Sample records for localization interacts genetically

  1. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  2. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    NASA Astrophysics Data System (ADS)

    Leiserson, Mark D. M.; Tatar, Diana; Cowen, Lenore J.; Hescott, Benjamin J.

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  3. Inferring mechanisms of compensation from E-MAP and SGA data using local search algorithms for max cut.

    PubMed

    Leiserson, Mark D M; Tatar, Diana; Cowen, Lenore J; Hescott, Benjamin J

    2011-11-01

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  4. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    PubMed Central

    Leiserson, Mark D.M.; Tatar, Diana; Cowen, Lenore J.

    2011-01-01

    Abstract A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome. PMID:21882903

  5. Local area disadvantage and gambling involvement and disorder: Evidence for gene-environment correlation and interaction.

    PubMed

    Slutske, Wendy S; Deutsch, Arielle R; Statham, Dixie J; Martin, Nicholas G

    2015-08-01

    Previous research has demonstrated that local area characteristics (such as disadvantage and gambling outlet density) and genetic risk factors are associated with gambling involvement and disordered gambling. These 2 lines of research were brought together in the present study by examining the extent to which genetic contributions to individual differences in gambling involvement and disorder contributed to being exposed to, and were also accentuated by, local area disadvantage. Participants were members of the national community-based Australian Twin Registry who completed a telephone interview in which the past-year frequency of gambling and symptoms of disordered gambling were assessed. Indicators of local area disadvantage were based on census data matched to the participants' postal codes. Univariate biometric model-fitting revealed that exposure to area disadvantage was partially explained by genetic factors. Bivariate biometric model-fitting was conducted to examine the evidence for gene-environment interaction while accounting for gene-environment correlation. These analyses demonstrated that: (a) a small portion of the genetic propensity to gamble was explained by moving to or remaining in a disadvantaged area, and (b) the remaining genetic and unique environmental variation in the frequency of participating in electronic machine gambling (among men and women) and symptoms of disordered gambling (among women) was greater in more disadvantaged localities. As the gambling industry continues to grow, it will be important to take into account the multiple contexts in which problematic gambling behavior can emerge-from genes to geography-as well as the ways in which such contexts may interact with each other. (c) 2015 APA, all rights reserved).

  6. Local Area Disadvantage and Gambling Involvement and Disorder: Evidence for Gene-Environment Correlation and Interaction

    PubMed Central

    Slutske, Wendy S.; Deutsch, Arielle R.; Statham, Dixie B.; Martin, Nicholas G.

    2015-01-01

    Previous research has demonstrated that local area characteristics (such as disadvantage and gambling outlet density) and genetic risk factors are associated with gambling involvement and disordered gambling. These two lines of research were brought together in the present study by examining the extent to which genetic contributions to individual differences in gambling involvement and disorder contributed to being exposed to, and were also accentuated by, local area disadvantage. Participants were members of the national community-based Australian Twin Registry who completed a telephone interview in which the past-year frequency of gambling and symptoms of disordered gambling were assessed. Indicators of local area disadvantage were based on census data matched to the participants' postal codes. Univariate biometric model-fitting revealed that exposure to area disadvantage was partially explained by genetic factors. Bivariate biometric model-fitting was conducted to examine the evidence for gene-environment interaction while accounting for gene-environment correlation. These analyses demonstrated that: (a) a small portion of the genetic propensity to gamble was explained by moving to or remaining in a disadvantaged area, and (b) the remaining genetic and unique environmental variation in the frequency of participating in electronic machine gambling (among men and women) and symptoms of disordered gambling (among women) was greater in more disadvantaged localities. As the gambling industry continues to grow, it will be important to take into account the multiple contexts in which problematic gambling behavior can emerge -- from genes to geography -- as well as the ways in which such contexts may interact with each other. PMID:26147321

  7. Genetics Home Reference: dihydropyrimidinase deficiency

    MedlinePlus

    ... microcephaly ) and autistic behaviors that affect communication and social interaction also occur in some individuals with this condition. ... organization, chromosomal localization, and mutation analysis of the human dihydropyrimidinase gene. Am J Hum Genet. 1998 Sep; ...

  8. Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK

    PubMed Central

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.

    2012-01-01

    Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998

  9. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.

    PubMed

    Croll, Daniel; McDonald, Bruce A

    2017-04-01

    Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.

  10. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus)

    USGS Publications Warehouse

    Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.

    2016-01-01

    The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.

  11. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations.

    PubMed

    Cervera, Javier; Manzanares, José A; Mafe, Salvador

    2018-04-04

    Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemble-averaged electrical potentials. We propose a minimal biophysical model for the coupling between genetic and bioelectrical networks that associates the local changes occurring in the transcription and translation rates of an ion channel protein with abnormally low (depolarized) cell potentials. We then analyze the conditions under which the depolarization of a small region (patch) in a multicellular ensemble can be reverted by its bioelectrical coupling with the (normally polarized) neighboring cells. We show also that the coupling between genetic and bioelectric networks of non-excitable cells, modulated by average electric potentials at the multicellular ensemble level, can produce oscillatory phenomena. The simulations show the importance of single-cell potentials characteristic of polarized and depolarized states, the relative sizes of the abnormally polarized patch and the rest of the normally polarized ensemble, and intercellular coupling.

  12. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  13. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  14. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for ecological changes related to global warming.

  15. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  16. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    PubMed

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  17. Consistent loss of genetic diversity in isolated cutthroat trout populations independent of habitat size and quality

    Treesearch

    Kellie J. Carim; Lisa A. Eby; Craig A. Barfoot; Matthew C. Boyer

    2016-01-01

    Fragmentation and isolation of wildlife populations has reduced genetic diversity worldwide, leaving many populations vulnerable to inbreeding depression and local extinction. Nonetheless, isolation is protecting many native aquatic species from interactions with invasive species, often making reconnection an unrealistic conservation strategy. Isolation management is...

  18. Genetic diversity, virulence, and Meloidogyne incognita interactions of Fusarium oxysporum isolates causing cotton wilt in Georgia

    USDA-ARS?s Scientific Manuscript database

    Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. ox...

  19. Defining the consequences of genetic variation on a proteome–wide scale

    PubMed Central

    Chick, Joel M.; Munger, Steven C.; Simecek, Petr; Huttlin, Edward L.; Choi, Kwangbom; Gatti, Daniel M.; Raghupathy, Narayanan; Svenson, Karen L.; Churchill, Gary A.; Gygi, Steven P.

    2016-01-01

    Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein–protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice. PMID:27309819

  20. Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism.

    PubMed

    Malé, P-J G; Leroy, C; Humblot, P; Dejean, A; Quilichini, A; Orivel, J

    2016-12-01

    Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  1. The interplay between local ecology, divergent selection, and genetic drift in population divergence of a sexually antagonistic female trait.

    PubMed

    Green, Kristina Karlsson; Svensson, Erik I; Bergsten, Johannes; Härdling, Roger; Hansson, Bengt

    2014-07-01

    Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology.

    PubMed

    Albin, Stephanie D; Davis, Graeme W

    2004-08-04

    Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.

  3. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala

    PubMed Central

    Anderson, George; Maes, Michael

    2014-01-01

    The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target. PMID:24669209

  4. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103

  5. Linking genetic and environmental factors in amphibian disease risk

    PubMed Central

    Savage, Anna E; Becker, Carlos G; Zamudio, Kelly R

    2015-01-01

    A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L. yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source–sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines. PMID:26136822

  6. Achieving sustainable cultivation of potatoes

    USDA-ARS?s Scientific Manuscript database

    Every phase of the production cycle impacts the sustainability of potato. Potato physiology determines how genetically encoded developmental attributes interact with local environmental conditions as modified through agricultural practice to produce a perishable crop. In this chapter we highlight ho...

  7. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits.

    PubMed

    Feltus, F Alex

    2014-06-01

    Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm.

    PubMed

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.

  9. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm

    PubMed Central

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570

  10. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.

    PubMed

    Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal

    2016-04-01

    The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.

  11. Influence of landscape and social interactions on transmission of disease in a social cervid.

    PubMed

    Vander Wal, Eric; Paquet, Paul C; Andrés, José A

    2012-03-01

    The mechanisms of pathogen transmission are often social behaviours. These occur at local scales and are affected by landscape-scale population structure. Host populations frequently exist in patchy and isolated environments that create a continuum of genetic and social familiarity. Such variability has an important multispatial effect on pathogen spread. We assessed elk dispersal (i.e. likelihood of interdeme pathogen transmission) through spatially explicit genetic analyses. At a landscape scale, the elk population was composed of one cluster within a southeast-to-northwest cline spanning three spatially discrete subpopulations of elk across two protected areas in Manitoba (Canada). Genetic data are consistent with spatial variability in apparent prevalence of bovine tuberculosis (TB) in elk. Given the existing population structure, between-subpopulation spread of disease because of elk dispersal is unlikely. Furthermore, to better understand the risk of spread and distribution of the TB, we used a combination of close-contact logging biotelemetry and genetic data, which highlights how social intercourse may affect pathogen transmission. Our results indicate that close-contact interaction rate and duration did not covary with genetic relatedness. Thus, direct elk-to-elk transmission of disease is unlikely to be constrained to related individuals. That social intercourse in elk is not limited to familial groups provides some evidence pathogen transmission may be density-dependent. We show that the combination of landscape-scale genetics, relatedness and local-scale social behaviours is a promising approach to understand and predict landscape-level pathogen transmission within our system and within all social ungulate systems affected by transmissible diseases. © 2012 Blackwell Publishing Ltd.

  12. Inferring genetic interactions via a nonlinear model and an optimization algorithm.

    PubMed

    Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S

    2010-02-26

    Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.

