Sample records for local vertical datums

  1. A Gravimetric Geoid Model for Vertical Datum in Canada

    NASA Astrophysics Data System (ADS)

    Veronneau, M.; Huang, J.

    2004-05-01

    The need to realize a new vertical datum for Canada dates back to 1976 when a study group at Geodetic Survey Division (GSD) investigated problems related to the existing vertical system (CGVD28) and recommended a redefinition of the vertical datum. The US National Geodetic Survey and GSD cooperated in the development of a new North American Vertical Datum (NAVD88). Although the USA adopted NAVD88 in 1993 as its datum, Canada declined to do so as a result of unexplained discrepancies of about 1.5 m from east to west coasts (likely due to systematic errors). The high cost of maintaining the vertical datum by the traditional spirit leveling technique coupled with budgetary constraints has forced GSD to modify its approach. A new attempt (project) to modernize the vertical datum is currently in process in Canada. The advance in space-based technologies (e.g. GPS, satellite radar altimetry, satellite gravimetry) and new developments in geoid modeling offer an alternative to spirit leveling. GSD is planning to implement, after stakeholder consultations, a geoid model as the new vertical datum for Canada, which will allow space-based technology users access to an accurate and uniform datum all across the Canadian landmass and surrounding oceans. CGVD28 is only accessible through a limited number of benchmarks, primarily located in southern Canada. The new vertical datum would be less sensitive to geodynamic activities (post-glacial rebound and earthquake), local uplift and subsidence, and deterioration of the benchmarks. The adoption of a geoid model as a vertical datum does not mean that GSD is neglecting the current benchmarks. New heights will be given to the benchmarks by a new adjustment of the leveling observations, which will be constrained to the geoid model at selected stations of the Active Control System (ACS) and Canadian Base Network (CBN). This adjustment will not correct vertical motion at benchmarks, which has occurred since the last leveling observations. The presentation provides an overview of the "Height Modernization" project, and discusses the accuracy of the existing geoid models in Canada.

  2. Evaluation of the Geopotential value for the Local Vertical Datum of China using GRACE/GOCE GGMs and GPS/Leveling Data

    NASA Astrophysics Data System (ADS)

    He, Lin; Li, Jiancheng; Chu, Yonghai; Zhang, Tengxu

    2017-04-01

    National height reference systems have conventionally been linked to the coastal local mean sea level, observed at one tide gauge, such as the China national height datum 1985. Due to the effect of the local sea surface topography, the reference level surface of local datum is inconsistent with the global datum or other local datum. In order to unify or connect the local datum to the global height datum, it is necessary to obtain the zero-height geopotential value of local datum or the height offset with respect to the global datum. The GRACE and GOCE satellite mission are promising for purposes of unification of local vertical datums because they have brought a significant improvement in modeling of low-frequency or rather medium-frequency part of the Earth's static gravity field in the past ten years. The focus of this work is directed to the evaluation of most available Global Geopotential Models (GGMs) from GOCE and GRACE, both satellite only as well as combined ones. From the evaluation with the 649 GPS/Levelling benchmarks (BMs) in China, the GOCE/GRACE GGMs provide the accuracy at 42-52cm level, up to their max degree and order. The latest release 5 DIR, TIM GGMs improve the accuracies by 6-10cm compared to the release 1 models. The DIR_R1 is based on the fewer GOCE data performs equally well with the DIR_R4 and DIR_R5 model, this is attributed to the fact that during its development which used a priori information from EIGEN-51C. The zero-height geopotential value W0LVD for the China Local Vertical Datum (LVD) is 62636855.1606m2s-2 from the originally GOCE/GRACE GGMs. Taking into account the GPS/Levelling data contains the full spectral information, and the GOCE-only or GRACE-GOCE combined model are limited to the long wavelengths. To improve the accuracy of the GGMs, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. The effect of GRACE/GOCE omission error is investigated by extending the models with the high-resolution gravity field model EGM2008. In China, the effect of the GRACE/GOCE GGMs omission error is at the decimeter level. The combined GGMs (up to 2160 degree and order) could provide an accuracy at 20cm level, which is better than that from EGM2008. Meanwhile, if an appropriate degree and order is chosen for the GOCE-only or GRACE-GOCE combined GGMs to connect with the EGM2008, the extended GGMs provide an accuracy at 16cm level. From the extended GGMs, the geopotential value W0LVD determined for the China local vertical datum is 62636853.4351 m2s-2 indicates a bias of about 2.5649 m2/s-2 compared to the conventional value of 62,636,856.0 m2s-2. This is support by National key research and development program No:2016YFB0501702. Keywords: Global Geopotential Models; GRACE; GOCE; GPS/Levelling; zero-height geopotential

  3. 75 FR 43479 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    .... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean... Evelyns Drive. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above.... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean...

  4. 76 FR 49676 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... shoreline......... *26 City of Deltona. * National Geodetic Vertical Datum. + North American Vertical Datum... Boulevard. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground... feet +1000 upstream of Southeast 45th Street. * National Geodetic Vertical Datum. + North American...

  5. 75 FR 29246 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    .... Pacific Railroad. Just upstream of State None +2352 Highway 19. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...

  6. 75 FR 59095 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Mile 673........ +202 * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in...,434 upstream of Northeast 24th Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES...

  7. 76 FR 43923 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... downstream of Big Bethel +9 Road. Approximately 20 feet upstream of the confluence +22 with Newmarket Creek... Approximately 30 feet downstream of I-64 +22 *National Geodetic Vertical Datum. +North American Vertical Datum... Center Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above...

  8. 77 FR 6976 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to... Unincorporated Areas of approximately 0.5 mile Taney County. upstream of the White River confluence. Big Shoals... confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground...

  9. Vertical datum conversion process for the inland and coastal gage network located in the New England, Mid-Atlantic, and South Atlantic-Gulf hydrologic regions

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.; Noll, Michael L.

    2017-03-07

    Datum conversions from the National Geodetic Vertical Datum of 1929 to the North American Vertical Datum of 1988 among inland and coastal gages throughout the hydrologic regions of New England, the Mid-Atlantic, and the South Atlantic-Gulf have implications among river and storm surge forecasting, general commerce, and water-control operations. The process of data conversions may involve the application of a recovered National Geodetic Vertical Datum of 1929–North American Vertical Datum of 1988 offset, a simplistic datum transformation using VDatum or VERTCON software, or a survey, depending on a gaging network datum evaluation, anticipated uncertainties for data use among the cooperative water community, and methods used to derive the conversion. Datum transformations from National Geodetic Vertical Datum of 1929 to North American Vertical Datum of 1988 using VERTCON purport errors of ± 0.13 foot at the 95 percent confidence level among modeled points, claiming more consistency along the east coast. Survey methods involving differential and trigonometric leveling, along with observations using Global Navigation Satellite System technology, afford a variety of approaches to establish or perpetuate a datum during a survey. Uncertainties among leveling approaches are generally < 0.1 foot, and and Global Navigation Satellite System approaches may be categorized with uncertainties of ≤0.1 foot for a Level I quality category and ≥0.1 foot for Level II or III quality categories (defined by the U.S. Geological Survey) by observation and review of experienced practice. The conversion process is initiated with an evaluation of the inland and coastal gage network datum, beginning with altitude datum components and the history of those components queried through the U.S. Geological Survey Groundwater Site Inventory database. Subsequent edits to the Groundwater Site Inventory database may be required and a consensus reached among the U.S. Geological Survey Water Science Centers to identify the outstanding workload categorized as in-office datum transformations or offset applications versus out-of-office survey efforts. Datum conversions or datum establishment for the inland or coastal gaging network should meet datum uncertainty requirements among other Federal agencies. Datum uncertainty requirements are ±0.25 foot for U.S. Army Corps of Engineers water-control or construction projects and ±0.16 foot for Federal Emergency Management Agency field surveys and checkpoint surveys used for mapping. River level forecasts generally are defined as ± 0.10 foot among the National Oceanic and Atmospheric Administration–National Weather Service. Collaboration and communication among the cooperative water community is necessary during a datum conversion or datum change. Datum notification time-change requirements set by the National Oceanic and Atmospheric Administration–National Weather Service vary from 30 to 120 days, depending on datum conversion or datum-change case scenarios. Notification times associated with these case scenarios may be useful to the National Oceanic and Atmospheric Administration–National Weather Service and U.S. Army Corps of Engineers, because their daily operations are time sensitive, unlike the notification time change requirements of other entities that make up the cooperative water community. At the time of this writing, a future geopotential datum resulting from Gravity for the Redefinition of the American Vertical Datum is anticipated in 2022. A future version of VDatum and VERTCON is anticipated to provide a transformation among North American Vertical Datum of 1988 elevations to the new geopotential datum.

  10. 77 FR 26959 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Creek confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet... County, Indiana, and Incorporated Areas Docket No.: FEMA-B-1171 Big Walnut Creek Approximately 845 feet... feet upstream +692 of Houck Road (North County Road 25 East). * National Geodetic Vertical Datum...

  11. CGVD2013: The Geoid-based Vertical Datum in Canada

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; Veronneau, M.; Huang, J.

    2016-12-01

    In November 2013, Canada established the Canadian Geodetic Vertical Datum of 2013 (CGVD2013). This new datum is defined by an equipotential surface (Wo =62,636,856 m2/s2) and realized by a geoid model (CGG2013), making it compatible with Global Navigation Satellite Systems (GNSS) for positioning. The adoption of CGVD2013 represents a major shift from the old vertical datum (CGVD28), which was defined by the mean sea level at selected tide gauges and propagated in land by precise levelling measurements. This new vertical datum represents also a major impact for the users, who have relied on the access to benchmarks for the last 100 years to conduct their surveys. The presentation will not only discuss the advantages for Canada to moving to a geoid-based datum, but also discuss the challenges in maintaining such as vertical datum in a period where technology is moving rapidly and data are coming in large numbers allowing the possibility of a quick turnaround in the release of new realisations of the geoid-based vertical datum. This is quite different as when benchmarks were re-surveyed at a 20- to 30-year cycle or sometime never revisited again, resulting in heights that were very consistent over many years (even though benchmarks are moving up and down). The question is how to fulfil users who want to live in a static world as much as possible, but simultaneously updating the vertical datum to assure utmost accuracy for scientific and technological requirements. Consequently, the presentation will give a look at the future American height system, as the US National Geodetic Survey is in the process of updating by 2022 the geometric and height reference systems, being NAD 83 and NAVD 88, respectively.

  12. 75 FR 16749 - Federal Geospatial Summit To Provide Information on Upcoming Improvements To the National Spatial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ...), Including the Replacement of the North American Datum of 1983 (NAD 83) and the North American Vertical Datum... Datum of 1983 (NAD 83), the North American Vertical Datum of 1988 (NAVD 88), and other state and... effort to support these rapid changes in positioning technologies, NGS has adopted a plan to replace NAD...

  13. Unification of height systems in the frame of GGOS

    NASA Astrophysics Data System (ADS)

    Sánchez, Laura

    2015-04-01

    Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.

  14. Unification of Intercontinental Height Systems based on the Fixed Geodetic Boundary Value Problem - A Case Study in Spherical Approximation

    NASA Astrophysics Data System (ADS)

    Grombein, T.; Seitz, K.; Heck, B.

    2013-12-01

    In general, national height reference systems are related to individual vertical datums defined by specific tide gauges. The discrepancy of these vertical datums causes height system biases that range in an order of 1-2 m at a global scale. Continental height systems can be connected by spirit leveling and gravity measurements along the leveling lines as performed for the definition of the European Vertical Reference Frame. In order to unify intercontinental height systems, an indirect connection is needed. For this purpose, global geopotential models derived from recent satellite missions like GOCE provide an important contribution. However, to achieve a highly-precise solution, a combination with local terrestrial gravity data is indispensable. Such combinations result in the solution of a Geodetic Boundary Value Problem (GBVP). In contrast to previous studies, mostly related to the traditional (scalar) free GBVP, the present paper discusses the use of the fixed GBVP for height system unification, where gravity disturbances instead of gravity anomalies are applied as boundary values. The basic idea of our approach is a conversion of measured gravity anomalies to gravity disturbances, where unknown datum parameters occur that can be associated with height system biases. In this way, the fixed GBVP can be extended by datum parameters for each datum zone. By evaluating the GBVP at GNSS/leveling benchmarks, the unknown datum parameters can be estimated in a least squares adjustment. Beside the developed theory, we present numerical results of a case study based on the spherical fixed GBVP and boundary values simulated by the use of the global geopotential model EGM2008. In a further step, the impact of approximations like linearization as well as topographic and ellipsoidal effects is taken into account by suitable reduction and correction terms.

  15. Levels at streamflow gaging stations

    USGS Publications Warehouse

    Kennedy, E.J.

    1988-01-01

    This manual establishes the surveying procedures for setting gages at a streamflow gaging station to datum and for checking them periodically for errors caused by vertical movement of the gage-supporting structures. The surveying terms and concepts used are explained; and the details of testing, adjusting, and operating the instruments are outlined. Notekeeping, adjusting level circuits, checking gages, summarizing results, locating the nearest National Geodetic Vertical Datum of 1929 bench mark, and relating the gage datum to the national datum are described.

  16. Intercontinental height datum connection with GOCE and GPS-levelling data

    NASA Astrophysics Data System (ADS)

    Gruber, T.; Gerlach, C.; Haagmans, R.

    2012-12-01

    In this study an attempt is made to establish height system datum connections based upon a gravity field and steady-state ocean circulation explorer (GOCE) gravity field model and a set of global positioning system (GPS) and levelling data. The procedure applied in principle is straightforward. First local geoid heights are obtained point wise from GPS and levelling data. Then the mean of these geoid heights is computed for regions nominally referring to the same height datum. Subsequently, these local mean geoid heights are compared with a mean global geoid from GOCE for the same region. This way one can identify an offset of the local to the global geoid per region. This procedure is applied to a number of regions distributed worldwide. Results show that the vertical datum offset estimates strongly depend on the nature of the omission error, i.e. the signal not represented in the GOCE model. For a smooth gravity field the commission error of GOCE, the quality of the GPS and levelling data and the averaging control the accuracy of the vertical datum offset estimates. In case the omission error does not cancel out in the mean value computation, because of a sub-optimal point distribution or a characteristic behaviour of the omitted part of the geoid signal, one needs to estimate a correction for the omission error from other sources. For areas with dense and high quality ground observations the EGM2008 global model is a good choice to estimate the omission error correction in theses cases. Relative intercontinental height datum offsets are estimated by applying this procedure between the United State of America (USA), Australia and Germany. These are compared to historical values provided in the literature and computed with the same procedure. The results obtained in this study agree on a level of 10 cm to the historical results. The changes mainly can be attributed to the new global geoid information from GOCE, rather than to the ellipsoidal heights or the levelled heights. These historical levelling data are still in use in many countries. This conclusion is supported by other results on the validation of the GOCE models.

  17. Levels at streamflow gaging stations

    USGS Publications Warehouse

    Kennedy, E.J.

    1990-01-01

    This manual establishes the surveying procedures for (1) setting gages at a streamflow gaging station to datum and (2) checking the gages periodically for errors caused by vertical movement of the structures that support them. Surveying terms and concepts are explained, and procedures for testing, adjusting, and operating the instruments are described in detail. Notekeeping, adjusting level circuits, checking gages, summarizing results, locating the nearest National Geodetic Vertical Datum of 1929 bench mark, and relating the gage datum to the national datum are also described.

  18. 76 FR 1121 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... approximately 410 feet of Lewis County. upstream of U.S. Route 61 Business. * National Geodetic Vertical Datum... intersection of Impact Drive and FM Road 2404. * National Geodetic Vertical Datum. + North American Vertical..., Environmental Consideration. An environmental impact assessment has not been prepared. Regulatory Flexibility...

  19. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  20. Alaska Tidal Datum Portal - Alaska Tidal Datum Calculator | Alaska Division

    Science.gov Websites

    Coastal Hazards Program Guide to Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Portal main content Alaska Tidal Datum Portal Unambiguous vertical datums in the coastal environment are projects to ensure protection of human life, property, and the coastal environment. January 2017 - Update

  1. 78 FR 43821 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ............ +902 Unincorporated Areas of LaGrange County. Big Long Lake Entire shoreline......... +957 Unincorporated Areas of LaGrange County. Big Turkey Lake Entire shoreline within +932 Unincorporated Areas of... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...

  2. 77 FR 71702 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... Rock +3405 Creek (Lower) confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES...

  3. 78 FR 29652 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ..., Louisiana, and Incorporated Areas Docket No.: FEMA-B-1110 Big Creek Just upstream of Burke +78... confluence with +79 Unincorporated Areas of Big Creek. Richland Parish. Just upstream of Smalling +85 Road.... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [supcaret...

  4. 77 FR 41323 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    .... Approximately 800 feet +7655 upstream of Virginia Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter..., Illinois, and Incorporated Areas Docket No.: FEMA-B-1197 Big Rock Creek Approximately 1.68 miles +648...

  5. 76 FR 13569 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ..., FEMA published in the Federal Register a proposed rule that included erroneous Base Flood Elevation... for the proposed BFE of 1,290 feet, referenced to the North American Vertical Datum of 1988, should... Vertical Datum of 1988, should have located the proposed BFE as being approximately 0.24 mile upstream of...

  6. 76 FR 14359 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ..., FEMA published in the Federal Register a proposed rule that included erroneous Base Flood Elevation... description for the proposed BFE of 1,032 feet, referenced to the North American Vertical Datum of 1988... description for the proposed BFE of 1,049 feet, referenced to the North American Vertical Datum of 1988...

  7. 77 FR 49373 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    .... Macon Bayou Just upstream of Private +108 City of Eudora. Road. Just upstream of Verser +108 Road... Areas of Road. Logan County. Just downstream of Newton +563 Road. Just upstream of West 9th +621 Street... Road. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground...

  8. Network global navigation satellite system surveys to harmonize American and Canadian datum for the Lake Champlain Basin

    USGS Publications Warehouse

    Flynn, Robert H.; Rydlund, Jr., Paul H.; Martin, Daniel J.

    2016-03-08

    Lake-gage water-surface elevations determined during the 3 days of surveys were converted to water-surface elevations referenced to the North American Vertical Datum of 1988 by using calculated offsets and historical water-surface elevations. In this report, an “offset” refers to the adjustment that needs to be applied to published data from a particular gage to produce elevation data referenced to the North American Vertical Datum of 1988. Offsets presented in this report can be used in the evaluation of water-surface elevations in a common datum for Lake Champlain and the Richelieu River. In addition, the water-level data referenced to the common datum (as determined from the offsets) may be used to calibrate flow models and support future modeling studies developed for Lake Champlain and the Richelieu River.

  9. Spectral characteristics of the Hellenic vertical network - Validation over Central and Northern Greece using GOCE/GRACE global geopotential models

    NASA Astrophysics Data System (ADS)

    Andritsanos, Vassilios D.; Vergos, George S.; Grigoriadis, Vassilios N.; Pagounis, Vassilios; Tziavos, Ilias N.

    2014-05-01

    The Elevation project, funded by the action "Archimedes III - Funding of research groups in T.E.I.", co-financed by the E.U. (European Social Fund) and national funds under the Operational Program "Education and Lifelong Learning 2007-2013" aims mainly to the validation of the Hellenic vertical datum. This validation is carried out over two areas under study, one in Central and another in Northern Greece. During the first stage of the validation process, satellite-only as well as combined satellite-terrestrial models of the Earth's geopotential are used. GOCE and GRACE satellite information is compared against recently measured GPS/Levelling observations at specific benchmarks of the vertical network in Attiki (Central Greece) and Thessaloniki (Northern Greece). A spectral enhancement approach is followed where, given the GOCE/GRACE GGM truncation degree, EGM2008 is used to fill-in the medium and high-frequency content along with RTM effects for the high and ultra high part. The second stage is based on the localization of possible blunders of the vertical network using the spectral information derived previously. The undoubted accuracy of the contemporary global models at the low frequency band leads to some initial conclusions about the consistency of the Hellenic vertical datum.

  10. The Impact of Sea Level Rise on Geodetic Vertical Datum of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Din, A. H. M.; Abazu, I. C.; Pa'suya, M. F.; Omar, K. M.; Hamid, A. I. A.

    2016-09-01

    Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015) for tidal data and 23 years (from 1993 to 2015) for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD) is evaluated in this study. the difference between MSL computed from 10 years (1984 - 1993) and 32 years (1984 - 2015) tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  11. Upcoming replacements for NAD83, NAVD88 and IGLD85

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Snay, R.

    2009-05-01

    The National Geodetic Survey (NGS), part of the National Oceanic and Atmospheric Administration (NOAA) is responsible for defining, maintaining and providing access to the National Spatial Reference System (NSRS) for the United States. The NSRS is the official system to which all civil federal mapping agencies should refer, and contains, amongst other things, the official geopotential (historically "vertical") datum of NAVD 88, the 3-D geometric reference system (historically "horizontal datum") of NAD 83 and great lakes datum (IGLD 85). Although part of the United States NSRS, all three of these datums have been created through international partnerships across North America. Unfortunately, time has shown both the systematic errors existent within these datums, as well as the inherent weaknesses of relying exclusively on passive monuments to define and provide access to these datums. In recognition of these issues, the National Geodetic Survey has issued a "10 year plan", available online, which outlines steps which will be taken to update NAD 83, NAVD 88 and IGLD 85 concurrently around the year 2018. The primary source of success will be in the refinement of the CORS network and the upcoming execution of the GRAV-D project (Gravity for the Re-definition of the American Vertical Datum). Conversations are ongoing with colleagues in Canada, Mexico, Central America and the Caribbean in order to coordinate all of these efforts across the entire continent. The largest changes expected to occur are the removal of over 2 meters of non-geocentricity in NAD 83; the removal of decimeters of bias and over a meter of tilt in NAVD 88; the addition of the ability to track crustal motions (subsidence, tectonics, etc) in the datums; the removal of leveling as a tool for long-line height differencing; the use of a "best" geoid as the orthometric height reference surface; the addition of datum velocities (motions of the 3-D geometric reference system origin and motions of the geoid); and the use of GNSS technology as the way to access both orthometric and dynamic heights in the vertical datum. This talk will outline the broad plan of action and invite further collaboration along these lines.

  12. 76 FR 77208 - Affirmation of Vertical Datum for Surveying and Mapping Activities for the Islands of St. Croix...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Datum for Surveying and Mapping Activities for the Islands of St. Croix, St. John, and St. Thomas... datum for surveying and mapping activities for the islands of St. Croix, St. John, and St. Thomas of the... by other Federal surveying and mapping agencies on St. Croix, St. John, and St. Thomas, with the...

  13. Simulator Design and Instructional Features for Carrier Landing: A Field Transfer Study

    DTIC Science & Technology

    1986-06-18

    the datum bars. This light is known as the meatball . It is visible to the pilot through the center lens and is seen as level with the datum bars when... meatball is seen through higher or lower Fresnel lenses to give the appearance of moving vertically above or below the line of the datum bars Figure A-i...degrees) by keeping the meatball level with the datum bars, so that a hook attached to the ý:ail of the aircraft will contact the landing deck midway

  14. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  15. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the correction applied to published data from a particular streamgage to produce elevation data referenced to a specified vertical datum.Offsets were applied to water-level data from surveyed streamgages to further evaluate the accuracy and utility of updated reference mark elevations presented in this report. Daily mean water levels from active streamgages surveyed in this study were converted to water-surface elevations referenced to the Canadian Geodetic Vertical Datum of 2013. Graphical comparisons of water-surface elevations for streamgages in Namakan Reservoir, Rainy Lake, and selected rivers are presented (referencing the Canadian Geodetic Vertical Datum of 2013). Offsets presented in this report can be used in the evaluation of rule curves and in flood damage curves that fully assess the benefits of one regulation approach over another. In addition, offsets may be used to calibrate hydraulic models developed for four narrows that connect lakes of Namakan Reservoir, refine digital elevation models, and support modeling studies designed to assess the effects of rule curves on aquatic vegetation, benthic invertebrates, northern pike, and walleye.

  16. Effect of the Earth's inner structure on the gravity in definitions of height systems

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified compared to the corresponding surface values mainly due to topographic elevation and terrain geometry as well as the presence of large glaciers in polar regions. Changes of the vertical gravity gradient within the topography attributed to the masses distributed below the geoid (dominated mainly by the isostatic signature and the long-wavelength gravitational signature of deep mantle density heterogeneities) are, on the other hand, relatively small. Despite differences between the normal and normal-orthometric heights could directly be assessed from the surface gravity disturbances only when taken along leveling lines with information about the spirit leveling height differences, our results indicate that differences between these two height systems can be significant.

  17. 76 FR 62006 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and... above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to...

  18. Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan

    NASA Astrophysics Data System (ADS)

    Yen-Ti, C.; Hwang, C.

    2017-12-01

    Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.

  19. A New Method of Providing Communities With High-Resolution Maps of Present and Future Inundation Pathways: Two Examples From Massachusetts

    NASA Astrophysics Data System (ADS)

    Borrelli, M.; Mague, S. T.; Smith, T. L.

    2015-12-01

    A new method of mapping storm-tide (inundation) pathways and linking those data with tidal elevations in real-time for local managers is being developed. Separate, ongoing studies in two coastal towns in Massachusetts have demonstrated the strengths of this method. High-resolution lidar datasets are imported into 3D data visualization software and water levels are raised incrementally from the highest spring tide of the year to the storm of record +1 m. This range was identified to include 'nuisance flooding' as well as present and future inundation pathways not yet observed by local authorities caused by storms superimposed on projected sea level rise. Potential storm-tide pathways are identified using Lidar data but are then verified with extensive fieldwork using RTK-GPS instruments (tested vertical accuracy of 4.9 cm at 95%) to overcome the vertical uncertainty associated with Lidar data. The fieldwork serves two purposes, first is to field check the lidar data with the highest resolution instrument available and, second to verify and document the presence or absence of a storm-tide pathway. Having developed the map of storm tide pathways within a GIS environment referenced to a geodetic datum (NAVD88), a tide gauge or staff is installed in the town's harbor or other sheltered coastal area and the elevations of all storm tide pathways are then referenced to the local tidal datum. The benefit here is three-fold. First, local officials can use the high-resolution data set that is tied to a local tidal datum to autonomously monitor predicted storm surges and be prepared for inundation at sites prior to flooding. Second, storm-tide pathways that have heretofore never been inundated can be identified and steps can be taken to remove or minimize flooding hazards. Finally, identification of present and future storm tide pathways can be used to prioritize and budget proactive solutions in response to increases in chronic, nuisance and more frequent flooding associated with sea level rise and climate change. This method does not rely on costly numerical models that are often too coarsely gridded to be of use on a street-by-street basis. Lidar data are publicly available in many coastal areas and can be used with little training to new or already existing local or regional GIS staff.

  20. Results from the ESA-funded project 'Height System Unification with GOCE'

    NASA Astrophysics Data System (ADS)

    Sideris, M. G.; Rangelova, E. V.; Gruber, T.; Rummel, R. F.; Woodworth, P. L.; Hughes, C. W.; Ihde, J.; Liebsch, G.; Schäfer, U.; Rülke, A.; Gerlach, C.; Haagmans, R.

    2013-12-01

    The paper summarizes the main results of a project, supported by the European Space Agency, whose main goal is to identify the impact of GOCE gravity field models on height system unification. In particular, the Technical University Munich, the University of Calgary and the National Oceanography Centre in Liverpool, together with the Bavarian Academy of Sciences, the Federal German Agency for Cartography and Geodesy, and the Geodetic Surveys of Canada, USA and Mexico, have investigated the role of GOCE-derived gravity and geoid models for regional and global height datum connection. GOCE provides three important components of height unification: highly accurate potential differences (geopotential numbers), a global geoid- or quasi-geoid-based reference surface for elevations that is independent of inaccuracies and inconsistencies of local and regional data, and a consistent way to refer to the same datum all the relevant gravimetric, topographic and oceanographic data. We introduce briefly the methodology that has been applied in order to unify height system in North America, North Atlantic Ocean and Europe, and present results obtained using the available GOCE-derived satellite-only geopotential models, and their combination with terrestrial data and ocean models. The effects of various factors, such as data noise, omission errors, indirect bias terms, ocean models and temporal variations, on height datum unification are also presented, highlighting their magnitude and importance in the estimation of offsets between vertical datums. Based on the experiences gained in this project, a general roadmap has been developed for height datum unification in regions with good, as well as poor, coverage in gravity and geodetic height and tide gauge control stations.

  1. 76 FR 46705 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to...

  2. NGS’ GRAV-D Project: Current update and future prospects

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Smith, D. A.; Roman, D. R.; Diehl, T. M.; Eckl, M. C.

    2009-12-01

    NOAA’s National Geodetic Survey (NGS) is tasked with establishing and maintaining the National Spatial Reference System, the vertical portion of which is called the North American Vertical Datum of 1988 (NAVD88). Although errors were known to exist in NAVD88, recent comparison with Gravity Recovery and Climate Experiment (GRACE) satellite gravity data demonstrated that the error was significant: 50 cm average with a 1 m tilt across the country. Instead of re-leveling the country to repair the datum, NGS has decided instead to establish a new vertical datum through the creation of a gravimetric geoid accurate to 2 cm. At this time, NGS's gravity holdings are of insufficient quality and density to allow for a geoid to be created at this level of accuracy. NGS has launched the Gravity for the Re-definition of the American Vertical Datum (GRAV-D) Project to both sufficiently densify our gravity holdings and to monitor and incorporate temporal changes to the geoid. GRAV-D will perform airborne gravity measurement of all of the US and its holdings in the next 10 years to provide a uniformly measured recovery of the gravity field at about a 20 km resolution. In addition, areas of most rapid change will be monitored through absolute and relative gravity measurements, the GRACE time-varying gravity field, and GPS/CORS networks. In FY09, GRAV-D performed a number of surveys in the Gulf of Mexico, Puerto Rico/US Virgin Islands, and Alaska. We discuss these surveys and a vision of the future given likely Congressional funding in FY10 and onward.

  3. The National Map - Elevation

    USGS Publications Warehouse

    Gesch, Dean; Evans, Gayla; Mauck, James; Hutchinson, John; Carswell, William J.

    2009-01-01

    The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories. The NED is derived from diverse source data sets that are processed to a specification with a consistent resolution, coordinate system, elevation units, and horizontal and vertical datums. The NED is the logical result of the maturation of the long-standing USGS elevation program, which for many years concentrated on production of topographic map quadrangle-based digital elevation models. The NED serves as the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. The NED is a multi-resolution dataset that is updated bimonthly to integrate newly available, improved elevation source data. NED data are available nationally at grid spacings of 1 arc-second (approximately 30 meters) for the conterminous United States, and at 1/3 and 1/9 arc-seconds (approximately 10 and 3 meters, respectively) for parts of the United States. Most of the NED for Alaska is available at 2-arc-second (about 60 meters) grid spacing, where only lower resolution source data exist. Part of Alaska is available at the 1/3-arc-second resolution, and plans are in development for a significant upgrade in elevation data coverage of the State over the next 5 years. Specifications for the NED include the following: *Coordinate system: Geographic (decimal degrees of latitude and longitude), *Horizontal datum: North American Datum of 1983 (NAD 83), *Vertical datum: North American Vertical Datum of 1988 (NAVD 88) over the conterminous United States and varies in other areas, and *Elevation units: Decimal meters.

  4. GNSS Positioning by CORS and EGM2008 in Jilin Province, China

    PubMed Central

    Wu, Qiong; Kang, Jingyu; Li, Shuwen; Zhen, Jianing; Li, Hongqing

    2015-01-01

    The Continuously Operating Reference Station (CORS) technique has been widely applied in land resource management, surveying, mapping, deformation monitoring, precise navigation, etc. This article analyzed the positioning method using EGM2008 and CORS of Jilin Province, China. The vertical transformation of EGM2008 from WGS84 to China’s CGCS2000 datum and the horizontal coordinate transformation from CGCS2000 to a triangulation coordinate system were discussed. The results indicated that a local geoid with respect to CGCS2000 can be transferred from EGM2008 with the same accuracy, and the geoid correction between CGCS2000 and WGS84 varied from 0.023 m to 0.111 m. The coordinate transformation method based on the curve surface approximation method indicated that the theoretical error was less than 0.09 m in the grid within 10° longitudinal and 5° latitudinal, and less than 0.3 m in large area and 0.1 m in small area in field validation. The method proposed in this article expanded the positioning result and its application for JLCORS and other CORS with local datum. PMID:26690150

  5. GNSS Positioning by CORS and EGM2008 in Jilin Province, China.

    PubMed

    Wu, Qiong; Kang, Jingyu; Li, Shuwen; Zhen, Jianing; Li, Hongqing

    2015-12-04

    The Continuously Operating Reference Station (CORS) technique has been widely applied in land resource management, surveying, mapping, deformation monitoring, precise navigation, etc. This article analyzed the positioning method using EGM2008 and CORS of Jilin Province, China. The vertical transformation of EGM2008 from WGS84 to China's CGCS2000 datum and the horizontal coordinate transformation from CGCS2000 to a triangulation coordinate system were discussed. The results indicated that a local geoid with respect to CGCS2000 can be transferred from EGM2008 with the same accuracy, and the geoid correction between CGCS2000 and WGS84 varied from 0.023 m to 0.111 m. The coordinate transformation method based on the curve surface approximation method indicated that the theoretical error was less than 0.09 m in the grid within 10° longitudinal and 5° latitudinal, and less than 0.3 m in large area and 0.1 m in small area in field validation. The method proposed in this article expanded the positioning result and its application for JLCORS and other CORS with local datum.

  6. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

  7. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

    NASA Astrophysics Data System (ADS)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.

    2018-04-01

    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  8. Sabkha Trafficability,

    DTIC Science & Technology

    1981-01-01

    Meteorological Parameters at Meteorological Station 1, 31 May 1980 ........................ 68 $24 Relationship of Jubai. Port Datum to Tide Table Datum. .70 25...around which was a circular weight with two handles. Once assembled, the device was nositioned vertically at the point to be sampled and manually...limited use for sampling very fluid or unconsolidated sand or shell. In the former case, the upper few centimeters of cohesive sediment became embedded

  9. Construction of a 3-arcsecond digital elevation model for the Gulf of Maine

    USGS Publications Warehouse

    Twomey, Erin R.; Signell, Richard P.

    2013-01-01

    A system-wide description of the seafloor topography is a basic requirement for most coastal oceanographic studies. The necessary detail of the topography obviously varies with application, but for many uses, a nominal resolution of roughly 100 m is sufficient. Creating a digital bathymetric grid with this level of resolution can be a complex procedure due to a multiplicity of data sources, data coverages, datums and interpolation procedures. This report documents the procedures used to construct a 3-arcsecond (approximately 90-meter grid cell size) digital elevation model for the Gulf of Maine (71°30' to 63° W, 39°30' to 46° N). We obtained elevation and bathymetric data from a variety of American and Canadian sources, converted all data to the North American Datum of 1983 for horizontal coordinates and the North American Vertical Datum of 1988 for vertical coordinates, used a combination of automatic and manual techniques for quality control, and interpolated gaps using a surface-fitting routine.

  10. Assessment of the suitability of GOCE-based geoid models for the unification of the North American vertical datums

    NASA Astrophysics Data System (ADS)

    Amjadiparvar, Babak; Sideris, Michael

    2015-04-01

    Precise gravimetric geoid heights are required when the unification of vertical datums is performed using the Geodetic Boundary Value Problem (GBVP) approach. Five generations of Global Geopotential Models (GGMs) derived from Gravity field and steady-state Ocean Circulation Explorer (GOCE) observations have been computed and released so far (available via IAG's International Centre for Global Earth Models, ICGEM, http://icgem.gfz-potsdam.de/ICGEM/). The performance of many of these models with respect to geoid determination has been studied in order to select the best performing model to be used in height datum unification in North America. More specifically, Release-3, 4 and 5 of the GOCE-based global geopotential models have been evaluated using GNSS-levelling data as independent control values. Comparisons against EGM2008 show that each successive release improves upon the previous one, with Release-5 models showing an improvement over EGM2008 in Canada and CONUS between spherical harmonic degrees 100 and 210. In Alaska and Mexico, a considerable improvement over EGM2008 was brought by the Release-5 models when used up to spherical harmonic degrees of 250 and 280, respectively. The positive impact of the Release-5 models was also felt when a gravimetric geoid was computed using the GOCE-based GGMs together with gravity and topography data in Canada. This geoid model, with appropriately modified Stokes kernel between spherical harmonic degrees 190 and 260, performed better than the official Canadian gravimetric geoid model CGG2013, thus illustrating the advantages of using the latest release GOCE-based models for vertical datum unification in North America.

  11. Program Update for GRAV-D (Gravity for the Redefinition of the American Vertical Datum): Recent Airborne Surveys

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Diehl, T. M.; Roman, D. R.; Smith, D. A.

    2009-05-01

    The mission of NOAA's National Geodetic Survey (NGS) is to "define, maintain and provide access to the National Spatial Reference System" (NSRS). NAVD 88 (North American Vertical Datum of 1988) provides the vertical reference for the NSRS. However, comparisons of NAVD 88 with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data have demonstrated significant problems with the vertical reference, with an average difference between the two of 0.98 m and std dev of 0.37m. As repairing NAVD 88 through a massive leveling effort is impractical, our approach will be to establish a gravimetric geoid as the vertical reference. The linchpin in NGS's effort is the Gravity for the Redefinition of the American Vertical Datum (GRAV- D) program, which will ultimately incorporate satellite, airborne and terrestrial gravity data to build the 1-2 cm geoid that the U.S. surveying public is demanding. The program involves both an airborne component, for measuring a "baseline" gravity field, and a relative and absolute terrestrial program, for monitoring time variations of the gravity field. The GRAV-D aerogravity program commenced with a survey based from Anchorage, AK in the summer of 2008, additionally in support of NOAA's Hydropalooza program. Starting in October, the GRAV-D team has undertaken a concerted effort to survey Puerto Rico/US Virgin Islands, and then the Gulf Coast for the US Army Corps of Engineers. Gulf operations were from New Orleans, Lake Charles, and Austin, TX. This survey provides a continuous airborne field measurement at 10 km line spacing from the GA/AL state line to the Mexican border. We will present the results of these data collection efforts and outline the plans for the GRAV- D program during the remainder of 2009.

  12. Links - Helpful Tools | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Systems Alaska Tidal Datum Portal For Alaska's coastal communities, an understanding and awareness of local tidal datums is critical to assessing vulnerability and planning responses to coastal geohazards

  13. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  14. Integrating Continuous GPS Time Series and Geodetic Leveling Data to Estimate Secular Vertical Velocity of Taiwan

    NASA Astrophysics Data System (ADS)

    LAI, Y. R.; Hsu, Y. J.; You, R. J.

    2017-12-01

    GPS technique services as the most powerful method in monitoring crustal deformation owing to its advantage of temporal continuity. Geodetic leveling is also widely used not only in engineering but also in geophysics applicants due to its high precision in vertical datum determination and spatial continuity advantages. As widely known, the reference frames of GPS and geodetic leveling are different- the former refers to the reference ellipsoid (WGS84 ellipsoid) and the latter refers to the geoid. In order to combine vertical velocity fields from different datums, we decide to examine discrepancy between these two data sets. Moreover, GPS stations and benchmarks always do not locate at the same places. In place of using a spatial reduced function (Ching et.al, JGR, 2011) to find the discrepancy between them, we focused on comparing termporal variation of GPS vertical motions and geodetic leveling displacements. In this study, we analyzed the vertical velocity field from 238 GPS stations and 1634 benchmarks, including the time-period (2000 to 2015) influenced by postseismiceffects from 1999 Chi-Chi earthquake (Mw 7.6), 2003 Chengkung earthquake (Mw 6.8), and so on. After we thoroughly examined all the process and considered coseismic and postseismic deformation of significant earthquakes, we found that the discrepancy of vertical velocity of the GPS station and its nearby benchmarks is about 1 - 2 mm/yr, including several source of errors in data processing. We suggest that this discrepancy of vertical velocity field can be ignored as tolerable error, and two heterogeneous fields can be integrated together without any mathematical presumptions of spatial regression. The result shows that the western coast is suffering sever subsidence with rates up to 40 mm/yr; the Central Range of Taiwan is uplifting with rates about +10 mm/yr and active landslides with significant subsidence of 5-10 mm/yr in local area. A huge velocity contrast of 30 mm;/yr indicating east over west thrusting is shown across the Longitudinal Valley Fault. Estimation of vertical velocity from 2000 to 2015 is consistent with velocities from 2008 to 2015, indicating our modification process is not affected by the Chi-Chi earthquake (Mw 7.6).

  15. NASA directory of observation station locations, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The directory documents geodetic information for NASA tracking stations and observation stations in the NASA Geodetic Satellites Program, including stations participating in the National Geodetic Satellite Program. Station positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  16. Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Stone, W. A.; Caccamise, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) mission is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The NSRS is an assemblage of geophysical and geodetic models, tools, and data, with the most-visible components being the North American Datum of 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88), which together provide a consistent spatial reference framework for myriad geospatial applications and positioning requirements throughout the United States. The NGS is engaged in an ongoing and comprehensive multi-year project of modernizing the NSRS, a makeover necessitated by technological developments and user accuracy requirements, all with a goal of providing a modern, accurate, accessible, and globally aligned national positioning framework exploiting the substantial power and utility of the Global Navigation Satellite System - of both today and tomorrow. The modernized NSRS will include four new-generation geometric terrestrial reference frames (replacing NAD83) and a technically unprecedented geopotential datum (replacing NAVD88), all to be released in 2022 (anticipated). This poster/presentation will describe the justification for this modernization effort and will update the status and planned evolution of the NSRS as 2022 draws ever closer. Also discussed will be recent developments, including the publication of "blueprint" documents addressing technical details of various facets of the modernized NSRS and a continued series of public Geospatial Summits. Supporting/ancillary projects such as Gravity for the Redefinition of the American Vertical Datum (GRAV-D), which will result in the generation of a highly accurate gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential datum, and Geoid Slope Validation Surveys (GSVS), which are exploring the achievable accuracy of the new geopotential datum, will be summarized. Also included will be suggestions of user preparation for transition to the NSRS of tomorrow.

