more than one temperature component is required to model the CO SLEDs.

  18. New Ultraluminous Supersoft Source in the Small Magellanic Cloud: MAXI J0158-744

    NASA Astrophysics Data System (ADS)

    Li, Kwan Lok; Lu, T.; Kong, A.

    2012-05-01

    We present a time-resolved analysis of an ultraluminous supersoft source (SSS) MAXI J0158-744 using 18 consecutive follow-up Swift ToO observations. MAXI J0158-744 is an ultraluminous soft X-ray outburst with a peak luminosity up to 4.3 10^39 erg/s in the energy range of 0.2-2.0 keV located in the Magellanic Bridge region, detected by MAXI/GSC on 11 November 2011. Follow-up Swift observations confirmed that the X-ray emissions are ultra-soft, which could be well fitted by blackbody models of temperatures down to 52 eV. Since the onset, the X-ray emission decreased exponentially dropping from $10^39 to 10^37 erg/s in 15 days (assuming the Small Magellanic Cloud distance) and fell below the detection limit of Swift after 09 December 2011. The earliest Swift X-ray spectra show K-edge absorption (0.88 keV) and a broad Lya (0.65 keV) from OVIII, which indicate that it could be an oxygen rich system. Swift UVOT also caught the outburst in U band with magnitude 13.07 on 12 November 2011 and it returned to quiescence with magnitude 13.6 two days later. During this quiescence, we performed two ATCA radio observations at frequencies 5.5 GHz and 9 GHz with the baseline ranging from 337 m to 6 km and constrained an upper limit of 45 micro-Jansky at the X-ray position. By comparing the object with the close-binary soft source (CBSS) model, we therefore concluded that MAXI J0158-744 could be a slowly accreting O-rich white dwarf binary, with unstable hydrogen burning on the WD surface. Remarkably, ultraluminous SSSs are very rare high-energy phenomena and this nearest one MAXI J0158-744 provided a very unique opportunity for us to understand the underlying physics of such a system.

  19. A technique for local area transfer and simultaneous crystallization of amorphous silicon layer with midair cavity by irradiation with near-infrared semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Sakaike, Kohei; Kobayashi, Yoshitaka; Nakamura, Shogo; Akazawa, Muneki; Higashi, Seiichiro

    2014-04-01

    A technique for local layer transfer and simultaneous crystallization of amorphous silicon (a-Si) films with midair cavity induced by near-infrared semiconductor diode laser (SDL) irradiation is demonstrated. After SDL irradiation, the silicon (Si) films were completely transferred and crystallized simultaneously on counter substrates. Electron backscatter diffraction pattern maps confirmed that the maximum grain size of the transferred Si films is 20 µm. High-performance polycrystalline Si thin-film transistors (TFTs) were successfully fabricated on the locally transferred Si films. These TFTs showed a high on/off ratio of more than 106 and a field-effect mobility as high as 492 cm2 V-1 s-1.

  20. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    This paper presents a portable imaging device designed to detect peripheral blood vessels for cannula insertion that are otherwise difficult to visualize beneath the skin. The device combines near infrared stereo vision, ultrasound, and real-time image analysis to map the 3D structure of subcutaneous vessels. We show that the device can identify adult forearm vessels and be used to guide manual insertions in tissue phantoms with increased first-stick accuracy compared to unassisted cannulation. We also demonstrate that the system may be coupled with a robotic manipulator to perform automated, image-guided venipuncture. PMID:27981261

  1. Local study of fissure caries by Fourier transform infrared microscopy and X-ray diffraction using synchrotron radiation.

    PubMed

    Seredin, Pavel; Kashkarov, Vladimir; Lukin, Anatoliy; Ippolitov, Yury; Julian, Robert; Doyle, Stephen

    2013-09-01

    Investigations of intact dental enamel as well as carious-affected human dental enamel were performed using infrared spectromicroscopy and X-ray diffraction applying synchrotron radiation. Caries of enamel was shown to be characterized by an increase in the number of deformation and valence vibrations for N-C-O, N-H and C=O bonds, a decrease of the crystallinity index, and by the absence of the preferable orientation of hydroxyapatite crystals within the affected enamel. This indicates the presence of destructive processes in the organic matrix of hard tooth tissues.

  2. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  3. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907

    NASA Astrophysics Data System (ADS)

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A. Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D’Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-01

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of ~1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity ≥ 1041 erg second‑1) might harbor NSs.

  4. Implications of the Observed Ultraluminous X-Ray Source Luminosity Function

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko

    2012-01-01

    We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.

  5. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    PubMed

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10(41) erg second[Formula: see text]) might harbor NSs.

  6. Optical Emission of Ultraluminous X-ray Sources: Donor Star or Disk Irradiation?

    NASA Astrophysics Data System (ADS)

    Grise, Fabien; Kaaret, P.; Corbel, S.; Feng, H.; Cseh, D.; Tao, L.; Pakull, M.; Motch, C.

    2011-09-01

    After a decade of intense studies using the latest X-ray and optical telescopes, the nature of ultraluminous X-ray sources (ULXs) is still largely unknown. No definitive answer has emerged on the question of the mass of the black hole powering these objects (intermediate-mass or supercritical stellar-mass?). Further, we lack even basic knowledge about the binary systems and the companion stars. We will review the properties of the optical counterparts of these systems, from where most properties can be derived. Among the burning issues are: what is the mass donor in these systems? Are they giant/supergiant stars or main-sequence stars? What is the donor mass? Is the optical light from the companion stars or dominated by the accretion disk? We will present new results from recent HST, Chandra, and VLT observations of ULXs addressing these questions.

  7. On the Magnetic Field of the Ultraluminous X-Ray Pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Li, Xiang-Dong

    2017-04-01

    The discovery of the ultraluminous X-ray pulsar M82 X-2 has stimulated lively discussion on the nature of the accreting neutron star. In most of the previous studies the magnetic field of the neutron star was derived from the observed spin-up/down rates based on the standard thin, magnetized accretion disk model. However, under super-Eddington accretion the inner part of the accretion disk becomes geometrically thick. In this work we consider both radiation feedback from the neutron star and the sub-Keplerian rotation in a thick disk and calculate the magnetic moment–mass accretion rate relations for the measured rates of spin change. We find that the derived neutron star's dipole magnetic field depends on the maximum accretion rate adopted, but is likely ≲1013 G. The predicted accretion rate change can be used to test the proposed models by comparison with observations.

  8. Analyzing Hydrogen Recombination Lines in the Infrared and Optical to Determine Extinction and SFRs of Local LIRGs

    NASA Astrophysics Data System (ADS)

    Payne, Anna; Inami, Hanae

    2015-01-01

    We report on measurements for dust extinction and star formation rates (SFRs) for luminous infrared galaxies (LIRGs). We utilized the hydrogen recombination lines Brα, Hα, and Hβ observed in the infrared and optical wavelengths with AKARI and the Lick Observatory's Kast Double spectrograph to produce spectra. By calculating Brα/Hα ratios for the target galaxies, extinction is estimated. A possible correlation between higher LIR, IR/UV, specific SFRs and higher Brα/Hα has been found. Through comparisons with Hα/Hβ, it may be possible to determine if Hα is, in fact, underestimating extinction, since Hα is more strongly affected by extinction compared to longer wavelengths such as Brα. The accuracy of using Hα in extinction corrections is important for SFR studies, and, thus, one goal is to find a more accurate reddening correction factor. Payne was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  9. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, Ciro; Middleton, Matthew J.; Fabian, Andrew C.

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 1039 ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (103-105 solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  10. Near-infrared imaging of Markarian 231: Evidence for a double nucleus

    NASA Technical Reports Server (NTRS)

    Armus, L.; Surace, J. A.; Soifer, B. T.; Matthews, K.; Graham, J. R.; Larkin, J. E.

    1994-01-01

    Near-infrared (1.2-2.4 micrometers) images are presented for the central 10 arcsec of the Seyfert 1 galaxy Markarian 231. We find a faint, but intrinsically luminous (M(sub k) approximately -20.7) secondary peak in the near-infrared light distribution approximately 3.5 arcsec (2.7 kpc) south of the primary Seyfert 1 nucleus. Since there is no optical or infrared evidence for ongoing star formation at the location of this secondary peak, and its near-infrared luminosity and color are comparable to slightly reddened spiral bulges or elliptical nuclei, we identify this peak with the stripped nucleus of the companion galaxy involved in the Mrk 231 merger event. Depending upon the exact ratio of the masses of the primary and secondary nucleus in the Mrk 231 system we estimate a merger time scale of less than or equal to 10(exp 9) yr. The morphology of the southern nucleus suggests that it may have recently survived a close passage (r less than 200 pc) with the Seyfert 1 nucleus on a highly elliptical orbit, in which case the merger time scale may be significantly shorter (approximately 10(exp 7) yr. We re-calculate the average merger time scale for the seven ultraluminous infrared galaxies with double nuclei in the Bright Galaxy Sample (the BGS) of Soifer et al. (AJ, 98, 766 (1989)) and derive a value of approximately 10(exp 8) yr. Since seven of ten of the ultraluminous infrared galaxies in the BGS are now known to be double, we estimate the ultraluminous 'phase' may be close to this value. Along with Arp 220 and Mrk 273, Mrk 231 is the third member of the class to possess a high brightness temperature non-thermal radio core and a double nucleus, suggesting the time scale for the generation or fueling of the active nucleus can be much less than the dynamical time scale for the merger of the progenitor nuclei.

  11. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  12. [Applying local neural network and visible/near-infrared spectroscopy to estimating available nitrogen, phosphorus and potassium in soil].

    PubMed

    Wu, Qian; Yang, Yu-hong; Xu, Zhao-li; Jin, Yan; Guo, Yan; Lao, Cai-lian

    2014-08-01

    To establish the quantitative relationship between soil spectrum and the concentration of available nitrogen, phosphorus and potassium in soil, the critical procedures of a new analysis method were examined, involving spectral preprocessing, wavebands selection and adoption of regression methods. As a result, a soil spectral analysis model was built using VIS/NIRS bands, with multiplicative scatter correction and first-derivative for spectral preprocessing, and local nonlinear regression method (Local regression method of BP neural network). The coefficients of correlation between the chemically determined and the modeled available nitrogen, phosphorus and potassium for predicted samples were 0.90, 0.82 and 0.94, respectively. It is proved that the prediction of local regression method of BP neural network has better accuracy and stability than that of global regression methods. In addition, the estimation accuracy of soil available nitrogen, phosphorus and potassium was increased by 40.63%, 28.64% and 28.64%, respectively. Thus, the quantitative analysis model established by the local regression method of BP neural network could be used to estimate the concentration of available nitrogen, phosphorus and potassium rapidly. It is innovative for using local nonlinear method to improve the stability and reliability of the soil spectrum model for nutrient diagnosis, which provides technical support for dynamic monitoring and process control for the soil nutrient under different growth stages of field-growing crops.

  13. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    SciTech Connect

    Montes-Rodríguez, María de los Ángeles Mitsoura, Eleni; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Santiago-Concha, Bernardino Gabriel

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  14. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    NASA Astrophysics Data System (ADS)

    Montes-Rodríguez, María de los Ángeles; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Mitsoura, Eleni; Santiago-Concha, Bernardino Gabriel

    2014-11-01

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  15. Understanding the clumpy star-formation in local (U)LIRGs: A near-IR IFS perspective

    NASA Astrophysics Data System (ADS)

    Piqueras López, J.; Colina, L.; Arribas, S.; Pereira-Santaella, M.; Alonso-Herrero, A.

    2017-03-01

    The importance of Luminous and Ultraluminous Infrared Galaxies (U/LIRGs) in the context of the cosmological evolution of the star formation has been well established in the last decades. In particular, the study of local U/LIRGs using near-IR integral field spectroscopic techniques allows us to disentangle the 2D distribution of the star-formation using high spatial resolution, and characterise dust-enshrouded, spatially-resolved star-forming regions with great amount of detail. We present a comprehensive 2D IFS near-IR study of the extinction-corrected star-formation in a local sample of 10 LIRGs and 7 ULIRGs, based on VLT-SINFONI observations. We investigate the spatially-resolved distribution of the extinction-corrected star-formation rate (SFR) and star-formation rate surface density (Σ_{SFR}) by analysing the Brγ and Paα emission of the galaxies of the sample. We also obtained integrated measurements of the SFR and Σ_{SFR}, and identified a sample of 95 individual star-forming regions, characterised in terms of their size and Paα luminosity. These measurements will be discussed and compared with other SFR tracers like Hα, 24μm, and L_{IR}, and other local and high-z samples of star-forming clumps.

  16. Stability of mass transfer from massive giants: double black hole binary formation and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pavlovskii, K.; Ivanova, N.; Belczynski, K.; Van, K. X.

    2017-02-01

    Mass transfer in binaries with massive donors and compact companions, when the donors rapidly evolve after their main sequence, determines the formation rates of merging double stellar-mass black hole (BH) binaries formed outside clusters. This mass transfer was previously postulated to be unstable and was expected to lead to a common envelope event. The common envelope event then ends with either the merger of the two stars or formation of a binary that eventually may become a merging double BH. We revisit the stability of this mass transfer and find an unanticipated third outcome: for a large range of binary orbital separations, this mass transfer is stable. This newly found stability allows us to reconcile the empirical rate obtained by LIGO, 9-240 Gpc-3 yr-1, with the theoretical rate for double BH binary mergers predicted by population synthesis studies by excluding a channel that predicts a merger rate above 1000 Gpc-3 yr-1. Furthermore, the stability of the mass transfer leads to the formation of ultraluminous X-ray sources. The theoretically predicted formation rates of bright ultraluminous X-ray sources powered by a stellar-mass BH are high enough to explain the number of observed bright ultraluminous X-ray sources.

  17. Thermal ecology on an exposed algal reef: infrared imagery a rapid tool to survey temperature at local spatial scales

    NASA Astrophysics Data System (ADS)

    Cox, T. E.; Smith, C. M.

    2011-12-01

    We tested the feasibility of infra-red (IR) thermography as a tool to survey in situ temperatures in intertidal habitats. We employed this method to describe aspects of thermal ecology for an exposed algal reef in the tropics (O`ahu, Hawai`i). In addition, we compared temperatures of the surrounding habitat as determined by IR thermography and traditional waterproof loggers. Images of reef organisms (6 macroalgae, 9 molluscs, 1 anthozoan, and 2 echinoderms), loggers, and landscapes were taken during two diurnal low tides. Analysis of IR thermographs revealed remarkable thermal complexity on a narrow tropical shore, as habitats ranged from 18.1 to 38.3°C and surfaces of organisms that ranged from 21.1 to 33.2°C. The near 20°C difference between abiotic habitats and the mosaic of temperatures experienced by reef organisms across the shore are similar to findings from temperate studies using specialized longterm loggers. Further, IR thermography captured rapid temperature fluctuations that were related to tidal height and cross-correlated to wave action. Finally, we gathered evidence that tidal species were associated with particular temperature ranges and that two species possess morphological characteristics that limit thermal stress. Loggers provided similar results as thermography but lack the ability to resolve variation in fine-scale spatial and temporal patterns. Our results support the utility of IR thermography in exploring thermal ecology, and demonstrate the steps needed to calibrate data leading to establishment of baseline conditions in a changing and heterogeneous environment.

  18. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    NASA Astrophysics Data System (ADS)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding

  19. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  20. Evaluation of infrared-reflection absorption spectroscopy measurement and locally weighted partial least-squares for rapid analysis of residual drug substances in cleaning processes.

    PubMed

    Nakagawa, Hiroshi; Tajima, Takahiro; Kano, Manabu; Kim, Sanghong; Hasebe, Shinji; Suzuki, Tatsuya; Nakagami, Hiroaki

    2012-04-17

    The usefulness of infrared-reflection absorption spectroscopy (IR-RAS) for the rapid measurement of residual drug substances without sampling was evaluated. In order to realize the highly accurate rapid measurement, locally weighted partial least-squares (LW-PLS) with a new weighting technique was developed. LW-PLS is an adaptive method that builds a calibration model on demand by using a database whenever prediction is required. By adding more weight to samples closer to a query, LW-PLS can achieve higher prediction accuracy than PLS. In this study, a new weighting technique is proposed to further improve the prediction accuracy of LW-PLS. The root-mean-square error of prediction (RMSEP) of the IR-RAS spectra analyzed by LW-PLS with the new weighting technique was compared with that analyzed by PLS and locally weighted regression (LWR). The RMSEP of LW-PLS with the proposed weighting technique was about 36% and 14% smaller than that of PLS and LWR, respectively, when ibuprofen was a residual drug substance. Similarly, LW-PLS with the weighting technique was about 39% and 24% better than PLS and LWR in RMSEP, respectively, when magnesium stearate was a residual excipient. The combination of IR-RAS and LW-PLS with the proposed weighting technique is a very useful rapid measurement technique of the residual drug substances.

  1. Vertical, meridional, seasonal, and local time dependence of non-LTE effects in stratospheric NO and implications for infrared remote sensing

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.

    1989-01-01

    Calculations have been carried out on possible nonlocal thermodynamic equilibrium (non-LTE) effects previously suggested for stratospheric nitric oxide (NO) associated with the direct photochemical production of vibrationally excited NO by the processes NO2 + hv yields NO(v) + O and O + NO2 yields NO(v) + O2. The calculations, which make use of improved calculations of the NO vibrational state distribution from NO2 photolysis, are carried out as a function of altitude and latitude for a variety of seasons and local times. Non-LTE effects on the order of 30 percent for v = 1 are obtained, maximizing in the middle stratosphere over the equator. The results of the calculations suggest that incorporation of the non-LTE effect into the retrieval algorithm for NO from infrared thermal emission measuring instruments on the Upper Atmosphere Research Satellite will need to be done carefully if correct distributions and variations of NO with altitude, latitude, season, and local time are to be obtained.

  2. Evaluation of the local homogeneity fluctuation of sinter of the small chip size MLCCs by means of mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsuzuku, Koichiro; Hagiwara, Tomoya; Takeoka, Shunsuke; Ikemoto, Yuka

    2008-05-01

    Vibration bands of dielectric ceramics appear at a mid-infrared (MIR) and those position and shape are changed owing to change environment of crystal lattice. Therefore, micro-focus MIR spectroscopy is a one of useful tool to evaluate very small size capacitor (e.g. smaller than 0.5 mm in chip size). Very small size multi-layer capacitor: MLCC are one of very important device to produce high quality electrical products such as cell phone, etc. Quality and reliability of MLCC are corresponding to not only average dielectric properties but also local fluctuation of them. Furthermore, local fluctuation of dielectric properties of MLCC could evaluate with MIR spectroscopy. It is possible to obtain a satisfied MIR spectrum from small size samples performed by a micro-focus spectrometer combined with synchrotron radiation as a high luminance light source at beam line BL43IR of SPring-8. From the above result, it is possible to evaluate the degree of homogeneity by comparing the shape change of Ti-O peak on IR spectra.

  3. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  4. Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Fielding, Drummond; Faucher-Giguère, Claude-André; Quataert, Eliot

    2016-07-01

    We use local Cartesian simulations with a vertical gravitational potential to study how supernova (SN) feedback in stratified galactic discs drives turbulence and launches galactic winds. Our analysis includes three disc models with gas surface densities ranging from Milky Way-like galaxies to gas-rich ultraluminous infrared galaxies (ULIRGs), and two different SN driving schemes (random and correlated with local gas density). In order to isolate the physics of SN feedback, we do not include additional feedback processes. We find that, in these local box calculations, SN feedback excites relatively low mass-weighted gas turbulent velocity dispersions ≈3-7 km s-1 and low wind mass loading factors η ≲ 1 in all the cases we study. The low turbulent velocities and wind mass loading factors predicted by our local box calculations are significantly below those suggested by observations of gas-rich and rapidly star-forming galaxies; they are also in tension with global simulations of disc galaxies regulated by stellar feedback. Using a combination of numerical tests and analytic arguments, we argue that local Cartesian boxes cannot predict the properties of galactic winds because they do not capture the correct global geometry and gravitational potential of galaxies. The wind mass loading factors are in fact not well defined in local simulations because they decline significantly with increasing box height. More physically realistic calculations (e.g. including a global galactic potential and disc rotation) will likely be needed to fully understand disc turbulence and galactic outflows, even for the idealized case of feedback by SNe alone.

  5. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  6. Study of Functional Infrared Imaging for Early Detection of Mucositis in Locally Advanced Head and Neck Cancer Treated With Chemoradiotherapy

    PubMed Central

    Cohen, Ezra E.W.; Ahmed, Omar; Kocherginsky, Masha; Shustakova, Galyna; Kistner-Griffin, Emily; Salama, Joseph K.; Yefremenko, Volodymyr; Novosad, Valentyn

    2013-01-01

    Background and Purpose Chemoradiotherapy (CRT) has led to improved efficacy in treating locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN) but has led to almost universal in-field mucositis. Patients treated with the same regimen often have differences in mucositis occurrence and severity. Mucositis induced via radiation is known to represent an intense inflammatory response histologically. We hypothesized that patients destined to display severe mucocutaneous toxicity would demonstrate greater alterations in thermal intensity early in therapy than identically treated counterparts. This will allow identification of patients that will require more intensive supportive care using thermal imaging technology. Materials and Methods Subjects with LA-SCCHN (oral cavity or oropharynx) being treated with the identical chemoradiotherapy regimen underwent baseline and weekly thermal imaging. Changes in skin temperature caused by mucositis and dermatitis compared with a reference area (T were calculated and correlated to grade of mucositis based on NCI-CTCAE 3.0. Results Thirty-four subjects were enrolled. Grade 3 mucositis and dermatitis was observed in 53% and 21%, respectively. We observed a statistically significant positive association between an early rise in T and mucositis grade (p value=0.03). Conclusions Thermal imaging is able to detect small and early changes in skin surface temperature that may be associated with development of mucositis in patients being treated with chemoradiotherapy. PMID:23988569

  7. Modelling the light curves of ultraluminous X-ray sources as precession

    NASA Astrophysics Data System (ADS)

    Dauser, T.; Middleton, M.; Wilms, J.