  13. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  14. Genetic susceptibility to Grave's disease.

    PubMed

    Li, Hong; Chen, Qiuying

    2013-06-01

    The variety of clinical presentations of eye changes in patients with Graves' disease (GD) suggests that complex interactions between genetic, environmental, endogenous and local factors influence the severity of Graves' ophthalmopathy (GO). It is thought that the development of GO might be influenced by genetic factors and environmental factors, such as cigarette smoking. At present, however, the role of genetic factors in the development of GO is not known. On the basis of studies with candidate genes and other genetic approaches, several susceptibility loci in GO have been proposed, including immunological genes, human leukocyte antigen (HLA), cytotoxic T-lymphocyte antigen-4 (CTLA-4), regulatory T-cell genes and thyroid-specific genes. This review gives a brief overview of the current range of major susceptibility genes found for GD.

  15. Predicting local adaptation in fragmented plant populations: implications for restoration genetics

    PubMed Central

    Pickup, Melinda; Field, David L; Rowell, David M; Young, Andrew G

    2012-01-01

    Understanding patterns and correlates of local adaptation in heterogeneous landscapes can provide important information in the selection of appropriate seed sources for restoration. We assessed the extent of local adaptation of fitness components in 12 population pairs of the perennial herb Rutidosis leptorrhynchoides (Asteraceae) and examined whether spatial scale (0.7–600 km), environmental distance, quantitative (QST) and neutral (FST) genetic differentiation, and size of the local and foreign populations could predict patterns of adaptive differentiation. Local adaptation varied among populations and fitness components. Including all population pairs, local adaptation was observed for seedling survival, but not for biomass, while foreign genotype advantage was observed for reproduction (number of inflorescences). Among population pairs, local adaptation increased with QST and local population size for biomass. QST was associated with environmental distance, suggesting ecological selection for phenotypic divergence. However, low FST and variation in population structure in small populations demonstrates the interaction of gene flow and drift in constraining local adaptation in R. leptorrhynchoides. Our study indicates that for species in heterogeneous landscapes, collecting seed from large populations from similar environments to candidate sites is likely to provide the most appropriate seed sources for restoration. PMID:23346235

  16. Genetics: A New Landscape for Medical Geography

    PubMed Central

    Carrel, Margaret; Emch, Michael

    2014-01-01

    The emergence and re-emergence of human pathogens resistant to medical treatment will present a challenge to the international public health community in the coming decades. Geography is uniquely positioned to examine the progressive evolution of pathogens across space and through time, and to link molecular change to interactions between population and environmental drivers. Landscape as an organizing principle for the integration of natural and cultural forces has a long history in geography, and, more specifically, in medical geography. Here, we explore the role of landscape in medical geography, the emergent field of landscape genetics, and the great potential that exists in the combination of these two disciplines. We argue that landscape genetics can enhance medical geographic studies of local-level disease environments with quantitative tests of how human-environment interactions influence pathogenic characteristics. In turn, such analyses can expand theories of disease diffusion to the molecular scale and distinguish the important factors in ecologies of disease that drive genetic change of pathogens. PMID:24558292

  17. Impact of US Brown Swiss genetics on milk quality from low-input herds in Switzerland: Interactions with season.

    PubMed

    Stergiadis, Sokratis; Bieber, Anna; Chatzidimitriou, Eleni; Franceschin, Enrica; Isensee, Anne; Rempelos, Leonidas; Baranski, Marcin; Maurer, Veronika; Cozzi, Giulio; Bapst, Beat; Butler, Gillian; Leifert, Carlo

    2018-06-15

    This study investigated the effect of, and interactions between, US Brown Swiss (BS) genetics and season on milk yield, basic composition and fatty acid profiles, from cows on low-input farms in Switzerland. Milk samples (n = 1,976) were collected from 1,220 crossbreed cows with differing proportions of BS, Braunvieh and Original Braunvieh genetics on 40 farms during winter-housing and summer-grazing. Cows with more BS genetics produced more milk in winter but not in summer, possibly because of underfeeding potentially high-yielding cows on low-input pasture-based diets. Cows with more Original Braunvieh genetics produced milk with more (i) nutritionally desirable eicosapentaenoic and docosapentaenoic acids, throughout the year, and (ii) vaccenic and α-linolenic acids, total omega-3 fatty acid concentrations and a higher omega-3/omega-6 ratio only during summer-grazing. This suggests that overall milk quality could be improved by re-focussing breeding strategies on cows' ability to respond to local dietary environments and seasonal dietary changes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. SNPs located at CpG sites modulate genome-epigenome interaction

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an important molecular-level phenotype that links genotypes and complex disease traits. Previous studies have found local correlation between genetic variants and DNA methylation levels (cis-meQTLs). However, general mechanisms underlying cis-meQTLs are unclear. We conducted a cis...

  19. Genetic adaptation as a biological buffer against climate change: potential and limitations.

    PubMed

    De Meester, Luc; Stoks, Robby; Brans, Kristien I

    2017-11-23

    Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, food web alterations, changed intensities of host-parasite interactions, and extinctions. An increasing number of studies documented evolutionary changes in, amongst others, phenology and thermal tolerance. In this opinion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strongly among taxa and populations. Secondly, there can be costs associated with genetic adaptation, such as a reduced evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to trade-offs. Third, the differential capacity of taxa to genetically respond to climate change results in novel interactions because different organism groups respond to a different degree with local compared to regional (cf. dispersal and range shift) responses. These complexities result in additional changes in the selection pressures on populations. We conclude that evolution can provide an initial buffer against climate change for some taxa and populations, but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how biota will respond to climate change and will impact which taxa will be the winners or losers at the local, metacommunity, and regional scales. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. The role of epigenetics in genetic and environmental epidemiology.

    PubMed

    Ladd-Acosta, Christine; Fallin, M Daniele

    2016-02-01

    Epidemiology is the branch of science that investigates the causes and distribution of disease in populations in order to provide preventative measures and promote human health. The fields of genetic and environmental epidemiology primarily seek to identify genetic and environmental risk factors for disease, respectively. Epigenetics is emerging as an important piece of molecular data to include in these studies because it can provide mechanistic insights into genetic and environmental risk factors for disease, identify potential intervention targets, provide biomarkers of exposure, illuminate gene-environment interactions and help localize disease-relevant genomic regions. Here, we describe the importance of including epigenetics in genetic and environmental epidemiology studies, provide a conceptual framework when considering epigenetic data in population-based studies and touch upon the many challenges that lie ahead.

  1. Genetic structure and isolation by distance in a landrace of Thai rice

    PubMed Central

    Pusadee, Tonapha; Jamjod, Sansanee; Chiang, Yu-Chung; Rerkasem, Benjavan; Schaal, Barbara A.

    2009-01-01

    Rice is among the 3 most important crops worldwide. While much of the world's rice harvest is based on modern high-yield varieties, traditional varieties of rice grown by indigenous groups have great importance as a resource for future crop improvement. These local landraces represent an intermediate stage of domestication between a wild ancestor and modern varieties and they serve as reservoirs of genetic variation. Such genetic variation is influenced both by natural processes such as selection and drift, and by the agriculture practices of local farmers. How these processes interact to shape and change the population genetics of landrace rice is unknown. Here, we determine the population genetic structure of a single variety of landrace rice, Bue Chomee, cultivated by Karen people of Thailand. Microsatellite markers reveal high level of genetic variation despite predominant inbreeding in the crop. Bue Chomee rice shows slight but significant genetic differentiation among Karen villages. Moreover, genetically determined traits such as flowering time can vary significantly among villages. An unanticipated result was the overall pattern of genetic differentiation across villages which conforms to an isolation by distance model of differentiation. Isolation by distance is observed in natural plant species where the likelihood of gene flow is inversely related to distance. In Karen rice, gene flow is the result of farmers' seed sharing networks. Taken together, these data suggest that landrace rice is a dynamic genetic system that responds to evolutionary forces, both natural and those imposed by humans. PMID:19651617

  2. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    PubMed Central

    Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike

    2006-01-01

    Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047

  3. Potential disease interaction reinforced: double-virus-infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river.

    PubMed

    Madhun, A S; Karlsbakk, E; Isachsen, C H; Omdal, L M; Eide Sørvik, A G; Skaala, Ø; Barlaup, B T; Glover, K A

    2015-02-01

    The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  4. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    NASA Astrophysics Data System (ADS)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  5. An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae.

    PubMed

    Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard

    2005-02-16

    In S. cerevisiae the beta-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization.

  6. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth.

    PubMed

    Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting

    2011-10-20

    During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons.

    PubMed

    Drerup, Catherine M; Herbert, Amy L; Monk, Kelly R; Nechiporuk, Alex V

    2017-04-17

    Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10 , a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.

  8. Histone modifications influence mediator interactions with chromatin

    PubMed Central

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  9. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence.

    PubMed

    Pereira, Ricardo J; Monahan, William B; Wake, David B

    2011-07-06

    Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI. By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI. These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation.

  10. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  11. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis.

    PubMed

    Cartier-Michaud, Amandine; Bailly, Anne-Laure; Betzi, Stéphane; Shi, Xiaoli; Lissitzky, Jean-Claude; Zarubica, Ana; Sergé, Arnauld; Roche, Philippe; Lugari, Adrien; Hamon, Véronique; Bardin, Florence; Derviaux, Carine; Lembo, Frédérique; Audebert, Stéphane; Marchetto, Sylvie; Durand, Bénédicte; Borg, Jean-Paul; Shi, Ning; Morelli, Xavier; Aurrand-Lions, Michel

    2017-06-01

    Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.