  17. Height system unification based on the Fixed Geodetic Boundary Value Problem with limited availability of gravity data

    NASA Astrophysics Data System (ADS)

    Porz, Lucas; Grombein, Thomas; Seitz, Kurt; Heck, Bernhard; Wenzel, Friedemann

    2017-04-01

    Regional height reference systems are generally related to individual vertical datums defined by specific tide gauges. The discrepancies of these vertical datums with respect to a unified global datum cause height system biases that range in an order of 1-2 m at a global scale. One approach for unification of height systems relates to the solution of a Geodetic Boundary Value Problem (GBVP). In particular, the fixed GBVP, using gravity disturbances as boundary values, is solved at GNSS/leveling benchmarks, whereupon height datum offsets can be estimated by least squares adjustment. In spherical approximation, the solution of the fixed GBVP is obtained by Hotine's spherical integral formula. However, this method relies on the global availability of gravity data. In practice, gravity data of the necessary resolution and accuracy is not accessible globally. Thus, the integration is restricted to an area within the vicinity of the computation points. The resulting truncation error can reach several meters in height, making height system unification without further consideration of this effect unfeasible. This study analyzes methods for reducing the truncation error by combining terrestrial gravity data with satellite-based global geopotential models and by modifying the integral kernel in order to accelerate the convergence of the resulting potential. For this purpose, EGM2008-derived gravity functionals are used as pseudo-observations to be integrated numerically. Geopotential models of different spectral degrees are implemented using a remove-restore-scheme. Three types of modification are applied to the Hotine-kernel and the convergence of the resulting potential is analyzed. In a further step, the impact of these operations on the estimation of height datum offsets is investigated within a closed loop simulation. A minimum integration radius in combination with a specific modification of the Hotine-kernel is suggested in order to achieve sub-cm accuracy for the estimation of height datum offsets.

  18. 33 CFR 100.717 - Annual Fort Myers Beach Offshore Grand Prix; Fort Myers, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...°58.30′ W). All coordinates referenced use datum: NAD 83. (b) Special local regulations. (1) No vessel... coordinates referenced use datum: NAD 83. (3) All vessel traffic, not involved with the Fort Myers Beach... clear of the racecourse. All coordinates referenced use datum: NAD 83. (4) All vessel traffic, not...

  19. 33 CFR 100.717 - Annual Fort Myers Beach Offshore Grand Prix; Fort Myers, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...°58.30′ W). All coordinates referenced use datum: NAD 83. (b) Special local regulations. (1) No vessel... coordinates referenced use datum: NAD 83. (3) All vessel traffic, not involved with the Fort Myers Beach... clear of the racecourse. All coordinates referenced use datum: NAD 83. (4) All vessel traffic, not...

  20. 33 CFR 100.717 - Annual Fort Myers Beach Offshore Grand Prix; Fort Myers, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...°58.30′ W). All coordinates referenced use datum: NAD 83. (b) Special local regulations. (1) No vessel... coordinates referenced use datum: NAD 83. (3) All vessel traffic, not involved with the Fort Myers Beach... clear of the racecourse. All coordinates referenced use datum: NAD 83. (4) All vessel traffic, not...

  1. 33 CFR 100.717 - Annual Fort Myers Beach Offshore Grand Prix; Fort Myers, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...°58.30′ W). All coordinates referenced use datum: NAD 83. (b) Special local regulations. (1) No vessel... coordinates referenced use datum: NAD 83. (3) All vessel traffic, not involved with the Fort Myers Beach... clear of the racecourse. All coordinates referenced use datum: NAD 83. (4) All vessel traffic, not...

  2. 33 CFR 100.717 - Annual Fort Myers Beach Offshore Grand Prix; Fort Myers, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...°58.30′ W). All coordinates referenced use datum: NAD 83. (b) Special local regulations. (1) No vessel... coordinates referenced use datum: NAD 83. (3) All vessel traffic, not involved with the Fort Myers Beach... clear of the racecourse. All coordinates referenced use datum: NAD 83. (4) All vessel traffic, not...

  3. Dynamic Heights in the Great Lakes using OPUS Projects

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Li, X.

    2015-12-01

    The U.S. will be implementing new geometric and vertical reference frames in 2022 to replace the North American Datum of 1983 (NAD 83) and the North American Vertical Datum of 1988 (NAVD 88), respectively. Less emphasized is the fact that a new dynamic height datum will also be defined about the same time to replace the International Great Lakes Datum of 1985 (IGLD 85). IGLD 85 was defined concurrent with NAVD 88 and used the same geopotential values. This paper focuses on the use of an existing tool for determining geometric coordinates and a developing geopotential model as a means of determining dynamic heights. The Online Positioning User Service (OPUS) Projects (OP) is an online tool available from the National Geodetic Survey (NGS) for use in developing geometric coordinates from simultaneous observations at multiple sites during multiple occupations. With observations performed at the water level gauges throughout the Great Lakes, the geometric coordinates of the mean water level surface can be determined. NGS has also developed the xGEOID15B model from satellite, airborne and surface gravity data. Using the input geometric coordinates determined through OP, the geopotential values for the water surface at the water level stations around the Great Lakes were determined using the xGEOID15B model. Comparisons were made between water level sites for each Lake as well as to existing IGLD 85 heights. A principal advantage to this approach is the ability to generate new water level control stations using OP, while maintaining the consistency between orthometric and dynamic heights by using the same gravity field model. Such a process may provide a means for determining dynamic heights for a future Great Lakes Datum.

  4. Quantifying Variations in Airborne Gravity Data Quality Due to Aircraft Selection with the Gravity for the Re-Definition of the American Vertical Datum Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Weil, C.; Salisbury, T.; Villarreal, C.

    2015-12-01

    The U.S. National Geodetic Survey is collecting airborne gravity with the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project to produce a geoid supporting heights accurate to 2 centimeters, where possible, with a modernized U.S. vertical datum in 2022. Targeting 15.6 million square kilometers, the GRAV-D project is unprecedented in its scope of consistently collected airborne gravity data across the entire U.S. and its holdings. Currently over 42% of data collection has been completed by 42 surveys (field campaigns) covering 34 completed blocks (data collection areas). The large amount of data available offers a unique opportunity to evaluate the causes of data quality variation from survey to survey. Two metrics were chosen to use as a basis for comparing the quality of each survey/block: 1. total crossover error (i.e. difference in gravity recorded at all locations of crossing flight lines) and 2. the statistical difference of the airborne gravity from the EGM2008 global model. We have determined that the aircraft used for surveying contributes significantly to the variation in data quality. This paper will further expand upon that recent work, using statistical analysis to determine the contribution of aircraft selection to data quality taking into account other variables such as differences in survey setup or weather conditions during surveying.

  5. 77 FR 76916 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Southeast. Sweat Mountain Creek At the Willeo Creek +941 Unincorporated Areas of confluence. Cobb County... upstream of the Sweat Mountain Creek confluence. * National Geodetic Vertical Datum. + North American...

  6. 33 CFR 100.736 - Annual Fort Myers Beach air show; Fort Myers Beach, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...°59′15″ W. All coordinates referenced use datum: NAD 83. (2) Air Box Area. The air box area is... coordinates referenced use datum: NAD 83. (b) Special local regulations. (1) Vessels and persons are... referenced use datum: NAD 83. (c) Dates. This section will be enforced annually on the second consecutive...

  7. Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts

    NASA Astrophysics Data System (ADS)

    Maspataud, Aurélie; Biscara, Laurie; Hébert, Hélène; Schmitt, Thierry; Créach, Ronan

    2015-04-01

    Building precise and up-to-date coastal DEMs is a prerequisite for accurate modeling and forecasting of hydrodynamic processes at local scale. Marine flooding, originating from tsunamis, storm surges or waves, is one of them. Some high resolution DEMs are being generated for multiple coast configurations (gulf, embayment, strait, estuary, harbor approaches, low-lying areas…) along French Atlantic and Channel coasts. This work is undertaken within the framework of the TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2017). DEMs boundaries were defined considering the vicinity of French civil nuclear facilities, site effects considerations and potential tsunamigenic sources. Those were identified from available historical observations. Seamless integrated topographic and bathymetric coastal DEMs will be used by institutions taking part in the study to simulate expected wave height at regional and local scale on the French coasts, for a set of defined scenarii. The main tasks were (1) the development of a new capacity of production of DEM, (2) aiming at the release of high resolution and precision digital field models referred to vertical reference frameworks, that require (3) horizontal and vertical datum conversions (all source elevation data need to be transformed to a common datum), on the basis of (4) the building of (national and/or local) conversion grids of datum relationships based on known measurements. Challenges in coastal DEMs development deal with good practices throughout model development that can help minimizing uncertainties. This is particularly true as scattered elevation data with variable density, from multiple sources (national hydrographic services, state and local government agencies, research organizations and private engineering companies) and from many different types (paper fieldsheets to be digitized, single beam echo sounder, multibeam sonar, airborne laser bathymetric and topographic data, …) were gathered. Consequently, datasets were first assessed internally for both quality and accuracy and then externally with other to ensure consistency and gradual topographic/bathymetric transitioning along limits of the datasets. The heterogeneous ages of the input data also stress the importance of taking into account the temporal variability of bathymetric features, especially in the active areas (sandbanks, estuaries, channels). Locally, gaps between marine (hydrographic surveys) and terrestrial (topographic LIDAR) data have required the introduction of new methods and tools to solve interpolation. Through these activities the goal is to improve the production line and to enhance tools and procedures used for the improvement of processing, validation and qualification algorithms of bathymetric data, data collection work, automation of processing and integration process for conception of improved both bathymetric and topographic DEMs, merging data collected. This work is supported by a French ANR program in the frame of "Investissements d'Avenir", under the grant ANR-11-RSNR-00023-01.

  8. 75 FR 5929 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... City of Eureka Springs, miles upstream of Unincorporated Areas Magnetic Road. of Carroll County. Approximately 1,250 None +1,131 feet upstream of Magnetic Road. * National Geodetic Vertical Datum. + North...

  9. U.S.A. National Surface Rock Density Map - Part 2

    NASA Astrophysics Data System (ADS)

    Winester, D.

    2016-12-01

    A map of surface rock densities over the USA has been developed by the NOAA-National Geodetic Survey (NGS) as part of its Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Program. GRAV-D is part of an international effort to generate a North American gravimetric geoid for use as the vertical datum reference surface. As a part of modeling process, it is necessary to eliminate from the observed gravity data the topographic and density effects of all masses above the geoid. However, the long-standing tradition in geoid modeling, which is to use an average rock density (e.g. 2.67 g/cm3), does not adequately represent the variety of lithologies in the USA. The U.S. Geological Survey has assembled a downloadable set of surface geologic formation maps (typically 1:100,000 to 1:500, 000 scale in NAD27) in GIS format. The lithologies were assigned densities typical of their rock type (Part 1) and these variety of densities were then rasterized and averaged over one arc-minute areas. All were then transformed into WGS84 datum. Thin layers of alluvium and some water bodies (interpreted to be less than 40 m thick) have been ignored in deference to underlying rocks. Deep alluvial basins have not been removed, since they represent significant fraction of local mass. The initial assumption for modeling densities will be that the surface rock densities extend down to the geoid. If this results in poor modeling, variable lithologies with depth can be attempted. Initial modeling will use elevations from the SRTM DEM. A map of CONUS densities is presented (denser lithologies are shown brighter). While a visual map at this scale does show detailed features, digital versions are available upon request. Also presented are some pitfalls of using source GIS maps digitized from variable reference sources, including the infamous `state line faults.'

  10. Modernizing the National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    2016-12-01

    The National Spatial Reference System (NSRS) is that system of datums, reference frames, shorelines, software and standards which serve the entire federal civilian geospatial community. It is the mission of the National Geodetic Survey (NGS) to define, maintain and provide access to the NSRS. Currently the NSRS contains three geometric reference frames (NAD 83(2011), NAD 83(PA11) and NAD 83(MA11)), one dynamic height datum (IGLD 85) and 6 vertical datums (NAVD 88, PRVD02, ASVD02, NMVD03, GUVD04, VIVD09). All of these datums are built on aging technology and contain systematic errors that grow more noticeable as access to accurate positioning becomes more widespread. It was determined by NGS in 2007 that this was not sustainable and as such, all datums and reference frames are scheduled to be replaced in 2022. [At the time of this abstract, the exact names of the replacements are being finalized and are expected to be announced by the AGU fall meeting.] Replacing the official datums and reference frames requires a carefully coordinated effort of dozens of interrelated technical projects spanning years (over a decade in some cases) and involving a majority of NGS employees. This talk will cover the plans thus far, projects completed, projects underway and will summarize the NSRS as it is expected to look and be accessed in 2022 and beyond.

  11. 75 FR 55317 - FirstLight Hydro Generating Company; City of Norwich Department of Public Utilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2662-002; Project No. 12968... with a crest elevation of 75.38 feet local datum; (d) an 18.83-foot-long gravity-type ungated spillway...-generator; (2) a 134-acre reservoir at an elevation of 77.9 feet local datum with a usable storage capacity...

  12. 33 CFR 100.718 - Annual Suncoast Kilo Run; Sarasota Bay, Sarasota, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... datum: NAD 83. (b) Special local regulations. (1) In accordance with these regulations, the regulated... referenced use datum: NAD 83. (3) Entry into the regulated area shall be in accordance with this regulation...

  13. 33 CFR 100.720 - Annual Suncoast Offshore Grand Prix; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the racecourse. All coordinates referenced use datum: NAD 83. (4) Big Sarasota Pass will be closed... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...

  14. 33 CFR 100.720 - Annual Suncoast Offshore Grand Prix; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the... of the racecourse. All coordinates referenced use datum: NAD 83. (4) Big Sarasota Pass will be closed...

  15. 33 CFR 100.720 - Annual Suncoast Offshore Grand Prix; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the racecourse. All coordinates referenced use datum: NAD 83. (4) Big Sarasota Pass will be closed... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...

  16. 33 CFR 100.720 - Annual Suncoast Offshore Grand Prix; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the racecourse. All coordinates referenced use datum: NAD 83. (4) Big Sarasota Pass will be closed... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...

  17. 33 CFR 100.720 - Annual Suncoast Offshore Grand Prix; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the racecourse. All coordinates referenced use datum: NAD 83. (4) Big Sarasota Pass will be closed... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...

  18. Determination of Tide Heights from Airborne Bathymetric Data

    DTIC Science & Technology

    1989-12-01

    MEASUREMENT ERROR, A FORTRAN FUNCTION ............................. 60 v D. THE MEASUREMENT ERROR .......................... 61 E. THE REFERENCE PLANE ...soundings made to a chart datum. The chart datum is a "tide based" plane which usually corresponds to some mean of the low waters for the local tidal...regime. A low water plane is used so depths published on a nautical chart are shown in their least favorable aspect. If the chart datum is very

  19. Levels at Streamflow Gaging Stations--A CD-ROM Based Training Class

    USGS Publications Warehouse

    Nolan, K. Michael; Jacobson, Nathan; Erickson, Robert; Landon, Stanley

    2003-01-01

    Streamgages record the elevation of the water surface above some reference surface, or datum. This datum is assumed to remain unchanged throughout the life of the gage. However, the elevation of gages and their supporting structures often change over time as a result of earthmovement, floods, ice, and debris. The surveying practice of leveling is used to establish datum for new gage structures and to check for vertical movement of those structures over time. Vertical changes in gage structures can affect stage-discharge relations and, thus, could result in incorrect discharge determinations. Datum checks are used to correct stage-discharge relations and allow the USGS to document gage datum throughout the life of a gage. This training presentation describes methods currently used by the U.S. Geological Survey to run levels at gaging stations. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos found within the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class is registered as class SW1307 with the National Training Center of the U.S. Geologcial Survey. The presentation was developed using Macromedia Director 8.5(1) and is contained in the file 'WRI-4002.exe', which should auto-launch after the CD-ROM is inserted in the PC. The program only runs on a windows-based personal computer (PC). A sound card and speakers are necessary to take advantage of the narration that accompanies the presentation. Text of narrations is provided, if you are unable to listen to the narrations. Instructions for installing and running the presentation are included in the file ' Intro.html'. The file 'Intro.html' is on the CD-ROM containing the presentation and is available from the presentation's help menu.

  20. Dynamic Heights in the Great Lakes at Different Epochs

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2016-12-01

    Vertical control in the Great Lakes region is currently defined by the International Great Lakes Datum of 1985 (IGLD 85) in the form of dynamic heights. Starting in 2025, dynamic heights will be defined through GNSS-derived geometric coordinates and a geopotential model. This paper explores the behavior of an existing geopotential model at different epochs when the Great Lakes were at significantly different (meter-level) geopotential surfaces. Water surfaces were examined in 2015 and 2010 at six sites on Lakes Superior and Lake Erie (three on each Lake). These sites have collocated a Continuously Operating Reference Station (CORS) and a Water Level Sensor (WLS). The offset between the antenna phase center for the CORS and the WLS datum are known at each site. The WLS then measures the distance from its datum to the Lake surface via an open well. Thus it is possible to determine the height above an ellipsoid datum at these sites as long as both the CORS and WLS are operational. The geometric coordinates are then used to estimate the geopotential value from the xGEOID16B model. This accomplished in two steps. To provide an improved reference model, EGM2008 was spectrally enhanced using observations from the GOCE satellite gravity mission and aerogravity from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project. This enhanced model, xGEOID16B_Ref, is still only a five arcminute resolution model (d/o 2160), but resolves dynamic heights at about 2 cm on Lake Superior for December 2015. The reference model was primarily developed to determine a one arcminute geoid height grid, xGEOID16B, available on the NGS website. This geoid height model was used to iteratively develop improved geopotential value for each of the site locations, which then improved comparisons to the cm-level. Comparisons were then made at the 2010 epoch for these same locations to determine if the performance of the geopotential model was consistent.

  1. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    USGS Publications Warehouse

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho River was 709.18 ft above North American Vertical Datum of 1988, which corresponds to a maximum depth of 34.22 ft. The minimum bathymetric-survey elevation of the Spring River was 714.18 ft above North American Vertical Datum of 1988, which corresponds to a maximum depth of 29.22 ft. The minimum bathymetric-survey elevation of the Elk River was 715.62 ft above North American Vertical Datum of 1988, which corresponds to a maximum depth of 27.78 ft.

  2. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    NASA Astrophysics Data System (ADS)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  3. Known unknowns, Google Earth, plate tectonics and Mt Bellenden Ker: some thoughts on locality data.

    PubMed

    Mesibov, Robert

    2012-01-01

    Latitude/longitude data in locality records should be published with spatial uncertainties, datum(s) used and indications of how the data were obtained. Google Earth can be used to locate sampling sites, but the underlying georegistration of the satellite image should be checked. The little-known relabelling of a set of landmarks on Mt Bellenden Ker, a scientifically important collecting locality in tropical north Queensland, Australia, is documented as an example of the importance of checking records not accompanied by appropriately accurate latitude/longitude data.

  4. Potentiometric Surfaces and Water-Level Trends in the Cockfield and Wilcox Aquifers of Southern and Northeastern Arkansas, 2006

    USGS Publications Warehouse

    Schrader, T.P.

    2007-01-01

    The Cockfield Formation of Claiborne Group and the Wilcox Group contain aquifers that provide sources of ground water in southern and northeastern Arkansas. In 2000, about 9.9 million gallons per day was withdrawn from the Cockfield Formation of Claiborne Group and about 22.2 million gallons per day was withdrawn from the Wilcox Group. Major withdrawals from the aquifers were for industrial and public water supplies. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey to determine the water level associated with the aquifers in the Cockfield Formation of Claiborne Group and the Wilcox Group in southern and northeastern Arkansas. During February and March 2006, 56 water-level measurements were made in wells completed in the Cockfield aquifer and 59 water-level measurements were made in wells completed in the Wilcox aquifer, 16 in southwestern and 43 in northeastern Arkansas. This report presents the results as potentiometric-surface maps and as long-term water-level hydrographs. The regional direction of ground-water flow in the Cockfield Formation of Claiborne Group generally is towards the east and southeast, away from the outcrop, except in areas of intense ground-water withdrawals, such as western Drew County, southeastern Lincoln County, southwestern Calhoun County, and near Crossett in Ashley County. There are three cones of depression indicated by relatively low water-level altitudes in southeastern Lincoln County, southwestern Calhoun County, and near Crossett in Ashley County. The lowest water-level altitude measured was 44 feet above the National Geodetic Vertical Datum of 1929 in Lincoln County; the highest water-level altitude measured was 346 feet above the National Geodetic Vertical Datum of 1929 in Columbia County at the outcrop area. Hydrographs from 40 wells with historical water levels from 1986 to 2006 were evaluated using linear regression to calculate the annual rise or decline. Calhoun and Cleveland Counties have mean annual rises from 0.01 to 0.07 feet per year. Arkansas, Ashley, Bradley, Chicot, Columbia, Drew, Lincoln, and Union Counties have mean annual declines from 0.4 to 0.55 feet per year. Desha County has a mean annual decline of about 1.35 feet per year. The direction of ground-water flow in the southwestern study area of the Wilcox Group generally is south and east. The lowest water-level altitude measured in southwestern Arkansas was 147 feet above the National Geodetic Vertical Datum of 1929 near the Ouachita River in Clark County; the highest water-level altitude measured was 397 feet above the National Geodetic Vertical Datum of 1929 in the outcrop area of Hempstead County. The direction of ground-water flow in the northeastern study area of the Wilcox Group generally is south and east. The lowest water-level altitude measured in northeastern Arkansas was 120 feet above the National Geodetic Vertical Datum of 1929 near West Memphis in Crittenden County; the highest water-level altitude measured was 368 feet above the National Geodetic Vertical Datum of 1929 on Crowleys Ridge in Clay County. Hydrographs from 28 wells with historical water levels from 1986 to 2006 were evaluated using linear regression to calculate the annual rise or decline. All 28 wells showed an annual decline from 1986 to 2006. Craighead, Greene, Mississippi, and Poinsett Counties have mean annual declines from 0.27 to 1.00 feet per year. Crittenden, Lee, and St. Francis Counties have mean annual declines from 1.39 to 1.64 feet per year.

  5. Moving to a Modernized Height Reference System in Canada: Rationale, Status and Plans

    NASA Astrophysics Data System (ADS)

    Veronneau, M.; Huang, J.

    2007-05-01

    A modern society depends on a common coordinate reference system through which geospatial information can be interrelated and exploited reliably. For height measurements this requires the ability to measure mean sea level elevations easily, accurately, and at the lowest possible cost. The current national reference system for elevations, the Canadian Geodetic Vertical Datum of 1928 (CGVD28), offers only partial geographic coverage of the Canadian territory and is affected by inaccuracies that are becoming more apparent as users move to space- based technologies such as GPS. Furthermore, the maintenance and expansion of the national vertical network using spirit-levelling, a costly, time consuming and labour intensive proposition, has only been minimally funded over the past decade. It is now generally accepted that the most sustainable alternative for the realization of a national vertical datum is a gravimetric geoid model. This approach defines the datum in relation to an ellipsoid, making it compatible with space-based technologies for positioning. While simplifying access to heights above mean sea level all across the Canadian territory, this approach imposes additional demands on the quality of the geoid model. These are being met by recent and upcoming space gravimetry missions that have and will be measuring the Earth`s gravity field with increasing and unprecedented accuracy. To maintain compatibility with the CGVD28 datum materialized at benchmarks, the current first-order levelling can be readjusted by constraining geoid heights at selected stations of the Canadian Base Network. The new reference would change CGVD28 heights of benchmarks by up to 1 m across Canada. However, local height differences between benchmarks would maintain a relative precision of a few cm or better. CGVD28 will co-exist with the new height reference as long as it will be required, but it will undoubtedly disappear as benchmarks are destroyed over time. The adoption of GNSS technologies for positioning should naturally move users to the new height reference and offer the possibility of transferring heights over longer distances, within the precision of the geoid model. This transition will also reduce user dependency on a dense network of benchmarks and offer the possibility for geodetic agencies to provide the reference frame with a reduced number of 3D control points. While the rationale for moving to a modernized height system is easily understood, the acceptance of the new system by users will only occur gradually as they adopt new technologies and procedures to access the height reference. A stakeholder consultation indicates user readiness and an implementation plan is starting to unfold. This presentation will look at the current state of the geoid model and control networks that will support the modernized height system. Results of the consultation and the recommendations regarding the roles and responsibilities of the various stakeholders involved in implementing the transition will also be reported.

  6. Assessing risk of navigational hazard from sea-level-related datum in the South West of Java Sea, Indonesia

    NASA Astrophysics Data System (ADS)

    Poerbandono

    2017-07-01

    This paper assesses the presence of navigational hazards due to underestimation of charted depths originated from an establishment of a sea-level-related reference plane, i.e. datum. The study domain is situated in one of Indonesia's densest marine traffic, SW Java Sea, Indonesia. The assessment is based on the comparison of the authorized Chart Datum (CD), being uniformly located at 0.6 m below Mean Sea Level (MSL), and a spatially varying Lowest Astronomical Tide (LAT) generated for the purpose of this research. Hazards are considered here as the deviation of LAT from CD and quantified as the ratio of LAT -CD deviation with respect to the allowable Total Vertical Uncertainty (TVU), i.e. the international standard for accuracy of depth information on nautical charts. Underestimation of charted depth is expected for the case that LAT falls below CD. Such a risk magnifies with decreasing depths, as well as the increasing volume of traffic and draught of the vessel. It is found that most of the domain is in the interior of risk-free zone from using uniform CD. As much as 0.08 and 0.19 parts of the area are in zones where the uncertainty of CD contributes respectively to 50% and 30% of Total Vertical Uncertainty. These are zones where the hazard of navigation is expected to increase due to underestimated lowest tidal level.

  7. 33 CFR 100.719 - Annual Suncoast Offshore Challenge; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...-quarters situation until finally past and clear of the racecourse. All coordinates referenced use datum: NAD 1983. (4) Big Sarasota Pass will be closed to all inbound and outbound vessel traffic, other than...

  8. 33 CFR 100.719 - Annual Suncoast Offshore Challenge; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...-quarters situation until finally past and clear of the racecourse. All coordinates referenced use datum: NAD 1983. (4) Big Sarasota Pass will be closed to all inbound and outbound vessel traffic, other than...

  9. 33 CFR 100.719 - Annual Suncoast Offshore Challenge; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...-quarters situation until finally past and clear of the racecourse. All coordinates referenced use datum: NAD 1983. (4) Big Sarasota Pass will be closed to all inbound and outbound vessel traffic, other than...

  10. 33 CFR 100.719 - Annual Suncoast Offshore Challenge; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...-quarters situation until finally past and clear of the racecourse. All coordinates referenced use datum: NAD 1983. (4) Big Sarasota Pass will be closed to all inbound and outbound vessel traffic, other than...

  11. 76 FR 62329 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...] Communities affected elevation * * Elevation in meters (MSL) Effective Modified Anne Arundel County, Maryland... + 8 + 10 Unincorporated Areas of Crain Highway. Anne Arundel County. Approximately 400 feet None + 105... American Vertical Datum. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. * * BFEs to be changed...

  12. 76 FR 9714 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ..., FEMA published in the Federal Register a proposed rule that included an erroneous Base Flood Elevation... as 355 feet, referenced to the North American Vertical Datum of 1988. DATES: Comments pertaining to... (FEMA) publishes proposed determinations of Base (1% annual-chance) Flood Elevations (BFEs) and modified...

  13. Topobathymetric model of Mobile Bay, Alabama

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Brock, John C.; Howard, Daniel M.; Gesch, Dean B.; Bonisteel-Cormier, Jamie M.; Travers, Laurinda J.

    2013-01-01

    Topobathymetric Digital Elevation Models (DEMs) are a merged rendering of both topography (land elevation) and bathymetry (water depth) that provides a seamless elevation product useful for inundation mapping, as well as for other earth science applications, such as the development of sediment-transport, sea-level rise, and storm-surge models. This 1/9-arc-second (approximately 3 meters) resolution model of Mobile Bay, Alabama was developed using multiple topographic and bathymetric datasets, collected on different dates. The topographic data were obtained primarily from the U.S. Geological Survey (USGS) National Elevation Dataset (NED) (http://ned.usgs.gov/) at 1/9-arc-second resolution; USGS Experimental Advanced Airborne Research Lidar (EAARL) data (2 meters) (http://pubs.usgs.gov/ds/400/); and topographic lidar data (2 meters) and Compact Hydrographic Airborne Rapid Total Survey (CHARTS) lidar data (2 meters) from the U.S. Army Corps of Engineers (USACE) (http://www.csc.noaa.gov/digitalcoast/data/coastallidar/). Bathymetry was derived from digital soundings obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/geodas/geodas.html) and from water-penetrating lidar sources, such as EAARL and CHARTS. Mobile Bay is ecologically important as it is the fourth largest estuary in the United States. The Mobile and Tensaw Rivers drain into the bay at the northern end with the bay emptying into the Gulf of Mexico at the southern end. Dauphin Island (a barrier island) and the Fort Morgan Peninsula form the mouth of Mobile Bay. Mobile Bay is 31 miles (50 kilometers) long by a maximum width of 24 miles (39 kilometers) with a total area of 413 square miles (1,070 square kilometers). The vertical datum of the Mobile Bay topobathymetric model is the North American Vertical Datum of 1988 (NAVD 88). All the topographic datasets were originally referenced to NAVD 88 and no transformations were made to these input data. The NGDC hydrographic, multibeam, and trackline surveys were transformed from mean low water (MLW) or mean lower low water (MLLW) to NAVD 88 using VDatum (http://vdatum.noaa.gov). VDatum is a tool developed by the National Geodetic Survey (NGS) that performs transformations among tidal, ellipsoid-based, geoid-based, and orthometric datums using calibrated hydrodynamic models. The vertical accuracy of the input topographic data varied depending on the input source. Because the input elevation data were derived primarily from lidar, the vertical accuracy ranges from 6 to 20 centimeters in root mean square error (RMSE). he horizontal datum of the Mobile Bay topobathymetric model is the North American Datum of 1983 (NAD 83), geographic coordinates. All the topographic and bathymetric datasets were originally referenced to NAD 83, and no transformations were made to the input data. The bathymetric surveys were downloaded referenced to NAD 83 geographic, and therefore no horizontal transformations were required. The topbathymetric model of Mobile Bay and detailed metadata can be obtained from the USGS Web sites: http://nationalmap.gov/.

  14. 33 CFR 100.740 - Annual Offshore Super Series Boat Race; Fort Myers Beach, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to original point 1: 26°27′43″N, 81°58′22″W. All coordinates referenced use datum: NAD 83. (2) The...°25′32″N, 81°53′57″W. All coordinates referenced use datum: NAD 83. (b) Special local regulations. (1...

  15. 77 FR 45262 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... upstream of the upstream Grundy County, Village side of the Dresden of Channahon. Island Lock and Dam.... Just downstream of the +507 Dresden Island Lock and Dam. * National Geodetic Vertical Datum. + North... available for inspection at the North Moreland Township Municipal Building, 15 Municipal Lane, Dallas, PA...

  16. Modeling the North American vertical datum of 1988 errors in the conterminous United States

    NASA Astrophysics Data System (ADS)

    Li, X.

    2018-02-01

    A large systematic difference (ranging from -20 cm to +130 cm) was found between NAVD 88 (North AmericanVertical Datum of 1988) and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA) such as the Factor Analysis (FA) are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.

  17. 75 FR 31368 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified Santa.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter...

  18. 77 FR 21476 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Randolph County... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter.... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Beebe Maps are available for...

  19. 76 FR 39011 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Rio Grande County... Unincorporated Areas of the Rio Grande, Rio Grande County. approximately 400 feet north of U.S. Route 160... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter...

  20. 77 FR 20999 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... set forth below: * Elevation in feet (NGVD) + Elevation in feet (NAVD) Depth in feet Flooding source(s..., and Incorporated Areas Docket No.: FEMA-B-1100 Mississippi River Approximately 11.2 miles +585 City of.... Approximately 12.8 miles +594 upstream of State Highway 136. * National Geodetic Vertical Datum. + North...

  1. 77 FR 73324 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    .... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. [[Page 73326.... + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Walnut Ridge Maps are available for...

  2. 77 FR 66555 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    .... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Chiefland Maps are available... American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of...

  3. 77 FR 41685 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... deviation is necessary to accommodate Portland's Big Float event. This deviation allows the bridge to remain... of the Big Float event. The Hawthorne Bridge crosses the Willamette River at mile 13.1 and provides 49 feet of vertical clearance above Columbia River Datum 0.0 while in the closed position. Vessels...

  4. 77 FR 53141 - Drawbridge Operation Regulation; Columbia River, Vancouver, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... lift-spans. This deviation allows height-restricted lifts which will reduce the vertical clearance... which cross the Columbia River at mile 106.5 only be required to lift to a reduced height of 130 feet above Columbia River Datum for a 30 day period. The height restricted lifts are necessary to facilitate...

  5. 78 FR 5798 - Ceresco Hydroelectric Dam, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Hydroelectric Dam, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On October 19, 2012, Ceresco Hydroelectric Dam, LLC... feet National Geodetic Vertical Datum; (2) a dam comprised of (a) a 126- foot-wide, 13-foot-high...

  6. Geoid Determination Using GOCE-Based Models in Turkey

    NASA Astrophysics Data System (ADS)

    Serkan Işık, Mustafa; Erol, Bihter

    2016-04-01

    The maintenance of the vertical datum in tectonically active regions such as Turkey become more of an issue. The distortions in the vertical datum due to geodynamic phenomena necessitate the realization of geoid based vertical datum. The height modernization studies for transition to a "geoid based vertical datum definition" providing practical use of GNSS technologies to obtain orthometric heights in Turkey has accelerated rapidly in recent years and hence in the content of these efforts on-going projects contribute to improvement of quality and quantity of terrestrial gravity dataset as well as selection of the optimal computation algorithm to reach a precise geoid model in the territory. In this manner the assessment of the different methodologies with varying input parameters and referred models is obviously essential to in order to clarify the advantages of the algorithms in terms of providing an optimal combination of different data sets in regional geoid modeling. The performance of recently published GOCE-GRACE gravity field models show significant improvements in the medium frequency. This study investigates the contribution of the recently released Geopotential models with the contribution of GOCE and GRACE missions to the gravimetric geoid modeling specifically from Least squares modification of Stokes' (LSMS) formula point of view in Turkey territory. The algorithm developed by Royal Institute of Technology (KTH) that adopt the least squares modification of Stokes' kernel in order for providing an optimum combination of spherical harmonic expansion model and terrestrial gravity data and hence claims to optimize the drawbacks, may stem from the handicaps (such as low accuracy, sparse distribution etc.) of the terrestrial gravity data in the results. The additive corrective terms in order to account for downward continuation effect, atmospheric effect and ellipsoidal effect are proposed as the superiorities of this algorithm comparing to the conventional Remove-Restore method. The assessments of the geoid models are done at the homogeneously distributed thirty National Network points in Turkey. The positional accuracy of GNSS/Levelling points (belong the Turkey National Fundamental GNSS Network-TUTGA) are reported as ±1.0 cm in horizontal and ±1.5 cm in vertical components. The orthometric heights of these benchmarks are computed via adjustment of the Turkish National Vertical Control Network (TUDKA). All releases of direct (DIR), time-wise (TIM), space-wise (SPW) and Gravity Observation Combination (GOCO) models are evaluated using spectral enhancement method (SEM). DIR R5, TIM R5 and GOCO05S models, which show the best agreements with the GNSS/Levelling data, are included within the study and their performance are compared with EGM2008 model. In conclusion the GOCE gravity field models performs in the level very close to EGM2008 performance, when the same truncation degree of models are considered. The overall results reveal that the gravimetric geoid model which is computed using DIR R5 model provides the best performance having ±24.1 cm (without de-trending), though there is no significant improvement related with the contribution of GOCE gravity field models to the regional geoid determination based on LSMS approach in Turkey territory.

  7. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.

  8. GRAV-D for Puerto Rico and the U.S. Virgin Islands

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Li, X.; Smith, D. A.; Geoid; GRAV-D Teams

    2013-05-01

    NOAA's National Geodetic Survey began the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) program in an effort to modernize and unify vertical datums in all states and territories. As a part of this program, NGS collected aerogravity profiles over the islands of Puerto Rico and the U.S. Virgin Islands in January 2009. A Citation II aircraft was equipped with an airborne gravimeter, GPS receiver, and a GPS/Inertial unit. Absolute gravity and GPS ties were made to multiple ground sites to ensure consistency in the results. The main survey covered a region of approximately 400 km by 500 km with flight altitudes of 10,668 m (35,000ft) and with 10 km track spacing. Cross-track profiles at 40 km spacing were also collected to establish an accuracy of 1.34 mGals RMSE. In addition to the high altitude flights, two more flights were made primarily over terrestrial areas at 1,524 m (5,000 ft) to obtain higher resolution information in these regions. There were no cross-ties established for these lower altitude flights. Additionally, terrestrial surveys were also conducted to better tie ground sites and to serve as control for later analysis for available but older terrestrial and marine gravity data in the region already held by NGS. The aerogravity data were analyzed and at least internally compared to obtain the optimal results before being published on the web. In this study, the aerogravity data were compared to available global gravity models derived from satellite missions (GRACE & GOCE) to evaluate their long wavelength character (e.g., potential biases and trends). The vetted satellite-aerogravity data were then combined and used to evaluate surface data (terrestrial and marine) in the region to remove any potential systematic effects. Finally, all these data were combined into a gravimetric geoid height model and evaluated with an eye to eventual use as a GNSS-accessed vertical datum.

  9. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  10. 78 FR 76604 - Grand River Dam Authority; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... reservoir for the Grand River Dam Authority's Markham Ferry Project No. 2183, for pumped storage operations.... Holway Reservoir (the upper reservoir), with a normal pool elevation between 850 feet and 865 feet National Geodetic Vertical Datum; (2) three rim dikes around the upper reservoir; (3) an 1,800-foot-long...

  11. 14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (see Table 1, TSO C51-a) 1 25 to 150 ft. Magnetic heading 360° ±5° 1 1°. Vertical acceleration −3g to +6g ±0.2g in addition to ±0.3g maximum datum 4 (or 1 per second where peaks, ref. to 1g are recorded...

  12. 14 CFR Appendix F to Part 91 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-a) 1 25 to 150 ft. Magnetic Heading 360° ±5° 1 1° Vertical Acceleration −3g to +6g ±0.2g in addition to ±0.3g maximum datum 4 (or 1 per second where peaks, ref. to 1g are recorded) 0.05g. Longitudinal...

  13. The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Kanney, J.; Youngman, M.

    2017-12-01

    Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio that we use successfully. In addition, we will investigate the relationship of aircraft motion, as measured by pitch, roll, and yaw, to airborne gravity quality in the Centaur operation as well as measurement aboard other aircraft with the beam-style sensor.

  14. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  15. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users flexibility regarding efficiency and quality of data collection. Quality assurance of survey-grade global positioning is often overlooked or not understood and perceived uncertainties can be misleading. GNSS users can benefit from a blueprint of data collection standards used to ensure consistency among USGS mission areas. A classification of GNSS survey qualities provide the user with the ability to choose from the highest quality survey used to establish objective points with low uncertainties, identified as a Level I, to a GNSS survey for general topographic control without quality assurance, identified as a Level IV. A Level I survey is strictly limited to post-processed methods, whereas Level II, Level III, and Level IV surveys integrate variations of a RT approach. Among these classifications, techniques involving blunder checks and redundancy are important, and planning that involves the assessment of the overall satellite configuration, as well as terrestrial and space weather, are necessary to ensure an efficient and quality campaign. Although quality indicators and uncertainties are identified in post-processed methods using CORS, the accuracy of a GNSS survey is most effectively expressed as a comparison to a local benchmark that has a high degree of confidence. Real-time and post-processed methods should incorporate these "trusted" benchmarks as a check during any campaign. Global positioning surveys are expected to change rapidly in the future. The expansion of continuously operating reference stations, combined with newly available satellite signals, and enhancements to the conterminous geoid, are all sufficient indicators for substantial growth in real-time positioning and quality thereof.

  16. 78 FR 41389 - Free Flow Power Corporation; Notice of Application Ready for Environmental Analysis and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... of Natural Resources on the East Fork White River in Lawrence County, Indiana. No federal lands are... Williams dam is currently owned by the Indiana Department of Natural Resources and impounds a 553-acre reservoir at a normal pool elevation of 472.2 North American Vertical Datum of 1988 (NAVD 88). In addition...

  17. Development of a seamless multisource topographic/bathymetric elevation model of Tampa Bay

    USGS Publications Warehouse

    Gesch, D.; Wilson, R.

    2001-01-01

    Many applications of geospatial data in coastal environments require knowledge of the nearshore topography and bathymetry. However, because existing topographic and bathymetric data have been collected independently for different purposes, it has been difficult to use them together at the land/water interface owing to differences in format, projection, resolution, accuracy, and datums. As a first step toward solving the problems of integrating diverse coastal datasets, the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) are collaborating on a joint demonstration project to merge their data for the Tampa Bay region of Florida. The best available topographic and bathymetric data were extracted from the USGS National Elevation Dataset and the NOAA hydrographic survey database, respectively. Before being merged, the topographic and bathymetric datasets were processed with standard geographic information system tools to place them in a common horizontal reference frame. Also, a key part of the preprocessing was transformation to a common vertical reference through the use of VDatum, a new tool created by NOAA's National Geodetic Survey for vertical datum conversions. The final merged product is a seamless topographic/bathymetric model covering the Tampa Bay region at a grid spacing of 1 arc-second. Topographic LIDAR data were processed and merged with the bathymetry to demonstrate the incorporation of recent third party data sources for several test areas. A primary application of a merged topographic/bathymetric elevation model is for user-defined shoreline delineation, in which the user decides on the tidal condition (for example, low or high water) to be superimposed on the elevation data to determine the spatial position of the water line. Such a use of merged topographic/bathymetric data could lead to the development of a shoreline zone, which could reduce redundant mapping efforts by federal, state, and local agencies by allowing them to customize their portrayals of the shoreline using a standard baseline elevation dataset.

  18. 14 CFR 171.263 - Localizer automatic monitor system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave Landing... provide an automatic monitor system that transmits a warning to designated local and remote control points... centerline equivalent to more than 0.015 DDM at the ISMLS reference datum. (2) For localizers in which the...

  19. 14 CFR 171.263 - Localizer automatic monitor system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave Landing... provide an automatic monitor system that transmits a warning to designated local and remote control points... centerline equivalent to more than 0.015 DDM at the ISMLS reference datum. (2) For localizers in which the...

  20. 14 CFR 171.263 - Localizer automatic monitor system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave Landing... provide an automatic monitor system that transmits a warning to designated local and remote control points... centerline equivalent to more than 0.015 DDM at the ISMLS reference datum. (2) For localizers in which the...