    2017-04-01

    We present a freely available XSPEC model for the modulations seen in the long-term light curves of multiple ultraluminous X-ray sources (ULXs). By incorporating the physics of multiple electron scatterings (ray traced with a Monte Carlo routine), we go beyond analytical predictions and show that the geometrical beaming of radiation in the conical outflow can be more than a factor of 100 for opening angles smaller than 10°. We apply our new model to the long-term, well-sampled Swift light curve of the recently confirmed ULX pulsar NGC 5907 X-1 with an established period of 78 d. Our results suggest that geometrical beaming together with a slight precession of the conical wind can describe the light curve with a consistent set of parameters for the wind. The small opening angle of roughly 10° - 13° implies a highly supercritical flow and boosting factors of the order of B=60-90 that would yield a fairly low surface magnetic field strength of 2 × 1010 G.

  8. A POPULATION OF ULTRALUMINOUS X-RAY SOURCES WITH AN ACCRETING NEUTRON STAR

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2015-04-01

    Most ultraluminous X-ray sources (ULXs) are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star (NS) accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized NS. In this work we model the formation history of NS ULXs in an M82- or Milky Way (MW)-like Galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birth rate is around 10{sup −4} yr{sup −1} for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass–orbital period plane. Our results suggest that, compared with black hole X-ray binaries, NS X-ray binaries may significantly contribute to the ULX population, and high-mass and intermediate-mass X-ray binaries dominate the NS ULX population in M82- and MW-like Galaxies, respectively.

  9. Young rotation-powered pulsars as ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Medvedev, Aleksei S.; Poutanen, Juri

    2013-05-01

    The aim of this paper is to investigate a possible contribution of the rotation-powered pulsars and pulsar wind nebulae to the population of ultraluminous X-ray sources (ULXs). We first develop an analytical model for the evolution of the distribution function of pulsars over the spin period and find both the steady-state and the time-dependent solutions. Using the recent results on the X-ray efficiency dependence on pulsar characteristic age, we then compute the X-ray luminosity function (XLF) of rotation-powered pulsars. In a general case, it has a broken power-law shape with a high-luminosity cutoff, which depends on the distributions of the birth spin period and the magnetic field. Using the observed XLF of sources in the nearby galaxies and the condition that the pulsar XLF does not exceed that, we find the allowed region for the parameters describing the birth period distribution. We find that the mean pulsar period should be greater than 10-40 ms. These results are consistent with the constraints obtained from the X-ray luminosity of core-collapse supernovae. We estimate that the contribution of the rotation-powered pulsars to the ULX population is at a level exceeding 3 per cent. For a wide birth period distribution, this fraction grows with luminosity and above 1040 erg s-1 pulsars can dominate the ULX population.

  10. Deep spectroscopy of stellar counterparts of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro

    2011-01-01

    We propose to carry out a deep spectral study of faint stars in X-ray boxes of four ultraluminous X-ray sources (ULXs) in nearby galaxies. They are the most luminous bone-fide ULXs, whose stellar counterparts have unambiguous identification. They were well-studied in the HST and ground-based imaging. Our analysis of archival Subaru spectra (2 out of the 4 targets) has shown that the spectra were taken with inadmissible short exposures resulting in too low S/N, and the spectral range did not include main diagnostical spectral features. All previous studies of the ULXs did not answer the question on their nature. It is astonishing that there was no spectroscopy of their optical counterparts, though it is possible to take good spectra of them in a long-exposure spectroscopy with 8-m class of telescopes. The predictions for the ULX optical counterpart spectrum are clear enough to distinguish between two the most popular models (supercritical accretion disks like that in SS 433 and intermediate-mass black holes with a "normal disk"). The main goal is to distinguish an accretion regime in ULXs, because in both cases the ULXs must be close binaries with a massive donor. This spectroscopy is the necessary first step for subsequent phase-resolved spectroscopic studies to determine the black hole mass.

  11. On the black hole masses in ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xin-Lin

    2015-05-01

    Ultra-luminous X-ray sources (ULXs) are off-nuclear X-ray sources in nearby galaxies with X-ray luminosities ⩾ 1039 erg s-1. The measurement of the black hole (BH) masses of ULXs is a long-standing problem. Here we estimate BH masses in a sample of ULXs with XMM-Newton observations using two different mass indicators, the X-ray photon index and X-ray variability amplitude based on the correlations established for active galactic nuclei (AGNs). The BH masses estimated from the two methods are compared and discussed. We find that some extreme high-luminosity (LX > 5 ×1040 erg s-1) ULXs contain the BH of 104-105 M⊙ . The results from X-ray variability amplitude are in conflict with those from X-ray photon indices for ULXs with lower luminosities. This suggests that these ULXs generally accrete at rates different from those of X-ray luminous AGNs, or they have different power spectral densities of X-ray variability. We conclude that most of ULXs accrete at super-Eddington rate, thus harbor stellar-mass BH.

  12. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies.

    PubMed

    Irwin, Jimmy A; Maksym, W Peter; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-10-20

    A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 10(39) erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 10(40) erg per second; the other flared five times to 10(40) erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.

  13. The Binary Black Hole Merger Rate from Ultraluminous X-ray Source Progenitors

    NASA Astrophysics Data System (ADS)

    Finke, Justin; Razzaque, Soebur

    2017-01-01

    Ultraluminous X-ray sources (ULXs) exceed the Eddington luminosity for an approximately 10 solar mass black hole. The recent detection of a black hole merger event GW 150914 by the gravitational wave detector ALIGO indicates that black holes with mass greater than 10 do indeed exist. Motivated by this, we explore a scenario where ULXs consist of black holes formed by the collapse of high-mass, low-metallicity stars, and that these ULXs become binary black holes (BBHs) that eventually merge. We use empirical relations between the number of ULXs and the star formation rate and host galaxy metallicity to estimate the ULX formation rate and the BBH merger rate at all redshifts. This assumes the ULX rate is directly proportional to the star formation rate for a given metallicity, and that the black hole accretion rate is distributed as a log-normal distribution. We include an enhancement in the ULX formation rate at earlier epochs due to lower mean metallicities. Our model is able to reproduce both the rate and mass distribution of BBH mergers in the nearby universe inferred from the detection of GW 150914, LVT 151012, and GW 151226 by LIGO if the median accretion rate of ULXs is a factor 1 to 30 greater than the Eddington rate. Our predictions of the BBH merger rate, mass distribution.

  14. Suzaku Observation of Two Ultraluminous X-ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Mushotzky, R.F.; Petre, R.

    2007-01-01

    TA study was made of two ultraluminous X-ray sources (ULXs) in the nearby faceon, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The o.4-10keV X-ray luminosity was measured. For X-1, the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.00 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. The spectrum of X-2 in fainter phase is presented by a multicolor disk blackbody model.

  15. REVISITING PUTATIVE COOL ACCRETION DISKS IN ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Miller, J. M.; King, A. L.; Reynolds, M. T.; Reis, R. C.; Walton, D. J.; Fabian, A. C.; Miller, M. C.

    2013-10-20

    Soft, potentially thermal spectral components observed in some ultra-luminous X-ray sources (ULXs) can be fit with models for emission from cool, optically thick accretion disks. If that description is correct, the low temperatures that are observed imply accretion onto 'intermediate-mass' black holes. Subsequent work has found that these components may follow an inverse relationship between luminosity and temperature, implying a non-blackbody origin for this emission. We have re-analyzed numerous XMM-Newton spectra of extreme ULXs. Crucially, observations wherein the source fell on a chip gap were excluded owing to their uncertain flux calibration, and the neutral column density along the line of sight to a given source was jointly determined by multiple spectra. The luminosity of the soft component is found to be positively correlated with temperature, and to be broadly consistent with L∝T {sup 4} in the measured band pass, as per blackbody emission from a standard thin disk. These results are nominally consistent with accretion onto black holes with masses above the range currently known in Galactic X-ray binaries, though there are important caveats. Emission from inhomogeneous or super-Eddington disks may also be consistent with the data.

  16. THE SLIM-DISK STATE OF THE ULTRALUMINOUS X-RAY SOURCE IN M83

    SciTech Connect

    Soria, Roberto; Kuntz, K. D.; Blair, William P.; Long, Knox S.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 10{sup 39} erg s{sup –1} (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ∼ 10-20 M {sub ☉}. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  17. A NEW ULTRALUMINOUS X-RAY SOURCE IN THE NEARBY EDGE-ON SPIRAL NGC 891

    SciTech Connect

    Hodges-Kluck, Edmund J.; Bregman, Joel N.; Miller, Jon M.; Pellegrini, Eric

    2012-03-10

    We report the discovery of a new candidate ultraluminous X-ray source in the nearby edge-on spiral galaxy NGC 891. The source, which has an absorbed flux of F{sub x} {approx} 1 Multiplication-Sign 10{sup -12} erg s cm{sup -2} (corresponding to an L{sub x} {approx}> 10{sup 40} erg s{sup -1} at 9 Mpc), must have begun its outburst in the past five years as it is not detected in prior X-ray observations between 1986 and 2006. We try empirical fits to the XMM-Newton spectrum, finding that the spectrum is fit very well as emission from a hot disk, a cool irradiated disk, or blurred reflection from the innermost region of the disk. The simplest physically motivated model with an excellent fit is a hot disk around a stellar-mass black hole (a super-Eddington outburst), but equally good fits are found for each model. We suggest several follow-up experiments that could falsify these models.

  18. Super-Eddington accretion disks in Ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Vinokurov, A.; Atapin, K.; Sholukhova, O.

    2016-06-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy hundreds and thousands times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate the presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS433, the only known supercritical accretor in our Galaxy. The spectra are apparently of WNL type (late nitrogen Wolf-Rayet stars) or LBV (luminous blue variables) in their hot state, which are very scarce stellar objects. We find that the spectra do not originate from WNL/LBV type donors but from very hot winds from the accretion disks, whose physical conditions are similar to those in stellar winds from these stars. The results suggest that bona-fide ULXs must constitute a homogeneous class of objects, which most likely have supercritical accretion disks.

  19. Relativistic baryonic jets from an ultraluminous supersoft X-ray source

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1’s soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  20. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-03

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this

  5. MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT

    SciTech Connect

    Perley, D. A.; Morgan, A. N.; Miller, A. A.; Bloom, J. S.; Cenko, S. B.; Li, W.; Filippenko, A. V.; Butler, N. R.; Christian, P.; Updike, A.; Hartmann, D. H.; Yuan, F.; Akerlof, C. W.; Prochaska, J. X.; Tanvir, N. R.; Levan, A. J.; Milne, P.; Rujopakarn, W.; Rykoff, E. S.

    2011-02-15

    We present early-time optical through infrared photometry of the bright Swift gamma-ray burst (GRB) 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometric data set allows us to solve for the extinction properties of the redshift 3.036 sightline, giving perhaps the most detailed information to date on the ultraviolet continuum absorption properties of any sightline outside our Local Group. The extinction properties are not adequately modeled by any ordinary extinction template (including the average Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud curves), partially because the 2175 A feature (while present) is weaker by about a factor of two than when seen under similar circumstances locally. However, the spectral energy distribution is exquisitely fitted by the more general Fitzpatrick and Massa parameterization of Local-Group extinction, putting it in the same family as some peculiar Milky Way extinction curves. After correcting for this (considerable, A{sub V} = 3.3 {+-} 0.4 mag) extinction, GRB 080607 is revealed to have been among the most optically luminous events ever observed, comparable to the naked-eye burst GRB 080319B. Its early peak time (t{sub rest} < 6 s) indicates a high initial Lorentz factor ({Gamma}>600), while the extreme luminosity may be explained in part by a large circumburst density. Only because of its early high luminosity could the afterglow of GRB 080607 be studied in such detail in spite of the large attenuation and great distance, making this burst an excellent prototype for the understanding of other highly obscured extragalactic objects, and of the class of 'dark' GRBs in particular.

  6. THE SPATIAL EXTENT OF (U)LIRGS IN THE MID-INFRARED. II. FEATURE EMISSION

    SciTech Connect

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Stierwalt, S.; Haan, S.; Howell, J. H.; Petric, A. O.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Murphy, E. J.; Appleton, P.; Evans, A. S.; Sanders, D. B.

    2011-11-01

    We present results from the second part of our analysis of the extended mid-infrared (MIR) emission of the GOALS sample based on 5-14 {mu}m low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for all galaxies in the sample, FEE{sub {lambda}}, defined as the fraction of the emission that originates outside of the unresolved central component of a source, and spatially separate the MIR spectrum of a galaxy into its nuclear and extended components. We find that the [Ne II]12.81 {mu}m emission line is as compact as the hot dust MIR continuum, while the polycyclic aromatic hydrocarbon (PAH) emission is more extended. In addition, the 6.2 and 7.7 {mu}m PAH emission is more compact than that of the 11.3 {mu}m PAH, which is consistent with the formers being enhanced in a more ionized medium. The presence of an active galactic nucleus (AGN) or a powerful nuclear starburst increases the compactness and the luminosity surface density of the hot dust MIR continuum, but has a negligible effect on the spatial extent of the PAH emission on kpc-scales. Furthermore, it appears that both processes, AGN and/or nuclear starburst, are indistinguishable in terms of how they modify the integrated PAH-to-continuum ratio of the FEE in (ultra)luminous infrared galaxies ((U)LIRGs). Globally, the 5-14 {mu}m spectra of the extended emission component are homogeneous for all galaxies in the GOALS sample. This suggests that, independently of the spatial distribution of the various MIR features, the physical properties of star formation occurring at distances farther than 1.5 kpc from the nuclei of (U)LIRGs are very similar, resembling local star-forming galaxies with L{sub IR} < 10{sup 11} L{sub sun}, as well as star-formation-dominated ULIRGs at z {approx} 2. In contrast, the MIR spectra of the nuclear component of local ULIRGs and LIRGs are very diverse. These results imply that the observed

  7. A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Esquej, P.; Roche, P. F.; Ramos Almeida, C.; González-Martín, O.; Packham, C.; Levenson, N. A.; Mason, R. E.; Hernán-Caballero, A.; Pereira-Santaella, M.; Alvarez, C.; Aretxaga, I.; López-Rodríguez, E.; Colina, L.; Díaz-Santos, T.; Imanishi, M.; Rodríguez Espinosa, J. M.; Perlman, E.

    2016-01-01

    We present an atlas of mid-infrared (mid-IR) ˜ 7.5-13 μm spectra of 45 local active galactic nuclei (AGN) obtained with CanariCam on the 10.4 m Gran Telescopio CANARIAS (GTC) as part of an ESO/GTC large programme. The sample includes Seyferts and other low-luminosity AGN (LLAGN) at a median distance of 35 Mpc and luminous AGN, namely PG quasars, (U)LIRGs, and radio galaxies (RG) at a median distance of 254 Mpc. To date, this is the largest mid-IR spectroscopic catalogue of local AGN at sub-arcsecond resolution (median 0.3 arcsec). The goal of this work is to give an overview of the spectroscopic properties of the sample. The nuclear 12 μm luminosities of the AGN span more than four orders of magnitude, νL12 μm ˜ 3 × 1041-1046 erg s-1. In a simple mid-IR spectral index versus strength of the 9.7 μm silicate feature diagram most LLAGN, Seyfert nuclei, PG quasars, and RGs lie in the region occupied by clumpy torus model tracks. However, the mid-IR spectra of some might include contributions from other mechanisms. Most (U)LIRG nuclei in our sample have deeper silicate features and flatter spectral indices than predicted by these models suggesting deeply embedded dust heating sources and/or contribution from star formation. The 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature is clearly detected in approximately half of the Seyfert nuclei, LLAGN, and (U)LIRGs. While the RG, PG quasars, and (U)LIRGs in our sample have similar nuclear νL12 μm, we do not detect nuclear PAH emission in the RGs and PG quasars.

  8. Detection of Live Circulating Tumor Cells by a Class of Near-Infrared Heptamethine Carbocyanine Dyes in Patients with Localized and Metastatic Prostate Cancer

    PubMed Central

    Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H. T.; Ng, Christopher S.; Josephson, David Y.; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L.; Zhau, Haiyen E.; Chung, Leland W. K.; Wang, Ruoxiang; Posadas, Edwin M.

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR+) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population. PMID:24551200

  9. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  10. THE ARAUCARIA PROJECT. A DISTANCE DETERMINATION TO THE LOCAL GROUP SPIRAL M33 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES

    SciTech Connect

    Gieren, Wolfgang; Pietrzynski, Grzegorz; Graczyk, Dariusz E-mail: pietrzyn@hubble.cfm.udec.cl; and others

    2013-08-10

    Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO Very Large Telescope. From the data, we constructed period-luminosity relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of {+-}0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B - V) = 0.19 {+-} 0.02, in agreement with the value used by the Hubble Space Telescope Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our derived M33 distance modulus is extremely insensitive to the adopted reddening law. We show that the possible effects of metallicity and crowding on our present distance determination are both at the 1%-2% level and therefore minor contributors to the total uncertainty of our distance result for M33.

  11. Discovery of the Ultraluminous Type IIn Supernova PS1-11vo

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Soderberg, A. M.; Berger, E.; Chornock, R.; Czekala, I.; Milisavljevic, D.; Margutti, R.; Drout, M.; Challis, P.; Gezari, S.; Huber, M.; Burgett, W. S.; Chambers, K. C.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kudritzki, R.; Luppino, G.; Lupton, R.; Magnier, E. A.; Monet, D. G.; Morgan, J. S.; Onaka, P.; Price, P. A.; Stubbs, C.; Tonry, J. L.; Wainscoat, R. J.

    2013-01-01

    We report the discovery by the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1) of PS1-11vo, a Type IIn supernova (SN) at z = 0.116 with a peak r-band absolute magnitude of M = -20.4. We also present optical spectroscopic observations from the Apache Point Observatory Echelle Spectrograph, the Gemini Multi-Object Spectrograph, and the MMT Blue Channel Spectrograph over a period of roughly 1 year after detection. PS1-11vo is one of the longest lived, most luminous supernovae (SNe) ever discovered and the highest quality SN IIn documented by Pan-STARRS1. The Pan-STARRS1 photometric observations indicate maximum was reached roughly 50 days after the time of explosion, during which the SN rose by approximately 5 mag. Spectra of PS1-11vo display a prominent hydrogen alpha emission line and P Cygni profile, typical of SNe IIn. We compare the photometric and spectroscopic observations of PS1-11vo to those of other SNe II, including several recent ultraluminous SNe IIn. Finally, we examine its spectral energy distribution to model various parameters of the SN and its host environment at 5 days past maximum, estimating a peak luminosity of L = 4.5E43 erg/s and an initial Nickel-56 mass of 4.5 solar masses. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  12. On The Nature of the Ultraluminous X-Ray Transient in Cen A (NGC 5128)

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Finger, Mark H.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah

    2005-01-01

    We combine 20 ROSAT, Chandra, and XMM-Newton observations of the Cen A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F(sub X) > 10(exp -12) ergs/sq cm/s during a 10 day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 x 10(exp 39) ergs/s, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected at the 3 sigma level during a second bright episode (F(sub x) > 3 x 10(exp -13) ergs/sq cm/s) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m(sub F555W) approx. 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in Hubble images taken 195 days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. The X-ray and optical behavior of 1RXH J132519.8-430312 is therefore similar to the transient Be/X-ray pulsar A 0538-66.

  13. Chandra monitoring observations of the ultraluminous X-ray source NGC 5204 X-1

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Kilgard, R. E.; Warwick, R. S.; Goad, M. R.; Ward, M. J.

    2006-10-01

    We report the results of a two-month campaign conducted with the Chandra X-ray observatory to monitor the ultraluminous X-ray source (ULX) NGC 5204 X-1. This was composed of a 50-ks observation, followed by ten 5-ks follow-ups spaced initially at ~3, then at ~10-d intervals. The ULX flux is seen to vary by factors ~5 on time-scales of a few days, but no strong variability is seen on time-scales shorter than an hour. There is no evidence for a periodic signal in the X-ray data. An examination of the X-ray colour variations over the period of the campaign shows the ULX emission consistently becomes spectrally harder as its flux increases. The X-ray spectrum from the 50-ks observation can be fitted by a number of disparate spectral models, all of which describe a smooth continuum with, unusually for a ULX, a broad emission feature evident at 0.96keV. The spectral variations, both within the 50-ks observation and over the course of the whole campaign, can then be explained solely by variations in the continuum component. In the context of an optically thick corona model (as found in other recent results for ULXs) the spectral variations can be explained by the heating of the corona as the luminosity of the ULX increases, consistent with the behaviour of at least one Galactic black hole system in the strongly Comptonized very high state. We find no new evidence supporting the presence of an intermediate-mass black hole in this ULX.

  14. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; Griffiths, R. E.; Haba, Y.; Kokubun, M.; Kotoku J.; Makishima, K.; Matsushita, K.; Mushotzky, R. F.; Namiki, M.; Petre, R.; Takahashi, H.; Tamagaw, T.; Terashima, Y.

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  15. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  16. Ultraluminous X-Ray Source Correlations with Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Swartz, Douglas A.; Tennant, Allyn F.; Soria, Roberto

    2009-09-01

    Maps of low-inclination nearby galaxies in Sloan Digitized Sky Survey u - g, g - r, and r - i colors are used to determine whether ultraluminous X-ray sources (ULXs) are predominantly associated with star-forming regions of their host galaxies. An empirical selection criterion is derived from colors of H II regions in M 81 and M 101 that differentiates between the young, blue stellar component and the older disk and bulge population. This criterion is applied to a sample of 58 galaxies of Hubble type S0 and later and verified through an application of Fisher's linear discriminant analysis. It is found that 60% (49%) of ULXs in optically bright environments are within regions blueward of their host galaxy's H II regions compared to only 27% (0%) of a control sample according to the empirical (Fisher) criterion. This is an excess of 3σ above the 32% (27%) expected if the ULXs were randomly distributed within their galactic hosts. This indicates a ULX preference for young, lsim10 Myr, OB associations. However, none of the ULX environments have the morphology and optical brightness suggestive of a massive young super-star cluster though several are in extended or crowded star-forming (blue) environments that may contain clusters unresolved by Sloan imaging. Ten of the 12 ULX candidates with estimated X-ray luminosities in excess of 3 × 1039 erg s-1 are equally divided among the group of ULX environments redward of H II regions and the group of optically faint regions. This likely indicates that the brightest ULXs turn on at a time somewhat later than typical of H II regions; say 10-20 Myr after star formation has ended. This would be consistent with the onset of an accretion phase as the donor star ascends the giant branch if the donor is an lsim20 M sun star.