  12. Complex Patterns of Admixture across the Indonesian Archipelago

    PubMed Central

    Hudjashov, Georgi; Karafet, Tatiana M.; Lawson, Daniel J.; Downey, Sean; Savina, Olga; Sudoyo, Herawati; Lansing, J. Stephen; Hammer, Michael F.; Cox, Murray P.

    2017-01-01

    Abstract Indonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups. PMID:28957506

  13. Life history, population viability, and the potential for local adaptation in isolated trout populations

    Treesearch

    K. J. Carim; Y. Vindenes; L. A. Eby; C. Barfoot; L. A. Vollestad

    2017-01-01

    Habitat loss and fragmentation have caused population decline across taxa through impacts on life history diversity, dispersal patterns, and gene flow. Yet, intentional isolation of native fish populations is a frequently used management strategy to protect against negative interactions with invasive fish species. We evaluated the population viability and genetic...

  14. The variable genomic architecture of isolation between hybridizing species of house mice.

    PubMed

    Teeter, Katherine C; Thibodeau, Lisa M; Gompert, Zachariah; Buerkle, C Alex; Nachman, Michael W; Tucker, Priscilla K

    2010-02-01

    Studies of the genetics of hybrid zones can provide insight into the genomic architecture of species boundaries. By examining patterns of introgression of multiple loci across a hybrid zone, it may be possible to identify regions of the genome that have experienced selection. Here, we present a comparison of introgression in two replicate transects through the house mouse hybrid zone through central Europe, using data from 41 single nucleotide markers. Using both genomic and geographic clines, we found many differences in patterns of introgression between the two transects, as well as some similarities. We found that many loci may have experienced the effects of selection at linked sites, including selection against hybrid genotypes, as well as positive selection in the form of genotypes introgressed into a foreign genetic background. We also found many positive associations of conspecific alleles among unlinked markers, which could be caused by epistatic interactions. Different patterns of introgression in the two transects highlight the challenge of using hybrid zones to identify genes underlying isolation and raise the possibility that the genetic basis of isolation between these species may be dependent on the local population genetic make-up or the local ecological setting.

  15. THE PEAKS AND GEOMETRY OF FITNESS LANDSCAPES

    PubMed Central

    CRONA, KRISTINA; GREENE, DEVIN; BARLOW, MIRIAM

    2012-01-01

    Fitness landscapes are central in the theory of adaptation. Recent work compares global and local properties of fitness landscapes. It has been shown that multi-peaked fitness landscapes have a local property called reciprocal sign epistasis interactions. The converse is not true. We show that no condition phrased in terms of reciprocal sign epistasis interactions only, implies multiple peaks. We give a sufficient condition for multiple peaks phrased in terms of two-way interactions. This result is surprising since it has been claimed that no sufficient local condition for multiple peaks exist. We show that our result cannot be generalized to sufficient conditions for three or more peaks. Our proof depends on fitness graphs, where nodes represent genotypes and where arrows point toward more fit genotypes. We also use fitness graphs in order to give a new brief proof of the equivalent characterizations of fitness landscapes lacking genetic constraints on accessible mutational trajectories. We compare a recent geometric classification of fitness landscape based on triangulations of polytopes with qualitative aspects of gene interactions. One observation is that fitness graphs provide information not contained in the geometric classification. We argue that a qualitative perspective may help relating theory of fitness landscapes and empirical observations. PMID:23036916

  16. An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard

    2005-01-01

    Background In S. cerevisiae the β-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Results Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Conclusion Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization. PMID:15715908

  17. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-03

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  18. Spatial variation in climate mediates gene flow across an island archipelago.

    PubMed

    Logan, Michael L; Duryea, M C; Molnar, Orsolya R; Kessler, Benji J; Calsbeek, Ryan

    2016-10-01

    High levels of gene flow among partially isolated populations can overwhelm selection and limit local adaptation. This process, known as "gene swamping," can homogenize genetic diversity among populations and reduce the capacity of a species to withstand rapid environmental change. We studied brown anole lizards (Anolis sagrei) distributed across seven islands in The Bahamas. We used microsatellite markers to estimate gene flow among islands and then examined the correlation between thermal performance and island temperature. The thermal optimum for sprint performance was correlated with both mean and maximum island temperature, whereas performance breadth was not correlated with any measure of temperature variation. Gene flow between islands decreased as the difference between mean island temperatures increased, even when those islands were adjacent to one another. These data suggest that phenotypic variation is the result of either (1) local genetic adaptation with selection against immigrants maintaining variation in the thermal optimum, (2) irreversible forms of adaptive plasticity such that immigrants have reduced fitness, or (3) an interaction between fixed genetic differences and plasticity. In general, the patterns of gene flow we observed suggest that local thermal environments represent important ecological filters that can mediate gene flow on relatively fine geographic scales. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  19. The attractiveness fragment—AFLP analysis of local adaptation and sexual selection in a caeliferan grasshopper, Chorthippus biguttulus

    NASA Astrophysics Data System (ADS)

    Klappert, Kirsten; Butlin, Roger K.; Reinhold, Klaus

    2007-08-01

    Genetic variability among males is a necessary precondition for the evolution of female choice based on indirect genetic benefits. In addition to mutations and host parasite cycles, migration of locally adapted individuals offers an explanation for the maintenance of genetic variability. In a previous study, conducting a reciprocal transplant experiment on a grasshopper, Chorthippus biguttulus, we found that environmental conditions significantly influenced not only body condition but also an important trait of male calling song, the amplitude of song. Although not significant, all other analysed physical and courtship song traits and attractiveness were superior in native than in transferred males. Thus, we concluded that local adaptation has a slight but consistent influence on a range of traits in our study populations, including male acoustic attractiveness. In our present study, we scanned male grasshoppers from the same two populations for amplification fragment length polymorphism (AFLP) loci connected with acoustic attractiveness to conspecific females. We found greater differences in allele frequencies between the two populations, for some loci, than are expected from a balance between drift and gene flow. These loci are potentially connected with locally adapted traits. We examined whether these alleles show the proposed genotype environment interaction by having different associations with attractiveness in the two populations. One locus was significantly related to sexual attractiveness; however, this was independent of the males’ population affiliation. Future research on the evolution of female choice will benefit from knowledge of the underlying genetic architecture of male traits under intraspecific sexual selection, and the ‘population genomics’ approach can be a powerful tool for revealing this structure.

  20. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  1. Drosophila Neurexin IV Interacts with Roundabout and is Required for Repulsive Midline Axon Guidance

    PubMed Central

    Banerjee, Swati; Blauth, Kevin; Peters, Kimberly; Rogers, Stephen L.; Fanning, Alan S.; Bhat, Manzoor A.

    2010-01-01

    Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein, Neurexin IV (Nrx IV), functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners such as Contactin and Neuroglian and the midline glia protein Wrapper that interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together our studies establish that Nrx IV is essential for proper Robo localization, and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway. PMID:20410118

  2. Drosophila neurexin IV interacts with Roundabout and is required for repulsive midline axon guidance.

    PubMed

    Banerjee, Swati; Blauth, Kevin; Peters, Kimberly; Rogers, Stephen L; Fanning, Alan S; Bhat, Manzoor A

    2010-04-21

    Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein Neurexin IV (Nrx IV) functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord, and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners, such as Contactin and Neuroglian and the midline glia protein Wrapper, which interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization, and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit, and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together, our studies establish that Nrx IV is essential for proper Robo localization and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway.

  3. Universality Classes of Interaction Structures for NK Fitness Landscapes

    NASA Astrophysics Data System (ADS)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-07-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  4. Universality Classes of Interaction Structures for NK Fitness Landscapes

    NASA Astrophysics Data System (ADS)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  5. Complex Patterns of Admixture across the Indonesian Archipelago.

    PubMed

    Hudjashov, Georgi; Karafet, Tatiana M; Lawson, Daniel J; Downey, Sean; Savina, Olga; Sudoyo, Herawati; Lansing, J Stephen; Hammer, Michael F; Cox, Murray P

    2017-10-01

    Indonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity.

    PubMed

    Fridley, Jason D; Grime, J Philip

    2010-08-01

    Studies of whether plant community structure and ecosystem properties depend on the genetic diversity of component populations have been largely restricted to species monocultures and have involved levels of genetic differentiation that do not necessarily correspond to that exhibited by neighboring mature individuals in the field. We established experimental communities of varying intraspecific genetic diversity, using genotypes of eight species propagated from clonal material of individuals derived from a small (100-m2) limestone grassland community, and tested whether genetic diversity (one, four, and eight genotypes per species) influenced community composition and annual aboveground productivity across communities of one, four, and eight species. Eight-species communities were represented by common grass, sedge, and forb species, and four- and one-species communities were represented by four graminoids and the dominant grass Festuca ovina, respectively. After three years of community development, there was a marginal increase of species diversity with increased genetic diversity in four- and eight-species communities, and genetic diversity altered the performance of genotypes in monospecific communities of F. ovina. However, shifts in composition from genetic diversity were not sufficient to alter patterns of community productivity. Neighborhood models describing pairwise interactions between species indicated that genetic diversity decreased the intensity of competition between species in four-species mixtures, thereby promoting competitive equivalency and enhancing species equitability. In F. ovina monocultures, neighborhood models revealed both synergistic and antagonistic interactions between genotypes that were reduced in intensity on more stressful shallow soils. Although the dependence of F. ovina genotype performance on neighborhood genetic composition did not influence total productivity, such dependence was sufficient to uncouple genotype performance in genetic mixtures and monocultures. Our results point to an important connection between local genetic diversity and species diversity in this species-rich ecosystem but suggest that such community-level dependence on genetic diversity may not feedback to ecosystem productivity.