  1. 14 CFR 171.263 - Localizer automatic monitor system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave Landing... provide an automatic monitor system that transmits a warning to designated local and remote control points... centerline equivalent to more than 0.015 DDM at the ISMLS reference datum. (2) For localizers in which the...

  2. 14 CFR 171.263 - Localizer automatic monitor system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave Landing... provide an automatic monitor system that transmits a warning to designated local and remote control points... centerline equivalent to more than 0.015 DDM at the ISMLS reference datum. (2) For localizers in which the...

  3. 77 FR 43063 - Affirmation of Vertical Datum for Surveying and Mapping Activities for the Territory of Puerto Rico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... National Water Level Observation Network (NWLON) for bench marks designated 975 5371 A TIDAL (PID TV1513) (1.334 meters), located at La Puntilla, San Juan Puerto Rico, 975 2235 D (PID DN8624) (0.973 meters), located on Culebra Island, 975 2695 A (PID DN8535) (1.962 meters), located at Esperanza, Vieques Island...

  4. The quest for the perfect gravity anomaly: Part 1 - New calculation standards

    USGS Publications Warehouse

    Li, X.; Hildenbrand, T.G.; Hinze, W. J.; Keller, Gordon R.; Ravat, D.; Webring, M.

    2006-01-01

    The North American gravity database together with databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account our enhanced computational power, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining different anomaly components. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. ?? 2005 Society of Exploration Geophysicists.

  5. Nearshore coastal bathymetry data collected in 2016 from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi

    USGS Publications Warehouse

    DeWitt, Nancy T.; Stalk, Chelsea A.; Fredericks, Jake J.; Flocks, James G.; Kelso, Kyle W.; Farmer, Andrew S.; Tuten, Thomas M.; Buster, Noreen A.

    2018-04-13

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the U.S. Army Corps of Engineers, Mobile District, conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi. The objective of this study was to establish base-level elevation conditions around West Ship, East Ship, and Horn Islands and their associated active littoral system prior to restoration activities. These activities include the closure of Camille Cut and the placement of sediment in the littoral zone of East Ship Island. These surveys can be compared with future surveys to monitor sediment migration patterns post-restoration and can also be measured against historic bathymetric datasets to further our understanding of island evolution.The USGS collected 667 line-kilometers (km) of single-beam bathymetry data and 844 line-km of interferometric swath bathymetry data in July 2016 under Field Activity Number 2016-347-FA. Data are provided in three datums: (1) the International Terrestrial Reference Frame of 2000 (ellipsoid height); (2) the North American Datum of 1983 (NAD83) CORS96 realization and the North American Vertical Datum of 1988 with respect to the GEOID12B model (orthometric height); and (3) NAD83 (CORS96) and Mean Lower Low Water (tidal datum). Data products, including x,y,zpoint datasets, trackline shapefiles, digital and handwritten Field Activity Collection Systems logs, 50-meter digital elevation model, and formal Federal Geographic Data Committee metadata, are available for download.

  6. High-water marks from flooding in Lake Champlain from April through June 2011 and Tropical Storm Irene in August 2011 in Vermont

    USGS Publications Warehouse

    Medalie, Laura; Olson, S.A.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, identified high-water marks after two floods in Vermont during 2011. Following a snowy winter, new monthly precipitation records were set in Burlington, Vermont, in April and May 2011, causing extensive flooding from April through June. The spring 2011 flooding resulted in a new record for stage (103.27 feet, referenced to the National Geodetic Vertical Datum of 1929) at the Lake Champlain at Burlington, Vt., gaging station (04294500). During August 28 and 29, 2011, tropical storm Irene delivered rainfall totals of 3 to more than 7 inches throughout Vermont, which resulted in extensive flooding and new streamflow records at nine streamgaging stations. Four presidential declarations of disaster were made following the 2011 flood events in Vermont. Thirty-nine high-water marks were identified and flagged to mark the highest levels of Lake Champlain from the May 2011 flooding, and 1,138 high-water marks were identified and flagged along Vermont rivers after flooding from tropical storm Irene in August 2011. Seventy-four percent of the high-water marks that were flagged were later found and surveyed to the North American Vertical Datum of 1988.

  7. Department of Defense Strategy to Support Multi-Agency Bat Conservation Initiative within the State of Utah

    DTIC Science & Technology

    2008-02-28

    Range, and Section are entered. Datum: Geometric reference surface. Original Site Location datum is defined by user’s map datum; e.g. NAD27...Section are entered. Datum: Geometric reference surface. Original Site Location datum is defined by user’s map datum; e.g. NAD27 Conus or NAD83...Calculated and recorded automatically if the fields UTM_N and UTM_E or Township, Range, and Section are entered. 41 Datum: Geometric reference surface

  8. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics

    USGS Publications Warehouse

    James C. Lynch,; Phillippe Hensel,; Cahoon, Donald R.

    2015-01-01

    The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland elevation change is a top priority in North Atlantic Coastal parks (Stevens et al, 2010). As a result, the NPS Northeast Coastal and Barrier Network (NCBN) in collaboration with colleagues from the U.S. Geological Survey (USGS) and The National Oceanic and Atmospheric Administration (NOAA) have developed a protocol for monitoring wetland elevation change and other processes important for determining the viability of wetland communities. Although focused on North Atlantic Coastal parks, this document is applicable to all coastal and inland wetland regions. Wetlands exist within a narrow range of elevation which is influenced by local hydrologic conditions. For coastal wetlands in particular, local hydrologic conditions may be changing as sea levels continue to rise. As sea level rises, coastal wetland systems may respond by building elevation to maintain favorable hydrologic conditions for their survival. This protocol provides the reader with instructions and guidelines on designing a monitoring plan or study to: A) Quantify elevation change in wetlands with the Surface Elevation Table (SET). B) Understand the processes that influence elevation change, including vertical accretion (SET and Marker Horizon methods). C) Survey the wetland surface and SET mark to a common reference datum to allow for comparing sample stations to each other and to local tidal datums. D) Survey the SET mark to monitor its relative stability. This document is divided into two parts; the main body that presents an overview of all aspects of monitoring wetland elevation dynamics, and a collection of Standard Operating Procedures (SOP) that describes in detail how to perform or execute each step of the methodology. Detailed instruction on the installation, data collection, data management and analysis are provided in this report and associated SOP’s. A better understanding of these processes will help to determine the present and future viability of coastal wetlands managed by NPS and can help address measures that will ensure these communities exist into the future.

  9. Datum Transformation of Spatial Data and Application in Cadastre

    NASA Astrophysics Data System (ADS)

    Kısa, A.; Erkek, B.; Ekin, L.

    2012-07-01

    In Turkey, cadastral works have been started with local-based works in 1924 and speeded up after 1950's by using photogrammetry. Different measurement methods, coordinate systems and scales have been used in these works. As a result of primary cadastral activities two main products are generated; cadastral maps and title deeds. After this, cadastral data live on the maps, by cadastral activities carried out by cadastral offices and title deed data live on the registrations by land registration activities carried out by land registration offices. Up to 2005 different references systems such as local (graphic) and ED50 have been used for Cadastral maps production. 2000's Land Registry and Cadastre Information System (TAKBİS) Project has started as a pilot application by Land Registry and Cadastre (TKGM). After completion of pilot project spreading activities started in 2005 and still has been ongoing. On the other hand The government has taken the decision to finish primary cadastral activities within three years. The primary cadastral activities completed at the end of 2008. And also TKGM has completed metadata portal in 2008. At last, cadastral map updating (renovation) started in 2009 by using digital orthophoto with 30 cm GSD. Today people have great expectations in accomplishing digital cadastral services, they need correct, reliable, easy and quick accessible land register and cadastral survey information. Even such request expressed in INPIRE directive by using ISO 191XX data standards. This means we have great hard work for spatial data conversion, datum and data transformation for map and cadastral data harmonization. This paper presents results of investigation of used cadastral maps and used datums of the TKGM and possible transformation methods of datum and some recommendations for future applications.

  10. GOCE-based height system unification between Greece and Turkey. First considerations over marine and land areas

    NASA Astrophysics Data System (ADS)

    Vergos, Georgios S.; Erol, Bihter; Natsiopoulos, Dimitrios A.; Grigoriadis, Vassilios N.; Serkan Işık, Mustafa; Tziavos, Ilias N.

    2016-04-01

    The unification of local vertical Datums (LVDs) at a country-wide scale has gained significant attention lately, due to the availability of GOCE-based Global Geopotential Models (GGMs). The latter, offer unprecedented geoid height accuracies at the 1-1.5 cm level for spherical harmonic expansions to d/o 225-230. Within a single country, several LVDs may be used, especially in the event of islandic nations, therefore the unification of all of them to a single nation-wide LVD is of utmost importance. The same holds for neighboring countries, where the unification of their vertical datums is necessary as a tool of engineering, cross-border collaboration and environmental and risk management projects. The aforementioned set the main scope of the work carried out in the frame of the present study, which referred to the use of GOCE and GOCE/GRACE GGMs in order to unify the LVDs of Greece and Turkey. It is well-known that the two countries share common borders and are a path for large-scale engineering projects in the energy sector. Therefore, the availability of a common reference for orthometric heights in both countries and/or the determination of the relative offset of their individual zero-level geopotential value poses an emerging issue. The determination of the geopotential value Wo(LVD) for the Greek and Turkish LVDs was first carried out separately for each region performing as well different estimates for the marine area of the Aegean Sea and the terrestrial border-region along eastern Thrace. From that, possible biases of the Hellenic and Turkish LVDs themselves have been drawn and analyzed to determine spatial correlations. Then, the relative offset between the two LVDs was determined employing GPS/Levelling data for both areas and the latest GO-DIR-R5, GO-TIM-R5 and GOCO05s models as well as EGM2008. The estimation of the mean offset was used to provide as well a direct link between the Greek and Turkish LVDs with the IAG conventional value recently proposed as a Wo for a global WHS.

  11. Absolute gravimetry as an operational tool for geodynamics research

    NASA Astrophysics Data System (ADS)

    Torge, W.

    Relative gravimetric techniques have been used for nearly 30 years for measuring non-tidal gravity variations with time, and thus have contributed to geodynamics research by monitoring vertical crustal movements and internal mass shifts. With today's accuracy of about ± 0.05µms-2 (or 5µGal), significant results have been obtained in numerous control nets of local extension, especially in connection with seismic and volcanic events. Nevertheless, the main drawbacks of relative gravimetry, which are deficiencies in absolute datum and calibration, set a limit for its application, especially with respect to large-scale networks and long-term investigations. These problems can now be successfully attacked by absolute gravimetry, with transportable gravimeters available since about 20 years. While the absolute technique during the first two centuries of gravimetry's history was based on the pendulum method, the free-fall method can now be employed taking advantage of laser-interferometry, electronic timing, vacuum and shock absorbing techniques, and on-line computer-control. The accuracy inherent in advanced instruments is about ± 0.05 µms-2. In field work, generally an accuracy of ±0.1 µms-2 may be expected, strongly depending on local environmental conditions.

  12. 33 CFR 334.6 - Datum.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Datum. 334.6 Section 334.6... AND RESTRICTED AREA REGULATIONS § 334.6 Datum. (a) Geographic coordinates expressed in terms of... datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly...

  13. 33 CFR 334.6 - Datum.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Datum. 334.6 Section 334.6... AND RESTRICTED AREA REGULATIONS § 334.6 Datum. (a) Geographic coordinates expressed in terms of... datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly...

  14. 33 CFR 334.6 - Datum.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Datum. 334.6 Section 334.6... AND RESTRICTED AREA REGULATIONS § 334.6 Datum. (a) Geographic coordinates expressed in terms of... datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly...

  15. 33 CFR 334.6 - Datum.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Datum. 334.6 Section 334.6... AND RESTRICTED AREA REGULATIONS § 334.6 Datum. (a) Geographic coordinates expressed in terms of... datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly...

  16. Enhanced definition and required examples of common datum imposed by ISO standard

    NASA Astrophysics Data System (ADS)

    Yan, Yiqing; Bohn, Martin

    2017-12-01

    According to the ISO Geometrical Product Specifications (GPS), the establishment and definition of common datum for geometrical components are not fully defined. There are two main limitations of this standard. Firstly: the explications of ISO examples of common datums are not matched with their corresponding definitions, and secondly: a full definition of common datum is missing. This paper suggests a new approach for an enhanced definition and concrete examples of common datum and proposes a holistic methodology for establishment of common datum for each geometrical component. This research is based on the analysis of physical behaviour of geometrical components, orientation constraints and invariance classes of datums. This approach fills the definition gaps of common datum based on ISO GPS, thereby eliminating those deficits. As a result, an improved methodology for a fully functional defined definition of common datum was formulated.

  17. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67-foot rise (2009-10), from a 25-foot decline to a 35-foot rise (2005-10), from a 40-foot decline to an 80-foot rise (1990-2010), and from a 140-foot decline to a 200-foot rise (1977-2010). In 2010, water-level-altitude contours for the Evangeline aquifer ranged from 300 feet below datum in north-central Harris County to 200 feet above datum at the boundary of Waller, Montgomery, and Grimes Counties. Water-level-altitude changes in the Evangeline aquifer ranged from a 58-foot decline to a 69-foot rise (2009-10), from an 80-foot decline to an 80-foot rise (2005-10), from a 200-foot decline to a 220-foot rise (1990-2010), and from a 320-foot decline to a 220-foot rise (1977-2010). In 2010, water-level-altitude contours for the Jasper aquifer ranged from 200 feet below datum in south-central Montgomery County to 250 feet above datum in eastern-central Grimes County. Water-level-altitude changes in the Jasper aquifer ranged from a 39-foot decline to a 39-foot rise (2009-10), from a 110-foot decline to no change (2005-10), and from a 180-foot decline to no change (2000-10). Compaction of subsurface materials (mostly in the clay layers) composing the Chicot and Evangeline aquifers was recorded continuously at 13 borehole extensometers at 11 sites. For the period of record beginning in 1973, or later, and ending in December 2009, cumulative clay compaction data measured by 12 extensometers ranged from 0.088 foot at the Texas City-Moses Lake site to 3.559 foot at the Addicks site. The rate of compaction varies from site to site because of differences in groundwater withdrawals near each site and differences among sites in the clay-to-sand ratio in the subsurface materials. Therefore, it is not possible to extrapolate or infer a rate of clay compaction for an area based on the rate of compaction measured at a nearby extensometer.

  18. Determinación astronómica de la Desviación de la Vertical

    NASA Astrophysics Data System (ADS)

    Pacheco, A. M.; Podestá, R. C.

    A partir de las coordenadas astronómicas de Latitud y Longitud determinadas en la falla geológica de Nikizanga ubicada en las serranías de Pie de Palo, y, en base a un Punto Datum de referencia, se desarrolla la metodología para la determinación de la Desviación de la Vertical, que comprende la reducción de las observaciones astronómicas, transformaciones de coordenadas, aplicación de correcciones y el cálculo definitivo de los valores angulares de la Vertical. Estos estudios se iniciaron a sugerencia del Servicio Internacional de Latitud, International Polar Motion Service (IPMS), con el objeto de obtener en determinados puntos de la Tierra la Desviación de la Vertical y su variación, dentro de la nueva disciplina denominada Astrogeodinámica, con la idea de correlacionar estas variaciones con la predicción de grandes sismos.

  19. Ellipsoidal Harmonic Vertical Deflections. Global and Regional Modeling of The Horizontal Derivative of The Terrestrial Garvity Field

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Ardalan, A.; Finn, G.

    In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)

  20. 33 CFR 100.719 - Annual Suncoast Offshore Challenge; Gulf of Mexico, Sarasota, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... datum: NAD 1983. (b) Special local regulations. (1) No anchoring will be permitted seaward of the...: NAD 1983. (4) Big Sarasota Pass will be closed to all inbound and outbound vessel traffic, other than...

  1. Comparing mean high water and high water line shorelines: Should prosy-datum offsets be incorporated into shoreline change analysis?

    USGS Publications Warehouse

    Moore, L.J.; Ruggiero, P.; List, J.H.

    2006-01-01

    More than one type of shoreline indicator can be used in shoreline change analyses, and quantifying the effects of this practice on the resulting shoreline change rates is important. Comparison of three high water line (proxy-based) shorelines and a mean high water intercept (datum-based) shoreline collected from simultaneous aerial photographic and lidar surveys of a relatively steep reflective beach (tan ?? = 0.07), which experiences a moderately energetic wave climate (annual average Hs = 1.2 m), reveals an average horizontal offset of 18.8 m between the two types of shoreline indicators. Vertical offsets are also substantial and are correlated with foreshore beach slope and corresponding variations in wave runup. Incorporating the average horizontal offset into both a short-term, endpoint shoreline change analysis and a long-term, linear regression analysis causes rates to be shifted an average of -0.5 m/y and -0.1 m/y, respectively. The rate shift increases with increasing horizontal offset and decreasing measurement intervals and, depending on the rapidity of shoreline change rates, is responsible for varying degrees of analysis error. Our results demonstrate that under many circumstances, the error attributable to proxy-datum offsets is small relative to shoreline change rates and thus not important. Furthermore, we find that when the error associated with proxy-datum offsets is large enough to be important, the shoreline change rates themselves are not likely to be significant. A total water level model reveals that the high water line digitized by three independent coastal labs for this study was generated by a combination of large waves and a high tide several days before the collection of aerial photography. This illustrates the complexity of the high water line as a shoreline indicator and calls into question traditional definitions, which consider the high water line a wetted bound or "marks left by the previous high tide.".

  2. The Last Appearance Datum of Hipparion in Western Europe: magnetostratigraphy along the Pliocene-Pleistocene boundary in the Villarroya Basin (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Pueyo, Emilio L.; Muñoz, Arsenio; Laplana, César; Parés, Josep M.

    2016-11-01

    The Villarroya Basin in Northern Spain contains one of the classic Villafranchian localities of Europe and allows about 100 m of sediments to be explored by magnetostratigraphic techniques. Besides, the occurrence of some other macro- and micro-mammifera fossils becomes Villarroya in one of the most important Villafranchian localities of Southern Europe. Therefore, we have sampled two sections (one contains the classic locality) to shed some light on its chronostratigraphy. Detailed stepwise demagnetization has revealed primary and reliable directions (carried by magnetite and hematite) in more than 250 samples and allows us building a robust local polarity scale. The correlation with the geologic time scale locates the local sequence along the Gauss and Matuyama chrons. A Réunion chron (C2r.1n) equivalent age (2.128-2.148 Ma) is here proposed for the Villarroya fossil locality since it is clearly located above the Gauss/Matuyama boundary (very well defined in the magnetostratigraphic section) and displays normal polarity. This correlation implies a new age assignment for the classic paleontological fossil locality of Villarroya and a Last Appearance Datum of Hipparion sensu lato in Western Europe significantly younger than previously established. Taking into account this new dating, the Hipparion and Equus horses could have coexisted in Europe up to the complete extinction of Hipparion in early Matuyama times.

  3. Three new species of Proceratophrys Miranda-Ribeiro 1920 from Brazilian Cerrado (Anura, Odontophrynidae).

    PubMed

    Brandão, Reuber Albuquerque; Caramaschi, Ulisses; Vaz-Silva, Wilian; Campos, Leandro Ambrósio

    2013-12-20

    Based on the analyses of specimens collected at several areas in the Cerrado domain from Central Brazil and others housed in scientific collections and on specimens collected at the type-locality, herein we describe three new species belonging to the P. cristiceps group: Proceratophrys bagnoi sp. nov., from UHE Serra da Mesa power plant (13°49'47.5"S, 48°19'17"W; 570 m a.s.l.; WGS84 datum), Municipality of Minaçu, State of Goiás; Proceratophrys branti sp. nov., from Jalapão, Municipality of Mateiros (05o15'25"S, 48o12'00"W; 109 m a.s.l.; WGS84 datum), State of Tocantins; and Proceratophrys dibernardoi sp. nov., Municipality of Mineiros (17o33'52"S, 52o33'20"W; 803 m a.s.l.; WGS84 datum), State of Goiás. The diversity of Proceratophrys in Brazilian Cerrado is still underscored and several species will be described in the following years.

  4. Method for laser-based two-dimensional navigation system in a structured environment

    DOEpatents

    Boultinghouse, Karlan D.; Schoeneman, J. Lee; Tise, Bertice L.

    1989-01-01

    A low power, narrow laser beam, generated by a laser carried by a mobile vehicle, is rotated about a vertical reference axis as the vehicle navigates within a structured environment. At least three stationary retroreflector elements are located at known positions, preferably at the periphery of the structured environment, with one of the elements having a distinctive retroreflection. The projected rotating beam traverses each retroreflector in succession, and the corresponding retroreflections are received at the vehicle and focussed on a photoelectric cell to generate corresponding electrical signals. The signal caused by the distinctive retroreflection serves as an angle-measurement datum. An angle encoder coupled to the apparatus rotating the projected laser beam provides the angular separation from this datum of the lines connecting the mobile reference axis to successive retroreflectors. This real-time angular data is utilized with the known locations of the retroreflectors to trigonometrically compute using three point resection, the exact real-time location of the mobile reference axis (hence the navigating vehicle) vis-a-vis the structured environment, e.g., in terms of two-dimensional Cartesian coordinates associated with the environment.

  5. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  6. 33 CFR 165.1123 - Southern California Annual Firework Events for the San Diego Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or local agencies. Table 1 to § 165.1123 [All coordinates referenced use datum NAD 83] 1. San Diego.... Big Bay Boom Fourth of July Fireworks Sponsor Port of San Diego. Event Description Fireworks Display...

  7. 33 CFR 100.905 - Door County Triathlon; Door County, WI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in position 45°00′46″ N, 087°20′30″ W. (DATUM: NAD 83). (b) Special Local Regulations. The...; Door County, WI. (a) Regulated Area. A regulated area is established to include all waters of Green Bay...

  8. New Orleans, LA, District: Report of the Secretary of the Army on Civil Works Activities for FY 2011

    DTIC Science & Technology

    2011-01-01

    side slopes, and protective vegetation. The sandfill berm slopes from an elevation of 8.5 feet, NGVD, at the toe of the dune 150 feet gulfward to an...and vegetated dune constructive with a geotextile tube core extending the length of Grand Isle’s gulf shore and a jetty to stabilize the western end...of the island at Caminada Pass. The dune has a 10-foot-wide crown at an elevation of 13.5 feet, National Geodetic Vertical Datum (NGVD), 1 on 5

  9. Prototype Evaluation of Sluiceway Aeration System Libby Dam, Kootenai River, Montana.

    DTIC Science & Technology

    1984-03-01

    VICKSBURG MS H DRA.. R G MCGEE UNCLASSIFIED MAR 84 WES/TR/HL-84-2 F/G 13/13 NL- DE E-EullEI EEEEEIIIENEIII II I IE EEIImmiEmhihhhEEEI mEEmhEEihhEEm 1j...report of findings was published * All elevations ( el ) cited herein are in feet referred to the National Geodetic Vertical Datum (NGVD). 6 r.W (Hart...1981). Data derived from the test program were used as criteria for de - sign of a more efficient air vent system. 6. The resulting modification to the

  10. Potentiometric surface of the Catahoula aquifer in central Louisiana, 2013

    USGS Publications Warehouse

    Fendick, Jr., Robert B.; Carter, Kayla

    2015-12-09

    The potentiometric surface of the Catahoula aquifer was constructed by using the altitude of water levels measured at 29 wells during the period May through September 2013. The altitude of water levels ranged from 0.02 ft above the National Geodetic Vertical Datum of 1929 (NGVD 29) in well Co-51 to 238 ft above NGVD 29 in well Na-317. Groundwater movement in the Catahoula aquifer is generally to the southeast and towards discharge areas beneath the Sabine, Red, Little, and Tensas River Valleys.

  11. Target tracking and pointing for arrays of phase-locked lasers

    NASA Astrophysics Data System (ADS)

    Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis

    2016-09-01

    Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.

  12. 33 CFR 100.906 - Grand Haven Coast Guard Festival Waterski Show, Grand Haven, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.906...″ N, 086°14′17″ W; then back to the point of origin. (DATUM: NAD 83). (b) Special Local Regulations...

  13. The Kerala Decentration Meter. A new method and devise for fitting the optical of spectacle lenses in the visual axis.

    PubMed

    Joseph, T K; Kartha, C P

    1982-01-01

    Centring of spectacle lenses is much neglected field of ophthalmology. The prismatic effect caused by wrong centring results in a phoria on the eye muscles which in turn causes persistent eyestrain. The theory of visual axis, optical axis and angle alpha is discussed. Using new methods the visual axis and optical axis of 35 subjects were measured. The results were computed for facial asymmetry, parallax error, angle alpha and also decentration for near vision. The results show that decentration is required on account of each of these factors. Considerable correction is needed in the vertical direction, a fact much neglected nowadays; and vertical decentration results in vertical phoria which is more symptomatic than horizontal phorias. Angle Alpha was computed for each of these patients. A new devise called 'The Kerala Decentration Meter' using the pinhole method for measuring the degree of decentration from the datum centre of the frame, and capable of correcting all the factors described above, is shown with diagrams.

  14. Towards the Implementation of Semi-Dynamic Datum for Malaysia

    NASA Astrophysics Data System (ADS)

    Shariff, N. S.; Gill, J.; Amin, Z. M.; Omar, K. M.

    2017-10-01

    A semi-dynamic datum provides positions with respect to time while taking into account the secular and non-secular deformations, making it the best approach to adapt with the dynamic processes of the earth. Malaysia, as yet, employs a static datum, i.e., GDM2000, at epoch 2000; though Malaysia has evidently been affected by seismic activity for the past decade. Therefore, this paper seeks to propose a design for implementing a semi-dynamic datum for Malaysia. Methodologically, GPS time series analyses are carried out to investigate the seismic activity of Malaysia, which essentially contributes to the proposed design of the semi-dynamic datum for Malaysia. The implications of implementing a semi-dynamic datum for Malaysia are discussed as well. The results indicate that Malaysia undergoes a complex deformation; whereby the earthquakes - primarily the 2004 Sumatra-Andaman, 2005 Nias and 2012 Northern Sumatra earthquakes - have affected the underlying secular velocities of Malaysia. Consequently, from this information, the proposed design, particularly the secular and non-secular deformation models, is described in detail. The proposed semi-dynamic datum comprises a transformation, temporal, and spatial module, and utilizes a bilinear interpolation method. Overall, this paper aims to contribute to the feasibility of a semi-dynamic datum approach for Malaysia.

  15. Assessing New GRAV-D Airborne Gravimetry Collected over the United States

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Li, X.; Roman, D. R.

    2013-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, is updating its terrestrial gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2020, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Towards this end, the newly-collected airborne-gravimety is repeatedly evaluated by using it to support experimental gravitational models and gravimetric geoids, and then comparing these against independent data sets, such as ';satgrav' models (GRACE/GOCE), GPS/Leveling, astronomical vertical defections, and others. Here we show some results from these tests for GRAV-D airborne gravimetry collected over 2012/2013.

  16. Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005

    USGS Publications Warehouse

    Schrader, T.P.; Jones, J.S.

    2007-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission, the Arkansas Geological Commission, and the Louisiana Department of Transportation and Development has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group since the 1920's. Ground-water withdrawals have increased while water levels have declined since monitoring was initiated. This report has been produced to describe ground-water levels in the aquifers in the Sparta Sand and Memphis Sand and provide information for the management of this valuable resource. The 2005 potentiometric-surface map of the aquifers in the Sparta Sand and Memphis Sand was constructed using water-level data collected in 333 wells in Arkansas and 120 wells in Louisiana during the spring of 2005. The highest water-level altitude measured in Arkansas was 327 feet above National Geodetic Vertical Datum of 1929 located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 189 feet below National Geodetic Vertical Datum of 1929 in Union County. The highest water-level altitude measured in Louisiana was 246 feet above National Geodetic Vertical Datum of 1929 located in Bossier Parish in the outcrop area near the western boundary of the study area; the lowest water-level altitude was 226 feet below National Geodetic Vertical Datum of 1929 in central Ouachita Parish. Three large depressions centered in Columbia, Jefferson, and Union Counties in Arkansas are the result of large withdrawals for industrial and public supplies. In Louisiana, three major pumping centers are in Ouachita, Jackson, and Lincoln Parishes. Water withdrawals from these major pumping centers primarily is used for industrial and public-supply purposes. Withdrawals from Ouachita and Lincoln Parishes and Union County, Arkansas, primarily for industrial purposes, have caused the resulting cones of depression to coalesce so that the -40 foot potentiometric contour encircles the three pumping centers. Seven smaller depressions are evident on the 2005 Sparta-Memphis potentiometric-surface map located in Webster and Winn Parishes, Louisiana, and Calhoun, Cleveland, western Columbia, Desha, and Lafayette Counties, Arkansas. The depression in Calhoun County initially was shown in the 1996-1997 potentiometric surface. The depression in Desha County initially was shown in the 1999 potentiometric surface. The depressions in Webster and Winn Parishes were shown as early as 1975. The depressions in Cleveland, western Columbia, and Lafayette Counties initially were shown in the 2003 potentiometric surface. A map of differences in water-level measurements between 2001 and 2005 was constructed using the difference between water-level measurements from 294 wells in Arkansas and 29 wells in Louisiana. The difference in water levels between 2001 and 2005 ranged from -30.1 to 44.6 feet. The largest rise of 44.6 feet in water level measured was in Union County in Arkansas. The largest decline of 30.1 feet in water level measured was in Columbia County in Arkansas. Areas with a general rise in water levels in Arkansas are shown in Arkansas, Columbia, Craighead, Jefferson, Prairie, and the western half of Union Counties. The area around west-central Union County had rises as much as 44.6 feet, with seven wells showing a rise of 20 feet or greater, which is an annual rise of 5 feet or greater. Areas in Arkansas with a general decline in water level are shown in western Bradley, eastern Calhoun, Cleveland, Cross, Desha, Drew, Lafayette, Lee, Lincoln, Lonoke, Poinsett, and the eastern half of Union Counties. In Louisiana, the water-level difference map showed a general rise in water levels in northern Claiborne, northern Webster, and northwestern Union Parishes mainly because of a decrease in industrial withdrawals in southern Arkansas, particularly Union County. Another rise in water level was indicated in western

  17. Vienna Fortran - A Language Specification. Version 1.1

    DTIC Science & Technology

    1992-03-01

    other computer archi- tectures is the fact that the memory is physically distributed among the processors; the time required to access a non-local...datum may be an order of magnitude higher than the time taken to access locally stored data. This has important consequences for program efficiency. In...machine in many aspects. It is tedious, time -consuming and error prone. It has led to particularly slow software development cycles and, in consequence

  18. Velocity, water-quality, and bathymetric surveys of the Grays Landing and Maxwell Navigation Pools, and Selected Tributaries to the Monongahela River, Pennsylvania, 2010–11

    USGS Publications Warehouse

    Hoffman, Scott A.; Roland, Mark A.; Schalk, Luther F.; Fulton, John W.

    2013-01-01

    The U.S. Geological Survey (USGS) conducted velocity, water-quality, and bathymetric surveys from spring 2010 to summer 2011 in the Grays Landing and Maxwell navigation pools of the Monongahela River, Pennsylvania, and selected tributaries in response to elevated levels of total dissolved solids (TDS) recorded in early September 2009. Velocity data were collected using an Acoustic Doppler Current Profiler. Water-quality surveys included the in-situ collection of specific-conductance, water-temperature, and turbidity data using a water-quality sonde. Additionally, discrete water samples were collected and analyzed for TDS, chloride, and sulfate. Bathymetric data were collected using an echo sounder, and the shoreline was delineated using a laser range finder and electronic compass. The data were geo-referenced using a differential global positioning system and navigational software. Horizontal (x, y) coordinates were referenced to the North American Datum of 1983. Depth (z) elevations were referenced to the North American Vertical Datum of 1988. The data are provided in electronic format (appendix 1) and may be downloaded and can be used in a geographic information system for cartographic display and data analysis.

  19. Apron heights around stepped massifs in the Cydonia Mensae region: Do they record the local paleobathymetry of Oceanus Borealis?

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Gorsline, D. S.

    1993-01-01

    The use of photoclinometry and shadow measurements to determine the basin volume without linking the measurements to a global datum is described. Since the boundary, or shoreline, of the basin cannot be tied to the datum and typically has no useful local relative height to measure, what is needed is a number of measurements of the height of the paleoshorelines distributed across the basin. Photoclinometric profiles are being compiled from Viking Orbiter images of the Cydonia Mensae region, which includes images with high sun elevations, necessary to avoid shadows, and images with low sun elevations, to enable the use of shadow measurements as an independent check, at high resolution (40 to 100 m/pixel). Both asymmetric and symmetric photoclinometric profile models are being used, and the results cross checked with one another to minimize errors. An apron-height map, potentially a paleobathymetric map of part of the margin of Oceanus Borealis, can be compiled from this data to determine whether variations in apron height are consistent with a lacustrine interpretation.

  20. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling

    NASA Astrophysics Data System (ADS)

    Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta

    2011-03-01

    One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.

  1. Apparatus and method for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1999-01-01

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  2. GRAV-D Part II : Examining Airborne Gravity Processing Assumptions With an Aim Towards Producing a Better Gravimetric Geoid

    NASA Astrophysics Data System (ADS)

    Theresa, D. M.; Vicki, C.; Dan, R.; Dru, S.

    2008-12-01

    The primary objective of the GRAV-D (Gravity for the Redefinition of the American Vertical Datum) project is to redefine the American vertical datum by using an improved gravimetric geoid. This will be partially accomplished through an extensive airborne gravity measurement campaign, focusing first on the land/water interface (and later on interior areas) of the US and its holdings. This airborne campaign is designed specifically to capture intermediate wavelength gravity information by flying at high altitudes (35,000 ft, ~10 km) with a 10 km line spacing. The intermediate wavelengths captured by airborne gravity data are complementary to ground and satellite gravity data. Combining the GRAV-D airborne gravity data with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity field will allow existing terrestrial data sets to be corrected for bias and trend problems. Ultimately, all three types of data can then be merged into a single accurate representation of the gravity field. Typically, the airborne gravity data reduction process is used to produce free-air anomalies for geological/geophysical applications that require more limited accuracy and precision than do geodetic applications. Thus we re-examine long-standing data reduction simplifications and assumptions with an aim toward improving both the accuracy and precision of airborne gravity data before their inclusion into a gravimetric geoid. The data reduction process is tested on a 400 km x 500 km airborne gravity survey in southern Alaska (in the vicinity of Anchorage) collected in the summer of 2008 as part of the GRAV-D project. Potential improvements in processing come from examining the impacts of various GPS processing schemes on free-air gravity results and re-considering all assumptions in standard airborne gravity processing methods, especially those that might introduce bias into absolute gravity levels.

  3. Summary of extensometric measurements in El Paso, Texas

    USGS Publications Warehouse

    Heywood, Charles E.

    2003-01-01

    Two counter-weighted-pipe borehole extensometers were installed on the left bank of the Rio Grande between El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, in 1992. A shallow extensometer measures vertical compaction in the 6- to 100-meter aquifer-system depth interval. A deep extensometer measures vertical compaction in the 6- to 305-meter aquifer-system depth interval. Both extensometers are referenced to the same surface datum, which allows time-series differencing to determine vertical compaction in the depth interval between 100 and 305 meters. From April 2, 1993, through June 13, 2002, 1.6 centimeters of compaction occurred in the 6-to 305-m depth interval. Until February 1999, most aquifer-system compaction occurred in the deeper aquifer-system interval between 100 and 305 meters, from which ground water was extracted. After that time, compaction in the shallow interval from 6 to 100 meters was predominant and attained a maximum of 7.6 millimeters by June 13, 2002. Minor residual compaction is expected to continue; continued maintenance of the El Paso extensometers would document this process.

  4. 33 CFR 334.6 - Datum.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83 only after application of the appropriate corrections that are published on the...

  5. 76 FR 43679 - FirstLight Hydro Generating Company; City of Norwich Department of Public Utilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2662-012; Project No. 12968..., Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. The Commission's Rules... gravity-type ungated spillway section with a crest elevation of 75.38 feet local datum and 30-inch wooden...

  6. Terrain Referenced Navigation Using SIFT Features in LiDAR Range-Based Data

    DTIC Science & Technology

    2014-12-26

    14 2.5 Geocentric and geodetic representation of the same point on Earth’s surface. . . 16 2.6 Difference between datum provided ellipsoid height h and...also called a geocentric system, in that its origin is coincident with the calculated center of the earth. 8 2.1.3.2 Local Navigation Frame. The local...utilizing them. 2.2.1.1 Ellipsoid Earth Models. While geocentric ECEF coordinates are useful to describe a point on or inside the earth they can be cumbersome

  7. Determining Coastal Mean Dynamic Topography by Geodetic Methods

    NASA Astrophysics Data System (ADS)

    Huang, Jianliang

    2017-11-01

    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  8. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  9. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  10. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  11. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  12. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  13. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hampton Roads, Virginia and adjacent waters (Datum: NAD 83). 110.168 Section 110.168 Navigation and Navigable Waters COAST GUARD..., Virginia and adjacent waters (Datum: NAD 83). (a) Anchorage Grounds—(1) Anchorage A [Naval Anchorage]. The...

  14. 33 CFR 110.128d - Island of Oahu, Hawaii. (Datum: OHD)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Island of Oahu, Hawaii. (Datum: OHD) 110.128d Section 110.128d Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128d Island of Oahu, Hawaii. (Datum...

  15. The Unified Levelling Network of Sarawak and its Adjustment

    NASA Astrophysics Data System (ADS)

    Som, Z. A. M.; Yazid, A. M.; Ming, T. K.; Yazid, N. M.

    2016-09-01

    The height reference network of Sarawak has seen major improvement in over the past two decades. The most significant improvement was the establishment of extended precise leveling network of which is now able to connect all three major datum points at Pulau Lakei, Original and Bintulu. Datum by following the major accessible routes across Sarawak. This means the leveling network in Sarawak has now been inter-connected and unified. By having such a unified network leads to the possibility of having a common single least squares adjustment been performed for the first time. The least squares adjustment of this unified levelling network was attempted in order to compute the height of all Bench Marks established in the entire levelling network. The adjustment was done by using MoreFix levelling adjustment package developed at FGHT UTM. The computational procedure adopted is linear parametric adjustment by minimum constraint. Since Sarawak has three separate datums therefore three separate adjustments were implemented by utilizing datum at Pulau Lakei, Original Miri and Bintulu Datum respectively. Results of the MoreFix unified adjustment agreed very well with adjustment repeated using Starnet. Further the results were compared with solution given by Jupem and they are in good agreement as well. The difference in height analysed were within 10mm for the case of minimum constraint at Pulau Lakei datum and with much better agreement in the case of Original Miri Datum.

  16. 33 CFR 100.904 - Celebrate Americafest, Green Bay, WI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Bridge at position 44°30′25″ N, 088°01′06″ W. (DATUM: NAD 83). (b) Special Local Regulations. The... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Celebrate Americafest, Green Bay..., Green Bay, WI. (a) Regulated Area. A regulated area is established to include all waters of the Fox...

  17. Consideration of vertical uncertainty in elevation-based sea-level rise assessments: Mobile Bay, Alabama case study

    USGS Publications Warehouse

    Gesch, Dean B.

    2013-01-01

    The accuracy with which coastal topography has been mapped directly affects the reliability and usefulness of elevationbased sea-level rise vulnerability assessments. Recent research has shown that the qualities of the elevation data must be well understood to properly model potential impacts. The cumulative vertical uncertainty has contributions from elevation data error, water level data uncertainties, and vertical datum and transformation uncertainties. The concepts of minimum sealevel rise increment and minimum planning timeline, important parameters for an elevation-based sea-level rise assessment, are used in recognition of the inherent vertical uncertainty of the underlying data. These concepts were applied to conduct a sea-level rise vulnerability assessment of the Mobile Bay, Alabama, region based on high-quality lidar-derived elevation data. The results that detail the area and associated resources (land cover, population, and infrastructure) vulnerable to a 1.18-m sea-level rise by the year 2100 are reported as a range of values (at the 95% confidence level) to account for the vertical uncertainty in the base data. Examination of the tabulated statistics about land cover, population, and infrastructure in the minimum and maximum vulnerable areas shows that these resources are not uniformly distributed throughout the overall vulnerable zone. The methods demonstrated in the Mobile Bay analysis provide an example of how to consider and properly account for vertical uncertainty in elevation-based sea-level rise vulnerability assessments, and the advantages of doing so.

  18. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

    NASA Astrophysics Data System (ADS)

    Glaser, Susanne; König, Rolf; Ampatzidis, Dimitrios; Nilsson, Tobias; Heinkelmann, Robert; Flechtner, Frank; Schuh, Harald

    2017-07-01

    In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

  19. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  20. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Geodetic information is presented for NASA tracking stations and observation stations in the NASA geodetic satellites program. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  1. Lokalisatie Maskergelaatslekkage (Localization of Face-Seal Leak Sites)

    DTIC Science & Technology

    2004-03-01

    2004-A 12 TNO Prins Maurits Laboratorium Lokallisatie Maskergellaatslekkage DISTRIBUTION STATEMENT A Approved for Public Release Lange Kleiweg 137 Datum...1 /- O 9 TNO Prins Maurits Laboratorium is onderdeel van de hoofdgroep TNO Defensieonderzoek waartoe verder b~ehoren: TNO Fysisct en Elektronisch... Laboratorium Nedertandse Organisatie voor toegepast- TNO Te~chnische Menakunde natuurwetenschaDpeliik onderzoek TNO TNO Prn Ma rt LA. mu * s gg 2

  2. 33 CFR 165.1123 - Southern California Annual Firework Events for the San Diego Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Firework Events for the San Diego Captain of the Port Zone. 165.1123 Section 165.1123 Navigation and... Diego Captain of the Port Zone. (a) General. Safety zones are established for the events listed in Table..., or local agencies. Table 1 to § 165.1123 [All coordinates referenced use datum NAD 83.] 1. San Diego...

  3. 33 CFR 165.1123 - Southern California Annual Firework Events for the San Diego Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Firework Events for the San Diego Captain of the Port Zone. 165.1123 Section 165.1123 Navigation and... Diego Captain of the Port Zone. (a) General. Safety zones are established for the events listed in Table..., or local agencies. Table 1 to § 165.1123 [All coordinates referenced use datum NAD 83.] 1. San Diego...