  17. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    SciTech Connect

    Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N. A.; Harrison, F. A.; Walton, D. J.; Rana, V.; Fabian, A. C.

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.

  18. Discovery of a Highly Variable Dipping Ultraluminous X-Ray Source in M94

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Irwin, Jimmy A.; Webb, Natalie A.; Barret, Didier; Remillard, Ronald A.

    2013-12-01

    We report the discovery of a new ultraluminous X-ray source (ULX) 2XMM J125048.6+410743 within the spiral galaxy M94. The source has been observed by ROSAT, Chandra, and XMM-Newton on several occasions, exhibiting as a highly variable persistent source or a recurrent transient with a flux variation factor of gsim100, a high duty cycle (at least ~70%), and a peak luminosity of L X ~ 2 × 1039 erg s-1 (0.2-10 keV, absorbed). In the brightest observation, the source is similar to typical low-luminosity ULXs, with the spectrum showing a high-energy cutoff but harder than that from a standard accretion disk. There are also sporadical short dips, accompanied by spectral softening. In a fainter observation with L X ~ 3.6 × 1038 erg s-1, the source appears softer and is probably in the thermal state seen in Galactic black hole X-ray binaries (BHBs). In an even fainter observation (L X ~ 9 × 1037 erg s-1), the spectrum is harder again, and the source might be in the steep-power-law state or the hard state of BHBs. In this observation, the light curve might exhibit ~7 hr (quasi-)periodic large modulations over two cycles. The source also has a possible point-like optical counterpart from Hubble Space Telescope images. In terms of the colors and the luminosity, the counterpart is probably a G8 supergiant or a compact red globular cluster containing ~2 × 105 K dwarfs, with some possible weak UV excess that might be ascribed to accretion activity. Thus, our source is a candidate stellar-mass BHB with a supergiant companion or with a dwarf companion residing in a globular cluster. Our study supports that some low-luminosity ULXs are supercritically accreting stellar-mass BHBs.

  19. On the physical nature of the source of ultraluminous X-ray pulsations

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.

    2016-01-01

    To reconcile the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 with the most extreme violation of the Eddington limit, and in view that the persistent X-ray radiation from M82X-2 almost precludes the possibility of common pulsars, we tackle the problem by the implications of microscopic theory of black hole (MTBH). The preceding developments of MTBH are proved to be quite fruitful for the physics of ultra-high energy (UHE) cosmic-rays. Namely, replacing a central singularity by the infrastructures inside event horizon, subject to certain rules, MTBH explains the origin of ZeV-neutrinos which are of vital interest for the source of UHE-particles. The M82X-2 is assumed to be a spinning intermediate mass black hole resided in final stage of growth. Then, the thermal blackbody X-ray emission, arisen due to the rotational kinetic energy of black hole, escapes from event horizon through the vista to outside world, which is detected as ultraluminous X-ray pulsations. The M82X-2 indeed releases ˜99.6 % of its pulsed radiative energy predominantly in the X-ray bandpass 0.3-30 keV. We derive a pulse profile and give a quantitative account of energetics and orbital parameters of the semi-detached X-ray binary containing a primary accretor M82X-2 of inferred mass M≃138.5-226 M_{⊙} and secondary massive, M2> 48.3-64.9 M_{⊙}, O/B-type donor star with radius of R> 22.1-25.7 R_{⊙}, respectively. We compute the torque added to M82X-2 per unit mass of accreted matter which yields the measured spin-up rate.

  20. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  1. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  2. A possible 55-d X-ray period of the ultraluminous accreting pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Kong, Albert K. H.; Hu, Chin-Ping; Lin, Lupin Chun-Che; Li, K. L.; Jin, Ruolan; Liu, C. Y.; Yen, David Chien-Chang

    2016-10-01

    We report on the possible detection of a 55-d X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-d orbital period, if the 55-d period is real, then it will be the superorbital period of the system. We also investigated variabilities of three other nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data, and we did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-d periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we have confirmed that the 62-d period is not stable, suggesting that it is not the orbital period of M82 X-1; this is in agreement with previous work.

  3. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  4. TRANSITION TO THE DISK DOMINANT STATE OF A NEW ULTRALUMINOUS X-RAY SOURCE IN M82

    SciTech Connect

    Jin Jing; Feng Hua; Kaaret, Philip

    2010-06-10

    We report on the identification of a third, new ultraluminous X-ray source in the starburst galaxy M82. Previously, the source was observed at fluxes consistent with the high state of Galactic black hole binaries (BHBs). We observe fluxes up to (6.5 {+-} 0.3) x 10{sup 39} erg s{sup -1} in the ultraluminous regime. When the source is not in the low/hard state, spectral fitting using a multicolor disk model shows that the disk luminosity varies as the disk inner temperature raised to the power 4.8 {+-} 0.9, consistent with the behavior of Galactic BHBs in the thermal dominant state. Fitting the spectrum with a multicolor disk model with general relativistic corrections suggests that the source harbors a rapidly spinning black hole with a mass less than 100 solar masses. A soft excess was found in the source spectrum that could be blackbody emission from a photosphere created by a massive outflow. The source also showed soft dips during a flare.

  5. Synchrotron-based Infrared and X-ray Imaging Shows Focalized Accumulation of Cu and Zn Co-localized With Beta-amyloid Deposits in Alzheimer's Disease

    SciTech Connect

    Miller,L.; Wang, Q.; Telivala, T.; Smith, R.; Lanzirotti, A.; Miklossy, J.

    2006-01-01

    Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains 'hot spots' of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The 'hot spots' of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD.

  6. The Araucaria Project. A Distance Determination to the Local Group Spiral M33 from Near-infrared Photometry of Cepheid Variables

    NASA Astrophysics Data System (ADS)

    Gieren, Wolfgang; Górski, Marek; Pietrzyński, Grzegorz; Konorski, Piotr; Suchomska, Ksenia; Graczyk, Dariusz; Pilecki, Bogumil; Bresolin, Fabio; Kudritzki, Rolf-Peter; Storm, Jesper; Karczmarek, Paulina; Gallenne, Alexandre; Calderón, Paula; Geisler, Doug

    2013-08-01

    Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO Very Large Telescope. From the data, we constructed period-luminosity relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of ±0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B - V) = 0.19 ± 0.02, in agreement with the value used by the Hubble Space Telescope Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our derived M33 distance modulus is extremely insensitive to the adopted reddening law. We show that the possible effects of metallicity and crowding on our present distance determination are both at the 1%-2% level and therefore minor contributors to the total uncertainty of our distance result for M33. Based on observations obtained with the ESO VLT for program 382.D-0469(A).

  7. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.

    PubMed

    Mejac, Irena; Bryan, William W; Lee, T Randall; Tran, Chieu D

    2009-08-15

    We have successfully utilized the newly developed near-infrared multispectral imaging (NIR-MSI) microscope to observe and measure directly the localized surface plasmon absorption (LSPR) of individual gold nanoshells. The NIR-MSI is suited for this task because it can simultaneously record spectral and spatial information of a sample with high sensitivity (single pixel resolution) and high spatial resolution (approximately 0.9 microm/pixel). Importantly, the LSPR of individual nanoshells measured by the NIR-MSI microscope agrees well with the spectra calculated theoretically using Mie scattering for the nanoshells (i.e., nanoshells with silica cores approximately 800 nm in diameter and gold shell thicknesses of approximately 35 nm). Additionally, the NIR-MSI microscope enables measurement of LSPR at different positions within a single nanoshell. LSPR spectra were found to be distinct at various positions within a single nanoshell. Since LSPR spectra are known to depend on the shape and morphology of the nanoshells, these results seem to suggest that the individual nanoshells are not smooth and well-defined, but are rather rough and inhomogeneous. The LSPR spectra of single nanoshells in several different solvents were also examined using NIR-MSI and were found to depend on the dielectric constant of the medium. However, the relationship was discovered to be more complex than simply following the Drude equation. Specifically, when (lambda(max)/fwhm)(2) values of LSPR for single gold nanoshells were plotted as a function of 2n(2) (or 2epsilon) for nanoshells in six different solvents, a linear relationship was found for only three solvents: D(2)O, acetonitrile-d(3), and ethyl acetate. Acetone-d(6) showed a slight deviation, whereas formamide and pyridine-d(5) exhibited distinctly different correlations.

  8. Herschel far-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe - II. SPIRE observations

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Meléndez, Marcio; Mushotzky, Richard F.; Koss, Michael J.; Barger, Amy J.; Cowie, Lennox L.

    2016-03-01

    We present far-infrared (FIR) and submillimetre photometry from the Herschel Space Observatory's Spectral and Photometric Imaging Receiver (SPIRE) for 313 nearby (z < 0.05) active galactic nuclei (AGN). We selected AGN from the 58 month Swift Burst Alert Telescope (BAT) catalogue, the result of an all-sky survey in the 14-195 keV energy band, allowing for a reduction in AGN selection effects due to obscuration and host galaxy contamination. We find 46 per cent (143/313) of our sample is detected at all three wavebands and combined with our Photoconductor Array Camera and Spectrometer (PACS) observations represents the most complete FIR spectral energy distributions of local, moderate-luminosity AGN. We find no correlation among the 250, 350, and 500 μm luminosities with 14-195 keV luminosity, indicating the bulk of the FIR emission is not related to the AGN. However, Seyfert 1s do show a very weak correlation with X-ray luminosity compared to Seyfert 2s and we discuss possible explanations. We compare the SPIRE colours (F250/F350 and F350/F500) to a sample of normal star-forming galaxies, finding the two samples are statistically similar, especially after matching in stellar mass. But a colour-colour plot reveals a fraction of the Herschel-BAT AGN are displaced from the normal star-forming galaxies due to excess 500 μm emission (E500). Our analysis shows E500 is strongly correlated with the 14-195 keV luminosity and 3.4/4.6 μm flux ratio, evidence the excess is related to the AGN. We speculate these sources are experiencing millimetre excess emission originating in the corona of the accretion disc.

  9. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  10. Influence of water-filtered infrared-A (wIRA) on reduction of local fat and body weight by physical exercise

    PubMed Central

    Möckel, Frank; Hoffmann, Gerd; Obermüller, Roy; Drobnik, Wolfgang; Schmitz, Gerd

    2006-01-01

    Aim of the study: Investigation, whether water-filtered infrared-A (wIRA) irradiation during moderate bicycle ergometer endurance exercise has effects especially on local fat reduction and on weight reduction beyond the effects of ergometer exercise alone. Methods: Randomised controlled study with 40 obese females (BMI 30-40 (median: 34.5), body weight 76-125 (median: 94.9) kg, age 20-40 (median: 35.5) years, isocaloric nutrition), 20 in the wIRA group and 20 in the control group. In both groups each participant performed 3 times per week over 4 weeks for 45 minutes bicycle ergometer endurance exercise with a constant load according to a lactate level of 2 mmol/l (aerobic endurance load, as determined before the intervention period). In the wIRA group in addition large parts of the body (including waist, hip, and thighs) were irradiated during all ergometries of the intervention period with visible light and a predominant part of water-filtered infrared-A (wIRA), using the irradiation unit “Hydrosun® 6000” with 10 wIRA radiators (Hydrosun® Medizintechnik, Müllheim, Germany, radiator type 500, 4 mm water cuvette, yellow filter, water-filtered spectrum 500-1400 nm) around a speed independent bicycle ergometer. Main variable of interest: change of “the sum of circumferences of waist, hip, and both thighs of each patient” over the intervention period (4 weeks). Additional variables of interest: body weight, body mass index BMI, body fat percentage, fat mass, fat-free mass, water mass (analysis of body composition by tetrapolar bioimpedance analysis), assessment of an arteriosclerotic risk profile by blood investigation of variables of lipid metabolism (cholesterol, triglycerides, high density lipoproteins HDL, low density lipoproteins LDL, apolipoprotein A1, apolipoprotein B), clinical chemistry (fasting glucose, alanin-aminotransferase ALT (= glutamyl pyruvic transaminase GPT), gamma-glutamyl-transferase GGT, creatinine, albumin), endocrinology (leptin

  11. 2XMM ultraluminous X-ray source candidates in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Roberts, T. P.; Mateos, S.; Heard, V.

    2011-09-01

    Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ˜17 per cent. To undertake population studies, we define a 'complete' sub-sample of sources compiled from observations of galaxies with sensitivity limits below 1039 erg s-1. The luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L-0.96 ± 0.11X. Although we do not find any statistical requirement for a cut-off luminosity of Lc˜ 1040 erg s-1, as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, Su, decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form Su ∝ M-0.64 ± 0.07. This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. Su is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this

  12. Spitzer 24 Micron Observations of Optical/Near-Infrared-Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at Z approximately equal to 1-2?

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.; Teplitz, H. I.; Helou, G.; Appleton, P. N.; Chapman, S.; Fan, F.; Heinrichsen, I.; Lacy, M.; Shupe, D. L.; Squires, G. K.; Surace, J.; Wilson, G.

    2004-01-01

    We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) >= 5.3 mag and Ks < 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of 64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year 1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z >= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z 1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z 1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  1. Dynamic quasi-energy-band modulation and exciton effects in biased superlattices driven by a two-color far-infrared field: Disappearance of dynamic localization

    NASA Astrophysics Data System (ADS)

    Yashima, Kenta; Hino, Ken-Ichi; Toshima, Nobuyuki

    2003-12-01

    A theoretical study of the optical and electronic properties of semiconductor superlattices in ac-dc fields, termed the dynamic Wannier-Stark ladder (DWSL), is done. The biased superlattices are driven by two far-infrared fields with different frequencies and relative phase of δ. Here, the frequency of the first laser is equal to the Bloch frequency ωB of the system under study, while that of the second laser is equal to 2ωB. Quasienergies of the DWSL are calculated based on the Floquet theorem, and the associated linear photoabsorption spectra are evaluated. For δ=0, a gourd-shaped quasi-energy structure characteristic of both dynamic localization (DL) and delocalization (DDL), similar to the usual DWSL driven by a single laser, appears. By changing the ratio of the two laser strengths, however, the width of the quasi-energy band and the locations of both DL and DDL vary noticeably. As for δ≠0, on the other hand, band collapse and the associated DL do not necessarily follow. In fact, DL vanishes and the quasi-energy degeneracy is lifted in a certain range of δ. Just DDL remains over the entire range of the laser strength, eventually resulting in a plateaulike band structure in the linear absorption spectra. The basic physics underlying this phenomenon, which can be readily interpreted in terms of a closed analytical expression, is that all quasi-energies for given crystal momenta are out of phase with each other as a function of laser strength without converging to a single point of energy. This is a feature of this DWSL which sharply distinguishes it from a conventional DWSL generated using a single laser to drive it. Furthermore, an exciton effect is incorporated with the above noninteracting problem, so that exciton dressed states are formed. It is found that this effect gives rise to more involved quasi-energy structures and a more pronounced release of the energy degeneracy of DL, leading again to the formation of a band structure in the absorption

  2. BROAD COMPONENTS IN OPTICAL EMISSION LINES FROM THE ULTRA-LUMINOUS X-RAY SOURCE NGC 5408 X-1

    SciTech Connect

    Cseh, D.; Corbel, S.

    2011-02-10

    High-resolution optical spectra of the ultra-luminous X-ray source (ULX) NGC 5408 X-1 show a broad component with a width of {approx}750 km s{sup -1} in the He II and H{beta} lines in addition to the narrow component observed in these lines and [O III]. Reanalysis of moderate-resolution spectra shows a similar broad component in the He II line. The broad component likely originates in the ULX system itself, probably in the accretion disk. The central wavelength of the broad He II line is shifted by 252 {+-} 47 km s{sup -1} between the two observations. If this shift represents motion of the compact object, then its mass is less than {approx}1800 M{sub sun}.

  3. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  4. Radiation hydrodynamic simulations of a super-Eddington accretor as a model for ultra-luminous sources

    NASA Astrophysics Data System (ADS)

    Ogawa, Takumi; Mineshige, Shin; Kawashima, Tomohisa; Ohsuga, Ken; Hashizume, Katsuya

    2017-03-01

    We perform two-dimensional radiation hydrodynamic (RHD) simulations of super-Eddington accretion flow and the accompanying outflow to investigate how they will be observed from various viewing directions. We consider gas flow around a 10 M⊙ black hole for mass injection rates of \\dot{M}_inj/{\\dot{M}_Edd}=102, 103, and 104 (in units of \\dot{M}_Edd≡ L_Edd/c^2, with LEdd and c being the Eddington luminosity and the speed of light, respectively), and solve gas dynamics and radiation transfer around the black hole, taking into account inverse Compton scattering. We confirm the tendency that the higher the mass accretion rate is, the larger the relative importance of outflow over accretion flow becomes. The observational appearance of the super-Eddington flow is distinct, depending on whether it is viewed from the edge-on direction or from the face-on direction. This is because nearly edge-on observers can only see the outer, cooler (∼106 K) surface of the inner, vertically inflated part of the flow. Observational properties are briefly discussed in the context of the ultra-luminous X-ray sources (ULXs), the extreme ULXs (E-ULXs), and the ultra-luminous supersoft sources (ULSs). We find that the extremely high luminosities of E-ULXs (L ∼ 1041 erg s-1) can be explained when the flow on to the black hole with ≳20 M⊙ with a very high accretion rate, \\dot{m}}_{ acc} (≡ {{\\dot{M}}_{ acc}/ {\\dot{M}}_{ Edd}}) ≳ {103}, is observed from the nearly face-on direction. The high luminosity (∼1039 erg s-1) and the very soft blackbody-like spectra with temperatures around 0.1 keV, which are observed in the ULSs, can be explained if the super-Eddington flow with \\dot{m}}_acc ˜ 102-103 is viewed from large viewing angles, θ ≳ 30°.

  5. Nature of the Soft ULX in NGC 247: Super-Eddington Outflow and Transition between the Supersoft and Soft Ultraluminous Regimes

    NASA Astrophysics Data System (ADS)

    Feng, Hua; Tao, Lian; Kaaret, Philip; Grisé, Fabien

    2016-11-01

    We report on XMM-Newton/Chandra/Swift/Hubble Space Telescope observations of the ultraluminous X-ray source (ULX) in NGC 247, which is found to make transitions between the supersoft ultraluminous (SSUL) regime with a spectrum dominated by a cool (˜0.1 keV) blackbody component and the soft ultraluminous (SUL) regime with comparable luminosities shared by the blackbody and power-law components. Multi-epoch observations revealed an anti-correlation between the blackbody radius and temperature, {R}{bb}\\propto {T}{bb}-2.8+/- 0.3, ruling out a standard accretion disk as the origin of the soft X-ray emission. The soft X-ray emission is much more variable on both short and long timescales in the SSUL regime than in the SUL regime. We suggest that the SSUL regime may be an extension of the ultraluminous state toward the high accretion end, being an extreme case of the SUL regime, with the blackbody emission arising from the photosphere of thick outflows and the hard X-rays being emission leaked from the embedded accretion disk via the central low-density funnel or advected through the wind. However, the scenario that the supersoft ULXs are standard ULXs viewed nearly edge-on cannot be ruled out. Flux dips on a timescale of 200 s were observed. The dips cannot be explained by an increase of absorption, but could be due to the change of accretion rate or related to thermal fluctuations in the wind or disk. The optical emission of NGC 247 ULX exhibits a blackbody spectrum at a temperature of 19,000 K with a radius of 20 {R}⊙ , likely arising from an OB supergiant companion star.

  6. Contribution of the first galaxies to the cosmic far-infrared/sub-millimeter background - I. Mean background level

    NASA Astrophysics Data System (ADS)

    De Rossi, María Emilia; Bromm, Volker

    2017-03-01

    We study the contribution of the first galaxies to the far-infrared/sub-millimeter (FIR/sub-mm) extragalactic background light (EBL) by implementing an analytical model for dust emission. We explore different dust models, assuming different grain-size distributions and chemical compositions. According to our findings, observed reradiated emission from dust in dwarf-size galaxies at z ∼ 10 would peak at a wavelength of ∼ 500 μm with observed fluxes of ∼10-3-10-2 nJy, which is below the capabilities of current observatories. In order to be detectable, model sources at these high redshifts should exhibit luminosities of ≳1012 L⊙, comparable to that of local ultraluminous systems. The FIR/sub-mm-EBL generated by primeval galaxies peaks at ∼ 500 μm, with an intensity ranging from ∼10-4 to 10-3 nW m-2 sr-1, depending on dust properties. These values are ∼3-4 orders of magnitude below the absolute measured cosmic background level, suggesting that the first galaxies would not contribute significantly to the observed FIR/sub-mm-EBL. Our model EBL exhibits a strong correlation with the dust-to-metal ratio, where we assume a fiducial value of D = 0.005, increasing almost proportionally to it. Thus, measurements of the FIR/sub-mm-EBL could provide constraints on the amount of dust in the early Universe. Even if the absolute signal from primeval dust emission may be undetectable, it might still be possible to obtain information about it by exploring angular fluctuations at ∼ 500 μm, close to the peak of dust emission from the first galaxies.

  7. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    SciTech Connect

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Moro, A. Del; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Brightman, M.; Harrison, F. A.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Christensen, F. E.; Hailey, C. J.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; and others

    2015-12-10

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N{sub H} ≳ 5 × 10{sup 24} cm{sup −2}. The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L{sub 2–10,int} = (0.8–1.7) × 10{sup 42} erg s{sup −1}, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1.

  8. Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis

    NASA Astrophysics Data System (ADS)

    González-Alfonso, E.; Fischer, J.; Spoon, H. W. W.; Stewart, K. P.; Ashby, M. L. N.; Veilleux, S.; Smith, H. A.; Sturm, E.; Farrah, D.; Falstad, N.; Meléndez, M.; Graciá-Carpio, J.; Janssen, A. W.; Lebouteiller, V.