  7. Genetic Structure and Potential Environmental Determinants of Local Genetic Diversity in Japanese Honeybees (Apis cerana japonica)

    PubMed Central

    Nagamitsu, Teruyoshi; Yasuda, Mika; Saito-Morooka, Fuki; Inoue, Maki N.; Nishiyama, Mio; Goka, Koichi; Sugiura, Shinji; Maeto, Kaoru; Okabe, Kimiko; Taki, Hisatomo

    2016-01-01

    Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity. PMID:27898704

  8. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca).

    PubMed

    Pilot, M; Dahlheim, M E; Hoelzel, A R

    2010-01-01

    In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.

  9. Archived DNA reveals fisheries and climate induced collapse of a major fishery.

    PubMed

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-22

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  10. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    PubMed Central

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-01-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change. PMID:26489934

  11. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    NASA Astrophysics Data System (ADS)

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  12. The Mps1 kinase modulates the recruitment and activity of Cnn1(CENP-T) at Saccharomyces cerevisiae kinetochores.

    PubMed

    Thapa, Kriti Shrestha; Oldani, Amanda; Pagliuca, Cinzia; De Wulf, Peter; Hazbun, Tony R

    2015-05-01

    Kinetochores are conserved protein complexes that bind the replicated chromosomes to the mitotic spindle and then direct their segregation. To better comprehend Saccharomyces cerevisiae kinetochore function, we dissected the phospho-regulated dynamic interaction between conserved kinetochore protein Cnn1(CENP-T), the centromere region, and the Ndc80 complex through the cell cycle. Cnn1 localizes to kinetochores at basal levels from G1 through metaphase but accumulates abruptly at anaphase onset. How Cnn1 is recruited and which activities regulate its dynamic localization are unclear. We show that Cnn1 harbors two kinetochore-localization activities: a C-terminal histone-fold domain (HFD) that associates with the centromere region and a N-terminal Spc24/Spc25 interaction sequence that mediates linkage to the microtubule-binding Ndc80 complex. We demonstrate that the established Ndc80 binding site in the N terminus of Cnn1, Cnn1(60-84), should be extended with flanking residues, Cnn1(25-91), to allow near maximal binding affinity to Ndc80. Cnn1 localization was proposed to depend on Mps1 kinase activity at Cnn1-S74, based on in vitro experiments demonstrating the Cnn1-Ndc80 complex interaction. We demonstrate that from G1 through metaphase, Cnn1 localizes via both its HFD and N-terminal Spc24/Spc25 interaction sequence, and deletion or mutation of either region results in anomalous Cnn1 kinetochore levels. At anaphase onset (when Mps1 activity decreases) Cnn1 becomes enriched mainly via the N-terminal Spc24/Spc25 interaction sequence. In sum, we provide the first in vivo evidence of Cnn1 preanaphase linkages with the kinetochore and enrichment of the linkages during anaphase. Copyright © 2015 by the Genetics Society of America.

  13. Genetic variability within and among populations of an invasive, exotic orchid

    PubMed Central

    Ueno, Sueme; Rodrigues, Jucelene Fernandes; Alves-Pereira, Alessandro; Pansarin, Emerson Ricardo; Veasey, Elizabeth Ann

    2015-01-01

    Despite the fact that invasive species are of great evolutionary interest because of their success in colonizing and spreading into new areas, the factors underlying this success often remain obscure. In this sense, studies on population genetics and phylogenetic relationships of invasive species could offer insights into mechanisms of invasions. Originally from Africa, the terrestrial orchid Oeceoclades maculata, considered an invasive plant, is the only species of the genus throughout the Americas. Considering the lack of information on population genetics of this species, the aim of this study was to evaluate the genetic diversity and structure of Brazilian populations of O. maculata. We used 13 inter-simple sequence repeat primers to assess the genetic diversity of 152 individuals of O. maculata distributed in five sampled sites from three Brazilian states (São Paulo, Mato Grosso and Paraná). Low diversity was found within samples, with estimates of the Shannon index (H) ranging from 0.0094 to 0.1054 and estimates of Nei's gene diversity (He) ranging from 0.0054 to 0.0668. However, when evaluated together, the sampling locations showed substantially higher diversity estimates (H = 0.3869, He = 0.2556), and most of the genetic diversity was found among populations (ΦST = 0.933). Both clustering and principal coordinate analysis indicate the existence of five distinct groups, corresponding to the sampled localities, and which were also recovered in the Bayesian analysis. A substructure was observed in one of the localities, suggesting a lack of gene flow even between very small distances. The patterns of genetic structure found in this study may be understood considering the interaction of several probable reproductive strategies with its history of colonization involving possible genetic drift, selective pressures and multiple introductions. PMID:26162896

  14. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia

    PubMed Central

    Pollegioni, Paola; Woeste, Keith E.; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E.; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history. PMID:26332919

  15. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.

    PubMed

    Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko

    2017-11-01

    To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Is pigment patterning in fish skin determined by the Turing mechanism?

    PubMed

    Watanabe, Masakatsu; Kondo, Shigeru

    2015-02-01

    More than half a century ago, Alan Turing postulated that pigment patterns may arise from a mechanism that could be mathematically modeled based on the diffusion of two substances that interact with each other. Over the past 15 years, the molecular and genetic tools to verify this prediction have become available. Here, we review experimental studies aimed at identifying the mechanism underlying pigment pattern formation in zebrafish. Extensive molecular genetic studies in this model organism have revealed the interactions between the pigment cells that are responsible for the patterns. The mechanism discovered is substantially different from that predicted by the mathematical model, but it retains the property of 'local activation and long-range inhibition', a necessary condition for Turing pattern formation. Although some of the molecular details of pattern formation remain to be elucidated, current evidence confirms that the underlying mechanism is mathematically equivalent to the Turing mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14.

    PubMed

    Jonkers, Wilfried; Fischer, Monika S; Do, Hung P; Starr, Trevor L; Glass, N Louise

    2016-05-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to "fusion puncta." The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. Copyright © 2016 by the Genetics Society of America.

  18. The Fanconi anemia proteins FANCD2 and FANCJ interact and regulate each other's chromatin localization.

    PubMed

    Chen, Xiaoyong; Wilson, James B; McChesney, Patricia; Williams, Stacy A; Kwon, Youngho; Longerich, Simonne; Marriott, Andrew S; Sung, Patrick; Jones, Nigel J; Kupfer, Gary M

    2014-09-12

    Fanconi anemia is a genetic disease resulting in bone marrow failure, birth defects, and cancer that is thought to encompass a defect in maintenance of genomic stability. Mutations in 16 genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, and Q) have been identified in patients, with the Fanconi anemia subtype J (FA-J) resulting from homozygous mutations in the FANCJ gene. Here, we describe the direct interaction of FANCD2 with FANCJ. We demonstrate the interaction of FANCD2 and FANCJ in vivo and in vitro by immunoprecipitation in crude cell lysates and from fractions after gel filtration and with baculovirally expressed proteins. Mutation of the monoubiquitination site of FANCD2 (K561R) preserves interaction with FANCJ constitutively in a manner that impedes proper chromatin localization of FANCJ. FANCJ is necessary for FANCD2 chromatin loading and focus formation in response to mitomycin C treatment. Our results suggest not only that FANCD2 regulates FANCJ chromatin localization but also that FANCJ is necessary for efficient loading of FANCD2 onto chromatin following DNA damage caused by mitomycin C treatment. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    PubMed Central

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  20. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility.

    PubMed

    Bush, W S; McCauley, J L; DeJager, P L; Dudek, S M; Hafler, D A; Gibson, R A; Matthews, P M; Kappos, L; Naegelin, Y; Polman, C H; Hauser, S L; Oksenberg, J; Haines, J L; Ritchie, M D

    2011-07-01

    Gene-gene interactions are proposed as an important component of the genetic architecture of complex diseases, and are just beginning to be evaluated in the context of genome-wide association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is that it also increases power to detect weak main effects. We conducted a knowledge-driven interaction analysis of a GWAS of 931 multiple sclerosis (MS) trios to discover gene-gene interactions within established biological contexts. We identify heterogeneous signals, including a gene-gene interaction between CHRM3 (muscarinic cholinergic receptor 3) and MYLK (myosin light-chain kinase) (joint P=0.0002), an interaction between two phospholipase C-β isoforms, PLCβ1 and PLCβ4 (joint P=0.0098), and a modest interaction between ACTN1 (actinin alpha 1) and MYH9 (myosin heavy chain 9) (joint P=0.0326), all localized to calcium-signaled cytoskeletal regulation. Furthermore, we discover a main effect (joint P=5.2E-5) previously unidentified by single-locus analysis within another related gene, SCIN (scinderin), a calcium-binding cytoskeleton regulatory protein. This work illustrates that knowledge-driven interaction analysis of GWAS data is a feasible approach to identify new genetic effects. The results of this study are among the first gene-gene interactions and non-immune susceptibility loci for MS. Further, the implicated genes cluster within inter-related biological mechanisms that suggest a neurodegenerative component to MS.

  1. Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?

    USGS Publications Warehouse

    Adkison, Milo D.