  4. 77 FR 13232 - Security Zones; G8/North Atlantic Treaty Organization (NATO) Summit, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... point located in the approximate position 41[deg]51'37'' N, 087[deg]36'44'' W. [DATUM: NAD 83]. (2... located in the approximate position 41[deg]53'19'' N, 087[deg]36'17'' W. [DATUM: NAD 83]. (3) Security..., 087[deg]36'28'' W. [DATUM: NAD 83] and the juncture of the north and south branches of the Chicago...

  5. Evaluation of vector coastline features extracted from 'structure from motion'-derived elevation data

    USGS Publications Warehouse

    Kinsman, Nicole; Gibbs, Ann E.; Nolan, Matt

    2015-01-01

    For extensive and remote coastlines, the absence of high-quality elevation models—for example, those produced with lidar—leaves some coastal populations lacking one of the essential elements for mapping shoreline positions or flood extents. Here, we compare seven different elevation products in a lowlying area in western Alaska to establish their appropriateness for coastal mapping applications that require the delineation of elevation-based vectors. We further investigate the effective use of a Structure from Motion (SfM)-derived surface model (vertical RMSE<20 cm) by generating a tidal datum-based shoreline and an inundation extent map for a 2011 flood event. Our results suggest that SfM-derived elevation products can yield elevation-based vector features that have horizontal positional uncertainties comparable to those derived from other techniques. We also provide a rule-of-thumb equation to aid in the selection of minimum elevation model specifications based on terrain slope, vertical uncertainties, and desired horizontal accuracy.

  6. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant increase in accuracy. Our presentation will also explore the impact of such an instrument on our theory of how to constrain the gravity datum and on how to ensure stability, repeatability, and reproducibility across different absolute gravimeter systems.

  7. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited

    USGS Publications Warehouse

    Cahoon, D.R.; Reed, D.J.; Day, J.W.

    1995-01-01

    Simultaneous measurements of vertical accretion and change in surface elevation relative to a shallow (3-5 m) subsurface datum were made in selected coastal salt marshes of Louisiana, Florida, and North Carolina to quantitatively test Kaye and Barghoorn's contention that vertical accretion is not a good surrogate for surface elevation change because of autocompaction of the substrate. Rates of subsidence of the upper 3-5 m of marsh substrate were calculated for each marsh as the difference between vertical accretion and elevation change measured with feldspar marker horizons and a sedimentation-erosion table. Surface elevation change was significantly lower than vertical accretion at each site after 2 years, indicating a significant amount of shallow subsidence had occurred, ranging from 0.45 to 4.90 cm. The highest rate of shallow subsidence occurred in the Mississippi delta. Results confirm Kaye and Barghoorn's contention that vertical accretion is not generally a good surrogate for elevation change because of processes occurring in the upper few meters of the substrate, including not only compaction but also apparently shrink-swell from water storage and/or plant production--decomposition at some sites. Indeed, surface elevation change was completely decoupled from vertical accretion at the Florida site. The assumption of a 1:1 relationship between accretionary and substrate processes. Consequently, the potential for coastal marsh submergence should be expressed as an elevation deficit based on direct measures of surface elevation change rather than accretion deficits. These findings also indicate the need for greater understanding of the influence of subsurface and small-scale hydrologic processes on marsh surface elevation.

  8. Location and Description of Transects for Ecological Studies in Floodplain Forests of the Lower Suwannee River, Florida

    DTIC Science & Technology

    2002-01-01

    Level Datum of 1929. Horizontal datum: In this report, horizontal coordinate information is referenced to the North American Datum of 1927 (NAD27...ileopa Ilex opaca Ait. var. opaca American holly junsil Juniperus silicicola (Small) Bailey 1 southern red cedar liqsty Liquidambar styraciflua L...swamp gum nyssyl Nyssa sylvatica Marsh.1 blackgum ostvir Ostrya virginiana (Mill.) K. Koch eastern hophornbeam perpal Persea palustris (Raf.) Sarg

  9. The impact of local land subsidence and global sea level rise on flood severity in Houston-Galveston caused by Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Miller, M. M.; Shirzaei, M.

    2017-12-01

    Category-4 Hurricane Harvey had devastating socioeconomic impacts to Houston, with flooding far past the 100-year flood zones published by FEMA. In recent decades, frequency and intensity of coastal flooding are escalating, correlated with sea level rise (SLR). Moreover, Local land subsidence (LLS) due to groundwater and hydrocarbon extraction and natural compaction changes surface elevation and slope, potentially altering drainage patterns. GPS data show a mm broad co-cyclonic subsidence due to elastic loading from the water mass measured by GPS, which is inverted to solve for the total fluid volume of 2.73x1010 m3. We additionally investigate the joint impact of an SLR and pre-cyclonic LLS on the flooding of Houston-Galveston during Hurricane Harvey. We examine vertical land motion within North American Vertical Datum 2012 for the period 2007 until the cyclone by investigating SAR imaged acquired by ALOS and Sentinel-1A/B radar satellites combined with GPS data. We find patchy, LLS bowls resulting in sinks where floodwater can collect. We map the flooding extent by comparing amplitudes of Sentinal1-A/B pixels' backscattered radar signal from pre- and post-Harvey acquisitions and estimate 782 km2 are submerged within the area of 3478 km2 of pixels covered by Sentinel frame. Comparing with the LLS map, 89% of the flooded pixels exhibit -3 mm/yr or greater vertical motion. Flooding attributed to the storm surge is determined with high-resolution LiDAR digital elevation models (DEM) and a 0.75 m storm tide inundation model, which engulfs only 195 km2 and nearby the shorelines. We estimate future inundation hazard by combining LiDAR DEMs with our InSAR derived subsidence map, projecting LLS rates forward 100 years, and modeling projected SLR from 0.4 to 1.2 meters. Were subsidence to continue unabated, the total flooded area is 281 km2 with a 0.4 m and 394 km2 with a 1.2 m SLR. Next, we add a modest storm tide (0.752 m), which increases the flooded area to 389 - 480 km2. The combined effects of LLS and SLR are important to evaluate flood resilience strategies.

  10. Advances and Best Practices in Airborne Gravimetry from the U.S. GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Diehl, Theresa; Childers, Vicki; Preaux, Sandra; Holmes, Simon; Weil, Carly

    2013-04-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, an official policy of the U.S. National Geodetic Survey as of 2007, is working to survey the entire U.S. and its holdings with high-altitude airborne gravimetry. The goal of the project is to provide a consistent, high-quality gravity dataset that will become the cornerstone of a new gravimetric geoid and national vertical datum in 2022. Over the last five years, the GRAV-D project has surveyed more than 25% of the country, accomplishing almost 500 flights on six different aircraft platforms and producing more than 3.7 Million square km of data thus far. This wealth of experience has led to advances in the collection, processing, and evaluation of high-altitude (20,000 - 35,000 ft) airborne gravity data. This presentation will highlight the most important practical and theoretical advances of the GRAV-D project, giving an introduction to each. Examples of innovation include: 1. Use of navigation grade inertial measurement unit data and precise lever arm measurements for positioning; 2. New quality control tests and software for near real-time analysis of data in the field; 3. Increased accuracy of gravity post-processing by reexamining assumptions and simplifications that were inconsistent with a goal of 1 mGal precision; and 4. Better final data evaluation through crossovers, additional statistics, and inclusion of airborne data into harmonic models that use EGM08 as a base model. The increases in data quality that resulted from implementation of the above advances (and others) will be shown with a case study of the GRAV-D 2008 southern Alaska survey near Anchorage, over Cook Inlet. The case study's statistics and comparisons to global models illustrate the impact that these advances have had on the final airborne gravity data quality. Finally, the presentation will summarize the best practices identified by the project from its last five years of experience.

  11. 76 FR 21677 - Safety Zones; Annual Events Requiring Safety Zones in the Captain of the Port Sault Sainte Marie...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ..., 087[deg]23'07.60'' W [DATUM: NAD 83]. (ii) Enforcement Period This safety zone will be enforced each...]24'50.08'' N, 086[deg]39'08.52'' W [DATUM: NAD 83]. (ii) Enforcement Period This safety zone will be...[deg]57'46.14'' W, and 46[deg]40'19.68'' N, 085[deg]57'43.08'' W [DATUM: NAD 83], with the West Bay...

  12. [Design and implementation of field questionnaire survey system of taeniasis/cysticercosis].

    PubMed

    Huan-Zhang, Li; Jing-Bo, Xue; Men-Bao, Qian; Xin-Zhong, Zang; Shang, Xia; Qiang, Wang; Ying-Dan, Chen; Shi-Zhu, Li

    2018-04-17

    A taeniasis/cysticercosis information management system was designed to achieve the dynamic monitoring of the epidemic situation of taeniasis/cysticercosis and improve the intelligence level of disease information management. The system includes three layer structures (application layer, technical core layer, and data storage layer) and designs a datum transmission and remote communication system of traffic information tube in Browser/Server architecture. The system is believed to promote disease datum collection. Additionally, the system may provide the standardized data for convenience of datum analysis.

  13. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... circle of 1,000 feet radius centered at latitude 21°17′43.6″ N., longitude 158°07′36.1″ W. (Datum NAD 83... anchorage A to the shoreline at latitude 21°18′10.6″ N., longitude 158°06′47.1″ W. (Datum NAD 83) (3... beginning. (Datum NAD 83) (4) Nonanchorage area B. The waters extending 300 feet on either side of a line...

  14. Weighted-outer-product associative neural network

    NASA Astrophysics Data System (ADS)

    Ji, Han-Bing

    1991-11-01

    A weighted outer product learning (WOPL) scheme for associative memory neural network is presented in which learning orders are incorporated to the Hopfield model. WOPL can be guaranteed to achieve correct recall of some stored datums no matter whether or not they are stable in the Hopfield model, and whether the number of stored datums is small or large. A technically sufficient condition is also discussed for how to suitably choose learning orders to fully utilize WOPL for correct recall of as many stored datums as possible.

  15. Satellite altimetry and GOCE contribution to the pre-definition of the Kingdom of Saudi Arabia (KSA) Vertical Network

    NASA Astrophysics Data System (ADS)

    Vergos, Georgios S.; Grebenitcharsky, Rossen S.; Natsiopoulos, Dimitrios A.; Al-Kherayef, Othman; Al-Muslmani, Bandar

    2017-04-01

    The availability of a unified and well-established national vertical system and frame is of outmost importance in support of everyday geodetic, surveying and engineering applications. Vertical reference system (VRS) modernization and unification has gained increased importance especially during the last years due to the advent of gravity-field dedicated missions and GOCE in particular, since it is the first time that an unprecedented in accuracy dataset of gravity field functionals has become available at a global scale. The Kingdom of Saudi Arabia VRS is outdated and exhibits significant tilts and biases, so that during the last couple of years an extensive effort has been put forth in order to: re-measure by traditional levelling the entire network, establish new benchmarks (BMs), perform high-quality absolute and relative gravity observations and construct new tide-gauge (TG) stations in both the Arab and Red Seas. The Current work focuses on the combined analysis of the existing, recently collected, terrestrial observations with satellite altimetry data and the latest GOCE-based Earth Geopotential Models (EGMs) in order to provide a pre-definition of the KSA VRS. To that respect, a 30-year satellite altimetry time-series is constructed for each TG station in order to derive both the Mean Sea Level (MSL) as well as the sea level trends. This information is analyzed, through Wavelet (WL) Multi-resolution Analysis (MRA), with the TG sea level records in order to determine annual, semi-annual and secular trends of the Red and Arab Sea variations. Finally, the so-derived trends and MSL are combined with local gravity observations at the TG BMs, levelling offsets between the TGs and the network BMs, levelling observations between the network BMs themselves and GOCE-based EGM-derived geoid heights and potential values. The validation of GOCE contribution and of the satellite altimetry derived MSL and trends is based on a simultaneous adjustment of the entire KSA vertical network, keeping fixed various TG stations and investigating the distortions introduced in the adjusted BM orthometric heights. Finally, a pre-definition of the KSA VRS is detailed as vertical offsets and potential differences δWo relative to the recently adopted conventional zero-level geopotential value by IAG. Conclusions regarding the contribution of satellite altimetry and GOCE are drown along with the necessary information for the definition of the KSA vertical datum and its connection to an International Height References System (IHRS).

  16. Geometrical specifications accuracy influence on the quality of electromechanical devices

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Lakeenko, M. N.; Dolzhikov, S. N.

    2017-06-01

    To improve the quality of electromechanical products is possible due to the geometrical specifications optimization of values and tolerances. Electromechanical products longevity designates the rolling-contact bearings of the armature shaft. Longevity of the rolling-contact bearings is less than designed one, since assembly and fitting alter gaps, sizes and geometric tolerances for the working parts of the basic rolling bearing details. Geometrical models of the rolling-contact bearing details for the armature shaft and the end shield are developed on the basis of an electric locomotive traction motor in the present work. The basic elements of the details conjugating with the adjacent details and materializing the generalized and auxiliary coordinate systems are determined. Function, informativeness and the number of geometrical specifications for the elements location are specified. The recommendations on amending the design documentation due to geometrical models to improve the accuracy and the quality of the products are developed: the replacement of the common axis of the shaft’s technological datums by the common axis of the basic design datums; coaxiality tolerances for these design datums with respect to their common axis; the modifiers for these auxiliary datums and these datums location tolerances according to the principles of datums uniformity, inversion and the shortest dimension chains. The investigation demonstrated that the problem of enhancing the durability, longevity, and efficiency coefficient for electromechanical products can be solved with the systematic normalizations of geometrical specifications accuracy on the basis of the coordinate systems introduced in the standards on geometrical product specifications (GPS).

  17. New geoid of Greenland - a case study of terrain and ice effects, GOCE and local sea level data

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Jensen, T.

    2014-12-01

    Making an accurate geoid model of Greenland has always been a challenge due to the ice sheet and glaciers, and the rough topography and deep fjords in the ice free parts. Terrestrial gravity coverage has for the same reasons been relatively sparse, with an older NRL high-level airborne survey of the interior being the only gravity field data over the interior, and terrain and ice thickness models being insufficient both in terms of resolution and accuracy. This data situation has in the later years changed substantially, first of all due to GOCE, but also due to new DTU-Space and NASA IceBridge airborne gravity, ice thickness data from IceBridge and European airborne measurements, and new terrain models from ASTER, SPOT-5 and digital photogrammetry. In the paper we use all available data to make a new geoid of Greenland and surrounding ocean regions, using remove-restore techniques for ice and topography, spherical FFT techniques and downward continuation by least squares collocation. The impact of GOCE and the new terrestrial data yielded a much improved geoid. Due to the lack of of levelling data connecting scattered towns, the new geoid is validated by local sea level and dynamic ocean topography data, and specially collected GPS-tide gauge profile data along fjords. The comparisons show significant improvements over EGM08 and older geoid models, and also highlight the problems of global sea level models, especially in sea ice covered regions, and the definition of a new consistent vertical datum of Greenland.

  18. FireHose Streaming Benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl Anderson, Steve Plimpton

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created inmore » the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  19. Accuracy assessment of the U.S. Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets: SRTM and ASTER

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Evans, Gayla A.

    2014-01-01

    The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the U.S. Geological Survey. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, U.S. island territories, Mexico, and Canada. The NED is derived from diverse source datasets that are processed to a specification with consistent resolutions, coordinate system, elevation units, and horizontal and vertical datums. The NED serves as the elevation layer of The National Map, and it provides basic elevation information for earth science studies and mapping applications in the United States and most of North America. An important part of supporting scientific and operational use of the NED is provision of thorough dataset documentation including data quality and accuracy metrics. The focus of this report is on the vertical accuracy of the NED and on comparison of the NED with other similar large-area elevation datasets, namely data from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

  20. 33 CFR 110.72d - Ashley River anchorage areas, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following the southwest boundary of the Ashley River Channel. All coordinates referenced use datum: NAD 1983... coordinates referenced use datum: NAD 1983. [CGD07-96-017, 61 FR 40994, Aug. 7, 1996; 61 FR 63715, Dec. 2...

  1. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  2. Multi-Terrain Vertical Drop Tests of a Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2008-01-01

    A 5-ft-diameter composite fuselage section was retrofitted with four identical blocks of deployable honeycomb energy absorber and crash tested on two different surfaces: soft soil, and water. The drop tests were conducted at the 70-ft. drop tower at the Landing and Impact Research (LandIR) Facility of NASA Langley. Water drop tests were performed into a 15-ft-diameter pool of water that was approximately 42-in. deep. For the soft soil impact, a 15-ft-square container filled with fine-sifted, unpacked sand was located beneath the drop tower. All drop tests were vertical with a nominally flat attitude with respect to the impact surface. The measured impact velocities were 37.4, and 24.7-fps for soft soil and water, respectively. A fuselage section without energy absorbers was also drop tested onto water to provide a datum for comparison with the test, which included energy absorbers. In order to facilitate this type of comparison and to ensure fuselage survivability for the no-energy-absorber case, the velocity of the water impact tests was restricted to 25-fps nominal. While all tests described in this paper were limited to vertical impact velocities, the implications and design challenges of utilizing external energy absorbers during combined forward and vertical impact velocities are discussed. The design, testing and selection of a honeycomb cover, which was required in soft surface and water impacts to transmit the load into the honeycomb cell walls, is also presented.

  3. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate changes in effective stress caused by changes in groundwater withdrawal from the Chicot and Evangeline aquifers.In 2016, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the vertical datum (North American Vertical Datum of 1988; hereinafter, datum) in a localized area in northwestern Harris County to 200 ft above datum in west-central Montgomery County. Water-level changes during 2015–16 in the Chicot aquifer ranged from a 39-ft decline to a 26-ft rise. Contoured 5-year and long-term changes in water-level altitudes of the Chicot aquifer ranged from a 30-ft decline to a 20-ft rise (2011–16), from a 140-ft decline to a 160-ft rise (1990–2016), and from a 120-ft decline to a 200-ft rise (1977–2016). In 2016, water-level-altitude contours for the Evangeline aquifer ranged from 250 ft below datum in three separate areas in south-central Montgomery County and extending into north-central Harris County, in west-central Harris County, and in southwestern Harris County to 200 ft above datum in southeastern Grimes and northwestern Montgomery Counties. Water-level changes during 2015–16 in the Evangeline aquifer ranged from a 65-ft decline to a 61-ft rise. Contoured 5-year and long-term changes in water-level altitudes of the Evangeline aquifer ranged from a 60-ft decline to a 40-ft rise (2011–16), from a 160-ft decline to a 160-ft rise (1990–2016), and from a 320-ft decline to a 240-ft rise (1977–2016). In 2016, water-level-altitude contours for the Jasper aquifer ranged from 200 ft below datum in south-central Montgomery County extending into north-central Harris County to 250 ft above datum in northwestern Montgomery County and extending into eastern Grimes County and southwestern Walker County. Water-level changes during 2015–16 in the Jasper aquifer ranged from a 38-ft decline to a 51-ft rise. Contoured 5-year and long-term changes in water-level altitudes of the Jasper aquifer ranged from a 60-ft decline to a 40-ft rise (2011–16) and from a 220-ft decline to a 20-ft decline (2000–16).Compaction of subsurface sediments (mostly in the fine-grained silt and clay layers) in the Chicot and Evangeline aquifers was recorded continuously by using 13 extensometers at 11 sites that were either activated or installed between 1973 and 1980. During the period of record beginning in 1973 (or later depending on activation or installation date) and ending in December 2015, measured cumulative compaction at the 13 extensometers ranged from 0.095 ft at the Texas City-Moses Lake extensometer to 3.666 ft at the Addicks extensometer. From January through December 2015, the Northeast, Southwest, Addicks, Johnson Space Center, and Clear Lake (deep) extensometers recorded net decreases in land-surface elevation, but the Lake Houston, East End, Texas City-Moses Lake, Baytown C–1 (shallow), Baytown C–2 (deep), Seabrook, Clear Lake (shallow), and Pasadena extensometers recorded net increases in land-surface elevation. For the 11 extensometer sites during the selected years 1988, 1998, 2008, 2012, and 2015, the smallest effective stress (20.12 pounds per square inch [psi]) was estimated at the Texas City-Moses Lake extensometer site and was produced by a measured water level of 46.42 ft below land-surface datum (blsd) in January 2008. The corresponding net compaction during 2007 at this site was 0.001 ft. The largest effective stress (174.86 psi) was estimated at the Addicks extensometer site and was produced by a measured water level of 403.38 ft blsd in January 1998. The corresponding net compaction at the Addicks site was 0.067 ft in 1997.The 2011 drought caused water-level declines in the aquifers that were documented by the water-level-measurement data collected in January 2012. During the 2011 drought, the 13 extensometers recorded varying amounts of compaction that ranged from a net compaction value of 0.002 ft recorded by the Texas City-Moses Lake extensometer to a net compaction value of 0.192 ft recorded by the Pasadena extensometer. Water-level data for 1988, 1998, 2008, 2012, and 2015 and the corresponding net compaction values recorded by the extensometers for 1987, 1997, 2007, 2011, and 2014 were used to illustrate the cause and effect relations between changes in water level caused by groundwater withdrawals and resulting changes in effective stress. Changes in effective stress are related to changes in land-surface elevations caused by compaction of the fine-grained sediments composing the Chicot and Evangeline aquifers.The rate of compaction varies from site to site because of differences in rates of groundwater withdrawal in the areas adjacent to each extensometer site; differences among sites in the ratios of sand, silt, and clay and their corresponding compressibilities; and previously established preconsolidation heads. It is not appropriate, therefore, to extrapolate or infer a rate of compaction for an adjacent area on the basis of the rate of compaction recorded by proximal extensometers.

  4. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot decline to an 80-foot rise (2006–11), from a 140-foot decline to a 100-foot rise (1990–2011), and from a 120-foot decline to a 200-foot rise (1977–2011). In 2011, water-level-altitude contours for the Evangeline aquifer ranged from 300 feet below datum in north-central Harris County to 200 feet above datum at the boundary of Waller, Montgomery, and Grimes Counties. Water-level-altitude changes in the Evangeline aquifer ranged from a 43-foot decline to a 73-foot rise (2010–11), from a 40-foot decline to a 160-foot rise (2006–11), from a 200-foot decline to a 240-foot rise (1990–2011), and from a 340-foot decline to a 260-foot rise (1977–2011). In 2011, water-level-altitude contours for the Jasper aquifer ranged from 200 feet below datum in south-central Montgomery County to 250 feet above datum in east-central Grimes County. Water-level-altitude changes in the Jasper aquifer ranged from a 45-foot decline to a 29-foot rise (2010–11), from a 90-foot decline to a 10-foot rise (2006–11), and from a 190-foot decline to no change (2000–11). Compaction of subsurface materials (mostly in the clay layers) composing the Chicot and Evangeline aquifers was recorded continuously at 13 borehole extensometers at 11 sites. For the period of record beginning in 1973, or later, and ending in December 2010, cumulative clay compaction data measured by 12 extensometers ranged from 0.100 foot at the Texas City–Moses Lake site to 3.544 foot at the Addicks site. The rate of compaction varies from site to site because of differences in groundwater withdrawals near each site and differences among sites in the clay-to-sand ratio in the subsurface materials. Therefore, it is not possible to extrapolate or infer a rate of clay compaction for an area based on the rate of compaction measured at a nearby extensometer.

  5. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Test and Evaluation Development Guide

    DTIC Science & Technology

    2014-11-01

    location, based on the evidence provided in Datum ( OSINT , IMINT, and the BLUEBOOK). The targetSum and normalizationConstraint attributes indicate that the...34LessThanOrEqualTo" id="Pp" name="P(Attack | IMINT, OSINT )" type="AttackProbabilityReport_Pp"> <Datum locationId=ŕ-1" datumType=" OSINT ...AttackProbabilityProbe_Ppc targetSum=蔴.0" normalizationConstraint="LessThanOrEqualTo" id="Ppc" name="P(Attack | HUMINT, IMINT, OSINT )" type

  6. Ground control requirements for precision processing of ERTS images

    USGS Publications Warehouse

    Burger, Thomas C.

    1973-01-01

    With the successful flight of the ERTS-1 satellite, orbital height images are available for precision processing into products such as 1:1,000,000-scale photomaps and enlargements up to 1:250,000 scale. In order to maintain positional error below 100 meters, control points for the precision processing must be carefully selected, clearly definitive on photos in both X and Y. Coordinates of selected control points measured on existing ½ and 15-minute standard maps provide sufficient accuracy for any space imaging system thus far defined. This procedure references the points to accepted horizontal and vertical datums. Maps as small as 1:250,000 scale can be used as source material for coordinates, but to maintain the desired accuracy, maps of 1:100,000 and larger scale should be used when available.

  7. 33 CFR 165.711 - Safety Zone: Port Everglades, Fort Lauderdale, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... datum: NAD 83. (2) The waters around naval aircraft carriers departing Port Everglades in an area 700..., in approximate position 26°05.5′ N, 80°04.8′ W. All coordinates referenced use datum: NAD 83. (b...

  8. GIS integration of the 1:75,000 Romanian topographic map series from the World War I

    NASA Astrophysics Data System (ADS)

    Timár, G.; Mugnier, C. J.

    2009-04-01

    During the WWI, the Kingdom of Romania developed a 1:75,000 topographic map series, covering not only the actual territory of the country (the former Danube Principalities and Dobrogea) but also Bessarabia (now the Republic of Moldova), which was under Russian rule. The map sheets were issued between 1914 and 1917. The whole map consists of two zones; Columns A-F are the western zone, while Columns G-Q are belonging to the eastern one. To integrate the scanned map sheets to a geographic information system (GIS), the parameters of the map projection and the geodetic datum should be defined as well as the sheet labelling system. The sheets have no grid lines indicated; most of them have latitude and longitude lines but some of them have no coordinate descriptions. The sheets, however, can be rectified using their four corners as virtual control points, and using the following grid and datum parameters: Eastern zone: • Projection type: Bonne. • Projection center: latitude=46d 30m; longitude=27d 20m 13.35s (from Greenwich). • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+875 m; dY=-119 m; dZ=+313 m. • Sheet size: 40*40 kilometers, projection center is the NW corner of the 779 (Column L; Row VII) sheet. Western zone: • Projection type: Bonne. • Projection center: latitude=45d; longitude=26d 6m 41.18s (from Greenwich); • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+793 m; dY=+364 m; dZ=+173 m. • Sheet size: 0.6*0.4 grad (new degrees), except Column F, which is wider to east to fill the territory to the zone boundary. In Columns E and F geographic coordinates are indicated in new degrees, with the prime meridian of Bucharest. Apart from the system of columns and rows, each sheet has its own label of three or four digit. The last two digit correspond to the column number (69 for Column A going up to 84 for Column Q) while the first digit(s) refer directly to row number (1-15). During the rectification process, the coordinates of the corners (the control points) should be defined in the respective Bonne zone projected coordinates. It can be done by simple additions in the eastern zone but it needs conversion from geographic to projected coordinates in the western one. The general accuracy of this geo-referencing method is up to 200 meters - this error is the same in the 1:75,000 series of the Habsburg Empire made from the 1880s.

  9. 33 CFR 166.103 - Geographic coordinates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... charts whose referenced horizontal datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83 only after application of the appropriate...

  10. Method For Detecting The Presence Of A Ferromagnetic Object

    DOEpatents

    Roybal, Lyle G.

    2000-11-21

    A method for detecting a presence or an absence of a ferromagnetic object within a sensing area may comprise the steps of sensing, during a sample time, a magnetic field adjacent the sensing area; producing surveillance data representative of the sensed magnetic field; determining an absolute value difference between a maximum datum and a minimum datum comprising the surveillance data; and determining whether the absolute value difference has a positive or negative sign. The absolute value difference and the corresponding positive or negative sign thereof forms a representative surveillance datum that is indicative of the presence or absence in the sensing area of the ferromagnetic material.

  11. 33 CFR 147.10 - Establishment of safety zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... charts whose referenced horizontal datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts reference to NAD 83 only after application of the appropriate...

  12. 33 CFR 162.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... horizontal datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83 only after application of the appropriate corrections that are published on...

  13. Interpretations of Complete Bouguer Gravity Anomalies from the GRAV-D Project in Alaska

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Preaux, S. A.; Childers, V. A.

    2010-12-01

    The GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project of the U.S. National Geodetic Survey plans to collect airborne gravity data across the entire U.S. and its holdings over the next decade. The goal of the project is to create a gravimetric geoid model to use as the vertical datum for the U.S. by 2021. Airborne gravity survey work began more than two years ago, with Alaska as a high priority for new data collection. Data collection there is underway and will be ongoing for several more years, but two roughly 400 km x 400 km surveys have been completed: in 2008 (centered over Cook Inlet near Anchorage) and in 2009 (centered over the Interior, to the north of the Alaska Range and west of Fairbanks). The gravity data for both surveys was collected with a MicroG LaCoste TAGS system but each survey utilized a different aircraft and survey layout. The 2008 survey was flown at 35,000 ft with the NOAA Cessna Citation jet, with 10 km data line spacing and 60 km cross lines spacing. The 2009 survey was flown at 12,500 ft with the Naval Research Lab King Air (RC-12) turboprop, with 7.5 km data line spacing and 37.5 cross line spacing. The 2008 data reveal the > 20 km resolution gravity effects of all the near-trench features (from accretionary prism to volcanic arc) for a 400 km stretch of the active plate boundary. In comparison, the 2009 gravity data allow a slightly better resolution (> 15 km) view of the distal deformation to the north of the Alaska Range. The free-air gravity disturbances for each survey were computed and then complete (terrain-corrected) Bouguer gravity anomalies were calculated with Gauss-Legendre Quadrature integration (von Frese, et al., 1999) using standard density assumptions. Topography used to calculate the corrections came from the freely-available GTOPO30 (USGS, online) and bathymetry from the Smith and Sandwell (1997) altimetry-derived data. Interpretations of the complete Bouguer gravity anomalies will be made in the context of the tectonic activity in southern Alaska.

  14. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Highway and development of avalanche susceptibility and prediction models near Atigun Pass. Alaska coastal

  15. 33 CFR 100.01 - Purpose and intent.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plotting on maps or charts whose referenced horizontal datum is the North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83 only after application of the...

  16. 33 CFR 110.51 - Groton, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...″, longitude 072°03′19.7″. DATUM: NAD 83 (b) Beginning at a point on the shoreline of Pine Island at latitude... point at latitude 41°18′54.0″, longitude 072°03′17.5″. DATUM: NAD 83 Note: The areas designated by (a...

  17. Digital Elevation Model, 0.25 m, Barrow Environmental Observatory, Alaska, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Wilson; Garrett Altmann

    This 0.25m horizontal resolution digital elevation model, DEM, was developed from Airborne Laser Altimetry flown by Aerometric Inc, now known as Quantum Spatial, Inc. on 12 July, 2013. One Mission was flown and the data jointly processed with LANL personnel to produce a 0.25m DEM covering a region approximately 2.8km wide and 12.4km long extending from the coast above North Salt Lagoon to south of Gas Well Road. This DEM encompasses a diverse range of hydrologic, geomorphic, geophysical and biological features typical of the Barrow Peninsula. Vertical accuracy at the 95% confidence interval was computed as 0.143m. The coordinate system,more » datum, and geoid for this DEM are UTM Zone 4N, NAD83 (2011), NAVD88 (GEOID09).« less

  18. 78 FR 36571 - North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official Protraction Diagram (OPDs) AGENCY... OPDs. SUMMARY: Notice is hereby given that effective with this publication two NAD 83-based OCS...

  19. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanni; Cervone, Guido; Barkley, Zachary

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less

  20. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    DOE PAGES

    Cao, Yanni; Cervone, Guido; Barkley, Zachary; ...

    2017-09-19

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less

  1. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    NASA Astrophysics Data System (ADS)

    Cao, Yanni; Cervone, Guido; Barkley, Zachary; Lauvaux, Thomas; Deng, Aijun; Taylor, Alan

    2017-09-01

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.

  2. Gravimetric investigations on the North American Datum (1972 - 1973)

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1975-01-01

    All the available unclassified gravity data on the North American Datum (NAD) and in the surrounding oceans was assembled late in 1972 for the investigation of the gravity field in North America and its relation to North American Datum 1927 (NAD 27). The gravity data in Canada and the United States was compiled on a common datum compatible with the International Gravity Standardization Network 1971 (IGSN 71). The variation in the error of representation in the region is studied along with the correlation characteristics of gravity anomalies with elevation. A free air geoid (FAG 73) was computed from a combination of surface gravity data and Goddard Earth Model (GEM) 4 and this was used as the basis for the computation of the non-Stokesian contributions to the height anomaly. The geocentric orientation parameters obtained by this astrogravimetric method are compared with those obtained by satellite techniques. The differences are found to be no greater than those between individual satellite solutions. The differences between the astrogravimetric solution and satellite solutions GSFC 73 and GEM 6 are studied in detail with a view to obtaining a better understanding of these discrepancies.

  3. GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.

    2015-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).

  4. Geoid modeling in Mexico and the collaboration with Central America and the Caribbean.

    NASA Astrophysics Data System (ADS)

    Avalos, D.; Gomez, R.

    2012-12-01

    The model of geoidal heights for Mexico, named GGM10, is presented as a geodetic tool to support vertical positioning in the context of regional height system unification. It is a purely gravimetric solution computed by the Stokes-Helmert technique in resolution of 2.5 arc minutes. This product from the Instituto Nacional de Estadistica y Geografia (INEGI) is released together with a series of 10 gravimetric models which add to the improvements in description of the gravity field. In the recent years, the INEGI joined the initiative of the U.S. National Geodetic Survey and the Canada's Geodetic Survey Division to promote the regional height system unification. In an effort to further improve the compatibility among national geoid models in the region, the INEGI has begun to champion a network of specialists that includes national representatives from Central America and the Caribbean. Through the opening of opportunities for training and more direct access to international agreements and discussions, the tropical region is gaining participation. Now a significantly increased number of countries is pushing for a future North and Central American geoid-based vertical datum as support of height system unification.eoidal height in Mexico, mapped from the model GGM10.

  5. A new morphology algorithm for shoreline extraction from DEM data

    NASA Astrophysics Data System (ADS)

    Yousef, Amr H.; Iftekharuddin, Khan; Karim, Mohammad

    2013-03-01

    Digital elevation models (DEMs) are a digital representation of elevations at regularly spaced points. They provide an accurate tool to extract the shoreline profiles. One of the emerging sources of creating them is light detection and ranging (LiDAR) that can capture a highly dense cloud points with high resolution that can reach 15 cm and 100 cm in the vertical and horizontal directions respectively in short periods of time. In this paper we present a multi-step morphological algorithm to extract shorelines locations from the DEM data and a predefined tidal datum. Unlike similar approaches, it utilizes Lowess nonparametric regression to estimate the missing values within the DEM file. Also, it will detect and eliminate the outliers and errors that result from waves, ships, etc by means of anomality test with neighborhood constrains. Because, there might be some significant broken regions such as branches and islands, it utilizes a constrained morphological open and close to reduce these artifacts that can affect the extracted shorelines. In addition, it eliminates docks, bridges and fishing piers along the extracted shorelines by means of Hough transform. Based on a specific tidal datum, the algorithm will segment the DEM data into water and land objects. Without sacrificing the accuracy and the spatial details of the extracted boundaries, the algorithm should smooth and extract the shoreline profiles by tracing the boundary pixels between the land and the water segments. For given tidal values, we qualitatively assess the visual quality of the extracted shorelines by superimposing them on the available aerial photographs.

  6. Plutonium, americium, and uranium in blow-sand mounds of safety-shot sites at the Nevada Test Site and the Tonopah Test Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essington, E.H.; Gilbert, R.O.; Wireman, D.L.

    Blow-sand mounds or miniature sand dunes and mounds created by burrowing activities of animals were investigated by the Nevada Applied Ecology Group (NAEG) to determine the influence of mounds on plutonium, americium, and uranium distributions and inventories in areas of the Nevada Test Site and Tonopah Test Range. Those radioactive elements were added to the environment as a result of safety experiments of nuclear devices. Two studies were conducted. The first was to estimate the vertical distribution of americium in the blow-sand mounds and in the desert pavement surrounding the mounds. The second was to estimate the amount or concentrationmore » of the radioactive materials accumulated in the mound relative to the desert pavement. Five mound types were identified in which plutonium, americium, and uranium concentrations were measured: grass, shrub, complex, animal, and diffuse. The mount top (that portion above the surrounding land surface datum), the mound bottom (that portion below the mound to a depth of 5 cm below the surrounding land surface datum), and soil from the immediate area surrounding the mound were compared separately to determine if the radioactive elements had concentrated in the mounds. Results of the studies indicate that the mounds exhibit higher concentrations of plutonium, americium, and uranium than the immediate surrounding soil. The type of mound does not appear to have influenced the amount of the radioactive material found in the mound except for the animal mounds where the burrowing activities appear to have obliterated distribution patterns.« less

  7. Limitations of correlation-based redatuming methods

    NASA Astrophysics Data System (ADS)

    Barrera P, D. F.; Schleicher, J.; van der Neut, J.

    2017-12-01

    Redatuming aims to correct seismic data for the consequences of an acquisition far from the target. That includes the effects of an irregular acquisition surface and of complex geological structures in the overburden such as strong lateral heterogeneities or layers with low or very high velocity. Interferometric techniques can be used to relocate sources to positions where only receivers are available and have been used to move acquisition geometries to the ocean bottom or transform data between surface-seismic and vertical seismic profiles. Even if no receivers are available at the new datum, the acquisition system can be relocated to any datum in the subsurface to which the propagation of waves can be modeled with sufficient accuracy. By correlating the modeled wavefield with seismic surface data, one can carry the seismic acquisition geometry from the surface closer to geologic horizons of interest. Specifically, we show the derivation and approximation of the one-sided seismic interferometry equation for surface-data redatuming, conveniently using Green’s theorem for the Helmholtz equation with density variation. Our numerical examples demonstrate that correlation-based single-boundary redatuming works perfectly in a homogeneous overburden. If the overburden is inhomogeneous, primary reflections from deeper interfaces are still repositioned with satisfactory accuracy. However, in this case artifacts are generated as a consequence of incorrectly redatumed overburden multiples. These artifacts get even worse if the complete wavefield is used instead of the direct wavefield. Therefore, we conclude that correlation-based interferometric redatuming of surface-seismic data should always be applied using direct waves only, which can be approximated with sufficient quality if a smooth velocity model for the overburden is available.

  8. On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2017-03-01

    National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity signals on the estimation of height datum offsets is analyzed in detail for representative GNSS/leveling data sets in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of up to 3 cm, the conducted analyses show that significant improvements of 30-40% can be achieved in terms of a reduced standard deviation and range of the least squares adjusted residuals.

  9. National geodetic satellite program, part 2

    NASA Technical Reports Server (NTRS)

    Schmid, H.

    1977-01-01

    Satellite geodesy and the creation of worldwide geodetic reference systems is discussed. The geometric description of the surface and the analytical description of the gravity field of the earth by means of worldwide reference systems, with the aid of satellite geodesy, are presented. A triangulation method based on photogrammetric principles is described in detail. Results are derived in the form of three dimensional models. These mathematical models represent the frame of reference into which one can fit the existing geodetic results from the various local datums, as well as future measurements.

  10. zorder-lib: Library API for Z-Order Memory Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowell, Lucy; Edward W. Bethel

    2015-04-01

    This document describes the motivation for, elements of, and use of the zorder-lib, a library API that implements organization of and access to data in memory using either a-order (also known as "row-major" order) or z-order memory layouts. The primary motivation for this work is to improve the performance of many types of data- intensive codes by increasing both spatial and temporal locality of memory accesses. The basic idea is that the cost associated with accessing a datum is less when it is nearby in either space or time.

  11. Refining the effects of aircraft motion on an airborne beam-type gravimeter

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Weil, C.

    2016-12-01

    A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of aircraft that could be successful or not successful for airborne gravity collection with a beam-type sensor.

  12. KNGEOID14: A national hybrid geoid model in Korea

    NASA Astrophysics Data System (ADS)

    Kang, S.; Sung, Y. M.; KIM, H.; Kim, Y. S.

    2016-12-01

    This study describes in brief the construction of a national hybrid geoid model in Korea, KNGEOID14, which can be used as an accurate vertical datum in/around Korea. The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid undulations from GNSS/Leveling data which were presented the local vertical level. For developing the gravimetric geoid model, we determined all frequency parts (long, middle and short-frequency) of gravimetric geoid using all available data with optimal remove-restore technique based on EGM2008 reference surface. In remove-restore technique, the EGM2008 model to degree 360, RTM reduction method were used for calculating the long, middle and short-frequency part of gravimetric geoid, respectively. A number of gravity data compiled for modeling the middle-frequency part, residual geoid, containing 8,866 points gravity data on land and ocean areas. And, the DEM data gridded by 100m×100m were used for short-frequency part, is the topographic effect on the geoid generated by RTM method. The accuracy of gravimetric geoid model were evaluated by comparison with GNSS/Leveling data was about -0.362m ± 0.055m. Finally, we developed the national hybrid geoid model in Korea, KNGEOID14, corrected to gravimetric geoid with the correction term by fitting the about 1,200 GNSS/Leveling data on Korean bench marks. The correction term is modeled using the difference between GNSS/Leveling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. The post-fit error (mean and std. dev.) of the KNGEOID14 model was evaluated as 0.001m ± 0.033m. Concerning the result of this study, the accurate orthometric height at any points in Korea will be easily and precisely calculated by combining the geoidal height from KNGEOID14 and ellipsoidal height from GPS observation technique.

  13. Testing Younger Dryas ET Impact (YDB) Evidence at Hall’s Cave, Texas

    NASA Astrophysics Data System (ADS)

    Stafford, T. W.; Lundelius, E.; Kennett, J.; Kennett, D. J.; West, A.; Wolbach, W. S.