    2017-02-01

    We report on the energetics of molecular outflows in 14 local ultraluminous infrared galaxies (ULIRGs) that show unambiguous outflow signatures (P Cygni profiles or high-velocity absorption wings) in the far-infrared lines of OH measured with the Herschel/PACS spectrometer. All sample galaxies are gas-rich mergers at various stages of the merging process. Detection of both ground-state (at 119 and 79 μm) and one or more radiatively excited (at 65 and 84 μm) lines allows us to model the nuclear gas (≲300 pc) and the more extended components using spherically symmetric radiative transfer models. Reliable models and the corresponding energetics are found in 12 of the 14 sources. The highest molecular outflow velocities are found in buried sources, in which slower but massive expansion of the nuclear gas is also observed. With the exception of a few outliers, the outflows have momentum fluxes of (2–5) × L IR/c and mechanical luminosities of (0.1–0.3)% of L IR. The moderate momentum boosts in these sources (≲3) suggest that the outflows are mostly momentum driven by the combined effects of active galactic nuclei (AGNs) and nuclear starbursts, as a result of radiation pressure, winds, and supernova remnants. In some sources (∼20%), however, powerful (1010.5–11 L ⊙) AGN feedback and (partially) energy-conserving phases are required, with momentum boosts in the range of 3–20. These outflows appear to be stochastic, strong AGN feedback events that occur throughout the merging process. In a few sources, the outflow activity in the innermost regions has subsided in the past ∼1 Myr. While OH traces the molecular outflows at subkiloparsec scales, comparison of the masses traced by OH with those previously inferred from tracers of more extended outflowing gas suggests that most mass is loaded (with loading factors of \\dot{M}/{SFR}=1{--}10) from the central galactic cores (a few × 100 pc), qualitatively consistent with an ongoing inside-out quenching of

  9. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  10. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than -50 km s-1 and/or blueshifted wings with 84% velocities less than -300 km s-1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s-1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. Preliminary Evaluation of Preoperative Chemohormonotherapy-Induced Reduction of the Functional Infrared Imaging Score in Patients with Locally Advanced Breast Cancer

    DTIC Science & Technology

    2001-10-25

    ADVANCED BREAST CANCER John R. Keyserlingk1, Mariam Yassa1 Paul Ahlgren1 and Normand Belliveau1 Ville Marie Oncology Center; St. Mary’s Hospital...Montreal, Canada Abstract: 20 successive patients who received preoperative chemohormonotherapy (PCT) for locally advanced breast cancer underwent high...INTRODUCTION Approximately 10% of our current breast cancer patients present with sufficient tumor load to be classified as having locally advanced breast

  12. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    1991-01-01

    This task supports the application of infrared heterodyne spectroscopy and other high resolution techniques, as well as infrared arrays to ultra-high resolution studies of molecular constituents of planetary atmospheres. High spectral and spatial resolution measurement and analysis of individual spectral lines permits the retrieval of distributions of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10(exp -8) permits direct measurement of gas velocities to a few m/sec and thus, the study of dynamics. Observations are made from ground based observatories.

  13. High energy gamma rays from nebulae associated with extragalactic microquasars and ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Lee, Shiu-Hang; Tanaka, Yasuyuki T.; Kobayashi, Shogo B.

    2017-04-01

    In the extragalactic sky, microquasars and ultra-luminous X-ray sources (ULXs) are known as energetic compact objects locating at off-nucleus positions in galaxies. Some of these objects are associated with expanding bubbles with a velocity of 80-250 km s - 1. We investigate the shock acceleration of particles in those expanding nebulae. The nebulae having fast expansion velocity ≳ 120km s - 1 are able to accelerate cosmic rays up to ∼100 TeV. If 10% of the shock kinetic energy goes into particle acceleration, powerful nebulae such as the microquasar S26 in NGC 7793 would emit gamma rays up to several tens TeV with a photon index of ∼2. These nebulae will be good targets for future Cherenkov Telescope Array observations given its sensitivity and angular resolution. They would also contribute to ∼7% of the unresolved cosmic gamma-ray background radiation at ≥ 0.1 GeV. In contrast, particle acceleration in slowly expanding nebulae ≲ 120km s - 1 would be less efficient due to ion-neutral collisions and result in softer spectra at ≳ 10 GeV.

  14. DISCOVERY OF A 115 DAY ORBITAL PERIOD IN THE ULTRALUMINOUS X-RAY SOURCE NGC 5408 X-1

    SciTech Connect

    Strohmayer, Tod E.

    2009-12-01

    We report the detection of a 115 day periodicity in Swift/X-Ray Telescope monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our ongoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of approx 485 days. Periodogram analysis reveals a significant periodicity with a period of 115.5 +- 4 days. The modulation is detected with a significance of 3.2 x 10{sup -4}. The fractional modulation amplitude decreases with increasing energy, ranging from 0.13 +- 0.02 above 1 keV to 0.24 +- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent with a periodic process, however, continued monitoring is required to confirm the coherent nature of the modulation. Spectral analysis indicates that NGC 5408 X-1 can reach 0.3-10 keV luminosities of approx 2 x 10{sup 40} erg s{sup -1}. We suggest that, like the 62 day period of the ULX in M82 (X41.4+60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or supergiant star.

  15. Discovery of a 115 Day Orbital Period in the Ultraluminous X-ray Source NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2009-01-01

    We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.

  16. Evidence for a 115 Day Orbital Period in the Ultraluminous X-ray Source NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2009-01-01

    We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our ongoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of more than 500 days. Timing analysis reveals a significant periodicity with a period of 115.5 +- 4 days. The fractional modulation amplitude decreases with increasing energy, ranging from 0.13 above 1 keV to 0.24 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. Periodogram analysis is consistent with a periodic process, however, continued monitoring is required to confirm the coherent nature of the modulation. Spectral analysis indicates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of 2 x 10e40 ergs/s. We suggest that, like the 62 day period of the ULX in M82 (X41.4+60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or supergiant star.

  17. THE NATURE OF THE UV/OPTICAL EMISSION OF THE ULTRALUMINOUS X-RAY SOURCE IN HOLMBERG II

    SciTech Connect

    Tao Lian; Feng Hua; Kaaret, Philip; Grise, Fabien

    2012-05-10

    We report on UV and X-ray spectroscopy and broadband optical observations of the ultraluminous X-ray source in Holmberg II. Fitting various stellar spectral models to the combined, non-simultaneous data set, we find that normal metallicity stellar spectra are ruled out by the data, while low-metallicity, Z = 0.1 Z{sub Sun }, late O-star spectra provide marginally acceptable fits, if we allow for the fact that X-ray ionization from the compact object may reduce or eliminate UV absorption/emission lines from the stellar wind. By contrast, an irradiated disk model fits both UV and optical data with {chi}{sup 2}/dof = 175.9/178, and matches the nebular extinction with a reddening of E(B - V) = 0.05{sup +0.05}{sub -0.04}. These results suggest that the UV/optical flux of Holmberg II X-1 may be dominated by X-ray irradiated disk emission.

  18. FIRST SEARCH FOR AN X-RAY–OPTICAL REVERBERATION SIGNAL IN AN ULTRALUMINOUS X-RAY SOURCE

    SciTech Connect

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-02-10

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 ± 0.5%), the optical emission does not show any statistically significant variations. We set a 3σ upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is ≈2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3σ) for optical variability on a ∼24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  19. IDENTIFICATION OF THE X-RAY THERMAL DOMINANT STATE IN AN ULTRALUMINOUS X-RAY SOURCE IN M82

    SciTech Connect

    Feng Hua; Kaaret, Philip

    2010-04-01

    The thermal dominant state in black hole binaries (BHBs) is well understood but rarely seen in ultraluminous X-ray sources (ULXs). Using simultaneous observations of M82 with Chandra and XMM-Newton, we report the first likely identification of the thermal dominant state in a ULX based on the disappearance of X-ray oscillations, low timing noise, and a spectrum dominated by multicolor disk emission with luminosity varying to the fourth power of the disk temperature. This indicates that ULXs are similar to Galactic BHBs. The brightest X-ray spectrum can be fitted with a relativistic disk model with either a highly super-Eddington (L {sub disk}/L {sub Edd} = 160) non-rotating black hole (BH) or a close to Eddington (L {sub disk}/L {sub Edd} {approx} 2) rapidly rotating BH. The latter interpretation is preferred, due to the absence of such highly super-Eddington states in Galactic BHs and active galactic nuclei, and suggests that the ULX in M82 contains a BH of 200-800 solar masses with nearly maximal spin. On long timescales, the source normally stays at a relatively low flux level with a regular 62-day orbital modulation and occasionally exhibits irregular flaring activity. These thermal dominant states are observed during outbursts.

  20. Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13

    NASA Astrophysics Data System (ADS)

    Israel, G. L.; Papitto, A.; Esposito, P.; Stella, L.; Zampieri, L.; Belfiore, A.; Rodríguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Haberl, F.; Greiner, J.; Salvaterra, R.; Sandrelli, S.; Lisini, G.

    2017-03-01

    NGC 7793 P13 is a variable (luminosity range ∼100) ultraluminous X-ray source proposed to host a stellar-mass black hole of less than 15 M⊙ in a binary system with orbital period of 64 d and a 18-23 M⊙ B9Ia companion. Within the EXTraS (Exploring the X-ray Transient and variable Sky) project, we discovered pulsations at a period of ∼0.42 s in two XMM-Newton observations of NGC 7793 P13, during which the source was detected at LX ∼ 2.1 × 1039 and 5 × 1039 erg s-1 (0.3-10 keV band). These findings unambiguously demonstrate that the compact object in NGC 7793 P13 is a neutron star accreting at super-Eddington rates. While standard accretion models face difficulties accounting for the pulsar X-ray luminosity, the presence of a multipolar magnetic field with B ∼ few × 1013 G close to the base of the accretion column appears to be in agreement with the properties of the system.

  1. NuSTAR and XMM-Newton observations of the ultraluminous X-ray source NGC 5643 X-1

    NASA Astrophysics Data System (ADS)

    Krivonos, Roman; Sazonov, Sergey

    2016-11-01

    We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in 2014 May-June. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of its host galaxyNGC 5643 located 0.8 arcmin away. Together with long XMM-Newton observations performed in 2009 July and 2014 August, the NuSTAR data confidently reveal a high-energy cutoff in the spectrum of NGC 5643 X-1 above ˜10 keV, which is a characteristic signature of ULXs. The NuSTAR and XMM-Newton data are consistent with the source having a constant luminosity ˜1.5 × 1040 erg s-1 (0.2-12 keV) in all but the latest observation (2014 August) when it brightened to ˜3 × 1040 erg s-1. This increase is associated with the dominant, hard spectral component (presumably collimated emission from the inner regions of a supercritical accretion disc), while an additional, soft component (with a temperature ˜0.3 keV if described by multicolour disc emission), possibly associated with a massive wind outflowing from the disc, is also evident in the spectrum but does not exhibit significant variability.

  2. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Li, K. L.; Kong, Albert K. H.; Ng, C.-Y.; Chun-Che Lin, Lupin

    2017-01-01

    NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ∼65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u-band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ∼2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ∼65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.

  3. OPTICAL EMISSION OF THE ULTRALUMINOUS X-RAY SOURCE NGC 5408 X-1: DONOR STAR OR IRRADIATED ACCRETION DISK?

    SciTech Connect

    Grise, F.; Kaaret, P.; Corbel, S.; Cseh, D.

    2012-02-01

    We obtained three epochs of simultaneous Hubble Space Telescope (HST)/Wide Field Camera 3 and Chandra observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1. The counterpart of the X-ray source is seen in all HST filters, from the UV through the near-IR (NIR), and for the first time, we resolve the optical nebula around the ULX. We identified a small OB association near the ULX that may be the birthplace of the system. The stellar association is young, {approx}5 Myr, contains massive stars up to 40 M{sub Sun }, and is thus similar to associations seen near other ULXs, albeit younger. The UV/optical/NIR spectral energy distribution (SED) of the ULX counterpart is consistent with that of a B0I supergiant star. We are also able to fit the whole SED from the X-rays to the NIR with an irradiated disk model. The three epochs of data show only marginal variability and thus, we cannot firmly conclude on the nature of the optical emission.

  4. Collaborative research in tunneling and field emission pumped surface wave local oscillators and amplifiers for infrared and submillimeter wavelengths under director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Gustafson, T. K.

    1982-01-01

    Progress is reported in work towards the development of surface wave sources for the infrared and sub-millimeter portion of the spectrum to be based upon electron pumping by tunneling electrons in metal-barrier-metal or metal-barrier-semiconductor devices. Tunneling phenomena and the coupling of radiation to tunnel junctions were studied. The propagation characteristics of surface electro-magnetic modes in metal-insulator-p(++) semiconductor structures as a function of frequency were calculated. A model for the gain process based upon Tucker's formalism was developed and used to estimate what low frequency gain might be expected from such structures. The question of gain was addressed from a more fundamental viewpoint using the method of Lasher and Stern.

  5. Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses

    PubMed Central

    Yücel, Meryem A.; Selb, Juliette; Aasted, Christopher M.; Petkov, Mike P.; Becerra, Lino; Borsook, David; Boas, David A.

    2015-01-01

    Abstract. Autonomic nervous system response is known to be highly task-dependent. The sensitivity of near-infrared spectroscopy (NIRS) measurements to superficial layers, particularly to the scalp, makes it highly susceptible to systemic physiological changes. Thus, one critical step in NIRS data processing is to remove the contribution of superficial layers to the NIRS signal and to obtain the actual brain response. This can be achieved using short separation channels that are sensitive only to the hemodynamics in the scalp. We investigated the contribution of hemodynamic fluctuations due to autonomous nervous system activation during various tasks. Our results provide clear demonstrations of the critical role of using short separation channels in NIRS measurements to disentangle differing autonomic responses from the brain activation signal of interest. PMID:26835480

  6. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  7. What Drives Star Formation in Galaxies?: A Multiwavelength Analysis of Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    Galaxy populations have undergone dramatic evolution between z 2, the peak epoch of star formation activity, and today. They have changed morphologically, transitioning from disk-dominated galaxies to bulge-dominated systems. These bulge-dominated passive galaxies have doubled in stellar mass since z 1, indicating that they previously underwent periods of active star formation while the cosmic star formation rate (SFR) decreased by over an order of magnitude over this same time period (e.g., Madau and Dickinson 2014). What process led to the increased SFR at high redshift and what caused the morphological transformation? It is believed that galaxy mergers and interactions could have played a major role in this evolution. Observations of the galaxy merger rate have shown a similar decrease between z 1 and today (e.g., Kartaltepe et al. 2007). The merger of two disk-dominated galaxies can lead to the formation of a bulge-dominated system and the merger of two gas rich galaxies can enhance star formation in those galaxies relative to isolated systems. However, the precise contribution that galaxy mergers have played in the overall evolution of the cosmic SFR is still an open question. The galaxies with the highest star formation rates are best detected in the far-infrared. The Herschel Space Observatory has detected many such objects out to z 4. These objects are known as luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and are defined by their total infrared luminosity. These galaxies are considered to be at an important transition stage between gas-rich spiral galaxies and massive elliptical galaxies and quasars (Sanders et al. 1988). Although they are quite rare in the local universe, (U)LIRGs become much more common and start to dominate the cosmic star formation rate at z>0.7 (e.g., Le Floc'h et al. 2005, Magnelli et al. 2013) and likely played a critical role at the peak of galaxy assembly (z 2). Collectively, these objects contribute the bulk of

  8. Herschel Far-infrared Photometry of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. PACS Observations

    NASA Astrophysics Data System (ADS)

    Meléndez, M.; Mushotzky, R. F.; Shimizu, T. T.; Barger, A. J.; Cowie, L. L.

    2014-10-01

    Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from star formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F 70/F 160 ratios. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. Herschel far-infrared photometry of the swift burst alert telescope active galactic nuclei sample of the local universe. I. PACS observations

    SciTech Connect

    Meléndez, M.; Mushotzky, R. F.; Shimizu, T. T.; Barger, A. J.; Cowie, L. L.

    2014-10-20

    Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from star formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F {sub 70}/F {sub 160} ratios.

  10. Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. 1. Emission-Line Diagnostics

    DTIC Science & Technology

    2010-06-20

    supermassive black holes (e.g., Rees 1984; Peterson et al. 2004). One way to approach the study of AGNs is to concentrate on those in the local universe...Wilson, A. S., Whittle, M., Antonucci, R. R. J., Kinney, A. L., & Hurt, T. 1994, ApJ, 436, 586 Mushotzky, R. 2004, in Supermassive Black Holes in the...galaxies are presented as black circles, Seyfert 2 galaxies are red triangles, blue squares represent the newly detected BAT AGNs and green stars are

  11. Suzaku observations of spectral variations of the ultra-luminous X-ray source Holmberg IX X-1

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shogo B.; Nakazawa, Kazuhiro; Makishima, Kazuo

    2017-02-01

    Observations of the ultra-luminous X-ray source (ULX) Holmberg IX X-1 were carried out with Suzaku twice, once on 2012 April 13 and then on 2012 October 24, with exposures of 180 ks and 217 ks, respectively. The source showed a hard power-law shaped spectrum with a mild cutoff at ˜8 keV, which is typical of ULXs when they are relatively dim. On both occasions, the 0.6-11 keV spectrum was explained successfully in terms of a cool (˜0.2 keV) multi-color disk blackbody emission model and thermal Comptonization emission produced by an electron cloud with a relatively low temperature and high optical depth, assuming that a large fraction of the disk-blackbody photons are Comptonized whereas the rest are observed directly. The 0.5-10 keV luminosity was 1.2 × 1040 erg s-1 in April, and ˜14% higher in October. This brightening was accompanied by spectral softening in ≥2 keV, with little change in the ≤2 keV spectral shape. This behavior can be understood if the accretion disk remains unchanged while the electron cloud covers a variable fraction of the disk. The absorbing column density was consistent with the galactic line-of sight value, and did not vary by more than 1.6 × 1021 cm-2. Together with the featureless spectra, these properties may not be reconciled easily with the super-critical accretion scenario of this source.

  12. Testing the Paradigm that Ultra-Luminous X-Ray Sources as a Class Represent Accreting Intermediate

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-01-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity > or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.

  13. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  14. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    SciTech Connect

    Cseh, David; Corbel, Stephane; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-04-10

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  15. NuSTAR results on Ultra-Luminous X-ray sources: black holes or neutron stars?

    NASA Astrophysics Data System (ADS)

    Fuerst, Felix

    2015-04-01

    Ultraluminous X-ray sources (ULXs) are extremely bright, off-nuclear point sources in nearby galaxies. The only process known to power them is a very high accretion rate onto a compact object. If the compact object is similar to those observed in our own galaxy, i.e., a standard stellar remnant, the accretion rate has to exceed the Eddington rate by a factor of 10-100 in a so-called super-Eddington accretion regime. If on the other hand the compact were more massive, ULXs would be the only known evidence for intermediate mass black holes with masses of 100's or 1000's solar masses. Broadband spectral studies of a sample of ULXs, making full use of the hard X-ray sensitivity of the Nuclear Spectroscopic Telescope Array (NuSTAR), are suggestive of super-Eddington accretion. A definitive answer has, however, not yet been reached owing to continued difficulty constraining ULX masses. I will report on recent, multi-epoch NuSTAR observations, which allow us to examine the evolution of these enigmatic sources and their accretion process by studying their time variability and hard X-ray spectrum above 10keV. In a surprising discovery we have recently shown that the ULX M82 X-2 harbors a neutron star, the first evidence for a neutron star in a ULX. I will discuss possible modes of super-Eddington accretion on neutron stars and compare M82 X-2 to known accreting neutron stars in our galaxy. On behalf of the NuSTAR ULX science team led by Fiona Harrison.

  16. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  17. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1

    NASA Astrophysics Data System (ADS)

    Luangtip, Wasutep; Roberts, Timothy P.; Done, Chris

    2016-08-01

    We present a new analysis of X-ray spectra of the archetypal ultraluminous X-ray source (ULX) Holmberg IX X-1 obtained by the Swift, XMM-Newton and NuSTAR observatories. This ULX is a persistent source, with a typical luminosity of ˜1040 erg s-1, that varied by a factor of 4-5 over eight years. We find that its spectra tend to evolve from relatively flat or two-component spectra in the medium energy band (1-6 keV), at lower luminosities, to a spectrum that is distinctly curved and disc-like at the highest luminosities, with the peak energy in the curved spectrum tending to decrease with increased luminosity. We argue that the spectral evolution of the ULX can be explained by super-Eddington accretion models, where in this case we view the ULX down the evacuated funnel along its rotation axis, bounded by its massive radiatively driven wind. The spectral changes then originate in enhanced geometric beaming as the accretion rate increases and wind funnel narrows, causing the scattered flux from the central regions of the supercritical flow to brighten faster than the isotropic thermal emission from the wind, and so the curved hard spectral component to dominate at the highest luminosities. The wind also Compton down-scatters photons at the edge of the funnel, resulting in the peak energy of the spectrum decreasing. We also confirm that Holmberg IX X-1 displays spectral degeneracy with luminosity, and suggest that the observed differences are naturally explained by precession of the black hole rotation axis for the suggested wind geometry.

  18. A Stellar-mass Black Hole in the Ultra-luminous X-ray Source M82 X-1

    NASA Technical Reports Server (NTRS)

    Okajima, Takashi; Ebisawa, Ken; Kawaguchi, Toshihiro

    2007-01-01

    We have analyzed the archival XMM-Newton data of the archetypal Ultra-Luminous X-ray Source (ULX) M82 X-1 with an LO5 ksec exposure when the source was in the steady state. Thanks to the high photon statistics from the large effective area and long exposure, we were able to discriminate different X-ray continuum spectral models. Neither the standard accretion disk model (where the radial dependency of the disk effective temperature is T(r) proportional to r(sup -3/4)) nor a power-law model gives a satisfactory fit. In fact, observed curvature of the M82 X-1 spectrum was just between those of the two models. When the exponent of the radial dependence (p in T(r) proportional to r(sup -P)) of the disk temperature is allowed to be free, we obtained p = 0.61 (sup +0.03)(sub -0.02). Such a reduction of p from the standard value 3/4 under extremely high mass accretion rates is predicted from the accretion disk theory as a consequence of the radial energy advection. Thus, the accretion disk in M82 X-1 is considered to be in the Slim disk state, where an optically thick Advection Dominant Accretion Flow (ADAF) is taking place. We have applied a theoretical slim disk spectral model to M82 X-1, and estimated the black hole mass approximately equal to 19 - 32 solar mass. We conclude that M82 X-1 is a stellar black hole which has been produced through evolution of an extremely massive star, shining at a several times the super-Eddington luminosity.

  19. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-08-10

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L{sub X} {>=} 10{sup 40} erg s{sup -1}). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass {approx}10 M{sub Sun} or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the {approx}>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow.