    1995-01-01

    Morphological, behavioral, and life-history differences between Pacific salmon (Oncorhynchus spp.) populations are commonly thought to reflect local adaptation, and it is likewise common to assume that salmon populations separated by small distances are locally adapted. Two alternatives to local adaptation exist: random genetic differentiation owing to genetic drift and founder events, and genetic homogeneity among populations, in which differences reflect differential trait expression in differing environments. Population genetics theory and simulations suggest that both alternatives are possible. With selectively neutral alleles, genetic drift can result in random differentiation despite many strays per generation. Even weak selection can prevent genetic drift in stable populations; however, founder effects can result in random differentiation despite selective pressures. Overlapping generations reduce the potential for random differentiation. Genetic homogeneity can occur despite differences in selective regimes when straying rates are high. In sum, localized differences in selection should not always result in local adaptation. Local adaptation is favored when population sizes are large and stable, selection is consistent over large areas, selective diffeentials are large, and straying rates are neither too high nor too low. Consideration of alternatives to local adaptation would improve both biological research and salmon conservation efforts.

  2. Dissecting DNA damage response pathways by analyzing protein localization and abundance changes during DNA replication stress

    PubMed Central

    Tkach, Johnny M.; Yimit, Askar; Lee, Anna Y.; Riffle, Michael; Costanzo, Michael; Jaschob, Daniel; Hendry, Jason A.; Ou, Jiongwen; Moffat, Jason; Boone, Charles; Davis, Trisha N.; Nislow, Corey; Brown, Grant W.

    2012-01-01

    Re-localization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein re-organization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by sub-cellular destination allows the identification of pathways that respond to replication stress. We analyzed pairwise combinations of GFP fusions and gene deletion mutants to define and order two novel DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways. PMID:22842922

  3. Similar evolutionary potentials in an obligate ant parasite and its two host species

    PubMed Central

    Pennings, P S; Achenbach, A; Foitzik, S

    2011-01-01

    The spatial structure of host–parasite coevolution is shaped by population structure and genetic diversity of the interacting species. We analysed these population genetic parameters in three related ant species: the parasitic slavemaking ant Protomognathus americanus and its two host species Temnothorax longispinosus and T. curvispinosus. We sampled throughout their range, genotyped ants on six to eight microsatellite loci and an MtDNA sequence and found high levels of genetic variation and strong population structure in all three species. Interestingly, the most abundant species and primary host, T. longispinosus, is characterized by less structure, but lower local genetic diversity. Generally, differences between the species were small, and we conclude that they have similar evolutionary potentials. The coevolutionary interaction between this social parasite and its hosts may therefore be less influenced by divergent evolutionary potentials, but rather by varying selection pressures. We employed different methods to quantify and compare genetic diversity and structure between species and genetic markers. We found that Jost D is well suited for these comparisons, as long as mutation rates between markers and species are similar. If this is not the case, for example, when using MtDNA and microsatellites to study sex-specific dispersal, model-based inference should be used instead of descriptive statistics (such as D or GST). Using coalescent-based methods, we indeed found that males disperse much more than females, but this sex bias in dispersal differed between species. The findings of the different approaches with regard to genetic diversity and structure were in good accordance with each other. PMID:21324025

  4. Digest: Local adaptation at close quarters.

    PubMed

    Schmidt, Chloé; Garroway, Colin

    2018-06-19

    Although the theory of how gene flow and genetic drift interact with local adaptation is well understood, few empirical studies have examined this process. Hämälä et al. (2018) present evidence that adaptive divergence between populations of Arabidopsis lyrata can persist in the face of relatively high levels of gene flow and drift. Maintaining divergence despite gene flow and drift has important implications for understanding adaptive responses of populations in response to human-driven environmental change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Population-environment drivers of H5N1 avian influenza molecular change in Vietnam

    PubMed Central

    Carrel, Margaret A.; Emch, Michael; Nguyen, Tung; Jobe, R. Todd; Wan, Xiu-Feng

    2013-01-01

    This study identifies population and environment drivers of genetic change in H5N1 avian influenza viruses (AIV) in Vietnam using a landscape genetics approach. While prior work has examined how combinations of local-level environmental variables influence H5N1 occurrence, this research expands the analysis to the complex genetic characteristics of H5N1 viruses. A dataset of 125 highly pathogenic H5N1 AIV isolated in Vietnam from 2003–2007 is used to explore which population and environment variables are correlated with increased genetic change among viruses. Results from non-parametric multidimensional scaling and regression analyses indicate that variables relating to both the environmental and social ecology of humans and birds in Vietnam interact to affect the genetic character of viruses. These findings suggest that it is a combination of suitable environments for species mixing, the presence of high numbers of potential hosts, and in particular the temporal characteristics of viral occurrence, that drive genetic change among H5N1 AIV in Vietnam. PMID:22652510

  6. Population-environment drivers of H5N1 avian influenza molecular change in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Nguyen, Tung; Todd Jobe, R; Wan, Xiu-Feng

    2012-09-01

    This study identifies population and environment drivers of genetic change in H5N1 avian influenza viruses (AIV) in Vietnam using a landscape genetics approach. While prior work has examined how combinations of local-level environmental variables influence H5N1 occurrence, this research expands the analysis to the complex genetic characteristics of H5N1 viruses. A dataset of 125 highly pathogenic H5N1 AIV isolated in Vietnam from 2003 to 2007 is used to explore which population and environment variables are correlated with increased genetic change among viruses. Results from non-parametric multidimensional scaling and regression analyses indicate that variables relating to both the environmental and social ecology of humans and birds in Vietnam interact to affect the genetic character of viruses. These findings suggest that it is a combination of suitable environments for species mixing, the presence of high numbers of potential hosts, and in particular the temporal characteristics of viral occurrence, that drive genetic change among H5N1 AIV in Vietnam. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    PubMed Central

    Vangestel, Carl; Mergeay, Joachim; Dawson, Deborah A.; Vandomme, Viki; Lens, Luc

    2011-01-01

    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed. PMID:21747940

  8. Genetic drift and collective dispersal can result in chaotic genetic patchiness.

    PubMed

    Broquet, Thomas; Viard, Frédérique; Yearsley, Jonathan M

    2013-06-01

    Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free-living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a co-ancestry model and individual-based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio-temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  9. Heritable Variation for Sex Ratio under Environmental Sex Determination in the Common Snapping Turtle (Chelydra Serpentina)

    PubMed Central

    Janzen, F. J.

    1992-01-01

    The magnitude of quantitative genetic variation for primary sex ratio was measured in families extracted from a natural population of the common snapping turtle (Chelydra serpentina), which possesses temperature-dependent sex determination (TSD). Eggs were incubated at three temperatures that produced mixed sex ratios. This experimental design provided estimates of the heritability of sex ratio in multiple environments and a test of the hypothesis that genotype X environment (G X E) interactions may be maintaining genetic variation for sex ratio in this population of C. serpentina. Substantial quantitative genetic variation for primary sex ratio was detected in all experimental treatments. These results in conjunction with the occurrence of TSD in this species provide support for three critical assumptions of Fisher's theory for the microevolution of sex ratio. There were statistically significant effects of family and incubation temperature on sex ratio, but no significant interaction was observed. Estimates of the genetic correlations of sex ratio across environments were highly positive and essentially indistinguishable from +1. These latter two findings suggest that G X E interaction is not the mechanism maintaining genetic variation for sex ratio in this system. Finally, although substantial heritable variation exists for primary sex ratio of C. serpentina under constant temperatures, estimates of the effective heritability of primary sex ratio in nature are approximately an order of magnitude smaller. Small effective heritability and a long generation time in C. serpentina imply that evolution of sex ratios would be slow even in response to strong selection by, among other potential agents, any rapid and/or substantial shifts in local temperatures, including those produced by changes in the global climate. PMID:1592234

  10. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by Monte Carlo simulations.

  11. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria

    PubMed Central

    Hoppins, Suzanne; Collins, Sean R.; Cassidy-Stone, Ann; Hummel, Eric; DeVay, Rachel M.; Lackner, Laura L.; Westermann, Benedikt; Schuldiner, Maya

    2011-01-01

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane–associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria. PMID:21987634

  12. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases

    PubMed Central

    Park, Solip; Yang, Jae-Seong; Shin, Young-Eun; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2011-01-01

    Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease-associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease-associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression. PMID:21613983

  13. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change

    USGS Publications Warehouse

    Sork, Victoria L.; Davis, Frank W.; Westfall, Robert; Flint, Alan L.; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine

    2010-01-01

    Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata N??e, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions. ?? 2010 Blackwell Publishing Ltd.

  14. Population Genetics of Plasmodium vivax in Four Rural Communities in Central Vietnam

    PubMed Central

    Hong, Nguyen Van; Delgado-Ratto, Christopher; Thanh, Pham Vinh; Van den Eede, Peter; Guetens, Pieter; Binh, Nguyen Thi Huong; Phuc, Bui Quang; Duong, Tran Thanh; Van Geertruyden, Jean Pierre; D’Alessandro, Umberto; Erhart, Annette; Rosanas-Urgell, Anna

    2016-01-01

    Background The burden of malaria in Vietnam has drastically reduced, prompting the National Malaria Control Program to officially engage in elimination efforts. Plasmodium vivax is becoming increasingly prevalent, remaining a major problem in the country's central and southern provinces. A better understanding of P. vivax genetic diversity and structure of local parasite populations will provide baseline data for the evaluation and improvement of current efforts for control and elimination. The aim of this study was to examine the population genetics and structure of P. vivax isolates from four communities in Tra Leng commune, Nam Tra My district in Quang Nam, Central Vietnam. Methodology/Principal Findings P. vivax mono infections collected from 234 individuals between April 2009 and December 2010 were successfully analyzed using a panel of 14 microsatellite markers. Isolates displayed moderate genetic diversity (He = 0.68), with no significant differences between study communities. Polyclonal infections were frequent (71.4%) with a mean multiplicity of infection of 1.91 isolates/person. Low but significant genetic differentiation (FST value from -0.05 to 0.18) was observed between the community across the river and the other communities. Strong linkage disequilibrium (IAS = 0.113, p < 0.001) was detected across all communities, suggesting gene flow within and among them. Using multiple approaches, 101 haplotypes were grouped into two genetic clusters, while 60.4% of haplotypes were admixed. Conclusions/Significance In this area of Central Vietnam, where malaria transmission has decreased significantly over the past decade, there was moderate genetic diversity and high occurrence of polyclonal infections. Local human populations have frequent social and economic interactions that facilitate gene flow and inbreeding among parasite populations, while decreasing population structure. Findings provide important information on parasites populations circulating in the study area and are relevant to current malaria elimination efforts. PMID:26872387

  15. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change.