    2009-12-01

    Hall’s Cave, Kerrville County Texas, 167 km WSW of Austin, provides a unique opportunity for testing the presence of a chronostratigraphic datum (YDB layer) containing rare and exotic proxies, including nanodiamonds, aciniform soot, and magnetic spherules, the origins of which remain controversial, but possibly derive from a cosmic impact ~12,900 CAL BP. The karst-collapse cave in Cretaceous limestone on the Edwards Plateau contains ≥ 3.7 m of stratified clays grading to clayey silts recording continuous deposition from 16 ka RC yr to present. The cave’s small catchment area and mode of deposition were constant, and the stratigraphy is well dated based on 162 AMS 14C dates from individual vertebrate fossils, snails, charcoal, and sediment chemical fractions. The cave sequence contains an abundant small animal vertebrate fossil record, exhibiting biostratigraphic changes, and the timing of the late Pleistocene megafaunal extinction is consistent with that elsewhere in North America. At 151 cm below datum is the extremely sharp, smooth contact separating lower, dusky red (2.5YR3/2) clays below from overlying dark reddish brown (5YR3/3) clays (forming a 20-cm-thick dark layer) and dating to 13,000 CAL BP, at or close to the age of the YDB datum elsewhere. This appears to be the most distinctive lithologic change of the deglacial sequence. Sediments at or within 10 cm of this contact contain the local extinction of 4 species of bats, the local extinction of the prairie dog (Cynomys sp.) and perhaps other burrowing mammals in response to decrease in soil thickness, and the uppermost occurrence of 6 late Pleistocene megafaunal taxa that, although rare in the cave, do not extend younger than 12.9 ka. We collected and analyzed sediments at high resolution above and below the distinct lithologic contact at 151 cm. The red clays from 151 to 153 cm and immediately preceding the lithologic contact contain an abundance of nanodiamonds (5 different allotropes), aciniform soot at 2400 ppm, magnetic spherules, and carbon spherules, all of which we interpret as evidence for a unique chronostratigraphic marker (YDB) in the Western Hemisphere. Because the age of this horizon is ~ 13,000 CAL BP, we interpret the age of the event as the beginning of the Younger Dryas cooling. Regional soil erosion began ~15,000 CAL BP and continued until 7000 CAL BP, but dating suggests that there is no discontinuity or hiatus in deposition, and thus, the exotic materials in that layer are not considered to be erosional accumulations. Future analyses include sub-centimeter sampling over the YD boundary, quantification of nanodiamonds and other event-proxies within 1000 yr of the boundary and in sediments several 1000 years older and younger, continued refinement of the AMS 14C record to determine within 50 yr the location of 12,900 CAL BP datum and high resolution analysis of small animal biostratigraphy.

  14. NORTH AMERICAN DATUM 1983 IMPLEMENTATION IMPACTS ON THE USGS NATIONAL MAPPING PROGRAM.

    USGS Publications Warehouse

    Jones, William J.; Needham, Paul E.

    1985-01-01

    The U. S. Geological Survey has previously experienced the impacts on the National Mapping Program that are associated with implementing a readjustment of the horizontal datum. The impacts of these past readjustments were minimal compared to those of the current readjustment. The Geological Survey currently has produced and published over 60,000 different map products. The 7. 5-minute mapping program is nearing completion with over 85 percent of the conterminous States mapped. The intermediate-scale mapping program of the conterminous United States is scheduled for completion of planimetric editions by the end of 1986. It is apparent that until digital cartographic data are available, implementation of the North American Datum 1983 will primarily consist of cartographic adjustment of existing map products.

  15. On the nullspace of TLS multi-station adjustment

    NASA Astrophysics Data System (ADS)

    Sterle, Oskar; Kogoj, Dušan; Stopar, Bojan; Kregar, Klemen

    2018-07-01

    In the article we present an analytic aspect of TLS multi-station least-squares adjustment with the main focus on the datum problem. The datum problem is, compared to previously published researches, theoretically analyzed and solved, where the solution is based on nullspace derivation of the mathematical model. The importance of datum problem solution is seen in a complete description of TLS multi-station adjustment solutions from a set of all minimally constrained least-squares solutions. On a basis of known nullspace, estimable parameters are described and the geometric interpretation of all minimally constrained least squares solutions is presented. At the end a simulated example is used to analyze the results of TLS multi-station minimally constrained and inner constrained least-squares adjustment solutions.

  16. Comparison of preconstruction and 2003 bathymetric and topographic survey of Lake McConaughy, Nebraska

    USGS Publications Warehouse

    Kress, Wade H.; Sebree, Sonja K.; Littin, Gregory R.; Drain, Michael A.; Kling, Michael E.

    2005-01-01

    The U.S. Geological Survey, in cooperation with The Central Nebraska Public Power and Irrigation District, conducted a study that used bathymetric and topographic surveying in conjunction with Geographical Information Systems techniques to determine the 2003 physical shape, current storage capacity, and the changes in storage capacity of Lake McConaughy that have occurred over the past 62 years. By combining the bathymetric and topographic survey data, the current surface area of Lake McConaughy was determined to be 30,413.0 acres, with a volume of 1,756,300 acre-feet at the lake conservation-pool elevation of 3,266.4 feet above North American Vertical Datum of 1988 (3,265.0 feet above Central datum). To determine the changes in storage of Lake McConaughy, the 2003 survey Digital Elevation Model (DEM) was compared to a preconstruction DEM compiled from historical contour maps. This comparison showed an increase in elevation at the dam site due to the installation of Kingsley Dam. Immediately to the west of the Kingsley Dam is an area of decline where a borrow pit for Kingsley Dam was excavated. The comparison of the preconstruction survey to the 2003 survey also was used to estimate the gross storage capacity reduction that occurred between 1941 and 2002. The results of this comparison indicate a gross storage capacity reduction of approximately 42,372 acre-feet, at the lake conservation-pool elevation of 3,266.4 feet in NAVD 88 (3,265.0 feet in Central datum). By comparing preconstruction and 2003 survey data and subtracting the Kingsley Dam and borrow pit, the total estimated net volume of sediment deposited over the past 62 years is 53,347,124 cubic yards, at an annual average rate of 860,437 cubic yards per year. The approximate decrease in the net storage capacity occurring over the past 62 years is 33,066 acre-feet, at an annual average decrease of approximately 533 acre-feet per year, which has resulted in a 1.8 percent decrease in storage capacity of Lake McConaughy. The lake has accumulated most of the sediment in the original river channel and in the west end of the delta area on the upstream end of the lake.

  17. The study and realization of BDS un-differenced network-RTK based on raw observations

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Lu, Cuixian; Liu, Jinhai; Lu, Xiaochun

    2017-06-01

    A BeiDou Navigation Satellite System (BDS) Un-Differenced (UD) Network Real Time Kinematic (URTK) positioning algorithm, which is based on raw observations, is developed in this study. Given an integer ambiguity datum, the UD integer ambiguity can be recovered from Double-Differenced (DD) integer ambiguities, thus the UD observation corrections can be calculated and interpolated for the rover station to achieve the fast positioning. As this URTK model uses raw observations instead of the ionospheric-free combinations, it is applicable for both dual- and single-frequency users to realize the URTK service. The algorithm was validated with the experimental BDS data collected at four regional stations from day of year 080 to 083 in 2016. The achieved results confirmed the high efficiency of the proposed URTK for providing the rover users a rapid and precise positioning service compared to the standard NRTK. In our test, the BDS URTK can provide a positioning service with cm level accuracy, i.e., 1 cm in the horizontal components, and 2-3 cm in the vertical component. Within the regional network, the mean convergence time for the users to fix the UD ambiguities is 2.7 s for the dual-frequency observations and of 6.3 s for the single-frequency observations after the DD ambiguity resolution. Furthermore, due to the feature of realizing URTK technology under the UD processing mode, it is possible to integrate the global Precise Point Positioning (PPP) and the local NRTK into a seamless positioning service.

  18. Custom map projections for regional groundwater models

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  19. Straightness measurement using laser beam straight datum

    NASA Astrophysics Data System (ADS)

    Uchikoshi, Junichi; Shimada, Shoichi; Ikawa, Naoya; Komura, Akio

    1995-08-01

    Using the direction stabilized laser beam as a physical straight datum, instead of the tangible reference surface, a method is proposed for the measurement of an error motion of a slide table and/or surface profile of mechanical components. A specially designed 2D position sensor/compensator for laser beam center is developed combining a quadrant photo-diode (QPD) position sensor for beam center and the piezo-compensator which compensates the beam shift from the center of QPD. By the use the sensor/compensator proposed, the positional and angular fluctuations of laser beam path is evaluated with nanometric resolution. Combining the sensor with the piezo-driven mirror compensator, the directional stabilizer for the laser beam is also designed in the same manner as the sensor/compensator. The stabilized He-Ne laser beam can be used as the metrological datum of straightness within the accuracy of 2 X 10 -8 rad. By mounting the position sensor/compensator on a slide table, the carriage with working distance of 1 m is so designed and built as to move straight along the stabilized laser beam. The carriage can be used as a mechanical straight datum with the accuracy equivalent to the laser beam stability.

  20. Identifying and Allocating Geodetic Systems to historical oil gas wells by using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Alvarez, Gabriel O.

    2018-05-01

    Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.

  1. The relation of the European Datum to a geocentric reference system

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Klosko, S. M.

    1971-01-01

    Over 31,000 precision reduced optical observations of GEOS-1 and 2 in 70 two-day orbital arcs were used at Goddard Space Flight Center (GSFC) in a dynamical solution to determine center-of-mass coordinates for 15 tracking stations on the European Datum. Comparisons with the results obtained at Centre National d'Etudes Spatiales (CNES) give agreement of about 1.5 ppm for chord lengths. After considering a scale correction to the European Datum (ED) of 1950 to account for the absence of geoid heights at the time of its reduction, agreement to a few ppm between the CNES/GSFC and the ED chords is obtained. However, a small systematic difference between survey and satellite results remains for stations in southeastern France and Switzerland.

  2. Maine coastal storm and flood of February 2, 1976

    USGS Publications Warehouse

    Morrill, Richard Arthur; Chin, Edwin H.; Richardson, W.S.

    1979-01-01

    A business section of Bangor, Maine, was flooded with 12 feet (3.7 m) of water on February 2, 1976. The water surface elevation reached 17.46 feet (5.32 m) above national geodetic vertical datum of 1929 (NGVD), approximately 10.5 feet (3.2 m) above the predicted astronomical tide at Bangor. The unusually high water resulted from a tidal storm surge caused by prolonged strong, south-southeasterly winds which occurred near the time of astronomical high tide. Winds exceeded 64 knots off the New England coast. The resulting flood was the third highest since 1846 and is the first documented tidal flood at Bangor. This report documents the meteorological and hydrologic conditions associated with the flooding and also contains a brief description of storm damage from Eastport to Brunswick, Maine. Included are flood elevations in the city of Bangor and along the coast of Maine east of the Kennebec River. (Kosco-USGS)

  3. Potentiometric surface of the Floridan Aquifer, St. Johns River Water Management District and vicinity, Florida, May 1981

    USGS Publications Warehouse

    Schiner, George R.; Hayes, Eugene C.

    1981-01-01

    This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1981. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made in approximately 1,000 wells and at several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area 20 and 40-foot intervals are used to show a deep cone of depression. The potentiometric surface ranged from 122 feet above NGVD (National Geodetic Vertical Datum of 1929) in Polk County to 125 feet below NGVD in Nassau County. Water levels were at record lows in many counties due to lack of rainfall. Declines were as much as 10 feet and commonly 5 feet from the May 1980 levels. (USGS)

  4. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County across parts of north-central, eastern, and south-central Fort Bend County into southeastern Waller County. Adjacent to the areas where water levels declined was a broad area where water levels rose in central, eastern, and southeastern Harris County, most of Galveston County, eastern and northernmost Brazoria County, and northeastern Fort Bend County. The largest rise (200 ft) in water-level altitudes in the Chicot aquifer from 1977 to 2017 was in southeastern Harris County.The water-level-altitude contours for the Evangeline aquifer in 2017 indicated two areas where the water-level altitudes were 250 ft below datum—one area extending from south-central Montgomery County into north-central Harris County and another area in western Harris County. Water-level altitudes in the Evangeline aquifer ranged from 50 to 200 ft below datum throughout most of Harris County in 2017. In Montgomery County, water-level altitudes in the Evangeline aquifer in 2017 ranged from the aforementioned area where they were 250 ft below datum to an area where they were 200 ft above datum in the northwestern part of the county. The 1977–2017 water-level-change contours for the Evangeline aquifer depict a broad area where water-level altitudes declined in north-central Harris and south-central Montgomery Counties, extending through north-central, northwestern, and southwestern Harris County into western Liberty, southeastern and northeastern Waller, and northeastern and east-central Fort Bend Counties. The largest water-level-altitude decline (280 ft) was in north-central Harris and south-central Montgomery Counties. Water-level altitudes rose in a broad area from central, east-central, and southern Harris County extending into the northernmost part of Brazoria County, the northernmost part of Galveston County, and the southwestern area of Liberty County. The largest rise in water-level altitudes in the Evangeline aquifer from 1977 to 2017 (240 ft) was in southeastern Harris County.Water-level-altitude contours for the Jasper aquifer in 2017 ranged from 200 ft below datum in three isolated areas of south-central Montgomery County (the westernmost of these areas extended slightly into north-central Harris County) to 250 ft above datum in extreme northwestern Montgomery County, northeastern Grimes County, and southwestern Walker County. The 2000–17 water-level-change contours for the Jasper aquifer depict water-level declines in a broad area throughout most of Montgomery County and in parts of Waller, Grimes, and Harris Counties, with the largest decline (220 ft) in an isolated area in south-central Montgomery County.Compaction of subsurface sediments (mostly in the fine-grained silt and clay layers) in the Chicot and Evangeline aquifers was recorded continuously by using 13 extensometers at 11 sites that were either activated or installed between 1973 and 1980. During the period of record beginning in 1973 (or later depending on activation or installation date) and ending in late November or December 2016, measured cumulative compaction at the 13 extensometers ranged from 0.096 ft at the Texas City-Moses Lake extensometer to 3.700 ft at the Addicks extensometer. From January through late November or December 2016, the Addicks, Lake Houston, Southwest, and Northeast extensometers recorded net decreases in land-surface elevation, but the Baytown C–1 (shallow), Baytown C–2 (deep), Clear Lake (shallow), Clear Lake (deep), East End, Johnson Space Center, Pasadena, Seabrook, and Texas City-Moses Lake extensometers recorded net increases in land-surface elevation.The rate of compaction varies from site to site because of differences in rates of groundwater withdrawal in the areas adjacent to each extensometer site; differences among sites in the ratios of sand, silt, and clay and their corresponding compressibilities; and previously established preconsolidation heads. It is not appropriate, therefore, to extrapolate or infer a rate of compaction for an adjacent area on the basis of the rate of compaction recorded by proximal extensometers.

  5. 33 CFR 207.476 - The Inland Route-lock in Crooked River, Alanson, Mich.; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... feet. (3) Height above water—15 feet when upper pool is at low water datum. (4) Draft—6 feet when lower pool is at low water datum. (e) Signals. (1) Craft desiring lockage in either direction shall give... securely moored until the exit lock gate is fully open and the lock horn sounds one blast. (7) When the...

  6. 33 CFR 207.476 - The Inland Route-lock in Crooked River, Alanson, Mich.; use, administration, and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... feet. (3) Height above water—15 feet when upper pool is at low water datum. (4) Draft—6 feet when lower pool is at low water datum. (e) Signals. (1) Craft desiring lockage in either direction shall give... securely moored until the exit lock gate is fully open and the lock horn sounds one blast. (7) When the...

  7. 33 CFR 207.476 - The Inland Route-lock in Crooked River, Alanson, Mich.; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... feet. (3) Height above water—15 feet when upper pool is at low water datum. (4) Draft—6 feet when lower pool is at low water datum. (e) Signals. (1) Craft desiring lockage in either direction shall give... securely moored until the exit lock gate is fully open and the lock horn sounds one blast. (7) When the...

  8. 76 FR 38297 - Safety Zone; Marine Events Requiring Safety Zones in the Captain of the Port Sault Sainte Marie Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ...'' W [DATUM: NAD 83]. (ii) Enforcement Period. This safety zone will be enforced on July 4, 2011 from 9...'' N, 086[deg]39'08.52'' W [DATUM: NAD 83]. (ii) Enforcement Period. This safety zone will be enforced...: NAD 83], with the West Bay shoreline forming the South and West boundaries of the zone. (ii...

  9. 78 FR 48421 - Publication of North American Datum of 1983 (2011) Epoch 2010.00, North American Datum of 1983...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... of 1983'' (or ``NAD 83''). The new realizations are NAD 83 (2011) epoch 2010.00 [for the North America and Caribbean tectonic plates], NAD 83 (MA11) epoch 2010.00 [for the Mariana tectonic plate] and NAD 83 (PA11) epoch 2010.00 [for the Pacific tectonic plate]. These three realizations supersede all...

  10. 33 CFR 165.506 - Safety Zones; Fireworks Displays in the Fifth Coast Guard District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Table to § 165.506 reference Datum NAD 1983. Table to § 165.506 [All coordinates listed in the Table to § 165.506 reference Datum NAD 1983.] No. Date Location Regulated area (a) Coast Guard Sector Delaware... 078°01′18″ W, approximately 700 yards south of the waterfront at Southport, NC. 12 July 4th Big Foot...

  11. Fast Magnetoresistive Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.

  12. Aerial profiling of terrain to define stream-valley geometry: study report

    USGS Publications Warehouse

    Desai, Mukund; Drohan, William A.; Hursh, John W.; Mamon, Glenn; Youmans, Douglas G.

    1976-01-01

    A six-month engineering analysis was performed by The Charles Stark Draper Laboratory, Inc., at the request of the U. S. Geological Survey, to investigate the suitability of an airborne instrument package based on inertial techniques to serve as the datum for a laser altimeter in a system for aerial profiling of terrain to determine selected features of stream-valley geometry to an accuracy of ± 0.5 ft. in the vertical coordinate and ± 10 ft. in the horizontal coordinates. Feasible system configuration features a high performance inertial platform incorporating an integral laser tracker, pointing and ranging on retroreflectors on the ground, in order to provide the frequent updates needed to meet the accuracy requirements. In all environments except those of severe gravity gradients the nominal two- by twenty-mile survey area can be covered using three ground-surveyed retroreflectors, interspersed with several unlocated retroreflectors that are surveyed in by the airborne system along a longitudinal path within the river valley when the aircraft arrives over the site. Subsequent transverse profiling runs (traverses that may be spaced as close as one-quarter mile apart) are flown using, in turn, all retroreflectors as updating position references. Pointing and range information from the tracker are optimally combined with the on-board inertial measurements and available gravity data to provide position information and serve as the height datum for a terrain-clearance measuring laser altimeter. Data-logging means and operator display, as well as steering commands to the aircraft autopilot, are provided. The system configuration is capable of operating in single- or twin-engine aircraft including helecopters. It is recommended that work proceed into the design phase.

  13. Nonlocal systems of balance laws in several space dimensions with applications to laser technology

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Marcellini, Francesca

    2015-12-01

    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt.

  14. Potential estimates for the p-Laplace system with data in divergence form

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Schwarzacher, S.

    2018-07-01

    A pointwise bound for local weak solutions to the p-Laplace system is established in terms of data on the right-hand side in divergence form. The relevant bound involves a Havin-Maz'ya-Wolff potential of the datum, and is a counterpart for data in divergence form of a classical result of [25], recently extended to systems in [28]. A local bound for oscillations is also provided. These results allow for a unified approach to regularity estimates for broad classes of norms, including Banach function norms (e.g. Lebesgue, Lorentz and Orlicz norms), and norms depending on the oscillation of functions (e.g. Hölder, BMO and, more generally, Campanato type norms). In particular, new regularity properties are exhibited, and well-known results are easily recovered.

  15. On the unification of geodetic leveling datums using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Mather, R. S.; Rizos, C.; Morrison, T.

    1978-01-01

    Techniques are described for determining the height of Mean Sea Level (MSL) at coastal sites from satellite altimetry. Such information is of value in the adjustment of continental leveling networks. Numerical results are obtained from the 1977 GEOS-3 altimetry data bank at Goddard Space Flight Center using the Bermuda calibration of the altimeter. Estimates are made of the heights of MSL at the leveling datums for Australia and a hypothetical Galveston datum for central North America. The results obtained are in reasonable agreement with oceanographic estimates obtained by extrapolation. It is concluded that all gravity data in the Australian bank AUSGAD 76 and in the Rapp data file for central North America refer to the GEOS-3 altimeter geoid for 1976.0 with uncertainties which do not exceed + or - 0.1 mGal.

  16. Neogene paleoceanographic events recorded in an active-margin setting: Humboldt basin, California

    USGS Publications Warehouse

    McCrory, P.A.

    1990-01-01

    Recognition of North Pacific paleoceanographic events in the marginal Humboldt (Eel River) basin of northern California enables correlation of stratigraphic sections and development of a chronostratigraphy. Paleoclimatically related coiling shifts in Neogloboquadrina pachyderma (Ehrenberg) and benthic foraminiferal datums form the basis of the chronostratigraphy. Benthic foraminiferal datums are defined by the occurrence of selected benthic species and abundance maxima of benthic biofacies. The compiled chronostratigraphy is used to refine reconstructions of the depositional history of Humboldt basin. Paleoceanographic events, recognized by the distribution of benthic foraminiferal biofacies, are used to infer paleoceanographic history along the northeastern Pacific margin. The similarity in coiling curves of N. pachyderma from the marine sequence at DSDP Site 173 and the coastal Centerville Beach section of Humboldt basin and at other independently dated sites along the northeastern Pacific margin demonstrates that matching records of climatic oscillations is a reliable method of correlating marine sequences. Benthic fauna from the Centerville Beach section vary in phase with climatically related coiling shifts in N. pachyderma. In particular these data show an increase in displaced neritic fauna during inferred warm intervals and resurgence of deeper bathyal fauna during inferred cool events. Similar data are observed from the inland Eel River section, demonstrating that benthic foraminiferal trends recognized at Centerville Beach can be identified elsewhere in Humboldt basin. This in-phase benthic response to climatic fluctuations probably results from changes in vertical depth range of many benthic species in response to paleoclimatically related vertical changes in water-mass position. Depositional histories reconstructed for two key sites in southern Humboldt basin indicate low rates of sediment accumulation during early basin filling with hemipelagic sediments. Initiation of turbidite sedimentation in the early Pliocene resulted in a sharp increase in rate of sediment accumulation. This increase in rate of sediment accumulation is partially a response to tectonic uplift in the northern Coast Ranges and may be an effect of realignment of motion between the Pacific and North American plates at about this time. The inland site shoaled more rapidly during turbidite sedimentation as a result of a higher rate of sediment accumulation. The rate of sediment accumulation increased again at this site in the late Pliocene during deposition of shelf and nearshore facies. The Eel River region subsided concurrent with deposition of these shallow-water deposits. ?? 1990.

  17. 15 CFR Appendix A to Subpart L of... - Flower Garden Banks National Marine Sanctuary Boundary Coordinates

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... set of boundary coordinates using the geographic positions of the North American Datum of 1983 (NAD 83). FGBNMS coordinates are now provided in both North American Datum of 1927 (NAD 27) and NAD 83. Point Latitude (N) Longitude (W) East Flower Garden Bank: (NAD 27) E-1 27 deg. 52′ 53.82718″ 93 deg. 37′ 41.30310...

  18. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered in Jefferson and Union Counties, as a result of large withdrawals for industrial and public supplies. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties as a result of large withdrawals for irrigation and public supply. The area enclosed within the 40-foot contour has expanded on the 2007 potentiometric-surface map when compared with the 2005 potentiometric-surface map. In 2003, the depression in Union County was elongated east and west and beginning to coalesce with the depression in Columbia County. The deepest measurement during 2007 in the center of the depression in Union County has risen 38 feet since 2003. The area enclosed by the deepest contour, 160 feet below National Geodetic Vertical Datum of 1929, on the 2007 potentiometric-surface map is less than 10 percent of the area on the 2005 potentiometric-surface map. A broad depression in western Poinsett and Cross Counties was first shown in the 1995 potentiometric-surface map caused by withdrawals for irrigation extending north to the Poinsett-Craighead County line, and south into Cross County. A water-level difference map was constructed using the difference between water-level measurements made during 2003 and 2007 from 283 wells. The difference in water level between 2003 and 2007 ranged from -49.8 to 60.0 feet. Areas with a general rise in water levels are shown in northern Arkansas, Columbia, southern Jefferson, and most of Union Counties. In the area around west-central Union County, water levels rose as much as 60.0 feet with water levels in 15 wells rising 20 feet or more, which is an average annual rise of 5 feet or more. Water levels generally declined throughout most of the rest of Arkansas. Hydrographs from 157 wells were constructed with a minimum of 25 years of water-level measurements. During the period 1983-2007, the county mean annual water level rose in Calhoun, Columbia, Hot Spring, and Lafayette Counties. Mean an

  19. The Neural Network In Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Urusan, Ahmet Yucel

    2011-12-01

    In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.

  20. Impact of horizontal and vertical localization scales on microwave sounder SAPHIR radiance assimilation

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, C.; Balaji, C.

    2016-05-01

    In the present study, the effect of horizontal and vertical localization scales on the assimilation of direct SAPHIR radiances is studied. An Artificial Neural Network (ANN) has been used as a surrogate for the forward radiative calculations. The training input dataset for ANN consists of vertical layers of atmospheric pressure, temperature, relative humidity and other hydrometeor profiles with 6 channel Brightness Temperatures (BTs) as output. The best neural network architecture has been arrived at, by a neuron independence study. Since vertical localization of radiance data requires weighting functions, a ANN has been trained for this purpose. The radiances were ingested into the NWP using the Ensemble Kalman Filter (EnKF) technique. The horizontal localization has been taken care of, by using a Gaussian localization function centered around the observed coordinates. Similarly, the vertical localization is accomplished by assuming a function which depends on the weighting function of the channel to be assimilated. The effect of both horizontal and vertical localizations has been studied in terms of ensemble spread in the precipitation. Aditionally, improvements in 24 hr forecast from assimilation are also reported.

  1. Intertidal biological indicators of coseismic subsidence during the Mw 7.8 Haida Gwaii, Canada, earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Witter, Robert C.; Wang, Kelin

    2015-01-01

    The 28 October 2012 Mw 7.8 Haida Gwaii earthquake was a megathrust earthquake along the very obliquely convergent Queen Charlotte margin of British Columbia, Canada. Coseismic deformation is not well constrained by geodesy, with only six Global Positioning System (GPS) sites and two tide gauge stations within 250 km of the rupture area. To better constrain vertical coseismic deformation, we measured the upper growth limits of two sessile intertidal organisms, which are controlled by physical conditions, relative to sea level at 25 sites 5 months after the earthquake. We measured the positions of rockweed (Fucus distichus, 617 observations) and the common acorn barnacle (Balanus balanoides, 686 observations). The study focused on the western side of the islands where rupture models indicated that the greatest amount of vertical displacement, but we also investigated sites well away from the inferred rupture area to provide a control on the upper limit of the organisms unaffected by vertical displacement. We also made 322 measurements of sea level to relate the growth limits to a tidal datum using the TPXO7.2 tidal model, rather than ellipsoid heights determined by GPS. Three methods of examining the data all indicate 0.4–0.6 m subsidence along the western coast of Moresby Island as a result of the 28 October 2012 Haida Gwaii earthquake. Our data are, within the errors, consistent with data from two campaign GPS sites along the west coast of Haida Gwaii and with rupture models that indicate megathrust rupture offshore, but not beneath, the islands.

  2. Visual and Part-Task Manipulations for Teaching Simulated Carrier Landings.

    DTIC Science & Technology

    1985-03-19

    with FLOLS and Portion of Wake ............. 10 3 Configuration of FLOLS Simulation, Showing Datum Bars, Rate Arrows, and Meatball ...bars. This light, known as the meatball , is visible to the pilot through the center lens when he is within 9.5 minutes of arc of the glideslope and is...Seen as level with the datum bars. As the aircraft moves more * than 9.5 minutes of arc above or below the glideslope, the meatball is seen through

  3. Reassessment of 20th century global mean sea level rise.

    PubMed

    Dangendorf, Sönke; Marcos, Marta; Wöppelmann, Guy; Conrad, Clinton P; Frederikse, Thomas; Riva, Riccardo

    2017-06-06

    The rate at which global mean sea level (GMSL) rose during the 20th century is uncertain, with little consensus between various reconstructions that indicate rates of rise ranging from 1.3 to 2 mm⋅y -1 Here we present a 20th-century GMSL reconstruction computed using an area-weighting technique for averaging tide gauge records that both incorporates up-to-date observations of vertical land motion (VLM) and corrections for local geoid changes resulting from ice melting and terrestrial freshwater storage and allows for the identification of possible differences compared with earlier attempts. Our reconstructed GMSL trend of 1.1 ± 0.3 mm⋅y -1 (1σ) before 1990 falls below previous estimates, whereas our estimate of 3.1 ± 1.4 mm⋅y -1 from 1993 to 2012 is consistent with independent estimates from satellite altimetry, leading to overall acceleration larger than previously suggested. This feature is geographically dominated by the Indian Ocean-Southern Pacific region, marking a transition from lower-than-average rates before 1990 toward unprecedented high rates in recent decades. We demonstrate that VLM corrections, area weighting, and our use of a common reference datum for tide gauges may explain the lower rates compared with earlier GMSL estimates in approximately equal proportion. The trends and multidecadal variability of our GMSL curve also compare well to the sum of individual contributions obtained from historical outputs of the Coupled Model Intercomparison Project Phase 5. This, in turn, increases our confidence in process-based projections presented in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  4. Reassessment of 20th century global mean sea level rise

    PubMed Central

    Dangendorf, Sönke; Marcos, Marta; Wöppelmann, Guy; Conrad, Clinton P.; Frederikse, Thomas; Riva, Riccardo

    2017-01-01

    The rate at which global mean sea level (GMSL) rose during the 20th century is uncertain, with little consensus between various reconstructions that indicate rates of rise ranging from 1.3 to 2 mm⋅y−1. Here we present a 20th-century GMSL reconstruction computed using an area-weighting technique for averaging tide gauge records that both incorporates up-to-date observations of vertical land motion (VLM) and corrections for local geoid changes resulting from ice melting and terrestrial freshwater storage and allows for the identification of possible differences compared with earlier attempts. Our reconstructed GMSL trend of 1.1 ± 0.3 mm⋅y−1 (1σ) before 1990 falls below previous estimates, whereas our estimate of 3.1 ± 1.4 mm⋅y−1 from 1993 to 2012 is consistent with independent estimates from satellite altimetry, leading to overall acceleration larger than previously suggested. This feature is geographically dominated by the Indian Ocean–Southern Pacific region, marking a transition from lower-than-average rates before 1990 toward unprecedented high rates in recent decades. We demonstrate that VLM corrections, area weighting, and our use of a common reference datum for tide gauges may explain the lower rates compared with earlier GMSL estimates in approximately equal proportion. The trends and multidecadal variability of our GMSL curve also compare well to the sum of individual contributions obtained from historical outputs of the Coupled Model Intercomparison Project Phase 5. This, in turn, increases our confidence in process-based projections presented in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. PMID:28533403

  5. Simulation of water level, streamflow, and mass transport for the Cooper and Wando rivers near Charleston, South Carolina, 1992-95

    USGS Publications Warehouse

    Conrads, P.A.; Smith, P.A.

    1996-01-01

    The one-dimensional, unsteady-flow model, BRANCH, and the Branched Lagrangian Transport Model (BLTM) were calibrated and validated for the Cooper and Wando Rivers near Charleston, South Carolina. Data used to calibrate the BRANCH model included water-level data at four locations on the Cooper River and two locations on the Wando River, measured tidal-cycle streamflows at five locations on the Wando River, and simulated tidal-cycle streamflows (using an existing validated BRANCH model of the Cooper River) for four locations on the Cooper River. The BRANCH model was used to generate the necessary hydraulic data used in the BLTM model. The BLTM model was calibrated and validated using time series of salinity concentrations at two locations on the Cooper River and at two locations on the Wando River. Successful calibration and validation of the BRANCH and BLTM models to water levels, stream flows, and salinity were achieved after applying a positive 0.45 foot datum correction to the downstream boundary. The sensitivity of the simulated salinity concentrations to changes in the downstream gage datum, channel geometry, and roughness coefficient in the BRANCH model, and to the dispersion factor in the BLTM model was evaluated. The simulated salinity concentrations were most sensitive to changes in the downstream gage datum. A decrease of 0.5 feet in the downstream gage datum increased the simulated 3-day mean salinity concentration by 107 percent (12.7 to 26.3 parts per thousand). The range of the salinity concentration went from a tidal oscillation with a standard deviation of 3.9 parts per thousand to a nearly constant concentration with a standard deviation of 0.0 parts per thousand. An increase in the downstream gage datum decreased the simulated 3-day mean salinity concentration by 47 percent (12.7 to 6.7 parts per thousand) and decreased the standard deviation from 3.9 to 3.4 parts per thousand.

  6. Job Oriented Training Handleiding voor Luchtdoelartillerie (Job Oriented Training: Instructors Manual Air Defense)

    DTIC Science & Technology

    2008-11-01

    luchtdoelartillerie Kampweg 5 Postbus 23 3769 ZG Soesterberg www.tno.nl T +31 346 35 62 11 F +31 346 35 39 77 lnfo-DenV@tno.nl Datum Auteur (s...een hoger begripsniveau getild. Theorie wordt niet van te voren aangeboden door middel van kennisover- dracht, maar wordt gaandeweg opgedaan. De...346 35 39 77 lnfo-DenV@tno.nl TNO-rapportnummer TNO-DV 2008 A394 Opdrachtnummer 851.2116.0152.11 Datum november 2008 Auteur (s) ir. T.J

  7. Operationele Oceanografie en Rapid Environmental Assessment (Operational Oceanography and Rapid Environmental Assessment)

    DTIC Science & Technology

    2008-11-01

    Datum Auteur (s) november 2008 dr. LA. teRaa dr. I.PA. Lam dr. ir. M.W. Schouten Rubricering rappon Vastgesteld door Vastgesteld d.d. I ltd...DenV@tno.nl TNO-rapportnummer TNO-DV2008A418 Opdrachtnummer Datum november 2008 Auteur (s) dr. L.A. te Raa dr. F.P.A. Lam dr. ir. M.W. Schouten...verdamping. Een oceaanmodel is gebaseerd op wiskundige vergelijkingen die de dynamica en thermodynamica van de oceaan beschrijven. In theorie geven deze

  8. Learning from Physical Analogies: A Study in Analogy and the Explanation Process

    DTIC Science & Technology

    1988-12-27

    support of the various transfer operations, the forward chaining ATRE rule system is paired with an abductive retriever. This is a backward chaining...pO) is believed.3 When a new datum is entered in the database, ATRE exhaustively runs all rules made executable by the datum’s presence in a forward ...ZR) INFLUENESST1 (CTA (AIOUN-O ?V-2)) NERTON V- (ASUM (DISSOLVE-RAT SELF))) ER ) (DSETT (SKSOLUTIO-S -12)COOL (NOTUM (LSSOU-THN-1 A CONTRATO V-P) ER

  9. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    USGS Publications Warehouse

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made to allow the water levels in the wells to recover to ambient (nonpumping) conditions. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In addition to pumping stresses, density differences (saline water) also lower the water levels measured in certain wells. Recent water-quality data are lacking in these wells; therefore, a conversion to freshwater head could not be performed accurately and was not attempted. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).The land surface altitude, or topography, was obtained from the National Oceanic and Atmospheric Administration. The data were collected using light detection and ranging (lidar) and were used to produce a three-dimensional digital elevation model. The lidar data have a horizontal accuracy of 1.38 feet and a vertical accuracy of 0.40 foot at a 95-percent confidence level for the “open terrain” land-cover category. The digital elevation model was developed jointly by the National Oceanic and Atmospheric Administration and the U.S. Geological Survey as part of the Disaster Relief Appropriations Act of 2013. Land surface altitude is referenced to the North American Vertical Datum of 1988 (NAVD 88). On Long Island, NAVD 88 is approximately 1 foot higher than NGVD 29.Hydrographs are included on these maps for selected wells that have continuous digital recording equipment, and each hydrograph includes the water level measured during the synoptic survey. These hydrographs are representative of the 2016 water year and show the changes throughout that period; a water year is the 12-month period from October 1 to September 30 and is designated by the year in which it ends.

  10. Quality control of climatological time series in the province of macerata (adriatic side of central italy)

    NASA Astrophysics Data System (ADS)

    Gentilucci, Matteo; Bisci, Carlo; Fazzini, Massimiliano; Tognetti, Danilo

    2016-04-01

    The analysis is focused on more than 100 meteorological recording stations located in the Province of Macerata (Marche region, Adriatic side of Central Italy) and in its neighbours; it aims to check the time series of their climatological data (temperatures and precipitations), covering about one century of observations, in order to remove or rectify any errors. This small area (about 2.800Km2) features many different climate types, because of its varied topography ranging, moving westward, from the Adriatic coast to the Appennines (over 2.100m of altitude). In this irregular context, it is difficult to establish a common procedure for each sector; therefore, it has been followed the general guidelines of the WMO, with some important difference (mostly in the method). Data are classified on the basis of validation codes (VC): missing datum (VC=-1), correct or verified datum (VC=0), datum under investigation (VC=1), datum removed after the analysis (VC=2), datum reconstructed through interpolation or by estimating the errors of digitization (VC=3). The first step was the "Logical Control", consisting in the investigation of gross errors of digitization: the data found in this phase of the analysis has been removed without any other control (VC=2). The second step, represented by the "Internal Consistency Check", leads to the elimination (VC=2) of all the data out of range, estimated on the basis of the climate zone for each investigated variable. The third one is the "Tolerance Test", carried out comparing each datum with the historical record it belongs to, in order to apply this test, the normal distribution of data has been evaluated. The "Tolerance Test" usually defines only suspect data (VC=1) to be verified with further tests, such as the "Temporal Consistency" and the "Spatial Consistency". The "Temporal Consistency" allows an evaluation of the time sequence of data, setting a specified range for each station basing upon its historical records. Data out of range have been considered under investigation (VC=1). Data are finally compared with the ones contemporaneously recorded in a set of neighboring meteorological stations through the "Spatial Consistency" test, thus eliminating every suspicious datum (recoded VC=2 or VC=0, depending upon the results of this analysis). This procedure uses a series of different statistic steps to avoid uncertainties: at its end, all the investigated data are either accepted (VC=0) or refused (VC=2). Refused and missing data (VC=-1 and VC=2) have been reconstructed through interpolation using co-kriging techniques (assigning VC=3), when necessary, in the final stage of the process. All the above procedure has been developed using a database managing software in a GIS (ESRI ArcGIS ®) environment. The refused data are 1.286 in 77.021 (1,67%) for the precipitations and 375 in 1.821.054 for the temperatures (0,02%).

  11. Local Feature Selection for Data Classification.

    PubMed

    Armanfard, Narges; Reilly, James P; Komeili, Majid

    2016-06-01

    Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.

  12. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    USGS Publications Warehouse

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  13. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    NASA Astrophysics Data System (ADS)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  14. Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data

    NASA Astrophysics Data System (ADS)

    Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.

    2017-05-01

    The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.

  15. Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore

    USGS Publications Warehouse

    Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.

    2013-01-01

    The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.

  16. Vraagstukken besmettingsbeheersing prio 3 (Questions Regarding Contamination Control, Priority 3)

    DTIC Science & Technology

    2008-11-01

    nl T +31 15 284 30 00 F +31 15 284 39 91 info-DenV@tno nl Datum nov ember 2008 Auteur (s) H.F.G. Oudmaijer Rubricering rapporl Vastgesteld door...F +31 15 284 39 91 info-DenV@tno.nl TNO-rapportnummer TNO-DV 2008 A495 Opdrachtnummer Datum november 2008 Auteur (s) H.F.G. Oudmaijer...zeep kan volgens de theorie beter vaak met een beetje water als in een keer met dezelfde totale massa water gespoeld moeten worden. Met een pH

  17. Reconnaissance investigations of the discharge and water quality of the Amazon River

    USGS Publications Warehouse

    Oltman, Roy Edwin

    1968-01-01

    Selected published estimates of the discharge of Amazon River in the vicinity of Obidos and the mouth are presented to show the great variance of available information. The most reasonable estimates prepared by those who measured some parameters of the flow were studied by Maurice Parde, who concluded that the mean annual discharge is 90,000 to 100,000 cms (cubic meters per second) or 3,200,000 to 3,500,000 cfs (cubic feet per second). A few published estimates of discharge at mouth of 110,000 cms (3,900,000 cfs) based on rainfall-runoff relationships developed for other humid regions of the world are available. Three measurements of discharge made at the Obidos narrows in 1963-64 by a joint Brazil-United States expedition at high, low, and medium river stage are referred to the datum used at the Obidos gage during the period of operation, 1928-46, and a relationship between stage and discharge prepared on the basis of the measurements and supplementary data and computations. Recovery of the original Obidos gage datum is verified by referring the 1963-64 concurrent river stages at Manaus, Obidos, and Taperinha to gage relation curves developed for Manaus-Obidos and Obidos-Taperinha for periods of concurrent operation, 1928-46 and 1931-46, respectively. The average discharge, based on the stage-discharge relation and record of river stage for the period 1928-46, is computed to be 5,500,000 cfs (157,000 cms) for the Obidos site. The greatest known flood at Obidos, that of June 1953, is computed to have been a flow of 12,500,000 cfs (350,000 cms) at stage of 7.6 meters (24.9 feet) in the main channel and an indeterminate amount of overflow which, under the best assumed overflow conditions, may have amounted to about 10 percent of the main channel flow. Overflow discharge at stage equivalent to mean annual discharge is judged to be an insignificant percentage of flow down the main channel. Miscellaneous data collected during the flow measurements show that the tidal effect reaches upstream to Obidos at extremely low flows, the distribution of velocities in stream verticals is affected by large-scale turbulence, the standard procedure of basing mean velocity in vertical on the average of point velocities measured at 20 and 80 percent of the total depth is valid, and there is a low Manning roughness coefficient of 0.019 (English units). Samples of suspended sediment taken with a point sampler at various depths in selected verticals show, for the Obidos site, a variation in concentration from 300 to 340 mg/l (milligram per liter) near the streambed to 50 to 70 mg/l in the upper part of the verticals. Median diameter of bed material at Obidos averaged about 0.20 mm (millimeter) in a range of 0.15 to 0.25 ram. Analyses of water samples collected at Obidos in July and November 1963 and August 1964 are presented. The reconnaissance measurements of 1963-64 provide a well-supported value of mean annual water discharge of Amazon River at Obidos and the mouth. Many more measurements of flow and water-quality characteristics are needed to obtain more exact values of discharge, suspended sediment, and salt load.

  18. Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wang, F.; Bai, J.; Li, Z.