  20. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    SciTech Connect

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-06-10

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  1. A PHOTOIONIZED NEBULA SURROUNDING AND VARIABLE OPTICAL CONTINUUM EMISSION FROM THE ULTRALUMINOUS X-RAY SOURCE IN NGC 5408

    SciTech Connect

    Kaaret, Philip; Corbel, Stephane

    2009-05-20

    We obtained optical spectra of the counterpart of the ultraluminous X-ray source NGC 5408 X-1 using the FORS spectrograph on the Very Large Telescope. The spectra show strong high-excitation emission lines, He II {lambda}4686 and [Ne V] {lambda}3426, indicative of X-ray photoionization. Using the measured X-ray spectrum as input to a photoionization model, we calculated the relation between the He II and X-ray luminosities and found that the He II flux implies a lower bound on the X-ray luminosity of 3 x 10{sup 39} erg s{sup -1}. The [Ne V] flux requires a similar X-ray luminosity. After subtraction of the nebular emission, the continuum appears to have a power-law form with a spectral slope of -2.0{sup +0.1} {sub -0.2}. This is similar to low-mass X-ray binaries where the optical spectra are dominated by reprocessing of X-rays in the outer accretion disk. In one observation, the continuum, He II {lambda}4686, and [Ne V] {lambda}3426 fluxes are about 30% lower than in the other five observations. This implies that part of the line emission originates within 1 lt-day of the compact object. Fitting the optical continuum emission and archival X-ray data to an irradiated disk model, we find that (6.5 {+-} 0.7) x 10{sup -3} of the total bolometric luminosity is thermalized in the outer accretion disk. This is consistent with values found for stellar-mass X-ray binaries and larger than expected in models of super-Eddington accretion flows. We find no evidence for absorption lines that would permit measurement of the radial velocity of the companion star.

  2. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  3. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8-100 GeV) of 2.4 × 10-10 phot cm-2 s-1 with a photon index of 2.23 (8.2 × 1041 erg s-1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray-IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray-radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  4. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S. E-mail: bts@submm.caltech.edu E-mail: lee@ipac.caltech.edu E-mail: pope@astro.umass.edu E-mail: jannuzi@noao.edu

    2012-05-15

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. The rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of

  5. Infrared Thermometer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  6. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  7. The infrared continuum spectrum of x ray illuminated molecular gas

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1990-01-01

    In starburst galaxies, active galaxies, and the mysterious ultraluminous infrared galaxies, x rays are likely to interact with molecular gas and dust, thereby inducing infrared emission. X ray heated thermal dust will emit the IR continuum, and x ray photoelectrons will excite an IR emission-line spectrum. Here, researchers model the IR continuum emission characteristic of some selected x ray spectral fluxes, in particular the x ray bremsstrahlung characteristic of supernova and stellar wind bubble shocks in dense media and the power law spectra characteristic of active galactic nuclei. These models are part of a larger project to determine the complete IR spectra, lines plus continuum, of x ray sources embedded in molecular gas. They modeled the thermal emission from grains by calculating a grain temperature/size/composition distribution function, f(T,a,Comp.), which accounts for temperature fluctuations by averaging over all grain thermal histories. In determining the grain thermal distribution, researchers account for both direct grain heating (by x ray absorption and subsequent electron energy deposition) and indirect grain heating (by absorption of the UV emission stimulated by non-thermal photo- and Auger electrons in the gas phase). We let the grain size distribution be proportional to a(exp -3.5), and they consider two types of grain composition: graphites, which we assume to be pure carbon, and silicates, which contain all other depleted heavy elements. They derive the grain composition distribution function from solar abundances and interstellar depletion data.

  8. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  9. Infrared Thermometers

    ERIC Educational Resources Information Center

    Schaefers, John

    2006-01-01

    An infrared (IR) thermometer lab offers the opportunity to give science students a chance to measure surface temperatures, utilizing off-the-shelf technology. Potential areas of study include astronomy (exoplanets), electromagnetic spectrum, chemistry, evaporation rates, anatomy, crystal formation, and water or liquids. This article presents one…

  10. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  11. The conformational stability, solvation and the assignments of the experimental infrared, Raman, (1)H and (13)C NMR spectra of the local anesthetic drug lidocaine.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2015-05-05

    The structure, vibrational and (1)H and (13)C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G(∗∗) calculations. The molecule was predicted to have the non-planar cis (NCCN∼0°) structures being about 2-6kcal/mol lower in energy than the corresponding trans (NCCN∼180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The (1)H and (13)C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical (1)H and (13)C chemical shifts for lidocaine is 0.47 and 8.26ppm, respectively.

  12. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  13. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H-beta in luminosity. We show how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of Ne v emission in particular will distinguish shrouded AGNs from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  14. Herschel far-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe - III. Global star-forming properties and the lack of a connection to nuclear activity

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael J.; Barger, Amy J.; Cowie, Lennox L.

    2017-04-01

    We combine the Herschel Space Observatory PACS (Photoconductor Array Camera and Spectrometer) and SPIRE (Spectral and Photometric Imaging Receiver) photometry with archival WISE (Wide-field Infrared Survey Explorer) photometry to construct the spectral energy distributions (SEDs) for over 300 local (z < 0.05), ultrahard X-ray (14-195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) 58-month catalogue. Using a simple analytical model that combines an exponentially cutoff power law with a single temperature modified blackbody, we decompose the SEDs into a host galaxy and AGN component. We calculate dust masses, dust temperatures, and star formation rates (SFRs) for our entire sample and compare them to a stellar mass-matched sample of local non-AGN galaxies. We find AGN host galaxies have systematically higher dust masses, dust temperatures, and SFRs due to the higher prevalence of late-type galaxies to host an AGN, in agreement with previous studies of the Swift/BAT AGN. We provide a scaling to convert X-ray luminosities into 8-1000 μm AGN luminosities, as well as determine the best mid-to-far IR colours for identifying AGN-dominated galaxies in the IR regime. We find that for nearly 30 per cent of our sample, the 70 μm emission contains a significant contribution from the AGN (>0.5), especially at higher luminosities (L14 - 195 keV > 1042.5 erg s-1). Finally, we measure the local SFR-AGN luminosity relationship, finding a slope of 0.18, large scatter (0.37 dex), and no evidence for an upturn at high AGN luminosity. We conclude with a discussion on the implications of our results within the context of galaxy evolution with and without AGN feedback.

  15. TIME-DEPENDENT INFRARED STUDIES.

    DTIC Science & Technology

    INFRARED RESEARCH, TIME , INFRARED PHENOMENA, INFRARED RADIATION, INFRARED SPECTROSCOPY, HIGH ALTITUDE, SOLAR ATMOSPHERE, TRANSMISSIONS(MECHANICAL), VIBRATION, QUANTUM THEORY, CALIBRATION, INFRARED SCANNING.

  16. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  17. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  18. MODELING MID-INFRARED DIAGNOSTICS OF OBSCURED QUASARS AND STARBURSTS

    SciTech Connect

    Snyder, Gregory F.; Jonsson, Patrik; Hernquist, Lars; Hayward, Christopher C.; Sajina, Anna; Cox, Thomas J.; Hopkins, Philip F.; Yan Lin

    2013-05-10

    We analyze the link between active galactic nuclei (AGNs) and mid-infrared flux using dust radiative transfer calculations of starbursts realized in hydrodynamical simulations. Focusing on the effects of galaxy dust, we evaluate diagnostics commonly used to disentangle AGN and star formation in ultraluminous infrared galaxies (ULIRGs). We examine these quantities as a function of time, viewing angle, dust model, AGN spectrum, and AGN strength in merger simulations representing two possible extremes of the ULIRG population: one is a typical gas-rich merger at z {approx} 0, and the other is characteristic of extremely obscured starbursts at z {approx} 2-4. This highly obscured burst begins star-formation-dominated with significant polycyclic aromatic hydrocarbon (PAH) emission, and ends with a {approx}10{sup 9} yr period of red near-IR colors. At coalescence, when the AGN is most luminous, dust obscures the near-infrared AGN signature, reduces the relative emission from PAHs, and enhances the 9.7 {mu}m absorption by silicate grains. Although generally consistent with previous interpretations, our results imply none of these indicators can unambiguously estimate the AGN luminosity fraction in all cases. Motivated by the simulations, we show that a combination of the extinction feature at 9.7 {mu}m, the PAH strength, and a near-infrared slope can simultaneously constrain the AGN fraction and dust grain distribution for a wide range of obscuration. We find that this indicator, accessible to the James Webb Space Telescope, may estimate the AGN power as tightly as the hard X-ray flux alone, thereby providing a valuable future cross-check and constraint for large samples of distant ULIRGs.

  19. Modeling Mid-infrared Diagnostics of Obscured Quasars and Starbursts

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory F.; Hayward, Christopher C.; Sajina, Anna; Jonsson, Patrik; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.; Yan, Lin

    2013-05-01

    We analyze the link between active galactic nuclei (AGNs) and mid-infrared flux using dust radiative transfer calculations of starbursts realized in hydrodynamical simulations. Focusing on the effects of galaxy dust, we evaluate diagnostics commonly used to disentangle AGN and star formation in ultraluminous infrared galaxies (ULIRGs). We examine these quantities as a function of time, viewing angle, dust model, AGN spectrum, and AGN strength in merger simulations representing two possible extremes of the ULIRG population: one is a typical gas-rich merger at z ~ 0, and the other is characteristic of extremely obscured starbursts at z ~ 2-4. This highly obscured burst begins star-formation-dominated with significant polycyclic aromatic hydrocarbon (PAH) emission, and ends with a ~109 yr period of red near-IR colors. At coalescence, when the AGN is most luminous, dust obscures the near-infrared AGN signature, reduces the relative emission from PAHs, and enhances the 9.7 μm absorption by silicate grains. Although generally consistent with previous interpretations, our results imply none of these indicators can unambiguously estimate the AGN luminosity fraction in all cases. Motivated by the simulations, we show that a combination of the extinction feature at 9.7 μm, the PAH strength, and a near-infrared slope can simultaneously constrain the AGN fraction and dust grain distribution for a wide range of obscuration. We find that this indicator, accessible to the James Webb Space Telescope, may estimate the AGN power as tightly as the hard X-ray flux alone, thereby providing a valuable future cross-check and constraint for large samples of distant ULIRGs.

  20. Observability of localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of far-infrared, Raman, and electron-energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem (GKT) in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energies capable of being explored with the FIR, Raman, and/or electron-energy-loss spectroscopy. This implies that either of these probes is competent in observing the localized magnetoplasmons in the system. As an application of the rigorous analytical diagnosis of the system, we have presented various pertinent single-particle, such as Fock-Darwin spectrum, Fermi energy, zigzag excitation spectrum, and magneto-optical transitions, and the many-particle phenomena, such as magneto-optical absorption, Raman intensity, and electron energy-loss probability. In the latter, the energy position of the resonance peaks is observed to be independent of the electron-electron interactions and hence of the number of electrons in the quantum dot in compliance with the GKT. It is found that both confinement potential and magnetic field play a decisive role in influencing the aforementioned many-particle phenomena. Specifically, increasing (decreasing) the strength of the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots and results into a blue (red) shift in the respective spectra. Intensifying the magnetic field has two-fold effects in the resonance

  1. Infrared floodlight

    DOEpatents

    Levin, Robert E.; English, George J.

    1986-08-05

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  2. AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi; Nakagawa, Takao; Shirahata, Mai; Kaneda, Hidehiro; Oyabu, Shinki

    2014-10-20

    We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction of buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.

  3. An Extremely Luminous and Variable Ultraluminous X-ray Source in the Outskirts of Circinus Observed with Nustar

    NASA Technical Reports Server (NTRS)

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Miller, J. M.; Ptak, Andrew Francis; Rana, V.; Webb, N. A.; Zhang, W. W.

    2013-01-01

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multiepoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E greater than 10 keV) X-rays. CircinusULX5is variable on long time scales by at least a factor of approx. 5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10(exp 40) erg s(exp-1)). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L alpha T (exp 1.70+/-0.17), flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of approx. 90M for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass

  4. X-ray QPOs from the Ultra-luminous X-ray Source in M82: Evidence Against Beaming

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2003-01-01

    We report the discovery with the European Photon Imaging Camera (EPIC) CCD cameras onboard XMM-Newton of a 54 mHz quasiperiodic oscillation (QPO) in the greater than 2 keV X-ray flux from the ultra-luminous X-ray source (ULX) X41.4+60 in the starburst galaxy M82. This is the first detection of a QPO in the X-ray flux from an extra-Galactic ULX, and confirms that the source is a compact object. The QPO is detected in the combined PN and MOS data at the approx. 6sigma level, and separately at lower significances in both the PN and MOS instruments. It had a centroid frequency of 54.3 +/- 0.9 mHz, a coherence Q is identical with nu(sub 0)/Delta nu(sub fwhm) is approx. 5, and an amplitude (rms) in the 2 - 10 keV band of 8.5%. Below about 0.2 Hz the power spectrum can be described by a power-law with index approx. 1, and integrated amplitude (rms) of 13.5%. The X-ray spectrum requires a curving continuum, with a disk-blackbody (diskbb) at T = 3.1 keV providing an acceptable, but not unique, fit. A broad Fe line centered at 6.55 keV is required in all fits, but the equivalent width (EW) of the line is sensitive to the choice of continuum model. There is no evidence of a reflection component. The implied bolometric luminosity is approx. 4 - 5 x 10(exp 40) ergs/s. Data from several archival Rossi X-ray Timing Explorer (RXTE) pointings at M82 also show evidence for QPOs in the 50 - 100 mHz frequency range. Several Galactic black hole candidates (BHCs), including GRS 1915+105, GRO J1655-40, and XTE 1550-564, show QPOs in the same frequency range as the 50 - 100 mHz QPOs in X41.4+60, which at first glance suggests a possible connection with such objects. However, strong, narrow QPOs provide solid evidence for disk emission, and thus present enormous theoretical difficulties for models which rely on either geometrically or relativistically beamed emission to account for the high X-ray luminosities. We discuss the implications of our findings for models of the ULX sources.

  5. Ultraluminous X-ray source XMMUJ132218.3-164247 is in fact a type I Quasar

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Masetti, N.; Cappi, M.; Malaguti, G.; Miniutti, G.; Ponti, G.; Gandhi, P.; De Marco, B.

    2013-11-01

    Context. The true nature of ultraluminous X-ray sources (ULX) is still currently vigorously debated. One of the most interesting possibilities is that these sources are intermediate-mass (M ~ 103 - 105 M⊙) black holes. The most luminous ULX (L2 - 10 keV ~ 1041 erg s-1) are the most suitable candidates for being genuine intermediate-mass black holes (IMBH). Aims: XMMUJ132218.3-164247 was proposed to be the most luminous ULX known so far. For this reason a firm assessment of its intrinsic nature is needed and pursued in this work. Methods: We precisely defined the position of XMMUJ132218.3-164247 using a short Chandra pointing of the field. Then, we obtained high quality optical spectra of the source with the FORS2 instrument on the VLT to define its nature and distance. We then used unpublished data obtained with XMM-Newton to investigate its nature and emission properties in more detail. Results: Features in its optical spectrum place XMMUJ132218.3-164247 at a redshift of z ~ 1, implying that it is a background QSO instead of an ULX. We clearly detected some emission lines typical of a QSO, including OIII lines and a broad Mg II line that indicates that the source is a type I AGN. The X-ray spectrum of the source is well modeled by a simple power-law with absorption slightly in excess to the Galactic value. No emission feature at the energy of the FeKα is present in the data. Finally, the source has been detected at a X-ray flux level higher (by ~40%) than previously measured and reported in its discovery work. Conclusions: XMMUJ132218.3-164247 is not a ULX but a type I QSO. It shows a standard X-ray spectrum and exhibits a variability pattern that is typical of QSOs. A very rough estimate of its black-hole mass yields a value of MBH ~ 2 × 107 M⊙. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (program 079.D-0299(A)) and on observations obtained with XMM-Newton, an ESA science mission

  6. An extremely luminous and variable ultraluminous X-ray source in the outskirts of Circinus observed with NuSTAR

    SciTech Connect

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Grefenstette, B. W.; Madsen, K. K.; Rana, V.; Bachetti, M.; Barret, D.; Webb, N. A.; Bauer, F.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Hailey, C. J.; Miller, J. M.; Ptak, A.; Zhang, W. W.

    2013-12-20

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ∼5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10{sup 40} erg s{sup –1}). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L∝T {sup 1.70±0.17}, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ∼90 M {sub ☉} for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is

  7. Infrared Arrays

    NASA Astrophysics Data System (ADS)

    McLean, I.; Murdin, P.

    2000-11-01

    Infrared arrays are small electronic imaging devices subdivided into a grid or `array' of picture elements, or pixels, each of which is made of a material sensitive to photons (ELECTROMAGNETIC RADIATION) with wavelengths much longer than normal visible light. Typical dimensions of currently available devices are about 27-36 mm square, and formats now range from 2048×2048 pixels for the near-infra...

  8. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  9. Infrared retina

    DOEpatents

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  10. New maxillofacial infrared detection technologies

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. P.; Kopylov, M. V.; Nasyrov, M. R.; Soicher, E. M.; Fisher, E. L.; Chernova, L. V.

    2015-11-01

    At the dental clinic the infrared range radiation spectrum of tissues was used to study the dynamics of local temperature and structure of the skin, subcutaneous fat, and other tissues of the maxillofacial area in adult healthy volunteers and patients. In particular, we studied the dynamics of local temperature of mucous membranes of the mouth, teeth, and places in the mouth and dental structures in the norm and in various pathological conditions of the lips, gums, teeth, tongue, palate, and cheeks before, during and after chewing food, drinking water, medication, and inhalation of air. High safety and informational content of infrared thermography are prospective for the development of diagnostics in medicine. We have 3 new methods for infrared detection protected by patents in Russia.

  11. New maxillofacial infrared detection technologies

    SciTech Connect

    Reshetnikov, A. P.; Kopylov, M. V.; Nasyrov, M. R. Fisher, E. L.; Chernova, L. V.; Soicher, E. M.

    2015-11-17

    At the dental clinic the infrared range radiation spectrum of tissues was used to study the dynamics of local temperature and structure of the skin, subcutaneous fat, and other tissues of the maxillofacial area in adult healthy volunteers and patients. In particular, we studied the dynamics of local temperature of mucous membranes of the mouth, teeth, and places in the mouth and dental structures in the norm and in various pathological conditions of the lips, gums, teeth, tongue, palate, and cheeks before, during and after chewing food, drinking water, medication, and inhalation of air. High safety and informational content of infrared thermography are prospective for the development of diagnostics in medicine. We have 3 new methods for infrared detection protected by patents in Russia.

  12. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Far Infrared Supplement: catalog of infrared observations summarizes all infrared astronomical observations at far infrared wavelengths published in the scientific literature between 1965 and 1982. The Supplement list contains 25% of the observations in the full catalog of infrared observations (C10), and essentially eliminates most visible stars from the listings. The Supplement is more compact than the main Catalog (it does not contain the bibliography and position index of the C10), and is intended for easy reference during astronomical observations.

  13. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  14. On the Nature of Ultraluminous X-Ray Sources, Or What a Black Hole Should Look Like

    SciTech Connect

    Poutanen, Juri; Fabrika, Sergei; Butkevich, Alexey G.; Abolmasov, Pavel; /Stavropol, Astrophys. Observ.

    2006-09-18

    observed in the ultraluminous X-ray sources (ULX). The strong outflows combined with the large intrinsic X-ray luminosity of the central BH explain naturally the presence of the photoionized nebulae around ULX. An excellent agreement between the model and the observational data on ULX strongly argues in favour of ULX being super-critically accreting, stellar-mass BHs similar to SS 433, but viewed along the symmetry axis.

  15. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  16. Far infrared supplement: Catalog of infrared observations

    NASA Astrophysics Data System (ADS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1982-10-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  17. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  18. Tidal interactions and infrared-bright QSOs

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1988-01-01

    Deep direct images of five IRAS-selected QSOs with similar IR luminosities and spectral indices have been analyzed. The present objects possess IR luminosities similar to those of the IRAS flux-lined sample of ultraluminous galaxies, but have IR spectral indices similar to those of normal QSOs. Four of the objects are in strong tidal interaction and have blue host galaxies and reddened nuclei. It is suggested that these objects are QSOs and AGN in an intermediate stage of their activity, which lies between that of ultraluminous galaxies and optically selected QSOs.

  19. Infrared heating

    NASA Astrophysics Data System (ADS)

    1983-11-01

    The transfer of energy by radiation whose limits lie between 1 mm and 400 mm is indicated. The radiation used lies practically completely in the infrared region. Its use therefore depends on the thermal radiation laws (black body or integral receiver laws). These laws were derived mathematically in accordance with the properties of an ideal body, the so-called ""integral receiver'' (formerly black body). According to definition this integral receiver has the property of absorbing completely all incident electromagnetic radiation. From these the following laws were deduced: (1) All bodies with a temperature above absolute zero emit a radiation. (2) The energy emitted by the integral receiver is proportional to the 4th power of the absolute temperature. (3) The emission theoretically comprizes the whole radiation. (4) The radiation comprizing the emission spectrum does not transport the same amount of energy at every wavelength.

  20. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Deming, Drake; Mumma, M.

    1988-01-01

    This task supports the application of infrared heterodyne and Fourier transform spectroscopy to ultra-high resolution studies of molecular constituents of planetary astomspheres and cometary comae. High spectral and spatial resolutions are especially useful for detection and study of localized, non-thermal phenomena in low temperature and low density regions, for detection of trace constituents and for measurement of winds and dynamical phenomena such as thermal tides. Measurement and analysis of individual spectial lines permits retrieval of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10 to the minus eighth power permits direct measurements of gas velocity to a few meters/sec. Observations are made from ground based heterodyne spectrometers at the Kitt Peak McMath solar telescope and from the NASA infrared Telescope Facility on Mauna Kea, Hawaii. Wind velocities at 110km altitude on Venus were extracted approximately 1 m/sec from measurements of non-thermal emission cores of 10.3 micron CO2 lines. Results indicate a subsolar to antisolar circulationwith a small zonal retrograde component.

  1. A far-infrared spectral sequence of galaxies: trends and models

    SciTech Connect

    Fischer, Jacqueline; Abel, N. P.; González-Alfonso, E.; Dudley, C. C.; Satyapal, S.; Van Hoof, P. A. M.