    PubMed

    Sork, Victoria L; Davis, Frank W; Westfall, Robert; Flint, Alan; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine

    2010-09-01

    Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions.

  16. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  17. African genetic ancestry interacts with body mass index to modify risk for uterine fibroids

    PubMed Central

    Hartmann, Katherine E.; Torstenson, Eric S.; Wellons, Melissa; Schreiner, Pamela J.; Velez Edwards, Digna R.

    2017-01-01

    Race, specifically African ancestry, and obesity are important risk factors for uterine fibroids, and likely interact to provide the right conditions for fibroid growth. However, existing studies largely focus on the main-effects rather than their interaction. Here, we firstly provide evidence for interaction between categories of body mass index (BMI) and reported-race in relation to uterine fibroids. We then investigate whether the association between inferred local European ancestry and fibroid risk is modified by BMI in African American (AA) women in the Vanderbilt University Medical Center bio-repository (BioVU) (539 cases and 794 controls) and the Coronary Artery Risk Development in Young Adults study (CARDIA, 264 cases and 173 controls). We used multiple logistic regression to evaluate interactions between local European ancestry and BMI in relation to fibroid risk, then performed fixed effects meta-analysis. Statistical significance threshold for local-ancestry and BMI interactions was empirically estimated with 10,000 permutations (p-value = 1.18x10-4). Admixture mapping detected an association between European ancestry and fibroid risk which was modified by BMI (continuous-interaction p-value = 3.75x10-5) around ADTRP (chromosome 6p24); the strongest association was found in the obese category (ancestry odds ratio (AOR) = 0.51, p-value = 2.23x10-5). Evaluation of interaction between genotyped/imputed variants and BMI in this targeted region suggested race-specific interaction, present in AAs only; strongest evidence was found for insertion/deletion variant (6:11946435), again in the obese category (OR = 1.66, p-value = 1.72x10-6). We found nominal evidence for interaction between local ancestry and BMI at a previously reported region in chromosome 2q31-32, which includes COL5A2, and TFPI, an immediate downstream target of ADTRP. Interactions between BMI and SNPs (single nucleotide polymorphisms) found in this region in AA women were also detected in an independent European American population of 1,195 cases and 1,164 controls. Findings from our study provide an example of how modifiable and non-modifiable factors may interact to influence fibroid risk and suggest a biological role for BMI in fibroid etiology. PMID:28715450

  18. Photosynthetic variation and responsiveness to CO2 in a widespread riparian tree

    PubMed Central

    Quentin, Audrey; Ivković, Milos; Furbank, Robert T.; Pinkard, Elizabeth

    2018-01-01

    Phenotypic responses to rising CO2 will have consequences for the productivity and management of the world’s forests. This has been demonstrated through extensive free air and controlled environment CO2 enrichment studies. However intraspecific variation in plasticity remains poorly characterised in trees, with the capacity to produce unexpected trends in response to CO2 across a species distribution. Here we examined variation in photosynthesis traits across 43 provenances of a widespread, genetically diverse eucalypt, E. camaldulensis, under ambient and elevated CO2 conditions. Genetic variation suggestive of local adaptation was identified for some traits under ambient conditions. Evidence of genotype by CO2 interaction in responsiveness was limited, however support was identified for quantum yield (φ). In this case local adaptation was invoked to explain trends in provenance variation in response. The results suggest potential for genetic variation to influence a limited set of photosynthetic responses to rising CO2 in seedlings of E. camaldulensis, however further assessment in mature stage plants in linkage with growth and fitness traits is needed to understand whether trends in φ could have broader implications for productivity of red gum forests. PMID:29293528

  19. Photosynthetic variation and responsiveness to CO2 in a widespread riparian tree.

    PubMed

    Dillon, Shannon; Quentin, Audrey; Ivković, Milos; Furbank, Robert T; Pinkard, Elizabeth

    2018-01-01

    Phenotypic responses to rising CO2 will have consequences for the productivity and management of the world's forests. This has been demonstrated through extensive free air and controlled environment CO2 enrichment studies. However intraspecific variation in plasticity remains poorly characterised in trees, with the capacity to produce unexpected trends in response to CO2 across a species distribution. Here we examined variation in photosynthesis traits across 43 provenances of a widespread, genetically diverse eucalypt, E. camaldulensis, under ambient and elevated CO2 conditions. Genetic variation suggestive of local adaptation was identified for some traits under ambient conditions. Evidence of genotype by CO2 interaction in responsiveness was limited, however support was identified for quantum yield (φ). In this case local adaptation was invoked to explain trends in provenance variation in response. The results suggest potential for genetic variation to influence a limited set of photosynthetic responses to rising CO2 in seedlings of E. camaldulensis, however further assessment in mature stage plants in linkage with growth and fitness traits is needed to understand whether trends in φ could have broader implications for productivity of red gum forests.

  20. Incorporating gene-environment interaction in testing for association with rare genetic variants.

    PubMed

    Chen, Han; Meigs, James B; Dupuis, Josée

    2014-01-01

    The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.

  1. Generation of Diverse Biological Forms through Combinatorial Interactions between Tissue Polarity and Growth

    PubMed Central

    Kennaway, Richard; Coen, Enrico; Green, Amelia; Bangham, Andrew

    2011-01-01

    A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed biological shapes. PMID:21698124

  2. Genetic interactions between the chromosome axis-associated protein Hop1 and homologous recombination determinants in Schizosaccharomyces pombe.

    PubMed

    Brown, Simon David; Jarosinska, Olga Dorota; Lorenz, Alexander

    2018-03-17

    Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.

  3. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. © 2015 John Wiley & Sons Ltd.

  4. Adapting populations in space: clonal interference and genetic diversity

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Barton, Nick

    Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.

  5. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    PubMed Central

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  6. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells

    PubMed Central

    Eid, Rita; Demattei, Marie-Véronique; Episkopou, Harikleia; Augé-Gouillou, Corinne; Decottignies, Anabelle; Grandin, Nathalie

    2015-01-01

    Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX. PMID:26055325

  7. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells.

    PubMed

    Eid, Rita; Demattei, Marie-Véronique; Episkopou, Harikleia; Augé-Gouillou, Corinne; Decottignies, Anabelle; Grandin, Nathalie; Charbonneau, Michel

    2015-08-01

    Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Mapping and annotating obesity-related genes in pig and human genomes.

    PubMed

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  9. Poa secunda local collections and commercial releases: A genotypic evaluation

    PubMed Central

    Shaw, Alanna N.; Mummey, Daniel L.

    2017-01-01

    The genetics of native plants influence the success of ecological restoration, yet genetic variability of local seed collections and commercial seed releases remains unclear for most taxa. Poa secunda, a common native grass species in Intermountain West grasslands and a frequent component of restoration seed mixes, is one such species. Here, we evaluate the genetic variation of local Poa secunda collections in the context of wild populations and commercial seed releases. We evaluated AFLP markers for seven Poa secunda collections made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportunity, and Sherman). We compare the genetic distance and distribution of genetic variation within and between local collections and commercial releases. The extent and patterns of genetic variation in our local collections indicate subtle site differences with most variation occurring within rather than between collections. Identical genetic matches were usually, but not always, found within 5 m2 collection sites. Our results suggest that the genetic variation in two Poa secunda releases (High Plains and MT-1) is similar to our local collections. Our results affirm that guidelines for Poa secunda seed collection should follow recommendations for selfing species, by collecting from many sites over large individual sites. PMID:28369130

  10. Poa secunda local collections and commercial releases: A genotypic evaluation.

    PubMed

    Shaw, Alanna N; Mummey, Daniel L

    2017-01-01

    The genetics of native plants influence the success of ecological restoration, yet genetic variability of local seed collections and commercial seed releases remains unclear for most taxa. Poa secunda, a common native grass species in Intermountain West grasslands and a frequent component of restoration seed mixes, is one such species. Here, we evaluate the genetic variation of local Poa secunda collections in the context of wild populations and commercial seed releases. We evaluated AFLP markers for seven Poa secunda collections made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportunity, and Sherman). We compare the genetic distance and distribution of genetic variation within and between local collections and commercial releases. The extent and patterns of genetic variation in our local collections indicate subtle site differences with most variation occurring within rather than between collections. Identical genetic matches were usually, but not always, found within 5 m2 collection sites. Our results suggest that the genetic variation in two Poa secunda releases (High Plains and MT-1) is similar to our local collections. Our results affirm that guidelines for Poa secunda seed collection should follow recommendations for selfing species, by collecting from many sites over large individual sites.

  11. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  12. Scaling laws and universality for the strength of genetic interactions in yeast

    NASA Astrophysics Data System (ADS)

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2012-02-01

    Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.

  13. Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain.

    PubMed

    Kruyt, F A; Abou-Zahr, F; Mok, H; Youssoufian, H

    1999-11-26

    Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.