    2018-04-01

    The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  19. The extension of the parametrization of the radio source coordinates in geodetic VLBI and its impact on the time series analysis

    NASA Astrophysics Data System (ADS)

    Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald

    2017-07-01

    The radio sources within the most recent celestial reference frame (CRF) catalog ICRF2 are represented by a single, time-invariant coordinate pair. The datum sources were chosen mainly according to certain statistical properties of their position time series. Yet, such statistics are not applicable unconditionally, and also ambiguous. However, ignoring systematics in the source positions of the datum sources inevitably leads to a degradation of the quality of the frame and, therefore, also of the derived quantities such as the Earth orientation parameters. One possible approach to overcome these deficiencies is to extend the parametrization of the source positions, similarly to what is done for the station positions. We decided to use the multivariate adaptive regression splines algorithm to parametrize the source coordinates. It allows a great deal of automation, by combining recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and, thus, the best number of polynomial pieces to fit the data autonomously. With that we can correct the ICRF2 a priori coordinates for our analysis and eliminate the systematics in the position estimates. This allows us to introduce also special handling sources into the datum definition, leading to on average 30 % more sources in the datum. We find that not only the CPO can be improved by more than 10 % due to the improved geometry, but also the station positions, especially in the early years of VLBI, can benefit greatly.

  20. Options for developing modernized geodetic datum for Nepal following the April 25, 2015 Mw7.8 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Pearson, Chris; Manandhar, Niraj; Denys, Paul

    2017-09-01

    Along with the damage to buildings and infrastructure, the April 25, 2015 Mw7.8 Gorkha earthquake caused significant deformation over a large area of eastern Nepal with displacements of over 2 m recorded in the vicinity of Kathmandu. Nepal currently uses a classical datum developed in 1984 by the Royal (UK) Engineers in collaboration with the Nepal Survey Department. It has served Nepal well; however, the recent earthquakes have provided an impetus for developing a semi-dynamic datum that will be based on ITRF2014 and have the capacity to correct for tectonic deformation. In the scenario we present here, the datum would be based on ITRF2014 with a reference epoch set some time after the end of the current sequence of earthquakes. The deformation model contains a grid of the secular velocity field combined with models of the Gorkha Earthquake and the May 12 Mw7.3 aftershock. We have developed a preliminary velocity field by collating GPS derived crustal velocities from four previous studies for Nepal and adjacent parts of China and India and aligning them to the ITRF. Patches for the co-seismic part of the deformation for the Gorkha earthquake and the May 12, 2015 Mw 7.2 aftershock are based on published dislocation models. High order control would be a CORS network based around the existing Nepal GPS Array. Coordinates for existing lower order control would be determined by readjusting existing survey measurements and these would be combined with a series of new control stations spread throughout Nepal.

  1. Crustal structure of Central Sicily

    NASA Astrophysics Data System (ADS)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo

    2018-01-01

    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  2. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    PubMed

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas<0.9m NAVD. However, current simulations do not consider the range of rainfall events that have led to water table elevations>1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. New standards for reducing gravity data: The North American gravity database

    USGS Publications Warehouse

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  4. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey in Miami, Florida

    DTIC Science & Technology

    2003-01-01

    Jacqueline Lima GS-12 GS-10 GS-09 GS-09 GS-08 GS-07 GS-06 GS-06 GS-04 GS-04Eleanor Seymore Surface-Water Data Collections & Jon Woolverton Jorge Agis...Thomas J. Smith, III Gordon Anderson Kevin Whelan Don De Angelis Allison Snow GS-13 GS-07 GS-05 GS-12 GS-13 GS-07 GS-12 GS-13 GS-09 GS-07 GS-14 GS-07...fan, active, inactive, inventory only playa , month day year stream channel, digital rec- order, North American Datum of 1927 North American Datum of

  5. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    NASA Astrophysics Data System (ADS)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  6. LONG-TERM STABILITY OF THE LOCAL GROUND CONTROL NETWORK AT THE CO-LOCATION SITE OF MEDICINA

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Sarti, P.; Legrand, J.

    2009-12-01

    ITRF combinations rely on the availability of accurate tie vectors linking reference points of space geodetic techniques. Co-located instruments are assumed to move consistently and no local relative motion is taken into account. Instabilities may degrade the quality of the co-location itself and perturb the result of ITRF combinations. This work aims to determine the stability of the local ground control network at Medicina (Italy) with independent surveying methods. The observatory hosts a co-location between a VLBI telescope and two GPS antennas, MEDI and MSEL. It is located in the Po Plain where thick layers of clays are the prevalent soil characteristics. Hence, provision of long term stability of geodetic monuments is a challenge and monitoring their stability is an issue. MEDI and the VLBI station regularly contribute to the determination of ITRF, while MSEL is part of the EUREF network. A set of five tie vectors observations linking the VLBI and MEDI reference points was acquired between 2001 and 2007. It is our main tool for performing local deformation analysis. Additionally, the GPS time series of MEDI and MSEL were used to cross check and confirm the local instability detected by terrestrial methods. To achieve a rigorous and reliable investigation of the local stability, multi-epoch terrestrial observations were homogeneously processed according to common parameterizations in a consistent reference frame. Similarly, continuous GPS observations from MEDI and MSEL were analysed according to the new EPN reprocessing strategy in order to monitor the short baseline between MEDI and MSEL; to spotlight any change in its length. Both approaches confirm differential motions at the site which can be related to monument instabilities originated by the particularly unfavourable local geological setting and the inapt design of the monuments foundation. The monuments move non homogeneously at rates reaching up to 1.6 mm/year, this value being comparable to intra-plate tectonic deformations. Evidences of relative motion between MEDI and MSEL are found: an annual signal with amplitude ≈1.3 mm is detected along the East component and an 80 weeks signal with amplitude ≈1.1 mm is found along the vertical component of the baseline. The combination of the two independent observing techniques confirms the importance of repeatedly performed terrestrial surveys and the presence of intra-technique co-locations at geodetic sites. Although available, VLBI observations were not considered since we are interested in detecting local relative motions in a very restricted area (100m x 100m) avoiding problems of datum consistencies between different space geodetic techniques. In fact, the combination of technique-specific frames might originate local inconsistencies on station positions due to misalignments of tie vectors in the global reference frame. These inconsistencies might degrade the accuracy of the displacement analysis and can be difficult to deal with.

  7. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders.

    PubMed

    Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K

    2013-11-01

    Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.

  8. Radiographic localization of unerupted teeth: further findings about the vertical tube shift method and other localization techniques.

    PubMed

    Jacobs, S G

    2000-10-01

    The parallax method (image/tube shift method, Clark's rule, Richards' buccal object rule) is recommended to localize unerupted teeth. Richards' contribution to the development of the parallax method is discussed. The favored method for localization uses a rotational panoramic radiograph in combination with an occlusal radiograph involving a vertical shift of the x-ray tube. The use of this combination when localizing teeth and supernumeraries in the premolar region is illustrated. When taking an occlusal radiograph to localize an unerupted maxillary canine, clinical situations are presented where modification of the vertical angulation of the tube of 70 degrees to 75 degrees or of the horizontal position of the tube is warranted. The limitations of axial (true, cross-sectional, vertex) occlusal radiographs are also explored.

  9. GPS Tides and Datums

    DTIC Science & Technology

    1994-07-01

    REPORT DOCUMENTATION PAGE Form Ap~ovd -qmp Pu~~~~~~~~~~hc~~~~~ omef.A Nu0001U~ 0Itg O Mcq ~n, ’tmoa1a q 0 0 fft *cuqIO~ ’W𔃻i.q~ii os .ete .7qO0t.Aqea...water level heights. Using OTF technology it should be possible to obtain a time series of water surface heights to an accuracy of 1 to 2 ymfa...receiver location. 14. SUBJECT TERMS 15. NUMBER OF PAGES On-the-Fly, study of water levels , datum, Bay of Fundy 10 16. PRICE CODE 17. SECURITY

  10. InSAR datum connection using GNSS-augmented radar transponders

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon

    2018-01-01

    Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.

  11. Characterization of Weak Convergence of Probability-Valued Solutions of General One-Dimensional Kinetic Equations

    NASA Astrophysics Data System (ADS)

    Perversi, Eleonora; Regazzini, Eugenio

    2015-05-01

    For a general inelastic Kac-like equation recently proposed, this paper studies the long-time behaviour of its probability-valued solution. In particular, the paper provides necessary and sufficient conditions for the initial datum in order that the corresponding solution converges to equilibrium. The proofs rest on the general CLT for independent summands applied to a suitable Skorokhod representation of the original solution evaluated at an increasing and divergent sequence of times. It turns out that, roughly speaking, the initial datum must belong to the standard domain of attraction of a stable law, while the equilibrium is presentable as a mixture of stable laws.

  12. An Analysis of Strain Accumulation in the Western Part of Black Sea Region in Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, I.; Avsar, N. B.; Deniz, R.; Mekik, C.; Kutoglu, S.

    2014-12-01

    Turkish National Horizontal Control Network (TNHCN) based on the European Datum 1950 (ED50) was used as the principal geodetic network until 2005 in Turkey. Since 2005, Turkish Large Scale Map and Map Information Production Regulation have required that that all the densification points have been produced within the same datum of Turkish National Fundamental GPS Network (TNFGN) put into practise in 2002 and based on International Terrestrial Reference Frame (ITRF). Hence, the common points were produced in both European Datum 1950 (ED50), and TNFGN.It is known that the geological and geophysical information about the network area can be obtained by the evaluation of the coordinate and scale variations in a geodetic network. For one such evaluation, the coordinate variations and velocities of network points, and also the strains are investigated. However, the principal problem in derivation of velocities arises from two different datums. In this context, the computation of velocities using the coordinate data of the ED50 and TNFGN is not accurate and reliable. Likewise, the analysis of strain from the coordinate differences is not reliable. However, due to the fact that the scale of a geodetic network is independent from datum, the strains can be derived from scale variations accurately and reliably.In this study, a test area limited 39.5°-42.0° northern latitudes and 31.0°-37.0° eastern longitudes was chosen. The benchmarks in this test area are composed of 30 geodetic control points derived with the aim of cadastral and engineering applications. We used data mining to investigate the common benchmarks in both reference systems for this area. Accordingly, the ED50 and TNFGN coordinates refer 1954 and 2005, respectively. Thus, it has been investigated the strain accumulation of 51 years in this region. It should be also noted that since 1954, the earthquakes have not registered greater than magnitude 6.0 in the test area. It is a considerable situation for this evaluation. The finite element analysis is used in order to derive the strain accumulation and rates in the test area (Figure 1). The results have been indicated that the minimum and maximum strains are 17μs and 3041μs, respectively.

  13. NGS' GRAV-D Project Brings Advances in Aerogravimetry

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Preaux, S. A.; Diehl, T. M.; Li, X.; Weil, C.

    2011-12-01

    NOAA's National Geodetic Survey has undertaken an extensive airborne gravity campaign to help replace the nation's vertical datum by 2022. After receiving Congressional funding in FY10 &11, the GRAV-D project has now surveyed 13.45% of the total area (as of abstract submittal time). The survey has now worked on a number of aircraft, both jets and turboprops. Early work was performed at 35,000 ft and 280 kts. Since summer of 2009, the survey altitude has been lowered to 20,000 ft to enhance signal recovery and to reduce the amplitude enhancement of noise in the downward continuation needed for gravity field blending. The high altitude and speed of the survey has forced a re-evaluation of all aspects of the airborne gravity processing methodology. This presentation will update the community on the progress of the project, summarize the various processing improvements implemented, and discuss the magnitude of their effects. Improvements and research include: a new in-house gravity processing software package called "Newton", kinematic GPS processing variables and their impacts on final gravity products, and evaluation of gravimeter off-level corrections, among other topics.

  14. Global 30m Height Above the Nearest Drainage

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick

    2016-04-01

    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and variable thresholding methods. The resulting HAND dataset was analyzed regarding its spatial variability and to assess the global distribution of the main landform types: valley, ecotone, slope, and plateau. The method used to compute HAND was implemented using PCRaster software, running on Google Compute Engine platform running under Ubuntu Linux. The Google Earth Engine was used to perform mosaicing and clipping of the original DEMs as well as to provide access to the final product. The effort took about three months of computing time on eight core CPU virtual machine.

  15. The Principle of Equivalence: Demonstrations of Local Effective Vertical and Horizontal

    ERIC Educational Resources Information Center

    Munera, Hector A.

    2010-01-01

    It has been suggested that Einstein's principle of equivalence (PE) should be introduced at an early stage. This principle leads to the notion of local effective gravity, which in turn defines effective vertical and horizontal directions. Local effective gravity need not coincide with the direction of terrestrial gravity. This paper describes…

  16. A local-circulation model for Darrieus vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  17. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders

    PubMed Central

    Visser, Eelke; Zwiers, Marcel P.; Kan, Cornelis C.; Hoekstra, Liesbeth; van Opstal, A. John; Buitelaar, Jan K.

    2013-01-01

    Background Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. Methods We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Results Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. Limitations The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Conclusion Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs. PMID:24148845

  18. The contribution of two ears to the perception of vertical angle in sagittal planes.

    PubMed

    Morimoto, M

    2001-04-01

    Because the input signals to the left and right ears are not identical, it is important to clarify the role of these signals in the perception of the vertical angle of a sound source at any position in the upper hemisphere. To obtain basic findings on upper hemisphere localization, this paper investigates the contribution of each pinna to the perception of vertical angle. Tests measured localization of the vertical angle in five planes parallel to the median plane. In the localization tests, the pinna cavities of one or both ears were occluded. Results showed that pinna cavities of both the near and far ears play a role in determining the perceived vertical angle of a sound source in any plane, including the median plane. As a sound source shifts laterally away from the median plane, the contribution of the near ear increases and, conversely, that of the far ear decreases. For saggital planes at azimuths greater than 60 degrees from midline, the far ear no longer contributes measurably to the determination of vertical angle.

  19. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  20. A comparison of two global datasets of extreme sea levels and resulting flood exposure

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Verlaan, Martin; Nicholls, Robert J.; Brown, Sally; Hinkel, Jochen; Lincke, Daniel; Vafeidis, Athanasios T.; Scussolini, Paolo; Winsemius, Hessel C.; Ward, Philip J.

    2017-04-01

    Estimating the current risk of coastal flooding requires adequate information on extreme sea levels. For over a decade, the only global data available was the DINAS-COAST Extreme Sea Levels (DCESL) dataset, which applies a static approximation to estimate extreme sea levels. Recently, a dynamically derived dataset was developed: the Global Tide and Surge Reanalysis (GTSR) dataset. Here, we compare the two datasets. The differences between DCESL and GTSR are generally larger than the confidence intervals of GTSR. Compared to observed extremes, DCESL generally overestimates extremes with a mean bias of 0.6 m. With a mean bias of -0.2 m GTSR generally underestimates extremes, particularly in the tropics. The Dynamic Interactive Vulnerability Assessment model is applied to calculate the present-day flood exposure in terms of the land area and the population below the 1 in 100-year sea levels. Global exposed population is 28% lower when based on GTSR instead of DCESL. Considering the limited data available at the time, DCESL provides a good estimate of the spatial variation in extremes around the world. However, GTSR allows for an improved assessment of the impacts of coastal floods, including confidence bounds. We further improve the assessment of coastal impacts by correcting for the conflicting vertical datum of sea-level extremes and land elevation, which has not been accounted for in previous global assessments. Converting the extreme sea levels to the same vertical reference used for the elevation data is shown to be a critical step resulting in 39-59% higher estimate of population exposure.

  1. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiman, A.

    Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils.

  2. Potentiometric Surface of the Alluvial Aquifer and Hydrologic Conditions in the Juana Diaz area, Puerto Rico, June 29 - July 1, 2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Santigo-Rivera, Luis; Gómez-Gómez, Fernando

    2006-01-01

    A synoptic survey of the hydrologic conditions in the Juana Diaz area, Puerto Rico, was conducted between June 29 and July 1, 2005, to define the spatial distribution of the potentiometric surface of the alluvial aquifer. The study area encompasses 21 square miles of the more extensive South Coastal Plain Alluvial Aquifer system and is bounded along the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, the east by the Rio Descalabrado and to the west by the Rio Inabon. Ground water in the Juana Diaz area is in the Quaternary-age alluvial deposits and the middle-Tertiary age Ponce Limestone and Juana Diaz Formation (Giusti, 1968). The hydraulic properties of the Ponce Limestone in the Juana Diaz area are unknown, and the Juana Diaz Formation is a unit of poor permeability due to its high clay content. Consequently, the Ponce Limestone and the Juana Diaz Formation are generally considered to be the base of the alluvial aquifer in the Juana Diaz area with ground-water flow occurring primarily within the alluvial deposits. The potentiometric-surface map of the alluvial aquifer was delineated using ground-water level measurements taken at existing wells. The water-level measurements were taken at wells that were either not pumping during the survey or were shut down for a brief period. In the latter case, a recovery period of 30 minutes was allowed for the drawdown in the wellbore to achieve a near static level position representative of the aquifer at the measurement point. Land-surface altitude from U.S. Geological Survey (USGS) 1:20,000 scale topographic maps (Playa de Ponce, Ponce, Rio Descalabrado, and Santa Isabel) were used to refer ground-water levels to mean sea level datum (National Geodetic Vertical Datum of 1929). In addition to the ground-water level measurements, the potentiometricsurface contours were delineated using hydrologic features, such as drainage ditches and saturated intermittent streams that were considered as aquifer drains and losing streams, respectively.

  3. CIRSS vertical data integration, San Bernardino study

    NASA Technical Reports Server (NTRS)

    Hodson, W.; Christenson, J.; Michel, R. (Principal Investigator)

    1982-01-01

    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff.

  4. The Interpretation of Wavelengths and Periods as Measured from Atmospheric Balloons.

    NASA Astrophysics Data System (ADS)

    de La Torre, Alejandro; Alexander, Pedro

    1995-12-01

    Transformations that take into account the characteristics of balloon motion and wave propagation to infer the `real' wavelengths and frequencies from the `apparent' ones measured during sounding are derived. To estimate the differences that may arise in the observations of internal gravity waves, a statistical relation between their wavelength and period recently found from theory and experiment is applied. It is shown that it may not be possible to determine from each apparent datum a unique real value, because up to four different transformations may be applicable for each experimental datum of wavelength or frequency. However, under certain conditions this ambiguity can be removed. The omission of the appropriate transformation may lead one to seriously misinterpret the data.

  5. Traffic flow collection wireless sensor network node for intersection light control

    NASA Astrophysics Data System (ADS)

    Li, Xu; Li, Xue

    2011-10-01

    Wireless sensor network (WSN) is expected to be deployed in intersection to monitor the traffic flow continuously, and the monitoring datum can be used as the foundation of traffic light control. In this paper, a WSN based on ZigBee protocol for monitoring traffic flow is proposed. Structure, hardware and work flow of WSN nodes are designed. CC2431 from Texas Instrument is chosen as the main computational and transmission unit, and CC2591 as the amplification unit. The stability experiment and the actual environment experiment are carried out in the last of the paper. The results of experiments show that WSN has the ability to collect traffic flow information quickly and transmit the datum to the processing center in real time.

  6. Localization and Spreading of Diseases in Complex Networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Dorogovtsev, S. N.; Oliveira, J. G.; Mendes, J. F. F.

    2012-09-01

    Using the susceptible-infected-susceptible model on unweighted and weighted networks, we consider the disease localization phenomenon. In contrast to the well-recognized point of view that diseases infect a finite fraction of vertices right above the epidemic threshold, we show that diseases can be localized on a finite number of vertices, where hubs and edges with large weights are centers of localization. Our results follow from the analysis of standard models of networks and empirical data for real-world networks.

  7. Effect of sound level on virtual and free-field localization of brief sounds in the anterior median plane.

    PubMed

    Marmel, Frederic; Marrufo-Pérez, Miriam I; Heeren, Jan; Ewert, Stephan; Lopez-Poveda, Enrique A

    2018-06-14

    The detection of high-frequency spectral notches has been shown to be worse at 70-80 dB sound pressure level (SPL) than at higher levels up to 100 dB SPL. The performance improvement at levels higher than 70-80 dB SPL has been related to an 'ideal observer' comparison of population auditory nerve spike trains to stimuli with and without high-frequency spectral notches. Insofar as vertical localization partly relies on information provided by pinna-based high-frequency spectral notches, we hypothesized that localization would be worse at 70-80 dB SPL than at higher levels. Results from a first experiment using a virtual localization set-up and non-individualized head-related transfer functions (HRTFs) were consistent with this hypothesis, but a second experiment using a free-field set-up showed that vertical localization deteriorates monotonically with increasing level up to 100 dB SPL. These results suggest that listeners use different cues when localizing sound sources in virtual and free-field conditions. In addition, they confirm that the worsening in vertical localization with increasing level continues beyond 70-80 dB SPL, the highest levels tested by previous studies. Further, they suggest that vertical localization, unlike high-frequency spectral notch detection, does not rely on an 'ideal observer' analysis of auditory nerve spike trains. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Flood-tracking chart for the Withlacoochee and Little River Basins in south-central Georgia and northern Florida

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.; Painter, Jaime A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates a flood-monitoring system in the Withlacoochee and Little River Basins. This system is a network of automated river stage stations (ten are shown on page 2 of this publication) that transmit stage data through satellite telemetry to the USGS in Atlanta, Georgia and the National Weather Service (NWS) in Peachtree City, Georgia. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. This Withlacoochee and Little River Basins flood-tracking chart can be used by local citizens and emergency response personnel to record the latest river stage and predicted flood-crest information along the Withlacoochee River, Little River, and Okapilco Creek in south-central Georgia and northern Florida. By comparing the current stage (water-surface level above a datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property.

  9. TEM and Gravity Data for Roosevelt Hot Springs, Utah FORGE Site

    DOE Data Explorer

    Hardwick, Christian; Nash, Greg

    2018-02-05

    This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly

  10. Miocene biochronology and paleoceanography of the North Pacific

    USGS Publications Warehouse

    Keller, G.

    1981-01-01

    Biostratigraphic correlation based on microfossil datum levels, directly or indirectly tied to the paleomagnetic time scale, provides a high resolution time control for the Miocene in the equatorial and middle latitude North Pacific. Faunal changes and abundance fluctuations of planktic foraminiferal species combined with the oxygen Pacific. Faunal changes and abundance fluctuations of planktic foraminiferal species combined with the oxygen isotope record of foraminifers, reveal the paleoclimatic and paleoceanographic history. The planktic foraminiferal assemblage change in the early Miocene, extinction of Oligocene fauna and rise of a highly diverse Neogene fauna, appears to be related to increased water mass stratification in the world oceans presumably resulting from the establishment of circum-Antarctic circulation. An increase in the siliceous productivity in the eastern equatorial Pacific region between 20 and 18 Ma suggests that the vertical and horizontal circulation was intensified at that time. Climates cooled rapidly during the middle Miocene between 14 and 13 Ma suggesting the growth of a major east Antarctic ice sheet. Paleoclimatic conditions remained generally cool, although oscillating, during the late Miocene. In the late early to middle Miocene faunal provincialism developed between low and middle latitudes, and by late Miocene time a distinct provincialism similar to the present was established. ?? 1981.

  11. Monitoring Inland Storm Surge and Flooding from Hurricane Ike in Texas and Louisiana, September 2008

    USGS Publications Warehouse

    East, Jeffery W.; Turco, Michael J.; Mason, Jr., Robert R.

    2008-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of 117 pressure transducers (sensors) at 65 sites over an area of about 5,000 square miles to record the timing, areal extent, and magnitude of inland hurricane storm surge and coastal flooding generated by Hurricane Ike, which struck southeastern Texas and southwestern Louisiana September 12-13, 2008. Fifty-six sites were in Texas and nine were in Louisiana. Sites were categorized as surge, riverine, or beach/wave on the basis of proximity to the Gulf Coast. One-hundred five sensors from 59 sites (fig. 1) were recovered; 12 sensors from six sites either were lost during the storm or were not retrieved. All 59 sites (41 surge, 10 riverine, 8 beach/wave) had sensors to record water pressure (fig. 2), which is expressed as water level in feet above North American Vertical Datum of 1988 (NAVD88), and 46 sites had an additional sensor to record barometric pressure, expressed in pounds per square inch. Figure 3 shows an example of water level and barometric pressure over time recorded by sensors during the storm.

  12. A comparison and evaluation of satellite derived positions of tracking stations

    NASA Technical Reports Server (NTRS)

    Vincent, S. F.; Strange, W. E.; Marsh, J. G.

    1971-01-01

    A comparison is presented of sets of satellite tracking station coordinate values published in the past few years by a number of investigators, i.e. Goddard Space Flight Center, Smithsonian Astrophysical Observatory, Ohio State University, The Naval Weapons Laboratory, Air Force Cambridge Research Laboratories, and Wallops Island. The comparisons have been made in terms of latitude, longitude and height. The results of the various solutions have been compared directly and also with external standards such as local survey data and gravimetrically derived geoid heights. After taking into account systematic rotations, latitude and longitude agreement on a global basis is generally 15 meters or better, on the North American Datum agreement is generally better than 10 meters. Allowing for scale differences (of the order of 2 ppm) radial agreement is generally of the order of 10 meters.

  13. Instantaneous relationship between solar inertial and local vertical local horizontal attitudes

    NASA Technical Reports Server (NTRS)

    Vickery, S. A.

    1977-01-01

    The instantaneous relationship between the Solar Inertial (SI) and Local Vertical Local Horizontal (LVLH) coordinate systems is derived. A method is presented for computation of the LVLH to SI rotational transformation matrix as a function of an input LVLH attitude and the corresponding look angles to the sun. Logic is provided for conversion between LVLH and SI attitudes expressed in terms of a pitch, yaw, roll Euler sequence. Documentation is included for a program which implements the logic on the Hewlett-Packard 97 programmable calculator.

  14. Classification of Alzheimer's Patients through Ubiquitous Computing.

    PubMed

    Nieto-Reyes, Alicia; Duque, Rafael; Montaña, José Luis; Lage, Carmen

    2017-07-21

    Functional data analysis and artificial neural networks are the building blocks of the proposed methodology that distinguishes the movement patterns among c's patients on different stages of the disease and classifies new patients to their appropriate stage of the disease. The movement patterns are obtained by the accelerometer device of android smartphones that the patients carry while moving freely. The proposed methodology is relevant in that it is flexible on the type of data to which it is applied. To exemplify that, it is analyzed a novel real three-dimensional functional dataset where each datum is observed in a different time domain. Not only is it observed on a difference frequency but also the domain of each datum has different length. The obtained classification success rate of 83 % indicates the potential of the proposed methodology.

  15. Citizen Hydrology and Compressed-Air Hydropower for Rural Electrification in Haiti

    NASA Astrophysics Data System (ADS)

    Allen, S. M.

    2015-12-01

    At the present time, only one in eight residents of Haiti has access to electricity. Two recent engineering and statistical innovations have the potential for vastly reducing the cost of installation of hydropower in Haiti and the rest of the developing world. The engineering innovation is that wind, solar and fluvial energy have been used to compress air for generation of electricity for only 20 per megawatt-hour, in contrast to the conventional World Bank practice of funding photovoltaic cells for 156 per megawatt-hour. The installation of hydropower requires a record of stream discharge, which is conventionally obtained by installing a gaging station that automatically monitors gage height (height of the water surface above a fixed datum). An empirical rating curve is then used to convert gage height to stream discharge. The multiple field measurements of gage height and discharge over a wide range of discharge values that are required to develop and maintain a rating curve require a manpower of hydrologic technicians that is prohibitive in remote and impoverished areas of the world. The statistical innovation is that machine learning has been applied to the USGS database of nearly four million simultaneous measurements of gage height and discharge to develop a new classification of rivers so that a rating curve can be developed solely from the stream slope, channel geometry, horizontal and vertical distances to the nearest upstream and downstream confluences, and two pairs of discharge - gage height measurements. The objective of this study is to organize local residents to monitor gage height at ten stream sites in the northern peninsula of Haiti over a one-year period in preparation for installation of hydropower at one of the sites. The necessary baseline discharge measurements and channel surveying are being carried out for conversion of gage height to discharge. Results will be reported at the meeting.

  16. Precipitation Recycling and the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.

  17. Using Radial Basis Functions in Airborne Gravimetry for Local Geoid Improvement

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2017-04-01

    Radial basis functions (RBF, Schmidt et al 2007, Klees and Wittwer 2007, Klees et al 2008) have been extensively used in satellite geodetic applications (Eicker 2008, Wittwer 2009, Naeimi 2013, among others). However, to date, to the author's knowledge, their roles in processing and modeling airborne gravity data have not been fully advocated or extensively investigated in detail, though compared with satellite missions, the airborne data is more suitable for this kind of localized basis functions especially considering the following facts: (1) Unlike the satellite missions that can provide global or near global data coverage, airborne gravity data is usually geographically limited. (2) It is also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques (Li 2007) have to be applied to overcome the low signal-to-noise ratio problem that is present in airborne gravimetric systems. This is mainly due to the mechanical and mathematical limitations in computing the accelerations (both the kinematic and dynamic accelerations, Jekeli 2000). (3) It is much easier to formulate the RBF observation equations from an airborne gravimetric system (either a scalar one (Forsberg and Olesen 2010) or a vector one (Kwon and Jekeli 2001)) than from any satellite mission, especially compared with Gravity Recovery and Climate Experiment satellites (GRACE, Tapley et al. 2004) where many accurate background environmental models have to be used in order to separate out the gravity related functionals. As a result, in this study, a set of band-limited RBF is developed to model and downward continue the airborne gravity data for local geoid improvement. First, the algorithm is tested with synthesized data from global coefficient models such as EIGEN6c4 (Försteet al. 2014), during which the RBF not only successfully recovers a harmonic field but also presents filtering properties due to its particular design in the frequency domain. Then, the software is tested for the GSVS14 (Geoid Slope Validation Survey 2014) area as well as for the area around Puerto Rico and the U.S. Virgin Islands by using the real airborne gravity data from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D, Smith 2007) project. The newly acquired cm-level accurate GPS/Leveling bench marks prove the RBF airborne enhanced geoid models are not inferior to other models computed by conventional approaches. By fully utilizing the three dimensional correlation information among the flight tracks, the RBF can also be used as a data editing tool for airborne data adjustment and cleaning.

  18. Vertical distribution of ozone and the variation of tropopause heights based on ozonesonde and satellite observations. [Contract title: Internal Wave Motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1986-01-01

    The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.

  19. Polarization-dependent DANES study on vertically-aligned ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengjun; Park, Chang-In; Jin, Zhenlan

    2016-05-01

    The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.

  20. An updated Holocene sea-level curve for the Delaware coast

    USGS Publications Warehouse

    Nikitina, D.L.; Pizzuto, J.E.; Schwimmer, R.A.; Ramsey, K.W.

    2000-01-01

    We present an updated Holocene sea-level curve for the Delaware coast based on new calibrations of 16 previously published radiocarbon dates (Kraft, 1976; Belknap and Kraft, 1977) and 22 new radiocarbon dates of basal peat deposits. A review of published and unpublished 137Cs and 210Pb analyses, and tide gauge data provide the basis for evaluating shorter-term (102 yr) sea-level trends. Paleosea-level elevations for the new basal peat samples were determined from the present vertical zonation of marsh plants relative to mean high water along the Delaware coast and the composition of plant fossils and foraminifera. Current trends in tidal range along the Delaware coast were used to reduce elevations from different locations to a common vertical datum of mean high water at Breakwater Harbor, Delaware. The updated curve is similar to Belknap and Kraft's [J. Sediment. Petrol., 47 (1977) 610-629] original sea-level curve from 12,000 to about 2000 yr BP. The updated curve documents a rate of sea-level rise of 0.9 mm/yr from 1250 yr BP to present (based on 11 dates), in good agreement with other recent sea-level curves from the northern and central U.S. Atlantic coast, while the previous curve documents rates of about 1.3 mm/yr (based on 4 dates). The precision of both estimates, however, is very low, so the significance of these differences is uncertain. A review of 210Pb and 137Cs analyses from salt marshes of Delaware indicates average marsh accretion rates of 3 mm/yr for the last 100 yr, in good agreement with shorter-term estimates of sea-level rise from tide gauge records. ?? 2000 Elsevier Science B.V.

  1. ICESat Lidar and Global Digital Elevation Models: Application to DESDynI

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Harding, David J.; Suchdeo, Vijay P.

    2010-01-01

    Geodetic control is extremely important in the production and quality control of topographic data sets, enabling elevation results to be referenced to an absolute vertical datum. Global topographic data with improved geodetic accuracy achieved using global Ground Control Point (GCP) databases enable more accurate characterization of land topography and its change related to solid Earth processes, natural hazards and climate change. The multiple-beam lidar instrument that will be part of the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission will provide a comprehensive, global data set that can be used for geodetic control purposes. Here we illustrate that potential using data acquired by NASA's Ice, Cloud and land Elevation Satellite (ICEsat) that has acquired single-beam, globally distributed laser altimeter profiles (+/-86deg) since February of 2003 [1, 2]. The profiles provide a consistently referenced elevation data set with unprecedented accuracy and quantified measurement errors that can be used to generate GCPs with sub-decimeter vertical accuracy and better than 10 m horizontal accuracy. Like the planned capability for DESDynI, ICESat records a waveform that is the elevation distribution of energy reflected within the laser footprint from vegetation, where present, and the ground where illuminated through gaps in any vegetation cover [3]. The waveform enables assessment of Digital Elevation Models (DEMs) with respect to the highest, centroid, and lowest elevations observed by ICESat and in some cases with respect to the ground identified beneath vegetation cover. Using the ICESat altimetry data we are developing a comprehensive database of consistent, global, geodetic ground control that will enhance the quality of a variety of regional to global DEMs. Here we illustrate the accuracy assessment of the Shuttle Radar Topography Mission (SRTM) DEM produced for Australia, documenting spatially varying elevation biases of several meters in magnitude.

  2. Do mesoscale faults near the tip of an active strike-slip fault indicate regional or local stress?

    NASA Astrophysics Data System (ADS)

    Yamaji, Atsushi

    2017-04-01

    Fault-slip analysis is used in Japan after the Great Tohoku Earthquake (2011) to judge the stability of fractures in the foundations of nuclear power plants. In case a fault-slip datum from a fracture surface is explained by the present stress condition, the fracture is thought to have a risk to be activated as a fault. So, it is important to understand the relative significance of regional and local stresses. To answer the question whether mesoscale faults indicate regional or local stress, fault-slip data were collected from the walls of a trenching site of the Nojima Fault in central Japan—an active, dextral, strike-slip fault. The fault gave rise to the 1995 Kobe earthquake, which killed more than 6000 people. The trench was placed near the fault tip, which produced compressional and extensional local stress conditions on the sides of the fault near the tip. A segment of the fault, which ruptured the surface in 1995, bounded Cretaceous granite and latest Pliocene sediments in the trench. As a result, the stress inversion of the data from the mesoscale faults observed in the trench showed both the local stresses. The present WNW-ESE regional compression was found from the compressive side, but was not in the extensional side, probably because local extension surpassed the regional compression. Instead, the regional N-S compression of the Early Pleistocene was found from the extensional side. From this project, we got the lesson that fault-slip analysis reveals regional and local stresses, and that local stress sometimes masks regional one. This work was supported by a science project of "Drilling into Fault Damage Zone" (awarded to A. Lin) of the Secretariat of Nuclear Regulation Authority (Japan).

  3. 47 CFR 0.121 - Location of field installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... throughout the United States. For the address and phone number of the closest office contact the Enforcement... geographical coordinates (coordinates are referenced to North American Datum 1983 (NAD83)): Allegan, Michigan...

  4. 47 CFR 0.121 - Location of field installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... throughout the United States. For the address and phone number of the closest office contact the Enforcement... geographical coordinates (coordinates are referenced to North American Datum 1983 (NAD83)): Allegan, Michigan...

  5. 33 CFR 110.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83...

  6. The Necessity of "Behaviorism."

    ERIC Educational Resources Information Center

    Schoenfeld, William N.

    1993-01-01

    Discusses the theory of behaviorism from a psychological perspective. Three issues are addressed: (1) the datum, including human verbal behavior; (2) the behavior stream; and (3) reduction, including a scientific viewpoint. (Contains two references.) (LRW)

  7. The Effects of Face Inversion on the Perception of Long-Range and Local Spatial Relations in Eye and Mouth Configuration

    ERIC Educational Resources Information Center

    Sekunova, Alla; Barton, Jason J. S.

    2008-01-01

    A recent study hypothesized a configurational anisotropy in the face inversion effect, with vertical relations more difficult to process. However, another difference in the stimuli of that report was that the vertical but not horizontal shifts lacked local spatial references. Difficulty processing long-range spatial relations might also be…

  8. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... American Datum (NAD83). (d) Unjust enrichment. 12 GHz licensees that received a bidding credit and... be subject to the provisions concerning unjust enrichment as set forth in § 1.2111 of this chapter...

  9. Publications - IC 44 ed. 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Map; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska, State of; Bibliography; Coastal and

  10. 33 CFR 67.50-1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... North American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83...

  11. Spanish Word Order in Non-Sentence Constructions

    ERIC Educational Resources Information Center

    Stiehm, Bruce G.

    1975-01-01

    In Spanish non-sentence constructions, beginning elements establish a datum of reference, while following elements narrow the possibilities of syntagmatic combination. Word order is examined in relation to paradigm contrast and syntagmatic complexity. (CK)

  12. Language and Communication Datum.

    ERIC Educational Resources Information Center

    Sullivan, William J.

    1989-01-01

    Argues that communication is the primary function of language and that the signification function can be derived from it. Several theories of language are considered for their attitude toward the communication function. (26 references) (Author/VWL)

  13. Classification of Alzheimer’s Patients through Ubiquitous Computing †

    PubMed Central

    Nieto-Reyes, Alicia; Duque, Rafael; Montaña, José Luis; Lage, Carmen

    2017-01-01

    Functional data analysis and artificial neural networks are the building blocks of the proposed methodology that distinguishes the movement patterns among c’s patients on different stages of the disease and classifies new patients to their appropriate stage of the disease. The movement patterns are obtained by the accelerometer device of android smartphones that the patients carry while moving freely. The proposed methodology is relevant in that it is flexible on the type of data to which it is applied. To exemplify that, it is analyzed a novel real three-dimensional functional dataset where each datum is observed in a different time domain. Not only is it observed on a difference frequency but also the domain of each datum has different length. The obtained classification success rate of 83% indicates the potential of the proposed methodology. PMID:28753975

  14. Allowable Trajectory Variations for Space Shuttle Orbiter Entry-Aeroheating CFD

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Alter, Stephen J.

    2008-01-01

    Reynolds-number criteria are developed for acceptable variations in Space Shuttle Orbiter entry trajectories for use in computational aeroheating analyses. The criteria determine if an existing computational fluid dynamics solution for a particular trajectory can be extrapolated to a different trajectory. The criteria development begins by estimating uncertainties for seventeen types of computational aeroheating data, such as boundary layer thickness, at exact trajectory conditions. For each type of datum, the allowable uncertainty contribution due to trajectory variation is set to be half of the value of the estimated exact-trajectory uncertainty. Then, for the twelve highest-priority datum types, Reynolds-number relations between trajectory variation and output uncertainty are determined. From these relations the criteria are established for the maximum allowable trajectory variations. The most restrictive criterion allows a 25% variation in Reynolds number at constant Mach number between trajectories.

  15. An non-uniformity voltage model for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  16. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. II - Five-point schemes

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.

  17. Stratigraphy of the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  18. Demise of reef-flat carbonate accumulation with late Holocene sea-level fall: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.

    2008-01-01

    Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.

  19. Vertical Hole Transport and Carrier Localization in InAs /InAs1 -xSbx Type-II Superlattice Heterojunction Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Olson, B. V.; Klem, J. F.; Kadlec, E. A.; Kim, J. K.; Goldflam, M. D.; Hawkins, S. D.; Tauke-Pedretti, A.; Coon, W. T.; Fortune, T. R.; Shaner, E. A.; Flatté, M. E.

    2017-02-01

    Heterojunction bipolar transistors are used to measure vertical hole transport in narrow-band-gap InAs /InAs1 -xSbx type-II superlattices (T2SLs). Vertical hole mobilities (μh) are reported and found to decrease rapidly from 360 cm2/V s at 120 K to approximately 2 cm2/V s at 30 K, providing evidence that holes are confined to localized states near the T2SL valence-miniband edge at low temperatures. Four distinct transport regimes are identified: (1) pure miniband transport, (2) miniband transport degraded by temporary capture of holes in localized states, (3) hopping transport between localized states in a mobility edge, and (4) hopping transport through defect states near the T2SL valence-miniband edge. Region (2) is found to have a thermal activation energy of ɛ2=36 meV corresponding to the energy range of a mobility edge. Region (3) is found to have a thermal activation energy of ɛ3=16 meV corresponding to the hopping transport activation energy. This description of vertical hole transport is analogous to electronic transport observed in disordered amorphous semiconductors displaying Anderson localization. For the T2SL, we postulate that localized states are created by disorder in the group-V alloy of the InAs1 -xSbx hole well causing fluctuations in the T2SL valence-band energy.

  20. Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves

    NASA Technical Reports Server (NTRS)

    Spencer, N. W.; Theis, R. F.; Wharton, L. E.; Carignan, G. R.

    1976-01-01

    In situ measurements of local vertical neutral particle motions have been made using the Neutral Atmosphere Temperature Instrument (NATE) on Atmosphere Explorer-C from observations of the direction of flow of neutral particles into the antechamber of the sensor (mass spectrometer). Values ranging from a few to more than 80 meters per second have been observed. The data show vertical motions greater than a few meters per second to be present most of the time, the magnitude being a function of many factors including magnetic activity, location, and magnetic storm history. In a specific case, it is concluded that the observed vertical motions and kinetic temperature are evidence of a travelling disturbance originating as a gravity wave in the auroral zone.

  1. Constant covariance in local vertical coordinates for near-circular orbits

    NASA Technical Reports Server (NTRS)

    Shepperd, Stanley W.

    1991-01-01

    A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.

  2. 33 CFR 165.1306 - Lake Union, Seattle, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safety zone. [Datum: NAD 1983] (b) Effective dates. This section is effective annually on July fourth... open until 10 p.m. and then be closed until the end of the fireworks display (approximately 30 minutes...

  3. Publications - RI 97-14B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in , State of; Alluvial Deposits; Avalanche; Cambrian; Carboniferous; Cenozoic; Coastal and River; Coastal

  4. Publications - RI 97-15D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Coastal and River; Coastal and River Hazards; Construction Materials; Derivative; Engineering; Engineering

  5. Publications - RI 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in ; Bathymetry; Coastal; Coastal and River; Earthquake Related Slope Failure; Emergency Preparedness; Engineering

  6. On the Nocturnal Downward and Westward Equatorial Ionospheric Plasma Drifts During the 17 March 2015 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.