    2014-11-10

    We present a framework for the interpretation of the far-infrared spectra of galaxies in which we have expanded the model parameters compared with previous work by varying the ionization parameter U, column density N(H), and gas density at the cloud face n(H{sup +}) for a central starburst or active galactic nucleus (AGN). We compare these models carried out with the Cloudy spectral synthesis code to trends in line-to-total far-infrared luminosity ratios, far-infrared fine-structure line ratios, IRAS colors, and OH and H{sub 2}O column densities found in the well-studied sample of 10 nearby galaxies from the IRAS Bright Galaxy Sample with infrared luminosities greater than 10{sup 10} L {sub ☉} and IRAS 60 μm fluxes equal to or greater than that of the nearby ultraluminous infrared galaxy (ULIRG) Arp 220. We find that the spectral sequence extending from normal starburst-type emission-line-dominated spectra to ULIRG-type absorption-dominated spectra with significant absorption from excited levels can be best explained by simultaneously increasing the hydrogen column density, from as low as 10{sup 21} cm{sup –2} to as high as 10{sup 24.8} cm{sup –2} or greater, and the ionization parameter, from as low as 10{sup –4} to as high as 1. The starburst models best reproduce most of the sequence, while AGN models are somewhat better able to produce the high OH and H{sub 2}O column densities in Arp 220. Our results suggest that the molecular interstellar medium in ULIRG-like, molecular-absorption-dominated systems is located close to and at least partially obscures the source of power throughout much of the far-infrared, which must be taken into account in order to properly interpret diagnostics of both their sources of power and of feedback.

  2. IRAS 14348-1447, an Ultraluminous Pair of Colliding, Gas-Rich Galaxies: The Birth of a Quasar?

    PubMed

    Sanders, D B; Scoville, N Z; Soifer, B T

    1988-02-05

    Ground-based observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at far-infrared wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of our galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dustenshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected. The derived mass of interstellar molecular hydrogen is 6 x 10(10) solar masses. This value is approximately 20 times that of the molecular gas content of the Milky Way and is similar to the largest masses of atomic hydrogen found in galaxies. A large mass of molecular gas may be a prerequisite for the formation of quasars during strong galactic collisions.

  3. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  4. The ultraluminous X-ray sources NGC 1313 X-1 and X-2: A broadband study with NuSTAR and XMM-Newton

    SciTech Connect

    Bachetti, Matteo; Barret, Didier; Webb, Natalie A.; Rana, Vikram; Walton, Dominic J.; Harrison, Fiona A.; Fürst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Fabian, Andrew C.; Hailey, Charles J.; Hornschemeier, Ann; Ptak, Andrew F.; Zhang, William W.; Miller, Jon M.; Stern, Daniel

    2013-12-01

    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ∼0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.

  5. An x-ray study of luminous infrared galaxies observed with ASCA

    NASA Astrophysics Data System (ADS)

    Misaki, K.; Iwasawa, K.; Taniguchi, Y.; Terashima, Y.; Kunieda, H.; Watarai, H.

    The discovery of ultra-luminous infrared galaxies (ULIRGs) has provided a clue to an evolutionary connection between starburst and active galactic nuclei. The IRAS color is suggested to be a possible trace of the evolution. We present the results of ASCA observations of two ULIRGs, IRAS20551-4250 and IRAS23128-5919, which are southern 100 μm bright galaxies with LIR ~ 1012Lsolar. Both are mergers and have a ``warm'' IRAS color (25μm100μm >= 0.15). The ASCA spectrum of IRAS20551-4250 can be characterized by two components, one of which is a soft thermal component (kT ~ 0.3keV) and the other is a hard power-law component absorbed by a column density of 1022 cm-2. The observed X-ray luminosity is ~ 2.5 × 1042 ergs/s in the rest frame 2-10keV band (assuming H0 = 50 km/s/Mpc). IRAS23128-5919 also shows a hard spectrum (LX ~ 3 × 1042 ergs/s), but thermal emission is not as clear as that in IRAS20551-4250. Since these targets are similar in infrared luminosity as well as in hard X-rays but not in soft X-rays, LIR would be associated with hard X-rays. In addition to these results, we here compare X-ray properties of ULIRGs with IR properties.

  6. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1993-01-01

    Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  7. Preliminary Results from the Wide-field Infrared Survey Explorer's NEOWISE Search for Minor Planets

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Bauer, J. M.; Grav, T.; Masiero, J.; McMillan, R. S.; Walker, R.; Tholen, D. J.; Wright, E.; Eisenhardt, P.; Cutri, R.; Neowise Team

    2011-12-01

    The Wide-Field Infrared Survey Explorer (WISE) imaged the entire sky twice between January, 2010 and January, 2011 at four wavelengths spanning the near through mid-IR at sensitivities hundreds of times greater than previous surveys [1]. The WISE band-passes (3.4, 4.6, 12 and 22mm) sample the flux from most inner-solar-system bodies near the peak of their thermal emission. Overlapping sky regions were sampled repeatedly at 3 hour intervals. The same region of sky was observed a minimum of 8 times. While the primary WISE science objectives focus on ultra-luminous infrared galaxies and brown dwarfs, additions to the baseline WISE pipeline (collectively known as "NEOWISE") have enabled the detection of undiscovered moving objects, as well as previously known bodies [2]. NEOWISE has detected more than 155,000 minor planets, including more than 500 near-Earth objects (NEOs), ~2000 Jupiter Trojans, ~120 comets, and ~20 outer Solar System objects such as Centaurs. The survey has discovered ~34,000 new minor planets, including 130 new NEOs and 20 new comets. The NEOWISE data will drive a wide range of new Solar System investigations. NEOWISE allows precise determination of IR-derived diameters and albedos for minor planets throughout the Solar System [3],[4]. We will summarize the latest results from the project, including studies of the statistical properties of asteroid populations such as the NEOs, and comparisons between albedo and asteroid taxonomic classification.

  8. IRAS 14348-1447, an ultraluminous pair of colliding, gas-rich galaxies - The birth of a quasar?

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Scoville, N. Z.

    1988-01-01

    Ground-baed observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at FIR wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of the Galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dust-enshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected.

  9. The cosmic infrared background experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, John; Cooray, Asantha; Kawada, Mitsunobu; Keating, Brian; Lange, Andrew; Lee, Dae-Hea; Matsumoto, Toshio; Matsuura, Shuji; Pak, Soojong; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Watabe, Toyoki

    2006-03-01

    The extragalactic background, based on absolute measurements reported by DIRBE and IRTS at 1.2 and 2.2 μm, exceeds the brightness derived from galaxy counts by up to a factor 5. Furthermore, both DIRBE and the IRTS report fluctuations in the near-infrared sky brightness that appear to have an extra-galactic origin, but are larger than expected from local ( z = 1-3) galaxies. These observations have led to speculation that a new class of high-mass stars or mini-quasars may dominate primordial star formation at high-redshift ( z ˜ 10-20), which, in order to explain the excess in the near-infrared background, must be highly luminous but produce a limited amount of metals and X-ray photons. Regardless of the nature of the sources, if a significant component of the near-infrared background comes from first-light galaxies, theoretical models generically predict a prominent near-infrared spectral feature from the redshifted Lyman cutoff, and a distinctive fluctuation power spectrum. We are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7″ to 2°, where a first-light galaxy signature is expected to peak, over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100× fainter than IRTS/DIRBE, with sufficient resolution to remove local-galaxy correlations. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near-infrared

  10. Infrared: Beyond the Visible

    NASA Video Gallery

    Infrared: Beyond the Visible, is a fast, fun look at why infrared light matters to astronomy, and what the Webb Space Telescope will search for once it's in orbit. Caption file available at: http:/...

  11. The Milky Way, the Local Group & the IR Tully-Fisher Diagram

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Spergel, D.; Rhoads, J.; Li, J.

    1996-01-01

    Using the near infrared fluxes of local group galaxies derived from Cosmic Background Explorer/Diffuse Infrared Background Experiment band maps and published Cepheid distances, we construct Tully-Fisher diagrams for the Local Group.

  12. Mid-Infrared Spectral Diagnostics of Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Petric, A.

    2010-06-01

    We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board Spitzer in the rest-frame wavelength range between 5 and 38 μm. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large, statistically complete sample of LIRGs in the local Universe. Several diagnostics effective at isolating the AGN contribution to the Mid-infrared (MIR) emission using [NeV], [OIV] and [NeII] gas emission lines, the 6.2 μm PAH equivalent width (EQW) and the shape of the MIR continuum are compared. The [NeV] line which indicates the presence of an AGN is detected in 22% of all LIRGs. The 6.2 μm PAH EQW, [NeV]/LIR, [NeV]/[NeII] and [OIV]/[NeII] ratios, and the ratios of 6.2 μm PAH flux to the integrated continuum flux between 5.3 and 5.8 μm suggest values of around 10% for the fractional AGN contribution to the total IR luminosity of LIRGs. The median of these estimates suggests that for local LIRGs the fractional AGN contribution to the total IR luminosity is ~12%. AGN dominated LIRGs have higher global and nuclear IR luminosities, warmer MIR colors and are interacting more than starburst (SB) dominated LIRGs. However there are no obvious linear correlations between these properties, suggesting that none of these properties alone can determine the activity and evolution of an individual LIRG. A study of the IRAC colors of LIRGs confirms that methods of finding AGN on the basis of their MIR colors are effective at choosing AGN but 50% to 40% of AGN dominated LIRGs are not selected as such with these methods.

  13. Coherent infrared imaging camera (CIRIC)

    SciTech Connect

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  14. Far-infrared spectroscopy of normal galaxies with LWS

    NASA Astrophysics Data System (ADS)

    Malhotra, S.; Helou, G.; Hollenbach, D.; Kaufman, M. J.; Lord, S. D.; Brauher, J. R.; Dale, D.; Lu, N. Y.; Beichman, C. A.; Dinerstein, H.; Hunter, D. A.; Lo, K. Y.; Rubin, R. H.; Silbermann, N.; Stacey, G. J.; Thronson, H. A.; Werner, M. W.

    1999-03-01

    The deficiency of [CII] (158 μ m) line emission in many normal and ultraluminous galaxies is one of the major surprises from ISO-LWS observations. We show that this is not an isolated phenomenon: there is a smooth decline in L[CII]/LFIR ratio with increasing dust temperature(as indicated by far-infrared colors Fν(60 μ m)/Fν(100 μ m), i.e. F60/F100) and star-formation activity (indicated by LFIR/LB), independent of their luminosity or morphology. In a sample of 60 normal galaxies, these trends span a factor of 100. Of the numerous explanations proposed for the L[CII]/LFIR variation the leading ones are (a) optical depth and extinction, (b) softer radiation field from old stellar populations (c) inefficient photoelectric heating by charged grains when the UV radiation density per gas atom (G0/n) is high. We can rule out hypothesis (a) with the observations that the [OI]/[CII] line ratio increases for galaxies with higher F60/F100. This is contrary to the expectation that [OI] at 63 μ m should be more severely affected by extinction because it is at a shorter wavelength. Optical depth should also affect [OI] 63 μ m line more strongly because OI exists deeper (to Av=10) in the interior of clouds than [CII]. Hypothesis (b) explains the slight decrease in L[CII]/LFIR seen in early type galaxies with low rates of star-formation and the lowest LFIR/LB in the sample. The dramatic fall in L[CII]/LFIR for the warmest and most actively star-forming galaxies is best explained by hypothesis (c). In galaxies with warmer dust, there is less cooling via the [CII] line, while [OI] remains a major coolant. This trend is qualitatively explained in PDR models by an increase in radiation field G0, which raises the dust temperature and the [OI]/[CII] line ratio.

  15. A MULTI-EPOCH TIMING AND SPECTRAL STUDY OF THE ULTRALUMINOUS X-RAY NGC 5408 X-1 WITH XMM-Newton

    SciTech Connect

    Dheeraj, Pasham R.; Strohmayer, Tod E. E-mail: tod.strohmayer@nasa.gov

    2012-07-10

    We present results of new XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic oscillations (QPOs). We detect QPOs in each of four new ( Almost-Equal-To 100 ks) pointings, expanding the range of frequencies observed from 10 to 40 mHz. We compare our results with the timing and spectral correlations seen in stellar-mass black hole systems, and find that the qualitative nature of the timing and spectral behavior of NGC 5408 X-1 is similar to systems in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency-photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of {approx}> 800 M{sub Sun }. Alternatively, the QPO frequency is largely independent of the spectral parameters, in which case a close analogy with the Type-C QPOs in stellar systems is problematic. Measurement of the source's timing properties over a wider range of energy spectral index is needed to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high-frequency QPO analogs (0.1-1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6-7 keV band and of the amplitude (rms) of a high-frequency QPO analog of Almost-Equal-To 10 eV and Almost-Equal-To 4%, respectively.

  16. Chandra ACIS Survey of X-Ray Point Sources in Nearby Galaxies. II. X-Ray Luminosity Functions and Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Wang, Song; Qiu, Yanli; Liu, Jifeng; Bregman, Joel N.

    2016-09-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α ˜ 1.50 ± 0.07) to elliptical (˜1.21 ± 0.02), to spirals (˜0.80 ± 0.02), to peculiars (˜0.55 ± 0.30), and to irregulars (˜0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D 25 and 2D 25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 1040 erg s-1, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M ⊙ black holes with super-Eddington radiation and intermediate mass black holes.

  17. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  18. NUSTAR AND XMM-NEWTON OBSERVATIONS OF THE EXTREME ULTRALUMINOUS X-RAY SOURCE NGC 5907 ULX1: A VANISHING ACT

    SciTech Connect

    Walton, D. J.; Stern, D.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Rana, V.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Middleton, M. J.; Roberts, T. P.; Sutton, A. D.; Zhang, W.

    2015-02-01

    We present results obtained from two broadband X-ray observations of the extreme ultraluminous X-ray source (ULX) NGC 5907 ULX1, known to have a peak X-ray luminosity of ∼5 × 10{sup 40} erg s{sup –1}. These XMM-Newton and NuSTAR observations, separated by only ∼4 days, revealed an extreme level of short-term flux variability. In the first epoch, NGC 5907 ULX1 was undetected by NuSTAR, and only weakly detected (if at all) with XMM-Newton, while in the second NGC 5907 ULX1 was clearly detected at high luminosity by both missions. This implies an increase in flux of ∼2 orders of magnitude or more during this ∼4 day window. We argue that this is likely due to a rapid rise in the mass accretion rate, rather than to a transition from an extremely obscured to an unobscured state. During the second epoch we observed the broadband 0.3-20.0 keV X-ray luminosity to be (1.55 ± 0.06) × 10{sup 40} erg s{sup –1}, similar to the majority of the archival X-ray observations. The broadband X-ray spectrum obtained from the second epoch is inconsistent with the low/hard accretion state observed in Galactic black hole binaries, but is well modeled with a simple accretion disk model incorporating the effects of photon advection. This strongly suggests that when bright, NGC 5907 ULX1 is a high-Eddington accretor.

  19. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  20. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D.; Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Parker, M. L.; Hailey, C. J.; Ptak, A.; Zhang, W. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  1. A Multi-Epoch Timing and Spectral Study of the Ultraluminous X-Ray NGC 5408 X-1 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Dheeraj, Pasham; Strohmayer, Tod E.

    2012-01-01

    We present results of new XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic oscillations (QPOs). We detect QPOs in each of four new (approximately equal to 100 ks) pointings, expanding the range of frequencies observed from 10 to 40 mHz. We compare our results with the timing and spectral correlations seen in stellar-mass black hole systems, and find that the qualitative nature of the timing and spectral behavior of NGC 5408 X-1 is similar to systems in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency-photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of greater than or equal to 800 solar mass. Alternatively, the QPO frequency is largely independent of the spectral parameters, in which case a close analogy with the Type-C QPOs in stellar system is problematic. Measurement of the source's timing properties over a wider range of energy spectral index is needed to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high-frequency QPO analogs (0.1- 1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6-7 keV band and of the amplitude (rms) of a high-frequency QPO analog of approximately equal to 10 eV and approximately equal to 4%, respectively.

  2. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  3. Infrared spectroscopic study of the local structural changes across the metal insulator transition in nickel-doped GdBaCo{sub 2}O{sub 5.5}

    SciTech Connect

    Yasodha, P.; Premila, M.; Bharathi, A.; Valsakumar, M.C.; Rajaraman, R.; Sundar, C.S.

    2010-11-15

    Phonons in GdBaCo{sub 2}O{sub 5.5} have been identified using infrared spectroscopy and their mode assignments have been carried out using ab initio lattice dynamical calculations. Metal insulator transitions in undoped and nickel-doped GdBaCo{sub 2}O{sub 5.5} have been probed using infrared absorption spectroscopy. The phonon modes corresponding to the bending mode of the CoO{sub 6} octahedra/pyramids are seen to soften, broaden and develop an asymmetry across the insulator-metal transition pointing to extensive electron phonon interaction effects in these systems. Correlated changes of the phonon line shape parameters associated with the transition indicate a suppression of T{sub MIT} with increased nickel doping of the cobalt sublattice. Temperature dependence of the octahedral stretching mode frequencies in undoped GdBaCo{sub 2}O{sub 5.5} points to distinct structural distortions accompanying the high temperature metallic transition. - Graphical abstract: Softening of the bending mode across T{sub MIT}.

  4. Merged infrared catalogue

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.

    1978-01-01

    A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.

  5. Optical and infrared masers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Ongoing research progress in the following areas is described: (1) tunable infrared light sources and applications; (2) precision frequency and wavelength measurements in the infrared with applications to atomic clocks; (3) zero-degree pulse propagation in resonant medium; (4) observation of Dicke superradiance in optically pumped HF gas; (5) unidirectional laser amplifier with built-in isolator; and (6) progress in infrared metal-to-metal point contact tunneling diodes.

  6. Early infrared astronomy

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2009-07-01

    I present a short history of infrared astronomy, from the first scientific approaches of the ‘radiant heat’ in the seventeenth century to the 1970's, the time when space infrared astronomy was developing very rapidly. The beginning of millimeter and submillimeter astronomy is also covered. As the progress of infrared astronomy was strongly dependent on detectors, some details are given on their development.

  7. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  8. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  9. Far infrared supplement: Catalog of infrared observations, second edition

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1988-01-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  10. Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The infrared astronomical data base and its principal data product, the catalog of Infrared Observations (CIO), comprise a machine readable library of infrared (1 microns to 1000 microns astronomical observations. To date, over 1300 journal articles and 10 major survey catalogs are included in this data base, which contains about 55,000 individual observations of about 10,000 different infrared sources. Of these, some 8,000 sources are identifiable with visible objects, and about 2,000 do not have known visible counterparts.

  11. An Ultraviolet Ultra-luminous Lyman Break Galaxy at Z = 2.78 in NDWFS Boötes Field

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Fan, Xiaohui; Jiang, Linhua; Dey, Arjun; Green, Richard F.; Maiolino, Roberto; Walter, Fabian; McGreer, Ian; Wang, Ran; Lin, Yen-Ting

    2012-10-01

    We present one of the most ultraviolet (UV) luminous Lyman break galaxies (LBGs; J1432+3358) at z = 2.78, discovered in the NOAO Deep Wide-Field Survey Boötes field. The R-band magnitude of J1432+3358 is 22.29 AB, more than two magnitudes brighter than typical L* LBGs at this redshift. The deep z-band image reveals two components of J1432+3358 separated by 1farcs0 with a flux ratio of 3:1. The high signal-to-noise ratio rest-frame UV spectrum shows Lyα emission line and interstellar medium absorption lines. The absence of N V and C IV emission lines, and the non-detection in X-ray and radio wavelengths and mid-infrared (MIR) colors indicates weak or no active galactic nuclei (<10%) in this galaxy. The galaxy shows a broader line profile, with a FWHM of about 1000 km s-1 and a larger outflow velocity (≈500 km s-1) than those of typical z ~ 3 LBGs. The physical properties are derived by fitting the spectral energy distribution (SED) with stellar synthesis models. The dust extinction, E(B - V) = 0.12, is similar to that in normal LBGs. The star formation rates (SFRs) derived from the SED fitting and the dust-corrected UV flux are consistent with each other, ~300 M ⊙ yr-1, and the stellar mass is (1.3 ± 0.3) × 1011 M ⊙. The SFR and stellar mass in J1432+3358 are about an order of magnitude higher than those in normal LBGs. The SED-fitting results support that J1432+3358 has a continuous star formation history, with a star formation episode of 6.3 × 108 yr. The morphology of J1432+3358 and its physical properties suggest that J1432+3358 is in an early phase of a 3:1 merger process. The unique properties and the low space number density (~10-7 Mpc-3) are consistent with the interpretation that such galaxies are either found in a short unobscured phase of the star formation or that a small fraction of intensive star-forming galaxies are unobscured. Based on (in part) data collected at Subaru Telescope, which is operated by the National Astronomical Observatory

  12. Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Michałowski, M. J.; Bourne, N.; Baes, M.; Fritz, J.; Cooray, A.; De Looze, I.; De Zotti, G.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S. J.; Scott, D.; Smith, D. J. B.; Smith, M. W. L.; Symeonidis, M.; Valiante, E.

    2015-04-01

    Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 BeppoSAX and Swift GRB host galaxies (at an average redshift of z = 3.1) located in the Herschel Astrophysical Terahertz Large Area Survey, the Herschel Virgo Cluster Survey, the Herschel Fornax Cluster Survey, the Herschel Stripe 82 Survey and the Herschel Multi-tiered Extragalactic Survey, totalling 880 deg2, or ˜3 per cent of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale Herschel survey - therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100-500 μm, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of <114 M⊙ yr-1. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic SFR density in an unbiased way, i.e. that the fraction of GRB hosts with SFR > 500 M⊙ yr-1 is consistent with the contribution of such luminous galaxies to the cosmic star formation density.

  13. The Infrared Sky.

    ERIC Educational Resources Information Center

    Habing, Harm J.; Neugebauer, Gerry

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) is a survey instrument that has provided an overall view of the infrared sky and identified objects that merit further investigation. A description of the IRAS and examples of the types of astronomical data collected are presented. (JN)

  14. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  15. The Nature of the mHz X-ray QPOs from the Ultraluminous X-ray Source M82 X-1: Timing-Spectral (anti)-correlation?

    NASA Astrophysics Data System (ADS)

    Ranga Reddy Pasham, Dheeraj; Strohmayer, T. E.