  14. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    PubMed

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  15. RACK1 interacts with filamin-A to regulate plasma membrane levels of the cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Smith, Laura; Litman, Paul; Kohli, Ekta; Amick, Joseph; Page, Richard C.; Misra, Saurav

    2013-01-01

    Mutations in cystic fibrosis transmembrane regulator (CFTR), a chloride channel in the apical membranes of secretory epithelial cells, underlie the fatal genetic disorder cystic fibrosis. Certain CFTR mutations, including the common mutation ΔF508-CFTR, result in greatly decreased levels of active CFTR at the apical membrane. Direct interactions between CFTR and the cytoskeletal adaptors filamin-A (FlnA) and Na+/H+ exchanger regulatory factor 1 (NHERF1) stabilize the expression and localization of CFTR at the plasma membrane. The scaffold protein receptor for activated C kinase 1 (RACK1) also stabilizes CFTR surface expression; however, RACK1 does not interact directly with CFTR and its mechanism of action is unknown. In the present study, we report that RACK1 interacts directly with FlnA in vitro and in a Calu-3 airway epithelial cell line. We mapped the interaction between RACK1 and FlnA to the WD4 and WD6 repeats of RACK1 and to a segment of the large rod domain of FlnA, consisting of immunoglobulin-like repeats 8–15. Disruption of the RACK1-FlnA interaction causes a reduction in CFTR surface levels. Our results suggest that a novel RACK1-FlnA interaction is an important regulator of CFTR surface localization. PMID:23636454

  16. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases.

    PubMed

    Shin, Sung-Bong; Golovkin, Maxim; Reddy, Anireddy S N

    2014-06-12

    Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth.

  17. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche.

    PubMed

    Stronen, Astrid V; Navid, Erin L; Quinn, Michael S; Paquet, Paul C; Bryan, Heather M; Darimont, Christopher T

    2014-06-10

    Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present.

  18. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  19. EINVis: a visualization tool for analyzing and exploring genetic interactions in large-scale association studies.

    PubMed

    Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang

    2013-11-01

    Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.

  20. Spatiotemporal behavior of nuclear cyclophilin B indicates a role in RNA transcription.

    PubMed

    Dieriks, Birger; Van Oostveldt, Patrick

    2012-06-01

    Cyclophilin B (CypB) is an ubiquitously expressed protein, which performs several intra- and extracellular functions. Despite its abundant use as a household protein, little is known about its exact cellular localization and dynamics. In the present study we show that endogenous CypB localizes in one of two distinct compartments, either within the endoplasmic reticulum (ER) or inside the nucleus, accumulating in the fibrillar centers of the nucleoli. By means of a genetic deletion screen, we identified a minimal nucleolar localization signal for efficient relocation to the nucleoli. Within the fibrillar centers, CypB colocalized with RNA polymerase, upstream binding factor-1 (UBF), fibrillarin and dyskerin (DCK1). Even after chemical disruption of the nucleoli, a strong interaction with these proteins remained. Using live cell imaging, we showed a persistent colocalization of CypB with proteins involved in the ribosome biogenesis during the transcriptionally more active phases of the cell cycle. Supported by in silico data, our observations suggest that CypB interacts with these proteins and is involved in ribosome biogenesis and RNA transcription.

  1. The genetic landscape of a physical interaction

    PubMed Central

    Diss, Guillaume

    2018-01-01

    A key question in human genetics and evolutionary biology is how mutations in different genes combine to alter phenotypes. Efforts to systematically map genetic interactions have mostly made use of gene deletions. However, most genetic variation consists of point mutations of diverse and difficult to predict effects. Here, by developing a new sequencing-based protein interaction assay – deepPCA – we quantified the effects of >120,000 pairs of point mutations on the formation of the AP-1 transcription factor complex between the products of the FOS and JUN proto-oncogenes. Genetic interactions are abundant both in cis (within one protein) and trans (between the two molecules) and consist of two classes – interactions driven by thermodynamics that can be predicted using a three-parameter global model, and structural interactions between proximally located residues. These results reveal how physical interactions generate quantitatively predictable genetic interactions. PMID:29638215

  2. Anthology of the renin-angiotensin system: a one hundred reference approach to angiotensin II antagonists.

    PubMed

    Ménard, J

    1993-04-01

    To provide a historical overview of the renin-angiotensin system as a guide to the introduction of a new therapeutic pathway, non-peptide inhibition of a angiotensin II. One hundred references were selected as a personal preference, for their originality or for their potential impact on medicine. This review raises the following questions for future research. (1) Will the long-term cardiovascular effects of angiotensin converting enzyme (ACE) inhibition, angiotensin II antagonism and renin inhibition be similar or not, and dependent or independent of blood pressure levels? (2) What are the local-regional interactions between vasoconstrictor and vasodilator systems, and does the renin-angiotensin system synchronize these regional hemodynamic regulatory mechanisms? (3) If hypertension is the result of an interaction between genetic and environmental factors, do proteins secreted through constitutive pathways contribute to the genetic abnormality (prorenin, angiotensinogen, ACE) while regulated secretion (renin) and other regulatory mechanisms (angiotensin II receptors) provide biological support for the environmental effects?

  3. Drosophila melanogaster auxilin regulates the internalization of Delta to control activity of the Notch signaling pathway

    PubMed Central

    Hagedorn, Elliott J.; Bayraktar, Jennifer L.; Kandachar, Vasundhara R.; Bai, Ting; Englert, Dane M.; Chang, Henry C.

    2006-01-01

    We have isolated mutations in the Drosophila melanogaster homologue of auxilin, a J-domain–containing protein known to cooperate with Hsc70 in the disassembly of clathrin coats from clathrin-coated vesicles in vitro. Consistent with this biochemical role, animals with reduced auxilin function exhibit genetic interactions with Hsc70 and clathrin. Interestingly, the auxilin mutations interact specifically with Notch and disrupt several Notch-mediated processes. Genetic evidence places auxilin function in the signal-sending cells, upstream of Notch receptor activation, suggesting that the relevant cargo for this auxilin-mediated endocytosis is the Notch ligand Delta. Indeed, the localization of Delta protein is disrupted in auxilin mutant tissues. Thus, our data suggest that auxilin is an integral component of the Notch signaling pathway, participating in the ubiquitin-dependent endocytosis of Delta. Furthermore, the fact that auxilin is required for Notch signaling suggests that ligand endocytosis in the signal-sending cells needs to proceed past coat disassembly to activate Notch. PMID:16682530

  4. IntegratedMap: a Web interface for integrating genetic map data.

    PubMed

    Yang, Hongyu; Wang, Hongyu; Gingle, Alan R

    2005-05-01

    IntegratedMap is a Web application and database schema for storing and interactively displaying genetic map data. Its Web interface includes a menu for direct chromosome/linkage group selection, a search form for selection based on mapped object location and linkage group displays. An overview display provides convenient access to the full range of mapped and anchored object types with genetic locus details, such as numbers, types and names of mapped/anchored objects displayed in a compact scrollable list box that automatically updates based on selected map location and object type. Also, multilinkage group and localized map views are available along with links that can be configured for integration with other Web resources. IntegratedMap is implemented in C#/ASP.NET and the package, including a MySQL schema creation script, is available from http://cggc.agtec.uga.edu/Data/download.asp

  5. Genetic Architecture of Local Adaptation in Lunar and Diurnal Emergence Times of the Marine Midge Clunio marinus (Chironomidae, Diptera)

    PubMed Central

    Kaiser, Tobias S.; Heckel, David G.

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167–193 centimorgans based on a linkage map using 344 markers, and a physical size of 95–140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock. PMID:22384150

  6. Genetic architecture of local adaptation in lunar and diurnal emergence times of the marine midge Clunio marinus (Chironomidae, Diptera).

    PubMed

    Kaiser, Tobias S; Heckel, David G

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167-193 centimorgans based on a linkage map using 344 markers, and a physical size of 95-140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.

  7. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective.

    PubMed

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-02-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.

  8. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective

    PubMed Central

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-01-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038

  9. Landscape genetic approaches to guide native plant restoration in the Mojave Desert

    USGS Publications Warehouse

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2016-01-01

    Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.

  10. Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?

    PubMed Central

    2010-01-01

    Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations. PMID:20813033

  11. The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae.

    PubMed

    Mittelman, Karin; Ziv, Keren; Maoz, Tsofnat; Kleinberger, Tamar

    2010-11-22

    The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.

  12. SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data.

    PubMed

    Cava, Claudia; Colaprico, Antonio; Bertoli, Gloria; Graudenzi, Alex; Silva, Tiago C; Olsen, Catharina; Noushmehr, Houtan; Bontempi, Gianluca; Mauri, Giancarlo; Castiglioni, Isabella

    2017-01-27

    Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates this information with differentially expressed genes obtained from The Cancer Genome Atlas. Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain miRNA-gene-gene and miRNA-protein-protein interactions, and to analyze miRNA GRNs in order to identify miRNA-gene communities; and (iii) graphically visualize the results of the analyses. These analyses can be performed through a single interface and without the need for any downloads. The full data sets are then rapidly integrated and processed locally.

  13. Using probability modelling and genetic parentage assignment to test the role of local mate availability in mating system variation.

    PubMed

    Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B

    2012-02-01

    The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.

  14. Macro-environment of breast carcinoma: frequent genetic alterations in the normal appearing skins of patients with breast cancer.