    2018-02-01

    During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.

  7. First Indications of Intraplate Deformations in Central Germany from Reprocessed GNSS Time Series and Geological Data

    NASA Astrophysics Data System (ADS)

    Becker, Matthias; Leinen, Stefan; Läufer, Gwendolyn; Lehné, Rouwen

    2013-04-01

    Six years of GPS data have been reprocessed in ITRF2008 for a regional SAPOS CORS network in the federal state of Hesse with 25 stations and some anchor sites of IGS and EPN to derive accurate and consistent coordinate time series. Based on daily network solutions coordinate time series parameters like velocities, offsets in case of antenna changes and annual periodic variation have been estimated. The estimation process includes the fitting of a sophisticated stochastic model for the time series which accounts for inherent time correlation. The results are blended with geological data to verify information from geology on potential recent deformations by the geodetic analyses. Besides of some information on the reprocessing of the GNSS the results the stochastics of the derived velocity field will be discussed in detail. Special emphasis will be on the intra-plate deformation: for the horizontal component the residual velocity field after removal of a plate rotation model is presented, while for the vertical velocities the datum-induced systematic effect is removed in order to analyze the remaining vertical motion. The residual velocity field is then matched with the geology for Hesse. Correlation of both vertical and horizontal movements with major geological structures reveals good accordance. SAPOS stations with documented significant subsidence are mainly located in tertiary Graben structures such as the Lower Hessian Basin (station Kassel), the Wetterau (station Kloppenheim) or the Upper Rhine Graben (Station Darmstadt). From the geological point of view these structures are supposed to be subsiding ones. Other major geological features, i.e. the Rhenish Shield as well as the East Hessian Bunter massif are supposed to be affected by recent uplift. SAPOS stations located in these regions match the assumed movement (e.g. Weilburg, Wiesbaden, Bingen, Fulda). Furthermore SAPOS-derived horizontal movements seem to trace tectonic movements in the region, i.e. extension along the tertiary Graben structures, including a sinistral strike slip component. However, a more detailed analysis is needed to confirm the link between detected movement and geodynamic processes.

  8. Performance Analysis of Web-Based Ppp Services with DİFFERENT Visibility Conditions

    NASA Astrophysics Data System (ADS)

    Albayrak, M.; Erkaya, H.; Ozludemir, M. T.; Ocalan, T.

    2016-12-01

    GNSS is being used effectively to precise position for many measuring and geodetic purposes at the present time. There is an increasing variety of these systems including the post-processing calculations in terms of number, quality and features and many different techniques are developed to determine position. Precise positioning intend to derive requires user experience and scientific or commercial software with costly license fees. However, in recent years important alternatives to this software that are user friendly and offer free web-based online precise point positioning service have become widely used in geodetic applications. The aim of this study is to test the performance of PPP techniques on ground control points with different visibility conditions. Within this framework, static observations were carried out for three hours a day repeatedly for six days, in YTU Davutpasa Campus on three different ground control points. The locations of these stations were selected by taking into account the impact of natural (trees, etc.) and artificial (buildings, etc.) obstacles. In order to compare the obtained GPS observations with PPP performances, first of all the accurate coordinates of the control points were computed with relative positioning technique in connection with the IGS stations using Bernese v5.0 software. Afterwards, three different web-based positioning services (CSRS-PPP, magicGNSS, GAPS) were used to analyze the GPS observations via PPP technique. To compare all of the obtained results, ITRF2008 datum measurement epoch coordinates were preferred by taking the service result criteria into consideration. In coordinate comparison, for the first station located nearby a building and possibly subjected to multipath effect horizontal discrepancies vary between 2-14.5 cm while vertical differences are between 3.5-16 cm. For the second point located partly in a forestry area, the discrepancies have been obtained as 1.5-8 cm and 2-10 cm for horizontal and vertical components, respectively. For the third point located in an area with no obstacles, 1.5-7 cm horizontal and 1-7 cm vertical differences have been obtained. The results show that the PPP technique could be used effectively in several positioning applications.

  9. Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area

    PubMed Central

    Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In

    2016-01-01

    Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936

  10. Transformation pipelines for PROJ.4

    NASA Astrophysics Data System (ADS)

    Knudsen, Thomas; Evers, Kristian

    2017-04-01

    For more than 2 decades, PROJ.4 has been the globally leading map projection library for open source (and probably also closed source) geospatial software. While focusing on mathematically well defined 2D projections from geographical to planar coordinates, PROJ.4 has nevertheless, since its introduction in the 1980s, provided limited support for more general geodetic datum transformations, and has gradually introduced a higher degree of support for 3D coordinate data and reference systems. The support has, however, been implemented over a long period of time, as need became evident and opportunity was found, by a number of different people, with different needs and at different times. Hence, the PROJ.4 3D support has not been the result of neither deep geodetic, nor careful code architectural considerations. This has resulted in a library that supports only a subset of commonly occurring geodetic transformations. To be more specific: It supports any datum shift that can be completed by a combination of two Helmert shifts (to and from a pivot datum) and, potentially, also a non-linear planar correction derived from interpolation in a correction grid. While this is sufficient for most small scale mapping activities, it is not at all sufficient for operational geodetic use, nor for many of the rapidly emerging high accuracy geospatial applications in agriculture, construction, transportation and utilities. To improve this situation, we have introduced a new framework for implementation of geodetic transformations, which will appear in the next release of the PROJ.4 library. Before describing the details, let us first remark that most cases of geodetic transformations can be expressed as a series of elementary operations, the output of one operation being the input of the next. E.g. when going from UTM zone 32, datum ED50, to UTM zone 32, datum ETRS89, one must, in the simplest case, go through 5 steps: Back-project the UTM coordinates to geographic coordinates Convert the geographic coordinates to 3D cartesian geocentric coordinates Apply a Helmert transformation from ED50 to ETRS89 Convert back from cartesian to geographic coordinates Finally project the geographic coordinates to UTM zone 32 planar coordinates. The homology between these steps and a Unix shell style pipeline is evident. With this as its main architectural inspiration, the primary feature of our implementation is a pipeline driver, that takes as its user supplied arguments, a series of elementary operations, which it strings together in order to implement the full transformation needed. Also, we have added a number of elementary geodetic operations, including Helmert transformations, general high order polynomial shifts (2D Horner's scheme) and the abridged Molodensky transformation. In anticipation of upcoming support for full time-varying transformations, we also introduce a 4D spatiotemporal data type, and a programming interface (API) for handling this. With these improvements in place, we assert that PROJ.4 is now well on its way from being a mostly-map-projection library, to becoming an almost-generic-geodetic-transformation library.

  11. Deposition, erosion, and bathymetric change in South San Francisco Bay: 1858-1983

    USGS Publications Warehouse

    Foxgrover, Amy C.; Higgins, Shawn A.; Ingraca, Melissa K.; Jaffe, Bruce E.; Smith, Richard E.

    2004-01-01

    Since the California Gold Rush of 1849, sediment deposition, erosion, and the bathymetry of South San Francisco Bay have been altered by both natural processes and human activities. Historical hydrographic surveys can be used to assess how this system has evolved over the past 150 years. The National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS), collected five hydrographic surveys of South San Francisco Bay from 1858 to 1983. Analysis of these surveys enables us to reconstruct the surface of the bay floor for each time period and quantify spatial and temporal changes in deposition, erosion, and bathymetry. The creation of accurate bathymetric models involves many steps. Sounding data was obtained from the original USCGS and NOS hydrographic sheets and were supplemented with hand drawn depth contours. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings and shorelines were entered into a Geographic Information System (GIS), and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 50 m were developed for each of the five hydrographic surveys. Prior to conducting analyses of sediment deposition and erosion, we converted all of the grids to a common vertical datum and made adjustments to correct for land subsidence that occurred from 1934 to 1967. Deposition and erosion that occurred during consecutive periods was then computed by differencing the corrected grids. From these maps of deposition and erosion, we calculated volumes and rates of net sediment change in the bay. South San Francisco Bay has lost approximately 90 x 106 m3 of sediment from 1858 to 1983; however within this timeframe there have been periods of both deposition and erosion. During the most recent period, from 1956 to 1983, sediment loss approached 3 x 106 m3/yr. One of the most striking changes that occurred from 1858 to 1983 was the conversion of more than 80% of the tidal marsh to salt ponds, agricultural, and urban areas. In addition, there has been a decline of approximately 40% in intertidal mud flat area. Restoration of these features will require a detailed understanding of the morphology and sediment sources of this complex system.

  12. Flood-inundation maps for the Saddle River in Ho-Ho-Kus Borough, the Village of Ridgewood, and Paramus Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Niemoczynski, Michal J.

    2014-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the Saddle River in New Jersey from Hollywood Avenue in Ho-Ho-Kus Borough downstream through the Village of Ridgewood and Paramus Borough to the confluence with Hohokus Brook in the Village of Ridgewood were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Saddle River at Ridgewood, New Jersey (station 01390500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390500 or at the National Weather Services (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps2/hydrograph.php?wfo=okx&gage=rwdn4. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation (March 11, 2011) at the USGS streamgage 01390500, Saddle River at Ridgewood, New Jersey. The hydraulic model was then used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from 5 ft, the NWS “action and minor flood stage”, to 14 ft, which is the maximum extent of the stage-discharge rating and 0.6 ft higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84-ft) digital elevation model derived from Light Detection and Ranging (lidar) data in order to delineate the area flooded at each water level. The availability of these maps along with information on the Internet regarding current stage from the USGS streamgage provides emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures as well as for post-flood recovery efforts.

  13. On radiating baroclinic instability of zonally varying flow

    NASA Technical Reports Server (NTRS)

    Finley, Catherine A.; Nathan, Terrence R.

    1993-01-01

    A quasi-geostrophic, two-layer, beta-plane model is used to study the baroclinic instability characteristics of a zonally inhomogeneous flow. It is assumed that the disturbance varied slowly in the cross-stream direction, and the stability problem was formulated as a 1D initial value problem. Emphasis is placed on determining how the vertically averaged wind, local maximum in vertical wind shear, and length of the locally supercritical region combine to yield local instabilities. Analysis of the local disturbance energetics reveals that, for slowly varying basic states, the baroclinic energy conversion predominates within the locally unstable region. Using calculations of the basic state tendencies, it is shown that the net effect of the local instabilities is to redistribute energy from the baroclinic to the barotropic component of the basic state flow.

  14. Vertical nanopillars for highly localized fluorescence imaging

    PubMed Central

    Xie, Chong; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2011-01-01

    Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell. PMID:21368157

  15. Using GPS and leveling data in local precise geoid determination and case study

    NASA Astrophysics Data System (ADS)

    Erol, B.; Çelik, R. N.; Erol, S.

    2003-04-01

    As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with the fundamental mathematical equation; N=h-H. In the equation, "h" is the ellipsoidal height of a point P, "H" is the orthometric height of the same point and "N" is "geoid undulation" value. Normally, "H" orthometric height derived from leveling measurements but these measurements are tiring applications. So, while having a geoid model in the region as the essential part of geodetic infrastructure, number leveling measurements can be reduced from the procedure and by this way time and labor is saved. Geoid determination is modeling of the data in such a way that geoid height can be obtained digital or analog at a point whose horizontal position is known. Geoid models can be developed for local, regional or global regions. Using satellite techniques, especially GPS, in geodetic measurements are increased importance of geoid. Because geoid is a natural tie between high precision geodetic coordinates and coordinates which obtained from satellites. There are several geoid determination methods according to used data and models. GPS/Leveling method, which is also known as geometric method, is one of these methods. This method is appropriate for local precise geoid determination in respectively small areas. In this paper, it is going to be given information about GPS/Leveling geoid determination method and mathematical models, which are used in geoid determination with this method. And Izmir local geoid model will be presented as a case study. Izmir is one of the west metropolitan cities of Turkey and located near Aegean Sea. The topography is extremely rough in the region. There are two different geoid determination studies which were carried out in 1996 and 2001 in Izmir. Both models were accomplished according to GPS/Leveling method. Those two geoid models of Izmir Metropolitan region are investigated in here, the conflict of them were discussed. The relation between distribution of common reference points and differences of geoid undulation values, which are calculated from both models separately, were analyzed and also effects of topography on conflict of both geoid model was investigated. The results of the study and suggestions are going to be given in the paper.

  16. Publications - RI 97-15E | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Metadata - Read me Keywords Avalanche; Coastal and River; Coastal and River Hazards; Derivative; Earthquake

  17. Publications - PDF 98-37D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in - Read me Keywords Coastal and River; Coastal and River Hazards; Construction Materials; Decorative Stone

  18. Publications - RDF 2015-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in -bay Shapefile 24.5 M Metadata - Read me Keywords Bathymetry; Bering Sea; Chukchi Sea; Coastal; Gambell

  19. Presentations - Smith, J.R. and others, 2013 | Alaska Division of

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to (1.4 M) Keywords Coastal; Coastal and River; Engineering Geology Posters and Presentations; Seward

  20. 33 CFR 80.01 - General basis and purpose of demarcation lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... American Datum of 1983 (NAD 83), unless such geographic coordinates are expressly labeled NAD 83. Geographic coordinates without the NAD 83 reference may be plotted on maps or charts referenced to NAD 83...

  1. 33 CFR 166.500 - Areas along the Atlantic Coast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fairway. The area enclosed by rhumb lines, [North American Datum of 1927 (NAD-27)] joining points at...″ W (ii) Nantucket to Ambrose Safety Fairway. The area enclosed by rhumb lines, NAD-27, joining point...

  2. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...: Availability of Revised North American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction... that effective with this publication, the following NAD 83-based Outer Continental Shelf (OCS) Official...

  3. The Current Status of Mapping in the World - Spotlight on Australia

    NASA Astrophysics Data System (ADS)

    Trinder, J.

    2014-04-01

    Prior to 1950, there was very limited mapping in Australia covering only strategic areas. After World War II, the Federal Government funded the small scale mapping of the whole country. This involved the development of the Australian National Spheroid in 1966, the Australian Geodetic Datum in 1966 and 1984 (AGD66 and AGD84) which were replaced by the Australian Geocentric Datum in 1994 (GDA94). The mapping of the country was completed in 1987 with 100 % of the country mapped at 1:100,000 and 1:250,000 although about half of the 1:100,000 are unpublished products. The Federal Government through Geoscience Australia continues to provide digital data, such as the GEODATA 250K (now series 3). Mapping at larger scales is undertaken by the states and territories, including cadastral mapping. This paper will demonstrate the extent of mapping in Australia as part of the current UN global survey of mapping.

  4. Simultaneous observation solutions for NASA-MOTS and SPEOPT station positions on the North American datum

    NASA Technical Reports Server (NTRS)

    Reece, J. S.; Marsh, J.

    1973-01-01

    Simultaneous observations of the GEOS-I and II flashing lamps by the NASA MOTS and SPEOPT cameras on the North American Datum (NAD) were analyzed using geometrical techniques to provide an adjustment of the station coordinates. Two separate adjustments were obtained. An optical data only solution was computed in which the solution scale was provided by the Rosman-Mojave distance obtained from a dynamic station solution. In a second adjustment, scaling was provided by processing simultaneous laser ranging data from Greenbelt and Wallops Island in a combined optical-laser solution. Comparisons of these results with previous GSFC dynamical solutions indicate an rms agreement on the order of 4 meters or better in each coordinate. Comparison with a detailed gravimetric geoid of North America yields agreement of 3 meters or better for mainland U.S. stations and 7 and 3 meters, respectively, for Bermuda and Puerto Rico.

  5. L(2) stability for weak solutions of the Navier-Stokes equations in R(3)

    NASA Astrophysics Data System (ADS)

    Secchi, P.

    1985-11-01

    We consider the motion of a viscous fluid filling the whole space R3, governed by the classical Navier-Stokes equations (1). Existence of global (in time) regular solutions for that system of non-linear partial differential equations is still an open problem. Up to now, the only available global existence theorem (other than for sufficiently small initial data) is that of weak (turbulent) solutions. From both the mathematical and the physical point of view, an interesting property is the stability of such weak solutions. We assume that v(t,x) is a solution, with initial datum vO(x). We suppose that the initial datum is perturbed and consider one weak solution u corresponding to the new initial velocity. Then we prove that, due to viscosity, the perturbed weak solution u approaches in a suitable norm the unperturbed one, as time goes to + infinity, without smallness assumptions on the initial perturbation.

  6. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  7. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  8. Water-surface elevations for the high tide of December 15, 1977, in the Puget Sound region, Washington

    USGS Publications Warehouse

    Nelson, L.M.

    1985-01-01

    An unusually high oceanic tide on December 15, 1977, caused flooding of lowlying, nearshore parts of western Washington, including several areas in the Puget Sound region. At Seattle, the December 15 high tide of 14.8 feet above MLLW (mean lower low water datum; 8.55 feet above the National Geodetic Vertical Daltum of 1929, or NGVD) was 0.1 foot higher than the 100-year high tide. At Neah Bay, near the western end of the Straits of Juan de Fuca, however, the high tide of 8.77 feet MLLW (4.55 feet NGVD) on that date was 3.2 feet lower than the 100-year high tide. This study has identified the observed December 15 high-tide elevations at many locations in the Puget Sound region. The observed high tide then was much higher than predicted in most of the Puget Sound region, primarily as the result of a very low barametric pressure. Little damage from wind waves was reported. Elevation profiles for the predicted and observed high tides on December 15 and for several other selected tide levels indicate an increase in the maximum height in the inland direction, except near Port Angeles, and show abrupt changes in tidal elevations at three constrictions - Admiralty Inlet, Tacoma Narrows, and Deception Pass. (USGS)

  9. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    USGS Publications Warehouse

    Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.

    2012-01-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  10. The Use of GOCE/GRACE Information in the Latest NGS xGeoid15 Model for the USA

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Li, X.; Youngman, M.

    2015-12-01

    The U.S. National Geodetic Survey [NGS], through its Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, is flying airborne gravity surveys over the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Towards this end, all available airborne data has been incorporated into a new NGS experimental geoid model - xGEOID15. The xGEOID15 model is the second in a series of annual experimental geoid models that incorporates NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques, to ultimately compute a geoid model that can support a national physical height system by 2022. Here, we focus on the combination of the latest GOCE/GRACE models with the terrestrial gravimetry (land/airborne) that was applied for xGeoid15. Comparisons against existing combination gravitational solutions, such as EGM2008 and EIGEN6C4, as well as recent geoid models, such as xGeoid14 and CGG2013, are interesting for what they reveal about the respective use of the GOCE/GRACE satgrav information.

  11. Volcanic ash deposition, eelgrass beds, and inshore habitat loss from the 1920s to the 1990s at Chignik, Alaska

    NASA Astrophysics Data System (ADS)

    Zimmermann, Mark; Ruggerone, Gregory T.; Freymueller, Jeffrey T.; Kinsman, Nicole; Ward, David H.; Hogrefe, Kyle R.

    2018-03-01

    We quantified the shallowing of the seafloor in five of six bays examined in the Chignik region of the Alaska Peninsula, confirming National Ocean Service observations that 1990s hydrographic surveys were shallower than previous surveys from the 1920s. Castle Bay, Chignik Lagoon, Hook Bay, Kujulik Bay and Mud Bay lost volume as calculated from Mean Lower Low Water (Chart Datum) to the deepest depths and four of these sites lost volume from Mean High Water to the deepest depths. Calculations relative to each datum were made because tidal datum records exhibited an increase in tidal range in this region from the 1920s to the 1990s. Our analysis showed that Mud Bay is quickly disappearing while Chignik Lagoon is being reduced to narrow channels. Anchorage Bay was the only site that increased in depth over time, perhaps due to erosion. Volcanoes dominate the landscape of the Chignik area. They have blanketed the region in deep ash deposits before the time frame of this study, and some have had smaller ash-producing eruptions during the time frame of this study. Remobilization of land-deposited ash and redeposition in marine areas - in some locations facilitated by extensive eelgrass (Zostera marina) beds (covering 54% of Chignik Lagoon and 68% of Mud Bay in 2010) - is the most likely cause of shallowing in the marine environment. Loss of shallow water marine habitat may alter future abundance and distribution of several fish, invertebrate and avian species.

  12. Proposed U.S. Geological Survey standard for digital orthophotos

    USGS Publications Warehouse

    Hooper, David; Caruso, Vincent

    1991-01-01

    The U.S. Geological Survey has added the new category of digital orthophotos to the National Digital Cartographic Data Base. This differentially rectified digital image product enables users to take advantage of the properties of current photoimagery as a source of geographic information. The product and accompanying standard were implemented in spring 1991. The digital orthophotos will be quadrangle based and cast on the Universal Transverse Mercator projection and will extend beyond the 3.75-minute or 7.5-minute quadrangle area at least 300 meters to form a rectangle. The overedge may be used for mosaicking with adjacent digital orthophotos. To provide maximum information content and utility to the user, metadata (header) records exist at the beginning of the digital orthophoto file. Header information includes the photographic source type, date, instrumentation used to create the digital orthophoto, and information relating to the DEM that was used in the rectification process. Additional header information is included on transformation constants from the 1927 and 1983 North American Datums to the orthophoto internal file coordinates to enable the user to register overlays on either datum. The quadrangle corners in both datums are also imprinted on the image. Flexibility has been built into the digital orthophoto format for future enhancements, such as the provision to include the corresponding digital elevation model elevations used to rectify the orthophoto. The digital orthophoto conforms to National Map Accuracy Standards and provides valuable mapping data that can be used as a tool for timely revision of standard map products, for land use and land cover studies, and as a digital layer in a geographic information system.

  13. Georeferencing the historical cadastral map sheets of Hungary

    NASA Astrophysics Data System (ADS)

    Timár, Gábor; Biszak, Sándor

    2010-05-01

    In the historical Hungary, as a part of the Habsburg Empire, the first preserved and systematic cadastral survey was carried out between 1856 and 1859. Interestingly enough, this cadastral mapping, which was called in Hungary as 'Provisional' was surveyed simultaneously with the Stable Cadastre in the Austrian regions of the Empire. By the commission of the State Archives of Hungary, the Hungarian company Arcanum Ltd. scanned over 46,000 cadastral sheets of the Provisional Cadastre, mostly covering the present-day Hungary but also some copies covering parts of the present-day Croatia, Slovakia and Austria. The base ellipsoid was the Zach-Oriani hybrid (a=6376130 m; f=1/310). The fundamental point of the geodetic datum was the eastern pillar of the later destroyed astronomical observatory on the Gellérthegy, Budapest and the abridging Molodensky parameters from this datum to WGS84 are: dX=+1763 m; dY=+282 m; dZ=+568 m. The Cassini projection can be used for GIS integration with a projection center at the Gellérthegy with longitude=19d 3m 5.55s east of Greenwich; latitude=49d 29m 15.97s. The sheets were rectified by the calculated coordinates at the corner points. With the above given projection and datum parameters, the cadastral mosaic, based on the individual sheets and the digitized borders of the administrative units, is presented in any modern coordinate systems in GIS. Using this feature, the product is published as a DVD series by old counties as well as the distribution in the Internet.

  14. National Elevation Dataset

    USGS Publications Warehouse

    ,

    2002-01-01

    The National Elevation Dataset (NED) is a new raster product assembled by the U.S. Geological Survey. NED is designed to provide National elevation data in a seamless form with a consistent datum, elevation unit, and projection. Data corrections were made in the NED assembly process to minimize artifacts, perform edge matching, and fill sliver areas of missing data. NED has a resolution of one arc-second (approximately 30 meters) for the conterminous United States, Hawaii, Puerto Rico and the island territories and a resolution of two arc-seconds for Alaska. NED data sources have a variety of elevation units, horizontal datums, and map projections. In the NED assembly process the elevation values are converted to decimal meters as a consistent unit of measure, NAD83 is consistently used as horizontal datum, and all the data are recast in a geographic projection. Older DEM's produced by methods that are now obsolete have been filtered during the NED assembly process to minimize artifacts that are commonly found in data produced by these methods. Artifact removal greatly improves the quality of the slope, shaded-relief, and synthetic drainage information that can be derived from the elevation data. Figure 2 illustrates the results of this artifact removal filtering. NED processing also includes steps to adjust values where adjacent DEM's do not match well, and to fill sliver areas of missing data between DEM's. These processing steps ensure that NED has no void areas and artificial discontinuities have been minimized. The artifact removal filtering process does not eliminate all of the artifacts. In areas where the only available DEM is produced by older methods, then "striping" may still occur.

  15. Publications - RDF 2014-20 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Download golovin-lidar-las-index Shapefile 71.0 K Metadata - Read me Keywords Coastal; Coastal and River

  16. Publications - MP 133 v. 2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Maps; Alaska, State of; Aleutian Arc; Aleutian Islands; Coastal and River; Coastal and River Hazards

  17. Publications - PIR 2001-3D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Shapefile 1.4 M Metadata - Read me Keywords Coastal and River; Coastal and River Hazards; Construction

  18. Publications - RI 2000-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in - Read me Keywords Arctic National Wildlife Refuge; Aufeis; Brooks Range; Coastal and River; Coastal and

  19. 76 FR 54787 - Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    .... ACTION: Availability of revised North American Datum of 1927 (NAD 27) Outer Continental Shelf Official...: Notice is hereby given that effective with this publication, the following NAD 27-based Outer Continental...

  20. Environmental Impact Statement, Establishment of the Gandy Range Extension and Adjacent Restricted Airspace as an Area for Supersonic Flight Training, Hill Air Force Base, Utah

    DTIC Science & Technology

    1983-07-20

    the economic impact on the local community. e. Changing the geographic or vertical dimensions of the ... the economic impact on the local coomunity. Changing the geographic or vertical dimensions of the proposed supersonic flight airspace would severely... tourism as they do not provide facilities. 3.2 Socio- Economic Conditions: The economy of the area depends almost entirely

  1. Galactoseismology and the local density of dark matter

    DOE PAGES

    Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott

    2016-10-08

    Here, we model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors ofmore » $$10\\%$$ or greater in the vertical force $$K_z(z)$$ at $$|z|=1.1\\,{\\rm kpc}$$. These errors translate to $$\\gtrsim 25\\%$$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.« less

  2. Cambrian Evolutionary Radiation: Context, correlation, and chronostratigraphy—Overcoming deficiencies of the first appearance datum (FAD) concept

    NASA Astrophysics Data System (ADS)

    Landing, Ed; Geyer, Gerd; Brasier, Martin D.; Bowring, Samuel A.

    2013-08-01

    Use of the first appearance datum (FAD) of a fossil to define a global chronostratigraphic unit's base can lead to intractable correlation and stability problems. FADs are diachronous—they reflect species' evolutionary history, dispersal, biofacies, preservation, collection, and taxonomy. The Cambrian Evolutionary Radiation is characterised by diachronous FADs, biofacies controls, and provincialism of taxa and ecological communities that confound a stable Lower Cambrian chronostratigraphy. Cambrian series and stage definitions require greater attention to assemblage zone successions and non-biostratigraphic, particularly carbon isotope, correlation techniques such as those that define the Ediacaran System base. A redefined, basal Cambrian Trichophycus pedum Assemblage Zone lies above the highest Ediacaran-type biotas (vendobionts, putative metazoans, and calcareous problematica such as Cloudina) and the basal Asteridium tornatum-Comasphaeridium velvetum Zone (acritarchs). This definition and the likely close correspondence of evolutionary origin and local FAD of T. pedum preserves the Fortune Head, Newfoundland, GSSP of the Cambrian base and allows the presence of sub-Cambrian, branched ichnofossils. The sub-Tommotian-equivalent base of Stage 2 (a suggested "Laolinian Stage") should be defined by the I'/L4/ZHUCE δ13C positive peak, bracketed by the lower ranges of Watsonella crosbyi and Aldanella attleborensis (molluscs) and the Skiagia ornata-Fimbrioglomerella membranacea Zone (acritarchs). The W. crosbyi and A. attleborensis FADs cannot define a Stage 2 base as they are diachronous even in the Newfoundland "type" W. crosbyi Zone. The Series 2 base cannot be based on a species' FAD owing to the provincialism of skeletalised metazoans in the Terreneuvian-Series 2 boundary interval and global heterochrony of the oldest trilobites. A Series 2 and Stage 3 (a suggested "Lenaldanian Series" and "Zhurinskyan Stage," new) GSSP base is proposed at the Siberian lower Atdabanian δ13C IV peak—which correlates into South China, Avalonia, and Morocco and assigns the oldest trilobites to the terminal Terreneuvian Series.

  3. Local metric dimension of circulant graph c i r c (n :1 ,2 ,…,n/+1 2 )

    NASA Astrophysics Data System (ADS)

    Rimadhany, Ruzika; Darmaji

    2017-08-01

    Let G be a connected graph with two vertices u and v. The distance between u and v, denoted by d(u, v), is defined as length of the shortest path from u to v in G. For an ordered set W = {w1, w2, w3, … , wk} of k distinct vertices in a nontrivial connected graph G, the representation of a vertex v of V(G) respect to W is r(v|W) = (d(v, w1), d(v, w2), … , d(v, wk)). The set W is a resolving set of G if r(v|W) for each vertex v ∈ V(G) is distinct. A resolving set of minimum cardinality is a metric dimension and denoted by dim(G). The set W is a local resolving set of G if r(v|W) for every two adjacent vertices of V(G) is distinct. The minimum cardinality of local resolving set of G is a local metric dimension and denoted by ldim(G). In this research, we determine local metric dimension of circulant graph c i r c (n :1 ,2 ,3 ,…,n/+1 2 ) .

  4. Observations of and Influences on Low-Latitude Vertical Plasma Drifts

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Chartier, A.; Paxton, L. J.

    2016-12-01

    Many workers have suggested that the morphology (position and relative intensities) of the crests of the equatorial ionization anomaliesis related to the time history of the equatorial vertical drift. In this work, we compare observations of the vertical drift using an HF radiosignals of opportunity in the Central Pacific with UV 135.6-nm observations of the equatorial anomalies from the DMSP/SSUSI andTIMED/GUVI instruments. Furthermore, we explore the role of E region density in modulating the vertical plasma drift using a passive HFsounding experiment in the Caribbean. Coupling between nighttime medium-scale traveling ionospheric disturbances (MSTIDs) and sporadic-Elayers has been suggested as a growth-rate-increasing process. While we observe sporadic-E in the local hemisphere coincident to increases in thealtitude of the F-region altitude, we also observe uplifts without sporadic-E in the local hemisphere. Apart from the trivial explanation that sporadic-E is occurring in the conjugate hemisphere, another possible explanation is that the E region may enhance the vertical drift, but is not required to produce enhanced vertical drifts. These studies represent fruitful areas of future intersection between ground-based observations and ICON and GOLD science.

  5. A Cross-Layer User Centric Vertical Handover Decision Approach Based on MIH Local Triggers

    NASA Astrophysics Data System (ADS)

    Rehan, Maaz; Yousaf, Muhammad; Qayyum, Amir; Malik, Shahzad

    Vertical handover decision algorithm that is based on user preferences and coupled with Media Independent Handover (MIH) local triggers have not been explored much in the literature. We have developed a comprehensive cross-layer solution, called Vertical Handover Decision (VHOD) approach, which consists of three parts viz. mechanism for collecting and storing user preferences, Vertical Handover Decision (VHOD) algorithm and the MIH Function (MIHF). MIHF triggers the VHOD algorithm which operates on user preferences to issue handover commands to mobility management protocol. VHOD algorithm is an MIH User and therefore needs to subscribe events and configure thresholds for receiving triggers from MIHF. In this regard, we have performed experiments in WLAN to suggest thresholds for Link Going Down trigger. We have also critically evaluated the handover decision process, proposed Just-in-time interface activation technique, compared our proposed approach with prominent user centric approaches and analyzed our approach from different aspects.

  6. Experimental test of theory for the stability of partially saturated vertical cut slopes

    USGS Publications Warehouse

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  7. 33 CFR 165.158 - Safety Zone: Patchogue Grand Prix, Patchogue Bay, Patchogue, NY.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... American Datum 1983. (b) Definitions. The following definitions apply to this section: Designated on-scene... zone on VHF-16 or via phone at (203) 468-4401. (d) Enforcement period. This rule will be enforced from...

  8. 33 CFR 165.158 - Safety Zone: Patchogue Grand Prix, Patchogue Bay, Patchogue, NY.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... American Datum 1983. (b) Definitions. The following definitions apply to this section: Designated on-scene... zone on VHF-16 or via phone at (203) 468-4401. (d) Enforcement period. This rule will be enforced from...

  9. High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.

    PubMed

    Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J

    2013-10-09

    This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

  10. New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Dou, Xiankang; Luan, Xiaoli; Solomon, Stanley C.; Liu, Yong C.-M.

    2014-03-01

    The total electron content (TEC) data measured by the Jason, CHAMP, GRACE, and SAC-C satellites, the in situ electron densities from CHAMP and GRACE, and the vertical E × B drifts from the ROCSAT, have been utilized to examine the ionospheric response to the October 2003 superstorms. The combination of observations from multiple satellites provides a unique global view of ionospheric storm effects, especially over the Pacific Ocean and American regions, which were under sunlit conditions during the main phases of the October 2003 superstorms. The main results of this study are as follows: (1) There were substantial increases in TEC in the daytime at low and middle latitudes during both superstorms. (2) The enhancements were greater during the 30 October superstorm and occurred over a wider range of local times. (3) They also tended to peak at earlier local times during this second event. (4) These TEC enhancement events occurred at the local times when there were enhancements in the upward vertical drift. (5) The strong upward vertical drifts are attributed to penetration electric fields, suggesting that these penetration electric fields played a significant role in the electron density enhancements during these superstorms. Overall, the main contribution of this study is the simultaneous view of the storm time ionospheric response from multiple satellites, and the association of local time differences in ionospheric plasma response with measured vertical drift variations.

  11. The dynamics and control of large flexible space structures, 3. Part A: Shape and orientation control of a platform in orbit using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.

    1980-01-01

    The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.

  12. Gyro Systems (Selected Pages),

    DTIC Science & Technology

    1982-03-19

    of the oil wells, etc. With the aid of gyro systems determine the direction of meridian and true vertical, measure the angular velocities and the...integrating gyroscopes, gyrostabilizers, course gyro systems, gyroscopic sensors of the direction of the true vertical and inertial systems. The action of...direction of the true vertical are the gyro stabilizer, corrected with the aid of the inductive or magnetic detector, the physical pendulum, the local

  13. Using functional data analysis to analyze ecological series data

    EPA Science Inventory

    Background/Question/MethodsA frequent goal in ecology is to understand the relationships among biological organisms and their environment. Most field data are collected as scalar measurements, such that observations are recorded as a collection of datums. The observations are t...

  14. Decisions, Decisions....

    ERIC Educational Resources Information Center

    White, Owen Roberts

    1985-01-01

    The author reviews systems providing objective guidelines to facilitate ongoing, daily instructional decisions, focusing on those which utilize the sensitive datum and uniform charting procedures of precision teaching. Potential users are warned that the special education teacher must remain a critical and vigilant analyst of the learning process.…

  15. Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event

    NASA Astrophysics Data System (ADS)

    Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex

    2017-09-01

    We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.

  16. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    USGS Publications Warehouse

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary extents against the inundation area extents determined for the May 2011 flood (which incorporated documented high-water marksfrom the flood of May 201) (Bjerklie and others, 2014).A digital elevation model (DEM) was created by USGS, within a geographic information system (GIS), from the recently flown and processed light detection and ranging(lidar) data (2013–2014) in Vermont and the lake shore area of northern Clinton County in New York. The lidar data have a vertical accuracy of 0.3 to 0.6-ft (9.6 to 18.0-centimeters [cm]) and a horizontal resolution of 2.3 to 4.6 ft (0.7 to 1.4 meters). This DEM was used in determining the floodboundary for 11 flood stages at 0.5-ft intervals from 100.0 to104.0 ft (NGVD 29) and 1-ft intervals from 104.0 to 106.0 ft (NGVD 29) as referenced to the USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y. In addition, the May 2011 flood-inundation area for elevation103.20 ft (NGVD 29) (102.77 ft, North American Vertical Datum [NAVD] 88) was determined from this DEM. The May 2011 flood is the highest recorded lake water level (stage)at the Rouses Point, N.Y., lake gage. Flood stages greater than 101.5 ft (NGVD 29) exceed the “major flood stage”as defined by the NationalWeather Service for USGS lake gage 04295000.The availability of these maps, along with Internet information regarding current stage from the USGS lake gage and forecasted high-flow stages from the NationalWeather Service, will provide emergency management personnel and residents with information that is critical for flood responseactivities such as evacuations and road closures, as well as for post-flood recovery eforts.

  17. Local Neighbourhoods for First-Passage Percolation on the Configuration Model

    NASA Astrophysics Data System (ADS)

    Dereich, Steffen; Ortgiese, Marcel

    2018-04-01

    We consider first-passage percolation on the configuration model. Once the network has been generated each edge is assigned an i.i.d. weight modeling the passage time of a message along this edge. Then independently two vertices are chosen uniformly at random, a sender and a recipient, and all edges along the geodesic connecting the two vertices are coloured in red (in the case that both vertices are in the same component). In this article we prove local limit theorems for the coloured graph around the recipient in the spirit of Benjamini and Schramm. We consider the explosive regime, in which case the random distances are of finite order, and the Malthusian regime, in which case the random distances are of logarithmic order.

  18. Satellite remote sensing and ozonesonde observation of ozone vertical profile and severe storm development

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1988-01-01

    Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.

  19. Evidence of horizontal and vertical interactions in health care spending in the Philippines.

    PubMed

    Kelekar, Uma; Llanto, Gilberto

    2015-09-01

    This article examines whether within a decentralized system of health care spending, local government units in developing countries have any incentive to compete with one another. The existence of spatial competition, whether horizontal or vertical, is tested in the case of Philippines using local government health expenditures data. Results indicate that health spending is characterized by a strong positive interaction between municipalities, consistent with the existence of a horizontal fiscal interaction. However, the results provide less support for the existence of vertical externalities, with the interaction of municipalities with provinces being positive and marginally significant. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.

  20. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  1. Geological implications of recently derived vertical velocities of benchmarks of the south-central United States of America

    NASA Astrophysics Data System (ADS)

    Dokka, R. K.

    2005-05-01

    It has been long-recognized that the south-central United States of America bordering the Gulf of Mexico (GOM) is actively subsiding, resulting in a slow, yet unrelenting inundation of the coast from south Texas to southwestern Alabama. Today's motions are but the latest chapter in the subsidence history of the GOM, a region that has accommodated the deposition of over 20 km of deltaic and continental margin sediments since mid Mesozoic time. Understanding the recent history of displacements and the processes responsible for subsidence are especially critical for near-term planning for coastal protection and restoration activities. Documentation of the true magnitude and geography of vertical motions of the surface through time has been hampered because previous measurement schemes did not employ reference datums of sufficient spatial and temporal precision. This situation has been somewhat improved recently through the recent analysis of National Geodetic Survey (NGS) 1st order leveling data from >2710 benchmarks in the region by Shinkle and Dokka (NOAA Technical Report 50 [2004]). That paper used original observations (not adjusted) and computed displacements and velocities related to NAVD88 for benchmarks visited during various leveling surveys from 1920 through 1995. Several important characteristics were observed and are summarized below. First, the data show that subsidence is not limited to areas of recent sediment accumulation such as the wetland areas of the modern delta (MRD) of the Mississippi River or its upstream alluvial valley (MAV), as supposed by most current syntheses. The entire coastal zone, as well as inland areas several hundred km from the shore, has subsided over the period of measurement. Regionally, vertical velocities range from less than -52 mm/yr in Louisiana to over +15 mm/yr in peripheral areas of eastern Mississippi-Alabama. The mean rate is ~-11 mm/yr in most coastal parishes of Louisiana. In the Mississippi River deltaic plain, subsidence was 2-3 times higher than estimates based on long-term geologic measurements. The data also indicate that adjacent alluvial ridges where the population is concentrated have been similarly affected. In the Chenier plain of southwest Louisiana, a region previously thought to be subsiding at slowly, rates of sinking are similar to those of the deltaic plain. Second, spatial patterns suggest that motions at most locations may have both long (10-100 km) and short (<5 km) wavelength components. Gross aspects of some long wavelength motions can be explained by flexure produced by late Quaternary sediment loads such as the MRD and the MAV. Short wavelength spikes in motions correlate well with areas of fluid withdrawal, faults, and salt structures. Third, motions at many benchmarks have not been linear through time. For example, subsidence in ~10-30 km wide zones surrounding some active normal faults of south Louisiana declined as faulting has slowed (and vice versa). Subsidence in these areas reached a peak in 1970 and declined thereafter. Some local changes also correlate with changes in human-related activities (e.g., reduced groundwater pumping and slower subsidence in the Lake Charles area beginning in the late 1980s).

  2. Cause of different local time distribution in the postsunset equatorial ionospheric irregularity occurrences between June and December solstices

    NASA Astrophysics Data System (ADS)

    Su, S.-Y.; Chao, C. K.; Liu, C. H.

    2009-04-01

    Global averaged postsunset equatorial ionospheric density irregularity occurrences observed by ROCSAT during the moderate to high solar activity years of 1999 to 2004 indicate a different local time distribution between June and December solstices. The irregularity occurrences during the December solstice show a faster increase rate to peak at 2100-2200 local time, while the irregularity occurrences during the June solstice have a slower increase rate and peak one hour later in local time than that in the December solstice. The cause of such different local time distributions is attributed to a large contrast in the time of zonal drift reversal and the magnitude of postsunset vertical drift observed by ROCSAT at longitudes of large magnetic declination in the two solstices. That is, a delay in the zonal drift reversal in association with a smaller postsunset vertical drift observed at longitudes of positive magnetic declination has greatly inhibited the irregularity occurrences during the June solstice in contrast to an earlier zonal drift reversal together with a large vertical drift occurring at longitudes of negative magnetic declination to accelerate the irregularity occurrences during the December solstice. We think that the different geomagnetic field strengths that existed between the longitudes of positive and negative magnetic declinations have played a crucial role in determining the different local time distributions of irregularity occurrences for the two solstices.

  3. 33 CFR 165.159 - Safety Zone: New York Air Show at Jones Beach State Park, Wantagh, NY.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Datum 1983. (b) Definitions. The following definition applies to this section: Designated On-scene... by contacting them on VHF-16 or by a request to the Captain of the Port Long Island Sound via phone...