    2013-04-01

    We have analyzed all archival XMM-Newton observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to search for a correlation between its mHz quasiperiodic oscillation (QPO) frequency and energy spectral power-law index. These quantities are known to correlate in stellar mass black holes (StMBHs) exhibiting so-called Type-C QPOs. The detection of a similar relation in M82 X-1 would strengthen the identification of its mHz QPOs as Type-C and thus enable more reliable mass estimates by scaling of the QPO frequencies in X-1 to those of Type-C QPOs in StMBHs of known mass. We used surface brightness modeling to estimate the count rates produced by X-1 and a nearby (5'') bright source that can contribute substantial flux in XMM-Newton's 15'' (HPD) beam. We thus identify the observations in which M82 X-1 is at least as bright as the nearby source. In these observations we detect mHz QPOs with centroid frequencies spanning the range from 36 mHz to 210 mHz (the lowest and the highest yet reported from X-1). We model the 3-10 keV spectrum and find that the power-law index changes significantly from 1.7 - 2.2 during these observations. With all observations included we find evidence for an anti-correlation between the centroid frequency of the mHz QPOs and the power-law index. The value of the Pearson's correlation coefficient is -0.95. While such an anti-correlation is observed in StMBHs at high Type-C QPO frequencies (5-15 Hz), the frequency range over which it holds in StMBHs is significantly smaller (factor of 1-3) than the QPO range now reported here for X-1, which varies over a factor of 5.8 (36-210 mHz). However, we note that the correlation hinges on the observation with the lowest inferred energy spectral index and for which the fitted count rate ratio of X-1 to the nearby source is 1.1. So the implied anti-correlation needs to be confirmed with either less ``contaminated" observations or higher angular resolution spectral measurements made in tandem

  16. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    SciTech Connect

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Bachetti, Matteo; Barret, Didier; Webb, Natalie A.; Miller, Jon M.; Fabian, Andrew C.; Boggs, Steven E.; Craig, William W.; Christensen, Finn C.; Hailey, Charles J.; Ptak, Andrew F.; Zhang, William W.; Stern, Daniel

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  17. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric

    2015-08-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared airborne telescope in a Boeing 747SP, is now fully operational with cameras and spectrometers in the 1 to 240 micron region. It will be one of the major observatories for the next 20 years to observe the local ISM in this spectral region. We will give a brief overview of the SOFIA observatory, telescope, instrumentation and recent science. Future observing opportunities and participation in future instrument developments, over the lifetime of the SOFIA observatory will be discussed.

  18. THE NATURE OF LoBAL QSOs. I. SEDs AND MID-INFRARED SPECTRAL PROPERTIES

    SciTech Connect

    Lazarova, Mariana S.; Canalizo, Gabriela; Lacy, Mark; Sajina, Anna E-mail: gabriela.canalizo@ucr.edu E-mail: Anna.Sajina@tufts.edu

    2012-08-10

    We have obtained Spitzer Infrared Spectrograph spectra and MIPS 24, 70, and 160 {mu}m photometry for a volume-limited sample of 22 Sloan Digital Sky Survey selected low-ionization broad absorption line (LoBALs) QSOs at 0.5 < z < 0.6. By comparing their mid-IR spectral properties and far-IR spectral energy distributions (SEDs) with those of a control sample of 35 non-LoBALs matched in M{sub i} , we investigate the differences between the two populations in terms of their infrared emission and star formation (SF) activity. Twenty-five percent of the LoBALs show polycyclic aromatic hydrocarbon features and 45% have weak 9.7 {mu}m silicate dust emission. We model the SEDs and decouple the active galactic nucleus (AGN) and starburst contributions to the far-infrared luminosity in LoBALs and in non-LoBALs. Their median total, starburst, and AGN infrared luminosities are comparable. Twenty percent (but no more than 60%) of the LoBALs and 26% of the non-LoBALs are ultraluminous infrared galaxies (L{sub IR} > 10{sup 12} L{sub Sun }). We estimate star formation rates (SFRs) corrected for the AGN contribution to the FIR flux and find that LoBALs have comparable levels of SF activity to non-LoBALs when considering the entire samples. However, the SFRs of the IR-luminous LoBALs are 80% higher than those of their counterparts in the control sample. The median contribution of SF to the total far-infrared flux in LoBALs and in non-LoBALs is estimated to be 40%-50%, in agreement with previous results for Palomar-Green (PG) QSOs. Overall, our results show that there is no strong evidence from the mid- and far-IR properties that LoBALs are drawn from a different parent population than non-LoBALs.

  19. Mauna Kea Observatory infrared observations

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1974-01-01

    Galactic and solar system infrared observations are reported using a broad variety of radiometric and spectroscopic instrumentation. Infrared programs and papers published during this period are listed.

  20. Infrared Solar Physics.

    PubMed

    Penn, Matthew J

    The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  1. Pixel-level plasmonic microcavity infrared photodetector

    NASA Astrophysics Data System (ADS)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-05-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging.

  2. Mid-Infrared Astronomy with the NGST

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Barsony, M.; Ressler, M.; Werner, M.; Armus, L.; Shupe, D.; Xu, C.; Backman, D.; Ho, L.; Koerner, D.

    1998-01-01

    We present an overview of the science capabilities enabled by a mid-infrared camera/spectrometer on board the NGST. Even without full mid-IR optimization, a mid-infrared (5-30 microns) instrument on the NGST will be orders of magnitude more sensitive than any equivalent ground-based instrument/telescope combination. In the extragalactic arena, the mid-IR region is critical for a complete understanding of the or high-redshift universe, dusty star-formation regions at low and high redshifts, and starburst vs. AGN discrimination. In the local universe, great strides forward can be made using mid-IR imaging, spectroscopy, and coronagraphy of dusty and rocky disks of all ages, from protostellar to remnant debris disks. Near-neighbor detection and characterization can also be greatly advanced by mid-infrared observations.

  3. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  4. Infrared Microtransmission And Microreflectance Of Biological Systems

    NASA Astrophysics Data System (ADS)

    Hill, Steve L.; Krishnan, K.; Powell, Jay R.

    1989-12-01

    The infrared microsampling technique has been successfully applied to a variety of biological systems. A microtomed tissue section may be prepared to permit both visual and infrared discrimination. Infrared structural information may be obtained for a single cell, and computer-enhanced images of tissue specimens may be calculated from spectral map data sets. An analysis of a tissue section anomaly may gg suest eitherprotein compositional differences or a localized concentration of foreign matterp. Opaque biological materials such as teeth, gallstones, and kidney stones may be analyzed by microreflectance spectroscop. Absorption anomalies due to specular dispersion are corrected with the Kraymers-Kronig transformation. Corrected microreflectance spectra may contribute to compositional analysis and correlate diseased-related spectral differences to visual specimen anomalies.

  5. Infrared point sensors for homeland defense applications

    NASA Astrophysics Data System (ADS)

    Thomas, Ross C.; Carter, Michael T.; Homrighausen, Craig L.

    2004-03-01

    We report recent progress toward the development of infrared point sensors for the detection of chemical warfare agents and explosive related chemicals, which pose a significant threat to both health and environment. Technical objectives have focused on the development of polymer sorbents to enhance the infrared response of these hazardous organic compounds. For example, infrared point sensors which part-per-billion detection limits have been developed that rapidlypartition chemical warfare agents and explosive related chemicals into polymer thin films with desirable chemical and physical properties. These chemical sensors demonstrate novel routes to reversible sensing of hazardous organic compounds. The development of small, low-power, sensitive, and selective instruments employing these chemical sensors would enhance the capabilities of federal, state, and local emergency response to incidents involving chemical terrorism. Specific applications include chemical defense systems for military personnel and homeland defense, environmental monitors for remediation and demilitarization, and point source detectors for emergency and maintenance response teams.

  6. Optically triggered infrared photodetector.

    PubMed

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  7. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  8. Infrared astronomy after IRAS

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Thompson, R. I.; Werner, M. W.; Witteborn, F. C.; Becklin, E. E.

    1986-01-01

    The development of infrared astronomy in the wake of IRAS is discussed. Attention is given to an overview of next generation infrared telescope technology, with emphasis on the Space Infrared Telescope Facility (SIRTF) which has been built to replace IRAS in the 1990s. Among the instruments to be included on SIRTF are: a wide-field high-resolution camera covering the infrared range 3-30 microns with large arrays of detectors; an imaging photometer operating in the range 3-700 microns; and a spectrograph covering the range 2.5-200 microns with resolutions of 2 and 0.1 percent. Observational missions for the SIRTF are proposed in connection with: planetary formation; star formation; cosmic energy sources; active galactic nuclei; and quasars.

  9. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  10. Synergies with the infrared

    NASA Astrophysics Data System (ADS)

    Alexander, D.

    2016-06-01

    In this solicited talk I will review the synergy between XMM-Newton (and Chandra) and infrared facilities. I will focus on two key advantages from the combination of X-ray and infrared observations. First, infrared observations allow for the identification of the most heavily obscured AGNs that are weak or undetected at X-ray observations, providing a more complete census of AGN activity than from X-ray observations alone. Second, infrared observations provide constraints on the star-formation properties of the AGNs, allowing for insight into the connection between AGN activity and star formation. I will use these key advantages to discuss our progress in identifying a complete census of AGN activity and our understanding of the AGN-star formation connection. I will also review how yet greater gains can be made with future planned and proposed facilities.

  11. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  12. Infrared processing of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared (IR) processing of foods has been gaining popularity over conventional processing in several unit operations, including drying, peeling, baking, roasting, blanching, pasteurization, sterilization, disinfection, disinfestation, cooking, and popping . It has shown advantages over conventional...

  13. The Infrared Handbook

    DTIC Science & Technology

    1978-01-01

    absorption band maximum between 0.61 and 0.66 /jan and should visually appear cyan . There are several kinds of chlorophyll, all of which absorb in...palisade layers, poms mesophyll Pepper Capsicum amuum L. and other spp. Solanaceae Dorsi ventral Druse crystals Pigweed Amaranthus cetroflexus L...the relationship between the spectral Green Red Infrared I T ^Original Subject Yellow Filter Infrared Green Red Cyan Yellow Magenta

  14. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  15. Infrared Protein Crystallography

    SciTech Connect

    J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

    2011-12-31

    We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  16. Near-infrared (Fe II) and Pa Beta imaging and spectroscopy of Arp 220

    NASA Technical Reports Server (NTRS)

    Armus, L.; Shupe, D. L.; Matthews, K.; Soifer, B. T.; Neugebauer, G.

    1995-01-01

    We have imaged the ultraluminous infrared galaxy Arp 220 in light of the near-infrared (Fe II) 1.257 micron and Pa-beta lines, and have obtained spectra in the J- and H-band atmospheric windows. Arp 220 is a strong source of (Fe II) and Pa-beta emission, with luminosities of 1.3 x 10(exp 41) and 9.2 x 10(exp 40) ergs/s, respectively. The (Fe II) and Pa-beta emission are both extended over the central 2 sec-3 sec, but with different morphologies. We suggest that the extended (Fe II) emission is produced through the interaction of fast shocks with ambient gas in the interstellar medium (ISM) at the base of the outflowing, supernovae-driven superwind mapped by Heckman et al. (1987). The bolometric luminosity of the starburst required to power this wind is estimated to be at least 2 x 10(exp 11) solar luminosity. If the spatially unresolved (Fe II) emission is produced via a large number of supernova remnants, the implied rate is approximately 0.6/yr. The overall luminosity of such a starburst could account for a large fraction (1/2-1/3) of the Arp 220 energy budget, but the large deficit of ionizing photons (as counted by the Pa-beta luminosity) requires that the starburst be rapidly declining and/or have a low upper mass cutoff. Alternatively, dust may effectively compete with the gas for ionizing photons, or much of the ionizing radiation may escape through 'holes' in the ISM. It is also possible that a buried active galactic nuclei (AGN) produces a large fraction of the unresolved (Fe II) and Pa-beta emission. We briefly discuss these possibilities in light of these new imaging and spectroscopic data.

  17. Location of foot arteries using infrared images

    NASA Astrophysics Data System (ADS)

    Villasenor-Mora, Carlos; González-Vega, Arturo; Martín Osmany Falcón, Antonio; Benítez Ferro, Jesús Francisco Guillemo; Córdova Fraga, Teodoro

    2014-11-01

    In this work are presented the results of localization of foot arteries, in a young group of participants by using infrared thermal images, these are the dorsal, posterior tibial and anterior tibial arteries. No inclusion criteria were considered, that causes that no strong statistical data about the influence of the age in the arterial localization. It was achieved to solve the confusion when veins present a heat distribution similar to the artery and in the position of this. it contributes to enhance the rate of location of arteries. In general it is possible to say that the use of infrared thermal images is a good technique to find the foot arteries and can be applied in its characterization in a future. The procedure proposed is a non-invasive technique, and in certain fashion does not requires specialized personnel to achieve locate the arteries. It is portable, safe, and relatively economical.

  18. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  19. An Open Localization and Local Communication Embodied Sensor

    PubMed Central

    Gutiérrez, Álvaro; Campo, Alexandre; Dorigo, Marco; Amor, Daniel; Magdalena, Luis; Félix, Monasterio-Huelin

    2008-01-01

    In this paper we describe a localization and local communication system which allows situated agents to communicate locally, obtaining at the same time both the range and the bearing of the emitter without the need of any centralized control or any external reference. The system relies on infrared communications with frequency modulation and is composed of two interconnected modules for data and power measurement. Thanks to the open hardware license under which it is released, the research community can easily replicate the system at a low cost and/or adapt it for applications in sensor networks and in robotics. PMID:27873944

  20. An Open Localization and Local Communication Embodied Sensor.

    PubMed

    Gutiérrez, Alvaro; Campo, Alexandre; Dorigo, Marco; Amor, Daniel; Magdalena, Luis; Monasterio-Huelin, Félix

    2008-11-25

    In this paper we describe a localization and local communication system which allows situated agents to communicate locally, obtaining at the same time both the range and the bearing of the emitter without the need of any centralized control or any external reference. The system relies on infrared communications with frequency modulation and is composed of two interconnected modules for data and power measurement. Thanks to the open hardware license under which it is released, the research community can easily replicate the system at a low cost and/or adapt it for applications in sensor networks and in robotics.

  1. Evaluation of Infrared Target Discrimination Algorithms.

    DTIC Science & Technology

    1983-04-01

    Hilbert, " Methods of Mathematical Physics , V. I.," Interscience, New York, 1953. 12. B.A. Boerschig and D.B. Friedman, "Infrared Local Back- ground...That is, Tt M T and Tt M T will both be diagonal matrices, as required. C-10 J4 REFERENCES I C-1. R. Courant and D. Hilbert, " Methods of Mathematical Physics , V.I

  2. Catalog of infrared observations including: Bibliography of infrared astronomy and index of infrared source positions

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Catalog of Infrared Observations and its Far Infrared Supplement summarize all infrared astronomical observations at infrared wavelengths published in the scientific literature between 1965 and 1982. The Catalog includes as appendices the Bibliography of infrared astronomy which keys observations in the Catalog with the original journal references, and the index of infrared source positions which gives source positions for alphabetically listed sources in the Catalog. The Catalog data base contains over 85,000 observations of about 10,000 infrared sources, of which about 2,000 have no known visible counterpart.

  3. Variable waveband infrared imager

    SciTech Connect

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  4. Infrared source test

    SciTech Connect

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  5. Infrared observations of comets

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    1991-01-01

    Selected comets are observed in the near infrared (1 to 2.2 micron) and thermal infrared (3.5 to 20 micron) with the NASA Infrared Telescope Facility (IRTF) and other telescopes as appropriate, in order to characterize the physical properties of the dust grains; their composition, size distribution, emissivity, and albedo. Systematic variations in these properties among comets are looked for, in order to understand the heterogeneity of comet nuclei. Spectrophotometry of the 10 micron silicate emission feature is particularly emphasized. The rate of dust production from the nucleus and its temporal variability are also determined. Knowledge of the dust environment is essential to S/C design and mission planning for NASA's CRAF mission.

  6. Infrared Astronomy After IRAS.

    PubMed

    Rieke, G H; Werner, M W; Thompson, R I; Becklin, E E; Hoffmann, W F; Houck, J R; Low, F J; Stein, W A; Witteborn, F C

    1986-02-21

    The 250,000 sources in the recently issued Infrared Astronomy Satellite (IRAS) all-sky infrared catalog are a challenge to astronomy. Many of these sources will be studied with existing and planned ground-based and airborne telescopes, but many others can no longer even be detected now that IRAS has ceased to operate. As anticipated by advisory panels of the National Academy of Sciences for a decade, study of the IRAS sources will require the Space Infrared Telescope Facility (SIRTF), a cooled, pointed telescope in space. This instrument may be the key to our understanding of cosmic birth-the formation of planets, stars, galaxies, active galactic nuclei, and quasars. Compared with IRAS and existing telescopes, SIRTF's power derives from a thousandfold gain in sensitivity over five octaves of the spectrum.

  7. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  8. Development of Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Rieke, George

    2012-01-01

    We are only two years from celebrating the hundredth anniversary of William Coblentz's first extensive measurements of stars in the infrared. However, his work was followed for fifty years by ---- almost nothing. I will describe the few initiatives in those fifty years and compare them with the dramatic beginning of modern infrared astronomy in the 1960s. I will also quantify the explosive progress of this area since then. The comparison allows us to speculate on the real prerequisites for successful breakthroughs in astronomy and astronomical technology.

  9. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  10. Multi-spectral black meta-infrared detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  11. Graphene plasmonics for terahertz to mid-infrared applications.

    PubMed

    Low, Tony; Avouris, Phaedon

    2014-02-25

    In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping pathways. The application space of graphene plasmonics lies in the technologically significant, but relatively unexploited terahertz to mid-infrared regime. We discuss emerging and potential applications, such as modulators, notch filters, polarizers, mid-infrared photodetectors, and mid-infrared vibrational spectroscopy, among many others.

  12. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  13. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  14. Infrared Fibers for Sensors

    DTIC Science & Technology

    2010-06-01

    they can be used to demonstrate broadband supercontinuum sources in the infrared (figure 3) when pumped with suitable lasers. They can also be used for...doped chalcogenide glasses. Figure 3. The supercontinuum emission from preliminary IR fibers. Figure 4. Chalcogenide glass based photonic

  15. Ground based infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer.

  16. Infrared Thermometer (IRT) Handbook

    SciTech Connect

    VR Morris

    2006-10-30

    The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

  17. The Dynamic Infrared Sky

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; SPIRITS (Spitzer InfraRed Intensive Transients Survey) Team

    2017-01-01

    The dynamic infrared sky is hitherto largely unexplored. I will present the SPitzer InfraRed Intensive Transients Survey (SPIRITS) --- a systematic search of 194 nearby galaxies within 30 Mpc, on timescales ranging between a week to a year, to a depth of 20 mag with Spitzer's IRAC camera. SPIRITS has already uncovered over 95 explosive transients and over 1200 strong variables. Of these, 37 infrared transients are especially interesting as they have no optical counterparts whatsoever even with deep limits from Keck and HST. Interpretation of these new discoveries may include (i) the birth of massive binaries that drive shocks in their molecular cloud, (ii) stellar mergers with dusty winds, (iii) 8--10 solar mass stars experiencing e-capture induced collapse in their cores, (iv) enshrouded supernovae, or (v) formation of stellar mass black holes. SPIRITS reveals that the infrared sky is not just as dynamic as the optical sky; it also provides access to unique, elusive signatures in stellar astrophysics.

  18. Infrared Presensitization Photography.

    DTIC Science & Technology

    1984-09-01

    RD-R146 968 INFRARED PREtENSITIZATION PHOTOGRAPHYMU AIR FORCE 1/~WEAPONS LAB KIRTLAND RFB NM J M GERRY SEP 847 RRFWL-TR-84-92 UNCLASSIFIED F/G 14/5... Results ........................................... 144 Discussion ............................................ 149 j8. CONCLUSIONS AND DISCUSSION...62 3.13. Characteristic curve (specular) for 5369 ................ 62 3.14. Results from Naor’s test

  19. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  20. Infrared astronomy takes center stage

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick C.; Gatley, Ian; Hollenbach, David

    1991-01-01

    Characteristics of infrared astronomy, including the ability to detect cool matter, explore the hidden universe, reveal a wealth of spectral lines, and reach back to the beginning of time are outlined. Ground-based infrared observations such as observations in the thermal infrared region are discussed as well as observations utilizing infrared telescopes aboard NASA aircraft and orbiting telescopes. The Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy are described, and it is pointed out that infrared astronomers can penetrate obscuring dust to study stars and interstellar matter throughout the Milky Way galaxy. Application of various infrared instruments to the investigation of stars and planets is emphasized, and focus is placed on the discovery of clouds or disks of particles around mature stars and acquisition of high-resolution spectra of the gaseous and solid materials orbiting on the fringes of the solar system.

  1. Infrared Analysis Using Tissue Paper.

    ERIC Educational Resources Information Center

    Owen, Noel L.; Wood, Steven G.

    1987-01-01

    Described is a quick, easy, and cheap, but effective method of obtaining infrared spectra of solids and nonvolatile liquids by Fourier transform infrared spectroscopy. The technique uses tissue paper as a support matrix. (RH)

  2. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  3. Infrared Studies of AFGL Sources.

    DTIC Science & Technology

    1980-04-14

    displaced. We have recently used a small beam infrared photometer on the Wyoming Infrared Telescope to produce a set of isophotal maps of GL- 2636 which...reported herein, suggest that GL2636 ma1 be similar to the - Lco;plex in N42. 35 11. The Infrared Observation Isophotal maps of GL2636 were produced at

  4. The Cosmic Infrared Background Experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  5. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  6. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  7. Infrared floodlight assembly

    DOEpatents

    Wierzbicki, Julian J.; Chakrabarti, Kirti B.

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  8. Local gravitomagnetism

    NASA Astrophysics Data System (ADS)

    Shahid-Saless, Bahman

    1990-10-01

    In a simple two-body system, the gravitomagnetic components of the metric in the local quasi-inertial frame of one of the bodies is calculated. The local geometry in this frame which is freely falling along the geodesic but is directionally fixed with respect to distant stars is primarily defined by the gravitomagnetic components of the local metric. This metric serves to track down the various contributions from the local and distant source and thus provides further insight to the nature of gravitomagnetism. As a result it is shown that in the quasi-inertial frame geodetic precession is a gravitomagnetic phenomenon. Furthermore a connection between local gravitomagnetic effects and Einstein's principle of equivalence is established.