  4. 76 FR 22064 - Safety Zone; Michigan Bankers Association Fireworks, Lake Huron, Mackinac Island, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ...-foot radius from the fireworks launch site, approximately 460 yards south of Biddle Point, at position... 460 yards south of Biddle Point, at position 45[deg]50'32.82'' N, 084[deg]37'03.18'' W: [DATUM: NAD 83...

  5. 33 CFR 147.831 - Holstein Truss Spar safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Description. Holstein, Green Canyon 645 (GC 645), located at position 27°19′17″ N, 90°32′08″ W. The area... coordinates are based upon North American Datum 1983. (b) Regulation. No vessel may enter or remain in this...

  6. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences

    PubMed Central

    Moore, Christopher R.; West, Allen; LeCompte, Malcolm A.; Brooks, Mark J.; Daniel, I. Randolph; Goodyear, Albert C.; Ferguson, Terry A.; Ivester, Andrew H.; Feathers, James K.; Kennett, James P.; Tankersley, Kenneth B.; Adedeji, A. Victor; Bunch, Ted E.

    2017-01-01

    Previously, a large platinum (Pt) anomaly was reported in the Greenland ice sheet at the Younger Dryas boundary (YDB) (12,800 Cal B.P.). In order to evaluate its geographic extent, fire-assay and inductively coupled plasma mass spectrometry (FA and ICP-MS) elemental analyses were performed on 11 widely separated archaeological bulk sedimentary sequences. We document discovery of a distinct Pt anomaly spread widely across North America and dating to the Younger Dryas (YD) onset. The apparent synchroneity of this widespread YDB Pt anomaly is consistent with Greenland Ice Sheet Project 2 (GISP2) data that indicated atmospheric input of platinum-rich dust. We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control. PMID:28276513

  7. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences

    NASA Astrophysics Data System (ADS)

    Moore, Christopher R.; West, Allen; Lecompte, Malcolm A.; Brooks, Mark J.; Daniel, I. Randolph; Goodyear, Albert C.; Ferguson, Terry A.; Ivester, Andrew H.; Feathers, James K.; Kennett, James P.; Tankersley, Kenneth B.; Adedeji, A. Victor; Bunch, Ted E.

    2017-03-01

    Previously, a large platinum (Pt) anomaly was reported in the Greenland ice sheet at the Younger Dryas boundary (YDB) (12,800 Cal B.P.). In order to evaluate its geographic extent, fire-assay and inductively coupled plasma mass spectrometry (FA and ICP-MS) elemental analyses were performed on 11 widely separated archaeological bulk sedimentary sequences. We document discovery of a distinct Pt anomaly spread widely across North America and dating to the Younger Dryas (YD) onset. The apparent synchroneity of this widespread YDB Pt anomaly is consistent with Greenland Ice Sheet Project 2 (GISP2) data that indicated atmospheric input of platinum-rich dust. We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.

  8. National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the Gulf of Mexico and Southeast Atlantic coasts

    USGS Publications Warehouse

    Himmelstoss, Emily A.; Kratzmann, Meredith G.; Thieler, E. Robert

    2017-07-18

    Long-term rates of shoreline change for the Gulf of Mexico and Southeast Atlantic regions of the United States have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change project. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included four shoreline positions at a given location. The long-term shoreline change rates also incorporate the proxy-datum bias correction to account for the unidirectional onshore bias of the proxy-based high water line shorelines relative to the datum-based mean high water shorelines. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment project. The average rates reported here have a reduced amount of uncertainty relative to those presented in the previous assessments for these two regions.

  9. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on an Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails Supplement I-Tabulated Data for the Model with Single Vertical Tails. Supplement 1; Tabulated Data for the Model with Single Vertical Tail

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.

  10. Temporal and spatial adaptation of transient responses to local features

    PubMed Central

    O'Carroll, David C.; Barnett, Paul D.; Nordström, Karin

    2012-01-01

    Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. The performance of current models for the detection of self-generated optic flow depends critically on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local “doublet” features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high-contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low-contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e., orthogonal to the direction of motion) across at least several aligned neighboring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, recruit the greatest amount of response suppression. This property could emphasize the local responses to such features vs. those in nearby texture within the scene. PMID:23087617

  11. In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat

    NASA Technical Reports Server (NTRS)

    Oskin, Michael; Burbank, Doug

    2005-01-01

    Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.

  12. The Hartree Equation for Infinitely Many Particles I. Well-Posedness Theory

    NASA Astrophysics Data System (ADS)

    Lewin, Mathieu; Sabin, Julien

    2015-02-01

    We show local and global well-posedness results for the Hartree equation where γ is a bounded self-adjoint operator on , ρ γ ( x) = γ( x, x) and w is a smooth short-range interaction potential. The initial datum γ(0) is assumed to be a perturbation of a translation-invariant state γ f = f(-Δ) which describes a quantum system with an infinite number of particles, such as the Fermi sea at zero temperature, or the Fermi-Dirac and Bose-Einstein gases at positive temperature. Global well-posedness follows from the conservation of the relative (free) energy of the state γ( t), counted relatively to the stationary state γ f . We indeed use a general notion of relative entropy, which allows us to treat a wide class of stationary states f(-Δ). Our results are based on a Lieb-Thirring inequality at positive density and on a recent Strichartz inequality for orthonormal functions, which are both due to Frank, Lieb, Seiringer and the first author of this article.

  13. Radiographic localization of unerupted maxillary anterior teeth using the vertical tube shift technique: the history and application of the method with some case reports.

    PubMed

    Jacobs, S G

    1999-10-01

    The preferred means of radiographic localization is the parallax method introduced by Clark in 1910. He used 2 periapical radiographs and shifted the tube in the horizontal plane. In 1952, Richards appreciated that a vertical tube shift could also be carried out. No major changes then occurred in the technique until Keur, in Australia, in 1986 replaced the periapical radiographs with occlusal radiographs. This modification enables a greater tube movement and therefore a greater shift of the image of the impacted tooth; it also ensures that the whole of the tooth is captured on the radiograph. For the vertical tube shift, Keur introduced the use of a rotational panoramic radiograph with an occlusal radiograph. In 1987, Southall and Gravely discussed this vertical tube shift combination in the English dental literature, and it is now the preferred combination of radiographs for localizing impacted maxillary anterior teeth. Jacobs introduced this method to the American literature in 1999, but it has yet to gain acceptance in the continental European literature. Jacobs recommended, when using this combination, to routinely increase the vertical angulation for the occlusal radiograph by 10 degrees to achieve a greater image shift. Four case reports are presented in this article. Three have photographs taken at surgical exposure to illustrate how the position of the impacted tooth can be accurately predicted by appropriate interpretation of the radiographs.

  14. On the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.

    2001-01-01

    The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.

  15. Vaginal reconstruction following resection of primary locally advanced and recurrent colorectal malignancies.

    PubMed

    D'Souza, Dougal N; Pera, Miguel; Nelson, Heidi; Finical, Stephan J; Tran, Nho V

    2003-12-01

    Vertical rectus abdominus myocutaneous flap reconstruction facilitates healing within the radiated pelvis and preserves the possibility of subsequent sexual function in patients with colorectal cancer who require partial or complete resection of the vagina. A retrospective review of a consecutive series of patients. A tertiary referral center. All patients undergoing surgical treatment of locally advanced or recurrent colorectal cancer and vertical rectus abdominus myocutaneous flap reconstruction of the vagina. Vertical rectus abdominus myocutaneous flap reconstruction. Operative feasibility, complications, and sexual function. Twelve patients underwent extended resection for primary locally advanced or recurrent colorectal cancer including total or near total vaginectomy. Median age was 47 years. Tumors included 9 rectal adenocarcinomas, 2 anal squamous cell carcinomas, and 1 recurrent cecal adenocarcinoma. Surgical procedures included 8 abdominoperineal resections with posterior exenteration; resection of pelvic tumor and partial vaginectomy in 2 patients with previous abdominoperineal resection; 1 total exenteration; and 1 total proctocolectomy with posterior exenteration. The average operative time for tumor extirpation, irradiation, and reconstruction was more than 9 hours and all patients required blood transfusions. Despite 2 patients having superficial necrosis and 4 having mild wound infections, no patient required reoperation and all achieved complete healing. Five patients reported resuming sexual intercourse. The vertical rectus abdominus myocutaneous flap can be successfully used for vaginal reconstruction following resection of locally advanced colorectal cancer. It provides nonirradiated, vascularized tissue that fills the pelvic dead space, allows for stomal placement, and provides a chance for sexual function.

  16. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

    USGS Publications Warehouse

    Monti, Jack; Busciolano, Ronald J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

  17. GRAVTool, Advances on the Package to Compute Geoid Model path by the Remove-Compute-Restore Technique, Following Helmert's Condensation Method

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.

    2017-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).

  18. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.

  19. Analysis of the most recent data of Cascais Tide Gauge

    NASA Astrophysics Data System (ADS)

    Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.

    2010-05-01

    In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.

  20. Quantifying and Projecting Relative Sea-Level Rise in The Deltaic Regions

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Chung-Yen, K.; Calmant, S.; Yang, T. Y.; Guo, Q.; Jia, Y.; Ballu, V.; Guo, J.; Karptychev, M.; Krien, Y.; Kusche, J.; Tseng, K. H.; Wan, J.; Uebbing, B.

    2017-12-01

    Half of the world's population lives within 200 km of coastlines. Accelerated sea-level rise, compounded by effects of population growth, severe land subsidence due to fluvial sediment compaction/load, and anthropogenic oil and natural gas and ground water extraction, tectonic motion, and the increasing threat of more intense and more frequent cyclone-driven storm surges, have exacerbated the vulnerability of many of world's deltaic regions, including the Bangladesh and the Mississippi River Deltas. At present, understanding and quantifying the natural and anthropogenic processes governing these solid Earth vertical motion processes remain elusive to enable addressing coastal vulnerability due to current and future projection of relative sea-level rise for deltaic regions at the regional scales. Bangladesh, a low-lying and one of the most densely populated countries in the world located at the Bay of Bengal, is prone to transboundary monsoonal flooding, and is believed to be aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. The Mississippi River Deltaic region has been severely subsiding due primarily to fluvial sediment compaction and load during the last 10 centuries, oil/gas and groundwater extractions, and commercial developments, making it vulnerable to sea-level rise hazards. Here we present results of global geocentric sea-level rise, 1950-2016, separating vertical land motion at global tide gauge datum, by integrating tide gauge and radar altimeter records in a novel sea-level reconstruction scheme, focusing on the Mississippi River and the Bangladesh Deltas. We then integrate the resulting sea level estimates with historic imageries, GPS and InSAR data, as well as sediment isostatic and load model predicted present-day land subsidence, to constrain the 3D land motion to study the impacts of various scenarios of future relative sea level projections on the Bangladesh Delta to the end of the 21st Century and beyond.

  1. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    USGS Publications Warehouse

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  2. Massive Cloud Computing Processing of P-SBAS Time Series for Displacement Analyses at Large Spatial Scale

    NASA Astrophysics Data System (ADS)

    Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.

    2016-12-01

    A methodology for computing surface deformation time series and mean velocity maps of large areas is presented. Our approach relies on the availability of a multi-temporal set of Synthetic Aperture Radar (SAR) data collected from ascending and descending orbits over an area of interest, and also permits to estimate the vertical and horizontal (East-West) displacement components of the Earth's surface. The adopted methodology is based on an advanced Cloud Computing implementation of the Differential SAR Interferometry (DInSAR) Parallel Small Baseline Subset (P-SBAS) processing chain which allows the unsupervised processing of large SAR data volumes, from the raw data (level-0) imagery up to the generation of DInSAR time series and maps. The presented solution, which is highly scalable, has been tested on the ascending and descending ENVISAT SAR archives, which have been acquired over a large area of Southern California (US) that extends for about 90.000 km2. Such an input dataset has been processed in parallel by exploiting 280 computing nodes of the Amazon Web Services Cloud environment. Moreover, to produce the final mean deformation velocity maps of the vertical and East-West displacement components of the whole investigated area, we took also advantage of the information available from external GPS measurements that permit to account for possible regional trends not easily detectable by DInSAR and to refer the P-SBAS measurements to an external geodetic datum. The presented results clearly demonstrate the effectiveness of the proposed approach that paves the way to the extensive use of the available ERS and ENVISAT SAR data archives. Furthermore, the proposed methodology can be particularly suitable to deal with the very huge data flow provided by the Sentinel-1 constellation, thus permitting to extend the DInSAR analyses at a nearly global scale. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.

  3. Control of mixing hotspots over the vertical turbulent flux in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Mashayek, Ali; Ferrari, Raffaele; Ledwell, Jim; Merrifield, Sophia; St. Laurent, Louis

    2015-11-01

    Vertical turbulent mixing in the Southern Ocean is believed to play a role in setting the rate of the ocean Meridional Overturning Circulation (MOC), one of the key regulators of the climate system. The extent to which mixing influences the MOC, however, depends on its strength and is still under debate. To address this, a passive tracer was released upstream of the Drake Passage in 2009 as a part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Vertical dispersion of the tracer was measured in subsequent years to estimate vertical mixing. The inferred effective turbulent diffusivity values have proven larger than those obtained from localized measurements of shear made at various locations along the path of the tracer. While the values inferred from tracer imply a key role played by mixing in setting the MOC, those based on localized measurements suggest otherwise. In this work we employ the tracer data and localized turbulence measurements from DIMES in combination with a high resolution numerical ocean model to investigate whether these discrepancies are the result of different sampling strategies: the microstructure profiles sampled mixing only in a few regions, while the tracer sampled mixing over a much wider area as it spread spatially.

  4. One stage vertical rectus muscle recession using adjustable sutures under local anaesthesia.

    PubMed Central

    Rauz, S; Govan, J A

    1996-01-01

    AIMS: To assess the results of visual axis alignment following one stage adjustable suture surgery to correct vertical diplopia. METHOD: Eight patients with a mean age of 44.9 years (range 16-80 years) complaining of vertical diplopia underwent rectus muscle recession under local anaesthesia with intraoperative adjustment of sutures. Diplopia was secondary to superior oblique paresis in four patients, dysthyroid eye disease in two patients, superior rectus paresis in one patient, and one developed a consecutive deviation after previous squint surgery. The surgery consisted of seven single muscle recessions (six inferior recti and one superior rectus) and one two muscle recession (inferior and lateral recti). The surgery was performed under topical anaesthesia supplemented with a subconjunctival injection of local anaesthetic over the muscle insertions. RESULTS: The patients remained comfortable throughout their surgery. All had a reduction in their vertical deviation. Six were asymptomatic and were eventually discharged. One had residual diplopia which was well tolerated without further intervention. One had persistent troublesome diplopia which was corrected by temporary Fresnel prisms. He became asymptomatic after further surgery of a 1 mm inferior rectus advancement. CONCLUSION: One stage adjustable suture surgery is recommended in all cases of strabismus surgery when postoperative results would otherwise be unpredictable. PMID:8949715

  5. 76 FR 56724 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    .../town/county Source of flooding Location ** ground [caret] Elevation in meters (MSL) Existing Modified... Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to... upstream of Cradduck Road None +876 Oklahoma Unincorporated Areas of Town Branch Approximately 400 feet...

  6. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... American Datum (NAD83). (d) Unjust enrichment. 12 GHz licensees that received a bidding credit and... SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for the 12.2-12.7 GHz Band § 101.1415 Partitioning and disaggregation. (a) MVDDS licensees are permitted to partition...

  7. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... American Datum (NAD83). (d) Unjust enrichment. 12 GHz licensees that received a bidding credit and... SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for the 12.2-12.7 GHz Band § 101.1415 Partitioning and disaggregation. (a) MVDDS licensees are permitted to partition...

  8. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... American Datum (NAD83). (d) Unjust enrichment. 12 GHz licensees that received a bidding credit and... SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for the 12.2-12.7 GHz Band § 101.1415 Partitioning and disaggregation. (a) MVDDS licensees are permitted to partition...

  9. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... American Datum (NAD83). (d) Unjust enrichment. 12 GHz licensees that received a bidding credit and... SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for the 12.2-12.7 GHz Band § 101.1415 Partitioning and disaggregation. (a) MVDDS licensees are permitted to partition...

  10. Publications - GMC 233 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in geologic field program in Lower Cook Inlet, Alaska Authors: Roberts, Chuck, Coastal Science Laboratories publication sales page for more information. Bibliographic Reference Roberts, Chuck, Coastal Science

  11. Multipackaging of Data At Source

    ERIC Educational Resources Information Center

    Bernier, Charles L.

    1972-01-01

    Techniques, media, and systems for making organized data available exist, but have not been used extensively enough. Reasons for failure to use these are explored and recommendations made for extraction by authors at time of writing, centralized organization, and publication through existing organization. Datum signatures are described. (50…

  12. GPS Imaging of Global Vertical Land Motion for Sea Level Studies

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Hamlington, B. D.

    2015-12-01

    Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.

  13. Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)

    1997-01-01

    We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady-state pursuit is not the vector average of local motion signals, but rather a more vertical estimate of object motion, derived in extrastriate cortical areas beyond V1, perhaps NIT or MST.

  14. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10 wells contained concentrations equal to or greater than the analytical reporting level of 1 ?g/L for PCE. Samples from one of these wells contained PCE concentrations (12 ?g/L and 11 ?g/L) exceeding the drinking water maximum contaminant level of 5 ?g/L for PCE. The spatial distribution of PCE detections and the relative concentrations of PCE and trichloroethylene suggest that the PCE detections are associated with a small and localized ground-water contamination plume unrelated to AAFB ground-water contamination.

  15. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    PubMed

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  16. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    EPA Science Inventory

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  17. ASEAN Mineral Database and Information System (AMDIS)

    NASA Astrophysics Data System (ADS)

    Okubo, Y.; Ohno, T.; Bandibas, J. C.; Wakita, K.; Oki, Y.; Takahashi, Y.

    2014-12-01

    AMDIS has lunched officially since the Fourth ASEAN Ministerial Meeting on Minerals on 28 November 2013. In cooperation with Geological Survey of Japan, the web-based GIS was developed using Free and Open Source Software (FOSS) and the Open Geospatial Consortium (OGC) standards. The system is composed of the local databases and the centralized GIS. The local databases created and updated using the centralized GIS are accessible from the portal site. The system introduces distinct advantages over traditional GIS. Those are a global reach, a large number of users, better cross-platform capability, charge free for users, charge free for provider, easy to use, and unified updates. Raising transparency of mineral information to mining companies and to the public, AMDIS shows that mineral resources are abundant throughout the ASEAN region; however, there are many datum vacancies. We understand that such problems occur because of insufficient governance of mineral resources. Mineral governance we refer to is a concept that enforces and maximizes the capacity and systems of government institutions that manages minerals sector. The elements of mineral governance include a) strengthening of information infrastructure facility, b) technological and legal capacities of state-owned mining companies to fully-engage with mining sponsors, c) government-led management of mining projects by supporting the project implementation units, d) government capacity in mineral management such as the control and monitoring of mining operations, and e) facilitation of regional and local development plans and its implementation with the private sector.

  18. Local patches of turbulent boundary layer behaviour in classical-state vertical natural convection

    NASA Astrophysics Data System (ADS)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2016-11-01

    We present evidence of local patches in vertical natural convection that are reminiscent of Prandtl-von Kármán turbulent boundary layers, for Rayleigh numbers 105-109 and Prandtl number 0.709. These local patches exist in the classical state, where boundary layers exhibit a laminar-like Prandtl-Blasius-Polhausen scaling at the global level, and are distinguished by regions dominated by high shear and low buoyancy flux. Within these patches, the locally averaged mean temperature profiles appear to obey a log-law with the universal constants of Yaglom (1979). We find that the local Nusselt number versus Rayleigh number scaling relation agrees with the logarithmically corrected power-law scaling predicted in the ultimate state of thermal convection, with an exponent consistent with Rayleigh-Bénard convection and Taylor-Couette flows. The local patches grow in size with increasing Rayleigh number, suggesting that the transition from the classical state to the ultimate state is characterised by increasingly larger patches of the turbulent boundary layers.

  19. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and reservoirs, different grain size distribution in both systems, and high variability in thickness of their proximal and distal parts play a crucial role in the analysis of regional accumulation rates. Local effects are much stronger than regional effects, such as rainfall and land use. Combined with the low resolution of time scales (usually only three datums are available: reservoir construction datum, 137Cs fallout event, and top of sediment), these effects may obscure the general trends of regionally increasing or decreasing net SARs, making the analysis of erosion rates from the sedimentary record an extremely difficult task.

  20. Monitoring the Storm Tide of Hurricane Wilma in Southwestern Florida, October 2005

    USGS Publications Warehouse

    Soderqvist, Lars E.; Byrne, Michael J.

    2007-01-01

    Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm tide of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm tide and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm tide water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm tide water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm tide monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm tide by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.

  1. Traveltime computation and imaging from rugged topography in 3D TTI media

    NASA Astrophysics Data System (ADS)

    Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao

    2014-02-01

    Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images.

  2. Real-time and accurate rail wear measurement method and experimental analysis.

    PubMed

    Liu, Zhen; Li, Fengjiao; Huang, Bangkui; Zhang, Guangjun

    2014-08-01

    When a train is running on uneven or curved rails, it generates violent vibrations on the rails. As a result, the light plane of the single-line structured light vision sensor is not vertical, causing errors in rail wear measurements (referred to as vibration errors in this paper). To avoid vibration errors, a novel rail wear measurement method is introduced in this paper, which involves three main steps. First, a multi-line structured light vision sensor (which has at least two linear laser projectors) projects a stripe-shaped light onto the inside of the rail. Second, the central points of the light stripes in the image are extracted quickly, and the three-dimensional profile of the rail is obtained based on the mathematical model of the structured light vision sensor. Then, the obtained rail profile is transformed from the measurement coordinate frame (MCF) to the standard rail coordinate frame (RCF) by taking the three-dimensional profile of the measured rail waist as the datum. Finally, rail wear constraint points are adopted to simplify the location of the rail wear points, and the profile composed of the rail wear points are compared with the standard rail profile in RCF to determine the rail wear. Both real data experiments and simulation experiments show that the vibration errors can be eliminated when the proposed method is used.

  3. 2×2 systems of conservation laws with L data

    NASA Astrophysics Data System (ADS)

    Bianchini, Stefano; Colombo, Rinaldo M.; Monti, Francesca

    Consider a hyperbolic system of conservation laws with genuinely nonlinear characteristic fields. We extend the classical Glimm-Lax (1970) result [13, Theorem 5.1] proving the existence of solutions for L initial datum, relaxing the assumptions taken therein on the geometry of the shock-rarefaction curves.

  4. Research on the aircraft level measurement by laser tracker

    NASA Astrophysics Data System (ADS)

    Ye, Xiaowen; Tang, Wuzhong; Cao, Chun

    2014-09-01

    The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.

  5. Staff - Jacquelyn R. Overbeck | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in main content Jacquelyn R. Overbeck Jacquelyn R. Overbeck Geomorphology, coastal hazards, remote sensing University, Environmental Science Projects and/or Research Interests As the project manager for the Coastal

  6. The Individual Human Being: A Sometime Variable For an Educational Rationale

    ERIC Educational Resources Information Center

    Butler, E. D.; Cozy, Joseph

    1973-01-01

    Authors believe that the function of education should be the practice of freedom, and also that for this to become reality it is imperative that the cornerstone of such a conception of education be the original datum of education, the individual human being. (Authors/GB)

  7. The Statement: Foundation of Foucault's Historical Criticism.

    ERIC Educational Resources Information Center

    Blair, Carole

    1987-01-01

    Presents an overview of Michel Foucault's approach to the study of historical systems of thought, arguing that Foucault's view of historical criticism and language-in-use have much to offer rhetorical theory and criticism. Discusses the nature of discourse for Foucault and examines the characteristics of the fundamental discursive datum, the…

  8. Religious Affiliation and the Fertility of Married Couples.

    ERIC Educational Resources Information Center

    Mosher, William D.; Hendershot, Gerry E.

    1984-01-01

    Used data from two National Surveys of Family Growth (N=14,000) to estimate the fertility of married couples by religious group. Results are presented in terms of religious and racial differences, controlling for age, education and residence, and indicate that religious affiliation continues to be an indispensable datum. (JAC)

  9. 78 FR 63966 - Notice of Change to the Nation's Tidal Datums With the Adoption of a Modified Procedure for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... boundary determinations, coastal engineering, storm warnings and hazard mitigation, emergency management... shoreline depiction may need to be updated on the next regularly scheduled chart edition. Although... Web site ( http://www.tidesandcurrents.noaa.gov ) or contact the Center for Operational Oceanographic...

  10. Evolution of aerosol vertical distribution during particulate pollution events in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Yunwei; Zhang, Qun; Leng, Chunpeng; Zhang, Deqin; Cheng, Tiantao; Tao, Jun; Zhang, Renjian; He, Qianshan

    2015-06-01

    A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coefficient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dust- and bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.

  11. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on an Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails. Supplement 2; Tabulated Data for the Model with Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.

  12. Significant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Skidmore, Andrew K.; Heurich, Marco; Wang, Tiejun

    2017-10-01

    As an important metric for describing vertical forest structure, the plant area index (PAI) profile is used for many applications including biomass estimation and wildlife habitat assessment. PAI profiles can be estimated with the vertically resolved gap fraction from airborne LiDAR data. Most research utilizes a height normalization algorithm to retrieve local or relative height by assuming the terrain to be flat. However, for many forests this assumption is not valid. In this research, the effect of topographic normalization of airborne LiDAR data on the retrieval of PAI profile was studied in a mountainous forest area in Germany. Results show that, although individual tree height may be retained after topographic normalization, the spatial arrangement of trees is changed. Specifically, topographic normalization vertically condenses and distorts the PAI profile, which consequently alters the distribution pattern of plant area density in space. This effect becomes more evident as the slope increases. Furthermore, topographic normalization may also undermine the complexity (i.e., canopy layer number and entropy) of the PAI profile. The decrease in PAI profile complexity is not solely determined by local topography, but is determined by the interaction between local topography and the spatial distribution of each tree. This research demonstrates that when calculating the PAI profile from airborne LiDAR data, local topography needs to be taken into account. We therefore suggest that for ecological applications, such as vertical forest structure analysis and modeling of biodiversity, topographic normalization should not be applied in non-flat areas when using LiDAR data.

  13. Space Radar Image of Sakura-Jima Volcano, Japan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.

  14. Space Radar Image of Sakura-Jima Volcano, Japan

    NASA Image and Video Library

    1999-04-15

    The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international "Decade Volcano" program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01777

  15. Spatial Variability of Salt Marsh Vertical Accretion and Carbon Burial Rates along the Gulf of Mexico at Local and Regional Scales

    NASA Astrophysics Data System (ADS)

    Arriola, J.; Cable, J. E.

    2017-12-01

    Many studies quantifying salt marsh vertical accretion and carbon burial have been conducted along the Gulf of Mexico over the past several decades. These results are often used in conjunction with sea level rise estimates to evaluate the long term storage, and potential release, of carbon as salt marshes are overtaken by rising waters. However, results from these studies are not always comparable because of diverse sampling and analytical methods, which may skew regional averages. In addition, salt marsh vertical accretion and carbon burial rates can be highly variable on local scales depending on sampling locations within the marsh, e.g. levee vs marsh plain, and methods to determine carbon quantity, such as utilizing linear relationships between % organic matter and % carbon from other studies. Anthropogenic impacts on accretion and carbon burial may also influence interpretation of results. Utilizing consistent methods for local and regional marsh research will improve the accuracy of accretion and burial rates which is fundamental to our ability to predict responses to climate change. Our study examined sediment cores extracted from 6 salt marshes - 5 marshes along Texas to Florida coasts and 1 marsh on the Florida Atlantic coast. These marshes were selected for minimal human influence and consistent sampling and analytical methodologies were employed to compare vertical accretion and carbon burial variability on local and regional scales. Total organic carbon (TOC) and total nitrogen were determined via direct measurement and accretion rates were calculated based on 210Pb via 210Po alpha spectrometry. The lowest TOC inventory was found at Mission-Aransas, TX (18.57 g OC), whereas the highest was found at Apalachicola, FL (35.05 g OC). Anahuac, TX, was found to have the highest modern vertical accretion rates of all 6 sites, whereas Guana Tolomato-Matanzas, FL, has the lowest. This research yields regional carbon burial estimates for the Gulf of Mexico using comparable analyses to improve climate change and sea level rise predictions.

  16. The 60 GHz radiometric local vertical sensor experiment

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.

    1973-01-01

    The experiment concept involves the use of millimeter wave radiation the atmospheric oxygen to provide vertical sensing information to a satellite-borne radiometer. The radiance profile studies require the calculation of ray brightness temperature as a function of tangential altitude and atmosphere model, and the computer program developed for this purpose is discussed. Detailed calculations have been made for a total of 12 atmosphere models, including some showing severe warning conditions. The experiment system analysis investigates the effect of various design choices on system behavior. Calculated temperature profiles are presented for a wide variety of frequencies, bandwidths, and atmosphere models. System performance is determined by the convolution of the brightness temperature and an assumed antenna pattern. A compensation scheme to account for different plateau temperatures is developed and demonstrated. The millimeter wave components developed for the local vertical sensor are discussed, with emphasis on the antenna, low noise mixer, and solid state local oscillator. It was concluded that a viable sensing technique exists, useful over a wide range of altitude with an accuracy generally on the order of 0.01 degree or better.

  17. Complications related to bone augmentation procedures of localized defects in the alveolar ridge. A retrospective clinical study.

    PubMed

    Jensen, Anders Torp; Jensen, Simon Storgård; Worsaae, Nils

    2016-06-01

    This retrospective clinical study aims to evaluate complications after augmentation of localized bone defects of the alveolar ridge. From standardized registrations, the following complications related to bone augmentation procedures were recorded: soft tissue dehiscence, infection, sensory disturbance, additional augmentation procedures needed, and early implant failure. A total of 223 patients (132 women, 91 men; mean age 23.5 years; range 17-65 years) with 331 bone defects had bone augmentation performed into which 350 implants were placed. Soft tissue dehiscence occurred in 1.7 % after GBR procedures, 25.9 % after staged horizontal ridge augmentation, and 18.2 % after staged vertical ridge augmentation. Infections were diagnosed in 2 % after GBR procedures, 12.5 % after sinus floor elevation (SFE) (transcrestal technique), 5 % after staged SFE, 11 % after staged horizontal ridge augmentation, and 9 % after staged vertical ridge augmentation. Additional augmentation procedures were needed in 2 % after GBR procedures, 37 % after staged horizontal ridge augmentation, and 9 % after staged vertical ridge augmentation. A total of six early implant failures occurred (1.7 %), four after GBR procedures (1.6 %), and two (12 %) after staged vertical ridge augmentation. Predictable methods exist to augment localized defects in the alveolar ridge, as documented by low complication rates and high early implant survival rates.

  18. Localized traveling pulses in natural doubly diffusive convection

    NASA Astrophysics Data System (ADS)

    Lo Jacono, D.; Bergeon, A.; Knobloch, E.

    2017-09-01

    Two-dimensional natural doubly diffusive convection in a vertical slot driven by an imposed temperature difference in the horizontal is studied using numerical continuation and direct numerical simulation. Two cases are considered and compared. In the first a concentration difference that balances thermal buoyancy is imposed in the horizontal and stationary localized structures are found to be organized in a standard snakes-and-ladders bifurcation diagram. Disconnected branches of traveling pulses TPn consisting of n ,n =1 ,2 ,⋯ , corotating cells are identified and shown to accumulate on a tertiary branch of traveling waves. With Robin or mixed concentration boundary conditions on one wall all localized states travel and the hitherto stationary localized states may connect up with the traveling pulses. The stability of the TPn states is determined and unstable TPn shown to evolve into spatio-temporal chaos. The calculations are done with no-slip boundary conditions in the horizontal and periodic boundary conditions in the vertical.

  19. Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman M.; Zaremba, Marek B.

    2003-03-01

    Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.

  20. 15 CFR Appendix II to Subpart P of... - Existing Management Areas Boundary Coordinates

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....43.8′ N 81 deg.48.6′ W. Key West National Wildlife Refuge [Based on the North American Datum of 1983... COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Florida Keys... Administration Key Largo-Management Area [Based on differential Global Positioning Systems data] Point Latitude...

  1. 15 CFR Appendix II to Subpart P of... - Existing Management Areas Boundary Coordinates

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....43.8′ N 81 deg.48.6′ W. Key West National Wildlife Refuge [Based on the North American Datum of 1983... COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Florida Keys... Administration Key Largo-Management Area [Based on differential Global Positioning Systems data] Point Latitude...

  2. 15 CFR Appendix II to Subpart P of... - Existing Management Areas Boundary Coordinates

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....43.8′ N 81 deg.48.6′ W. Key West National Wildlife Refuge [Based on the North American Datum of 1983... COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Florida Keys... Administration Key Largo-Management Area [Based on differential Global Positioning Systems data] Point Latitude...

  3. 15 CFR Appendix II to Subpart P of... - Existing Management Areas Boundary Coordinates

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....43.8′ N 81 deg.48.6′ W. Key West National Wildlife Refuge [Based on the North American Datum of 1983... COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Florida Keys... Administration Key Largo-Management Area [Based on differential Global Positioning Systems data] Point Latitude...

  4. 15 CFR Appendix II to Subpart P of... - Existing Management Areas Boundary Coordinates

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....43.8′ N 81 deg.48.6′ W. Key West National Wildlife Refuge [Based on the North American Datum of 1983... COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Florida Keys... Administration Key Largo-Management Area [Based on differential Global Positioning Systems data] Point Latitude...

  5. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Anchorages, Captain of the Port... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.230 Anchorages, Captain of the Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American Datum...

  6. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Anchorages, Captain of the Port... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.230 Anchorages, Captain of the Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American Datum...

  7. The importance of archiving baseline wilderness data

    Treesearch

    David N. Cole

    2007-01-01

    Baseline wilderness data are of considerable importance for several reasons. One of the primary values of wilderness is as a reference that contrasts with those lands where humans dominate the landscape. Leopold (1941) called wilderness "a base-datum of normality, a picture of how healthy land maintains itself." To realize this value, baseline data on...

  8. 75 FR 31347 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... Datum. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the... in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed... in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed...

  9. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... when discharges change as a result of the use of an alternative methodology or data for computing flood... land use regulation. (ii) It must be well-documented including source codes and user's manuals. (iii... projects that may effect map changes when they are completed. (4) The datum and date of releveling of...

  10. 78 FR 12598 - Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Docket Management Facility in Room W12-140 on the ground floor of the Department of Transportation West..., call or email ENS Nathaniel P. Clinger; Waterways Management Division, Coast Guard Sector Puget Sound... point of origin. [Datum: NAD 1983]'' However, the participating aircraft have a flight pattern that will...

  11. Applications of Simulator Freeze to Carrier Glideslope Tracking Instruction.

    DTIC Science & Technology

    1982-07-01

    Showing Datum Bars and Meatball . .. .. .. ... .. ... .... 19 4 Freezes Per Trial Averaged Across Freeze Conditions and Across 4-Trial Blocks of Training...algorithm linearly increased the criterion in meatball units from 1.0 at 6000 feet from the ramp to 1.5 at the ramp. "Freezes" did not occur beyond 6000

  12. Hazards of Colour Coding in Visual Approach Slope Indicators,

    DTIC Science & Technology

    1981-12-01

    the glideslope. The central spot (the ’ meatball ’) is displaced above or below the datum lights when the pilot views from above or below the...undershoot is increasing or decreasing, the step changes in intensity may also be evident as a form of flash coding. Colour coding of the ’ meatball " in

  13. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  14. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  15. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  16. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  17. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  18. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  19. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  20. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  1. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  2. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  3. 77 FR 62473 - Safety Zone, Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ....1319 has been determined to be inadequate to accommodate the anticipated flight pattern of the Blue.... [Datum: NAD 1983]'' However, the participating aircraft have a flight pattern that will extend past the... summarize our analyses based on a number of these statutes or executive orders. 1. Regulatory Planning and...

  4. 33 CFR 165.708 - Safety/Security Zone; Charleston Harbor and Cooper River, Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor and Cooper River, Charleston, SC. 165.708 Section 165.708 Navigation and Navigable Waters COAST... Guard District § 165.708 Safety/Security Zone; Charleston Harbor and Cooper River, Charleston, SC. (a... Cooper River. All coordinates referenced use datum: NAD 1983. (2) All waters within 100 yards of the...

  5. What Future Teachers Believe about Democracy and Why It Is Important

    ERIC Educational Resources Information Center

    Zyngier, David

    2016-01-01

    This paper analyses pre-service education student perceptions and perspectives related to education for democracy in Australia. Using a critical pedagogical framework datum from an online survey, it presents both quantitative and qualitative responses of contrasting understandings of democracy. It begins by outlining the concepts of thick and thin…

  6. Skull Size and Intelligence, and King Robert Bruce's IQ

    ERIC Educational Resources Information Center

    Deary, Ian J.; Ferguson, Karen J.; Bastin, Mark E.; Barrow, Geoffrey W. S.; Reid, Louise M.; Seckl, Jonathan R.; Wardlaw, Joanna M.; MacLullich, Alasdair M. J.

    2007-01-01

    An estimate of someone's IQ is a potentially informative personal datum. This study examines the association between external skull measurements and IQ scores, and uses the resulting regression equation to provide an estimate of the IQ of King Robert I of Scotland (Robert Bruce, 1274-1329). Participants were 48 relatively healthy Caucasian men…

  7. Relationship between Job Statisfaction Levels and Work-Family Conflicts of Physical Education Teachers

    ERIC Educational Resources Information Center

    Ulucan, Hakki

    2017-01-01

    Study aims to examine the relationship between perceived job satisfaction levels and work-family conflicts of the physical education teachers. Research group consists of 154 volunteer physical education teachers that work full time in governmental institutions in Kirsehir city and its counties. To acquire the job satisfaction datum; the Minnesota…

  8. On Distinguishing Competence from Performance in Studies of Human Communication.

    ERIC Educational Resources Information Center

    Sanders, Robert E.

    Given that overt linguistic behavior is not an adequate or primary datum for linguistic theory and that linguistic theory cannot directly account for overt linguistic behavior, human language can be seen as an abstract system that relates (graphic or phonetic) surface representations of sentences and underlying grammatical forms and semantic…

  9. What Are Data? Museum Data Bank Research Report Number 1.

    ERIC Educational Resources Information Center

    Vance, David

    This paper describes the process of automatic extraction of implicit--global--data from explicit information by file inversion and threading. Each datum is the symbolic representation of a proposition, and as such has a number of movable parts corresponding to the ideal elements of the proposition represented; e.g., subject, predicate. A third…

  10. Reliability Problems of the Datum: Solutions for Questionnaire Responses.

    ERIC Educational Resources Information Center

    Bastick, Tony

    Questionnaires often ask for estimates, and these estimates are given with different reliabilities. It is difficult to know the different reliabilities of single estimates and to take these into account in subsequent analyses. This paper contains a practical example to show that not taking the reliability of different responses into account can…

  11. On Management "Myth"-Information Systems.

    ERIC Educational Resources Information Center

    Mitroff, Ian I.; And Others

    Management Myth-Information Systems (MMIS) are information systems which present information to a decision maker by means of stories. In MMIS a scientific datum by itself is not information, but is information if and only if it is tied to an appropriate story or myth that has meaning to the individual who needs the information, the organization in…

  12. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  13. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  14. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  15. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  16. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  17. 78 FR 19161 - Security Zones; Captain of the Port Detroit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). [[Page... Hall in downtown Detroit, MI. The NAIAS is the prime venue for introducing the world's most anticipated... and boarding. All geographic coordinates are North American Datum of 1983 (NAD 83). All persons and...

  18. Future global SLR network evolution and its impact on the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  19. Statistical characteristics of locally generated ESF during equinoctial months over Sanya

    NASA Astrophysics Data System (ADS)

    Meng, Xing; Fang, Hanxian; Li, Guozhu; Weng, Libin

    2018-05-01

    Understanding the local generation rate of equatorial spread-F (ESF) is important for forecasting ionospheric scintillation. Using the GPS ionospheric scintillation/TEC and VHF radar data during March-April and September-October from 2010 to 2014, the occurrence of ionospheric scintillation, TEC fast fluctuation, and backscatter plume were studied. Through analyzing the simultaneous occurrence of ionospheric scintillation, TEC fast fluctuation and backscatter plume, the local generation rate of ESF over Sanya was investigated. The results show that the monthly generation rate varies between 0% and 68%. A significant equinoctial asymmetry of local generation rate of ESF can be found in 2010, 2013 and 2014. The local generation rate of ESF increases from 2010 to 2014 during March-April, while it does not have similar trend during September-October. The plasma vertical drift influenced by solar activity has a significant impact on the monthly generation rate. The equinoctial asymmetry of plasma vertical drift may contribute a lot to the equinoctial asymmetry of the generation rate of ESF.

  20. The emergence of the vertical birth in Ecuador: an analysis of agenda setting and policy windows for intercultural health

    PubMed Central

    Llamas, Ana; Mayhew, Susannah

    2016-01-01

    Maternal mortality continues to claim the lives of thousands of women in Latin America despite the availability of effective treatments to avert maternal death. In the past, efforts to acknowledge cultural diversity in birth practices had not been clearly integrated into policy. However, in Otavalo (Ecuador) a local hospital pioneered the implementation of the ‘Vertical Birth’—a practical manifestation of an intercultural health policy aimed at increasing indigenous women’s access to maternity care. Drawing on agenda-setting theory, this qualitative research explores how the vertical birth practice made it onto the local policy agenda and the processes that allowed actors to seize a window of opportunity allowing the vertical birth practice to emerge. Our results show that the processes that brought about the vertical birth practice took place over a prolonged period of time and resulted from the interplay between various factors. Firstly, a maternal health policy community involving indigenous actors played a key role in identifying maternal mortality as a policy problem, defining its causes and framing it as an indigenous rights issue. Secondly, previous initiatives to address maternal mortality provided a wealth of experience that gave these actors the knowledge and experience to formulate a feasible policy solution and consolidate support from powerful actors. Thirdly, the election of a new government that had incorporated the demands of the indigenous movement opened up a window of opportunity to push intercultural health policies such as the vertical birth. We conclude that the socioeconomic and political changes at both national and local level allowed the meaningful participation of indigenous actors that made a critical contribution to the emergence of the vertical birth practice. These findings can help us advance our knowledge of strategies to set the agenda for intercultural maternal health policy and inform future policy in similar settings. Our results also show that Kingdon’s model was useful in explaining how the VB practice emerged but also that it needs modifications when applied to low and middle income countries. PMID:26758539

Top