  9. Thermochromic Infrared Metamaterials.

    PubMed

    Liu, Xinyu; Padilla, Willie J

    2016-02-03

    An infrared artificial thermochromic material composed of a metamaterial emitter and a bimaterial micro-electro-mechanical system is investigated. A differential emissivity of over 30% is achieved between 623 K and room temperature. The passive metamaterial device demonstrates the ability to independently control the peak wavelength and temperature dependence of the emissivity, and achieves thermal emission following a super Stefan-Boltzmann power curve.

  10. Interfacial Infrared Vibrational Spectroscopy.

    DTIC Science & Technology

    1986-07-30

    Tetracyanoethylene Anion Radical (79) The cyclic voltammetry for TCNE in acetonitrile solutions containing LiClO4 and tetra-n-butylammonium...acetonitrile. Modulation potential 0.0 V to +0.800 V vs. Ag/Ag+ reference. 73 Figure 31 Cyclic voltammetry of TCNE in acetonitrile: (a) 0.1 M TBAF; (b...spectroscopic data for species at the electrode solution interface (1,2,3) utilized infrared transmitting germanium electrodes in an internal reflectance

  11. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  12. Infrared Eye: Prototype 2

    DTIC Science & Technology

    2016-06-07

    The Infrared (IR) Eye was developed with support from the National Search and Rescue Secretariat (NSS), in view of improving the efficiency of...airborne search-and rescue operations. The IR Eye concept is based on the human eye and uses simultaneously two fields of view to optimize area coverage and...within the wide field and slaved to the operator’s line of sight by means of an eye -tracking system. The images from both cameras are fused and shown

  13. Infrared Target Recognition

    DTIC Science & Technology

    1991-12-01

    infrared sensors, however, Laser RADAR (LADAR), Synthetic Aperature RADAR (SAR) and Millimeter Wave (MMW) are three other sensors also being tested... inverse FFT. Ev.ry fing but the sharp changes which require higher frequency components can be restored. Based on this reasoning, Fourier com,)onents...very close approximation of an image with an inverse FFT. A 4x7 window was placed around the DC from the FFT image and the 28 components were used as

  14. INFRARED TRANSMITTING MATERIALS.

    DTIC Science & Technology

    The report deals with the infrared transmitting properties of fluorite structure oxides and the heavy metal covalent oxides of bismuth and lead. Transmission data for single crystal ThO2 are given. A theoretical analysis of the vibrational modes , selection rules and IR spectra of the powders are given for alpha-Bi2O3, PbO.6Bi2O3, tetragonal PbO, orthorhombic PbO, and Sr2PbO4. (Author)

  15. Clusters of Galaxies in Infrared Domain

    NASA Astrophysics Data System (ADS)

    Wszołek, B.

    2008-12-01

    Far infrared emission (FIR) of the sky is generally thought to originate mainly in cold dust grains distributed in space. The FIR emission of galaxy clusters may be considered therefore as a tracer of the dust constituent of the intracluster medium. The presence of dust distributed in the intergalactic medium of galaxy clusters is of considerable interest for several studies. Based on IRAS and COBE/DIRBE sky surveys we found excess FIR emission from the sky area occupied by galaxy cluster ZW5897. Very good positional and extensional coincidence between infrared source and ZW5897 may suggest intracluster origin of the emission. We studied the distribution of stars and galaxies in the cluster area using Palomar Survey data to check whether these distributions are affected by local dust. We found that a foreground obscuring cloud, overlapping accidentally the distant cluster ZW5897, may be responsible for some part of the detected FIR emission.

  16. Plasmonically enhanced thermomechanical detection of infrared radiation.

    PubMed

    Yi, Fei; Zhu, Hai; Reed, Jason C; Cubukcu, Ertugrul

    2013-04-10

    Nanoplasmonics has been an attractive area of research due to its ability to localize and manipulate freely propagating radiation on the nanometer scale for strong light-matter interactions. Meanwhile, nanomechanics has set records in the sensing of mass, force, and displacement. In this work, we report efficient coupling between infrared radiation and nanomechanical resonators through nanoantenna enhanced thermoplasmonic effects. Using efficient conversion of electromagnetic energy to mechanical energy in this plasmo-thermomechanical platform with a nanoslot plasmonic absorber integrated directly on a nanobeam mechanical resonator, we demonstrate room-temperature detection of nanowatt level power fluctuations in infrared radiation. We expect our approach, which combines nanoplasmonics with nanomechanical resonators, to lead to optically controlled nanomechanical systems enabling unprecedented functionality in biomolecular and toxic gas sensing and on-chip mass spectroscopy.

  17. Infrared target array development

    NASA Astrophysics Data System (ADS)

    Scott, E. A.

    1980-04-01

    The US Army Yuma Proving Ground (USAYPG) was requested to develop and acquire a series of infrared targets with controllable thermal signatures to support the test and evaluation of the Target Acquisition Designation System/Pilot Night Vision System (TADS/PNVS) subsystems of the Advanced Attack Helicopter (AAH) Fire Control System. Prior to this development effort, no capability beyond the use of real-scene targets existed at USAYPG to provide thermally active targets with characteristic signatures in the infrared band. Three targets were acquired: (1) a detection target; (2) a recognition target; and (3) a laser scoring board. It is concluded that design goals were met and the system was delivered in time to perform its function. The system provides sufficient thermal realism and has advanced the state-of-the-art of infrared imaging system test and evaluation. It is recommended that the Field Equivalent Bar Target (FEBT) system be validated as a potential test standard and that environmentally 'hardened' targets be acquired for continued thermal sight testing.

  18. Space Infrared Telescope Facility science instruments overview

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will contain three cryogenically cooled infrared instruments: the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Infrared Photometer for SIRTF (MIPS). These instruments are sensitive to infrared radiation in the 1.8-1,200 micrometer range. This paper will discuss the three instruments' functional requirements and their accommodation in the SIRTF telescope system.

  19. EVIDENCE FOR 1000 km s{sup -1} MOLECULAR OUTFLOWS IN THE LOCAL ULIRG POPULATION

    SciTech Connect

    Chung, Aeree; Yun, Min S.; Naraynan, Gopal; Heyer, Mark; Erickson, Neal R.

    2011-05-01

    The feedback from galactic outflows is thought to play an important role in shaping the gas content, star formation history, and ultimately the stellar mass function of galaxies. Here we present evidence for massive molecular outflows associated with ultra-luminous infrared galaxies (ULIRGs) in the co-added Redshift Search Receiver {sup 12}CO (1-0) spectrum. Our stacked spectrum of 27 ULIRGs at z = 0.043-0.11 ({nu}{sub rest} = 110-120 GHz) shows broad wings around the CO line with {Delta}V(FWZI) {approx} 2000 km s{sup -1}. Its integrated line flux accounts for up to 25% {+-} 5% of the total CO line luminosity. When interpreted as a massive molecular outflow wind, the associated mechanical energy can be explained by a concentrated starburst with star formation rate (SFR) {>=}100 M{sub sun} yr{sup -1}, which agrees well with their SFR derived from the FIR luminosity. Using the high signal-to-noise stacked composite spectrum, we also probe {sup 13}CO and {sup 12}CN emission in the sample and discuss how the chemical abundance of molecular gas may vary depending on the physical conditions of the nuclear region.

  20. Comparison between highly doped semiconductor and metal infrared antenna

    NASA Astrophysics Data System (ADS)

    Yang, Yanxiang; Lai, Jianjun; Li, Hongwei; Chen, Changhong

    2015-10-01

    Optical antenna can strongly enhance the interaction of light with matter by their ability to localize electromagnetic fields on nano-metric scale. This allows for the engineering of absorption capabilities to visible and infrared detectors with very small active areas. In this study, we focused on the study of metal and semiconductor infrared antennas for nano-bolometer application. The infrared antennas are applied for increasing the effective absorbing across section, enhancing the field intensity at the gap of the antennas and improving the absorbance of bolometer materials located at the gap. We perform numerical simulation of the characteristics of infrared antennas and analysis the influence of various parameters of antennas (length, wide, and material types) and optimized these parameters to achieve the maximum field enhancement for an optical antenna. We also highlight the comparisons of field enhancement of infrared antenna materials between metal and highly doped semiconductor and discuss some practical issues related to the application of infrared antenna for infrared detectors.

  1. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals

    PubMed Central

    Harrison, A. J.; Bilgili, E. A.; Beaudoin, S. P.

    2013-01-01

    The goal of this work was to evaluate the ability of photothermal induced resonance (PTIR) to measure the local infrared absorption spectra of crystalline organic drug nanoparticles embedded within solid matrices. Herein, the first reports of the chemical characterization of sub-100 nm organic crystals are described; infrared spectra of 90 nm griseofulvin particles were obtained, confirming the chemical resolution of PTIR beyond the diffraction limit. Additionally, particle size distributions via dynamic light scattering and PTIR image analysis were found to be similar, suggesting that the PTIR measurements are not significantly affected by inhomogeneous infrared absorptivity of this system. Thus as medical applications increasingly emphasize localized drug delivery via micro/nano-engineered structures, PTIR can be used to unambiguously chemically characterize drug formulations at these length scales. PMID:24171582

  2. Infrared Fiber Optics.

    DTIC Science & Technology

    1979-12-01

    This unit is thca placed in a larger plastic tube which mates with the fiber connectors. Commercial AMP connectors are used that allow the fiber cable...AD-A082 450 HUSHES RESEARCH LABS MALIBU CA pie 20/6 INFRARED FIBER OPTICS.(U) DEC 79 J A HARRINSTON, R TURK, M HENDERSON F1962-R78-C-0109...Laboratories AE.WR r z7 3011 Malibu Canyon Road t 2 Hanscom AFB MA 01731 E I NUBROPAS I5s. OECLASSIFI ATION/DOWNGRADING SN/ A SCHEDULE 16. DISTRI13UTION

  3. Infrared Atmospheric Emission. I.

    DTIC Science & Technology

    1982-03-01

    contract. They are (i) "The 5g Levels of Atomic Nitrogen" AO)YA ii Edward S. Chang and Hajime Sakai J. Phys. B 14, L391 (1981) (ii) "Infrared Emission...At. Idol. Phys. 14 (1981) L391 -L395. printed in Great Bjritain LETTER TO THE EDITOR INC 5g levels of atomic nitrogent Edward S Chang and Hajime Sakai...81/120391 +05$01.30 C) 1981 The Institute of Physics L391 The U.S. Qovermnt is authoried to repoduce and sem tns report. Parmb@a- or ur Uther

  4. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  5. Backyard Infrared Trapping

    NASA Astrophysics Data System (ADS)

    Gibbons, Thomas C.

    2014-12-01

    In this time of concern over climate change due to the atmospheric greenhouse effect,1 teachers often choose to extend relevant classroom work by the use of physical models to test statements. Here we describe an activity in which inexpensive backyard models made from cardboard boxes covered with various household transparent materials allow students to explore how transmission of visible and infrared light can affect the temperature.2 Our basic setup is shown schematically in Fig. 1, in which a black-lined box with a thermometer in contact with the bottom is covered with transparent (to visible light) household materials.

  6. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  7. Frequency selective infrared sensors

    SciTech Connect

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  8. Infrared scanning of damage in leather

    NASA Astrophysics Data System (ADS)

    Luong, Minh Phong; Parganin, Dominique

    1997-04-01

    The paper aims to illustrate the relevant use of infrared thermography as a nondestructive, noncontact and real time technique (a) to observe the progressive damage processes and mechanisms of leather failure, and (b) to detect the occurrence of intrinsic dissipation localization. The parameter, investigated in this paper, is the heat generation due to intrinsic dissipation caused by anelasticity and/or inelasticity of leather. Thanks to the thermomechanical coupling, this useful technique offers the possibility of scanning processes of leather mechanical degradation before reaching the ultimate strength. It allows a measure of the limit of a progressive damaging process under load beyond which leather is destroyed.

  9. Infrared inhibition of embryonic hearts

    NASA Astrophysics Data System (ADS)

    Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.

    2016-06-01

    Infrared control is a new technique that uses pulsed infrared lasers to thermally alter electrical activity. Originally developed for nerves, we have applied this technology to embryonic hearts using a quail model, previously demonstrating infrared stimulation and, here, infrared inhibition. Infrared inhibition enables repeatable and reversible block, stopping cardiac contractions for several seconds. Normal beating resumes after the laser is turned off. The block can be spatially specific, affecting propagation on the ventricle or initiation on the atrium. Optical mapping showed that the block affects action potentials and not just calcium or contraction. Increased resting intracellular calcium was observed after a 30-s exposure to the inhibition laser, which likely resulted in reduced mechanical function. Further optimization of the laser illumination should reduce potential damage. Stopping cardiac contractions by disrupting electrical activity with infrared inhibition has the potential to be a powerful tool for studying the developing heart.

  10. Infrared astronomy from the Moon

    NASA Technical Reports Server (NTRS)

    Lester, Dan

    1988-01-01

    The Moon offers some remarkable opportunities for performing infrared astronomy. Although the transportation overhead can be expected to be very large compared with that for facilities in Earth orbit, certain aspects of the lunar environment should allow significant simplifications in the design of telescopes with background limited performance, at least in some parts of the thermal infrared spectrum. Why leave the Earth to perform infrared astronomy is addressed as is the reasons for going all the way to the Moon for its environment.

  11. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  12. Adaptive infrared target detection

    NASA Astrophysics Data System (ADS)

    McBride, Jonah C.; Stevens, Mark R.; Eaton, Ross S.; Snorrason, Magnus S.

    2004-09-01

    Automatic Target Recognition (ATR) algorithms are extremely sensitive to differences between the operating conditions under which they are trained and the extended operating conditions (EOCs) in which the fielded algorithms are tested. These extended operating conditions can cause a target's signature to be drastically different from training exemplars/models. For example, a target's signature can be influenced by: the time of day, the time of year, the weather, atmospheric conditions, position of the sun or other illumination sources, the target surface and material properties, the target composition, the target geometry, sensor characteristics, sensor viewing angle and range, the target surroundings and environment, and the target and scene temperature. Recognition rates degrade if an ATR is not trained for a particular EOC. Most infrared target detection techniques are based on a very simple probabilistic theory. This theory states that a pixel should be assigned the label of "target" if a set of measurements (features) is more likely to have come from an assumed (or learned) distribution of target features than from the distribution of background features. However, most detection systems treat these learned distributions as static and they are not adapted to changing EOCs. In this paper, we present an algorithm for assigning a pixel the label of target or background based on a statistical comparison of the distributions of measurements surrounding that pixel in the image. This method provides a feature-level adaptation to changing EOCs. Results are demonstrated on infrared imagery containing several military vehicles.

  13. Broadband Infrared Heterodyne Spectrometer: Final Report

    SciTech Connect

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  14. An Aromatic Inventory of the Local Volume

    NASA Astrophysics Data System (ADS)

    Marble, A. R.; Engelbracht, C. W.; van Zee, L.; Dale, D. A.; Smith, J. D. T.; Gordon, K. D.; Wu, Y.; Lee, J. C.; Kennicutt, R. C.; Skillman, E. D.; Johnson, L. C.; Block, M.; Calzetti, D.; Cohen, S. A.; Lee, H.; Schuster, M. D.

    2010-05-01

    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (also commonly referred to as polycyclic aromatic hydrocarbon emission) for a statistically complete sample of star-forming galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the Infrared Array Camera 8 μm flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer Infrared Spectrograph spectra and equivalent photometry. A potential factor of 2 improvement could be realized with suitable 5.5 μm and 10 μm photometry, such as what may be provided in the future by the James Webb Space Telescope. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL luminosity due to five strong aromatic features in the 8 μm complex to be 2.47 × 1010 L sun with a mean volume density of 8.8 × 106 L sun Mpc-3. Twenty-four of the LVL galaxies, corresponding to a luminosity cut at MB = -18.22, account for 90% of the aromatic luminosity. Using oxygen abundances compiled from the literature for 129 of the 258 LVL galaxies, we find a correlation between metallicity and the aromatic-to-total infrared emission ratio but not the aromatic-to-total 8 μm dust emission ratio. A possible explanation is that metallicity plays a role in the abundance of aromatic molecules relative to the total dust content, but other factors, such as star formation and/or the local radiation field, affect the excitation of those molecules.

  15. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  16. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  17. Passive infrared ranging

    NASA Astrophysics Data System (ADS)

    Leonpacher, N. K.

    1983-12-01

    The range of an infrared source was estimated by analyzing the atmospheric absorption by CO2 in several wavelength intervals of its spectrum. These bandpasses were located at the edge of the CO2 absorption band near 2300 1/cm (4.3 micron). A specific algorithm to predict range was determined based on numerous computer generated spectra. When tested with these spectra, range estimates within 0.8 km were obtained for ranges between 0 and 18 km. Accuracy decreased when actual source spectra were tested. Although actual spectra were available only for ranges to 5 km, 63% of these spectra resulted in range estimates that were within 1.6 km of the actual range. Specific spectral conditions that affected the range predictions were found. Methods to correct the deficiencies were discussed. Errors from atmospheric variations, and the effects of background noise, were also investigated. Limits on accuracy and range resolution were determined.

  18. Extragalactic infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Joseph, R. D.; Wright, G. S.; Wade, R.; Graham, J. R.; Gatley, I.; Prestwich, A. H.

    1987-01-01

    The spectra of galaxies in the near infrared atmospheric transmission windows are explored. Emission lines were detected due to molecular hydrogen, atomic hydrogen recombination lines, a line attributed to FEII, and a broad CO absorption feature. Lines due to H2 and FEII are especially strong in interacting and merging galaxies, but they were also detected in Seyferts and normal spirals. These lines appear to be shock excited. Multi-aperture measurements show that they emanate from regions as large as 15 kpc. It is argued that starbursts provide the most plausible and consistent model for the excitation of these lines, but the changes of relative line intensity of various species with aperture suggest that other excitation mechanisms are also operating in the outer regions of these galaxies.

  19. Modulated infrared radiant source

    NASA Technical Reports Server (NTRS)

    Stewart, W. F.; Edwards, S. F.; Vann, D. S.; Mccormick, R. F.

    1981-01-01

    A modulated, infrared radiant energy source was developed to calibrate an airborne nadir-viewing pressure modulated radiometer to be used to detect from Earth orbit trace gases in the troposphere. The technique used an 8 cm long, 0.005 cm diameter platinum-iridium wire as an isothermal, thin line radiant energy source maintained at 1200 K. A + or - 20 K signal, oscillating at controllable frequencies from dc to 20 Hz, was superimposed on it. This periodic variation of the line source energy was used to verify the pressure modulated radiometer's capability to distinguish between the signal variations caused by the Earth's background surface and the signal from the atmospheric gases of interest.

  20. Lateral conduction infrared photodetector

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  1. Polarimetry in the infrared.

    NASA Astrophysics Data System (ADS)

    Deming, D.; Hewagama, T.; Jennings, D. E.; Wiedemann, G.

    1991-01-01

    Polarimetry at infrared (IR) wavelengths is advantageous because the larger Zeeman splitting of IR lines results in larger net solar polarization signal. Also, oblique reflections at telescope mirror surfaces have less effect, due to the increase in the index of refraction for Aluminum films at IR wavelengths. Recent developments in IR detector arrays, and the availability of lines formed at altitudes from the deep photosphere (e.g. 1.56 μm Fe I) to the base of the chromosphere (12 μm) represent additional motivation to pursue polarimetry in the IR. Recent measurements using a CdS quarterwave plate and Ge thin-film linear polarizer successfully obtained Stokes I.Q.U. and V profiles of the 12.32 μm Mg I line at high spectral resolution. A significant result from these measurements is the finding that the 12 μm line is essentially 100% polarized in sunspots.

  2. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  3. Spaceborne Infrared Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas; Macenka, Steven; Kampe, Thomas

    2004-01-01

    A report describes the development of the spaceborne infrared atmospheric sounder (SIRAS) - a spectral imaging instrument, suitable for observing the atmosphere of the Earth from a spacecraft, that utilizes four spectrometers to cover the wavelength range of 12 to 15.4 m with a spectral resolution that ranges between 1 part per 900 and 1 part per 1,200 in wavelength. The spectrometers are operated in low orders to minimize filtering requirements. Focal planes receive the dispersed energy and provide a spectrum of the scene. The design of the SIRAS combines advanced, wide-field refractive optics with high-dispersion gratings in a solid-state (no moving parts), diffraction-limited optical system that is the smallest such system that can be constructed for the specified wavelength range and resolution. The primary structure of the SIRAS has dimensions of 10 by 10 by 14 cm and has a mass of only 2.03 kg

  4. Near-infrared imaging spectrometer onboard NEXTSat-1

    NASA Astrophysics Data System (ADS)

    Jeong, Woong-Seob; Park, Sung-Joon; Moon, Bongkon; Lee, Dae-Hee; Pyo, Jeonghyun; Park, Won-Kee; Park, Youngsik; Kim, Il-Joong; Ko, Kyeongyeon; Lee, Dukhang; Kim, Min Gyu; Kim, Minjin; Ko, Jongwan; Shin, Goo-Hwan; Chae, Jangsoo; Matsumoto, Toshio

    2016-07-01

    The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the first next generation of small satellite (NEXTSat-1) in Korea. The spectro-photometric capability in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the NISS will perform the large areal imaging spectroscopic survey for astronomical objects and low background regions. We have paid careful attention to reduce the volume and to increase the total throughput. The newly implemented off-axis optics has a wide field of view (2° x 2°) and a wide wavelength range from 0.9 to 3.8μm. The mechanical structure is designed to consider launching conditions and passive cooling of the telescope. The compact dewar after relay-lens module is to operate the infrared detector and spectral filters at 80K stage. The independent integration of relay-lens part and primary-secondary mirror assembly alleviates the complex alignment process. We confirmed that the telescope and the infrared sensor can be cooled down to around 200K and 80K, respectively. The engineering qualification model of the NISS was tested in the space environment including the launch-induced vibration and shock. The NISS will be expected to demonstrate core technologies related to the development of the future infrared space telescope in Korea.

  5. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  6. Martian Dunes in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of six images taken by the camera system on NASA's Mars Odyssey, shows examples of the daytime temperature patterns of martian dunes seen by the infrared camera. The dunes can be seen in this daytime image becaus