    PubMed

    Moinfar, Farid; Beham, Alfred; Friedrich, Gerhard; Deutsch, Alexander; Hrzenjak, Andelko; Luschin, Gero; Tavassoli, Fattaneh A

    2008-05-01

    Genetic abnormalities in microenvironmental tissues with subsequent alterations of reciprocal interactions between epithelial and mesenchymal cells play a key role in the breast carcinogenesis. Although a few reports have demonstrated abnormal fibroblastic functions in normal-appearing fibroblasts taken from the skins of breast cancer patients, the genetic basis of this phenomenon and its implication for carcinogenesis are unexplored. We analyzed 12 mastectomy specimens showing invasive ductal carcinomas. In each case, morphologically normal epidermis and dermis, carcinoma, normal stroma close to carcinoma, and stroma at a distant from carcinoma were microdissected. Metastatic-free lymphatic tissues from lymph nodes served as a control. Using PCR, DNA extracts were examined with 11 microsatellite markers known for a high frequency of allelic imbalances in breast cancer. Losses of heterozygosity and/or microsatellite instability were detected in 83% of the skin samples occurring either concurrently with or independently from the cancerous tissues. In 80% of these cases at least one microsatellite marker displayed loss of heterozygosity or microsatellite instability in the skin, which was absent in carcinoma. A total of 41% of samples showed alterations of certain loci observed exclusively in the carcinoma but not in the skin compartments. Our study suggests that breast cancer is not just a localized genetic disorder, but rather part of a larger field of genetic alterations/instabilities affecting multiple cell populations in the organ with various cellular elements, ultimately contributing to the manifestation of the more 'localized' carcinoma. These data indicate that more global assessment of tumor micro- and macro-environment is crucial for our understanding of breast carcinogenesis.

  15. Landscape genomics in Atlantic salmon (Salmo salar): searching for gene-environment interactions driving local adaptation.

    PubMed

    Vincent, Bourret; Dionne, Mélanie; Kent, Matthew P; Lien, Sigbjørn; Bernatchez, Louis

    2013-12-01

    A growing number of studies are examining the factors driving historical and contemporary evolution in wild populations. By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large-scale landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic salmon representing seven previously defined genetically distinct regional groups. Over 5500 genome-wide single nucleotide polymorphisms were genotyped in 641 individuals and 28 bulk assays of 25 pooled individuals each. Genome scans, linkage map, and 49 environmental variables were combined to conduct an innovative landscape genomic analysis. Our results provide valuable insight into the links between environmental variation and both neutral and potentially adaptive genetic divergence. In particular, we identified markers potentially under divergent selection, as well as associated selective environmental factors and biological functions with the observed adaptive divergence. Multivariate landscape genetic analysis revealed strong associations of both genetic and environmental structures. We found an enrichment of growth-related functions among outlier markers. Climate (temperature-precipitation) and geological characteristics were significantly associated with both potentially adaptive and neutral genetic divergence and should be considered as candidate loci involved in adaptation at the regional scale in Atlantic salmon. Hence, this study significantly contributes to the improvement of tools used in modern conservation and management schemes of Atlantic salmon wild populations. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  17. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

    PubMed Central

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444

  18. ENHANCED DISEASE RESISTANCE4 Associates with CLATHRIN HEAVY CHAIN2 and Modulates Plant Immunity by Regulating Relocation of EDR1 in Arabidopsis

    PubMed Central

    Wu, Guangheng; Liu, Simu; Zhao, Yaofei; Wang, Wei; Kong, Zhaosheng; Tang, Dingzhong

    2015-01-01

    Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis. PMID:25747881

  19. IRS-PCR-based genetic mapping of the huntingtin interacting protein gene (HIP1) on mouse chromosome 5.

    PubMed

    Himmelbauer, H; Wedemeyer, N; Haaf, T; Wanker, E E; Schalkwyk, L C; Lehrach, H

    1998-01-01

    Huntington's disease (HD) is a devastating central nervous system disorder. Even though the gene responsible has been positionally cloned recently, its etiology has remained largely unclear. To investigate potential disease mechanisms, we conducted a search for binding partners of the HD-protein huntingtin. With the yeast two-hybrid system, one such interacting factor, the huntingtin interacting protein-1 (HIP-1), was identified (Wanker et al. 1997; Kalchman et al. 1997) and the human gene mapped to 7q11.2. In this paper we demonstrate the localization of the HIP1 mouse homologue (Hip1) into a previously identified region of human-mouse synteny on distal mouse Chromosome (Chr) 5, both employing an IRS-PCR-based mapping strategy and traditional fluorescent in situ hybridization (FISH) mapping.

  20. Local biotic adaptation of trees and shrubs to plant neighbors

    USGS Publications Warehouse

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and evolution of native species during exotic plants invasion, and taken together, refutes the concept that plant communities are always random associations.

  1. Nonclassical Regulation of Transcription: Interchromosomal Interactions at the Malic enzyme Locus of Drosophila melanogaster

    PubMed Central

    Lum, Thomas E.; Merritt, Thomas J. S.

    2011-01-01

    Regulation of transcription can be a complex process in which many cis- and trans-interactions determine the final pattern of expression. Among these interactions are trans-interactions mediated by the pairing of homologous chromosomes. These trans-effects are wide ranging, affecting gene regulation in many species and creating complex possibilities in gene regulation. Here we describe a novel case of trans-interaction between alleles of the Malic enzyme (Men) locus in Drosophila melanogaster that results in allele-specific, non-additive gene expression. Using both empirical biochemical and predictive bioinformatic approaches, we show that the regulatory elements of one allele are capable of interacting in trans with, and modifying the expression of, the second allele. Furthermore, we show that nonlocal factors—different genetic backgrounds—are capable of significant interactions with individual Men alleles, suggesting that these trans-effects can be modified by both locally and distantly acting elements. In sum, these results emphasize the complexity of gene regulation and the need to understand both small- and large-scale interactions as more complete models of the role of trans-interactions in gene regulation are developed. PMID:21900270

  2. Spatiotemporal variation in local adaptation of a specialist insect herbivore to its long-lived host plant.

    PubMed

    Kalske, Aino; Leimu, Roosa; Scheepens, J F; Mutikainen, Pia

    2016-09-01

    Local adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations. However, such spatiotemporal variation has rarely been explicitly demonstrated in nature and local adaptation is commonly considered to be relatively static. We report persistent local adaptation of the short-lived herbivore Abrostola asclepiadis to its long-lived host plant Vincetoxicum hirundinaria over three successive generations in two studied populations and considerable temporal variation in local adaptation in six populations supporting the geographic mosaic theory. The observed variation in local adaptation among populations was best explained by geographic distance and population isolation, suggesting that gene flow reduces local adaptation. Changes in herbivore population size did not conclusively explain temporal variation in local adaptation. Our results also imply that short-term studies are likely to capture only a part of the existing variation in local adaptation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction.

    PubMed

    Cardoso, F F; Tempelman, R J

    2012-07-01

    The objectives of this work were to assess alternative linear reaction norm (RN) models for genetic evaluation of Angus cattle in Brazil. That is, we investigated the interaction between genotypes and continuous descriptors of the environmental variation to examine evidence of genotype by environment interaction (G×E) in post-weaning BW gain (PWG) and to compare the environmental sensitivity of national and imported Angus sires. Data were collected by the Brazilian Angus Improvement Program from 1974 to 2005 and consisted of 63,098 records and a pedigree file with 95,896 animals. Six models were implemented using Bayesian inference and compared using the Deviance Information Criterion (DIC). The simplest model was M(1), a traditional animal model, which showed the largest DIC and hence the poorest fit when compared with the 4 alternative RN specifications accounting for G×E. In M(2), a 2-step procedure was implemented using the contemporary group posterior means of M(1) as the environmental gradient, ranging from -92.6 to +265.5 kg. Moreover, the benefits of jointly estimating all parameters in a 1-step approach were demonstrated by M(3). Additionally, we extended M(3) to allow for residual heteroskedasticity using an exponential function (M(4)) and the best fitting (smallest DIC) environmental classification model (M(5)) specification. Finally, M(6) added just heteroskedastic residual variance to M(1). Heritabilities were less at harsh environments and increased with the improvement of production conditions for all RN models. Rank correlations among genetic merit predictions obtained by M(1) and by the best fitting RN models M(3) (homoskedastic) and M(5) (heteroskedastic) at different environmental levels ranged from 0.79 and 0.81, suggesting biological importance of G×E in Brazilian Angus PWG. These results suggest that selection progress could be optimized by adopting environment-specific genetic merit predictions. The PWG environmental sensitivity of imported North American origin bulls (0.046 ± 0.009) was significantly larger (P < 0.05) than that of local sires (0.012 ± 0.013). Moreover, PWG of progeny of imported sires exceeded that of native sires in medium and superior production levels. On the other hand, Angus cattle locally selected in Brazil tended to be more robust to environmental changes and hence be more suitable when production environments for potential progeny is uncertain.

  4. CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming

    PubMed Central

    Kendrick, Agnieszka A.; Schafer, Johnathon; Dzieciatkowska, Monika; Nemkov, Travis; D'Alessandro, Angelo; Neelakantan, Deepika; Ford, Heide L.; Pearson, Chad G.; Weekes, Colin D.; Hansen, Kirk C.; Eisenmesser, Elan Z.

    2017-01-01

    Increased expression of CD147 in pancreatic cancer has been proposed to play a critical role in cancer progression via CD147 chaperone function for lactate monocarboxylate transporters (MCTs). Here, we show for the first time that CD147 interacts with membrane transporters beyond MCTs and exhibits a protective role for several of its interacting partners. CD147 prevents its interacting partner's proteasome-dependent degradation and incorrect plasma membrane localization through the CD147 transmembrane (TM) region. The interactions with transmembrane small molecule and ion transporters identified here indicate a central role of CD147 in pancreatic cancer metabolic reprogramming, particularly with respect to amino acid anabolism and calcium signaling. Importantly, CD147 genetic ablation prevents pancreatic cancer cell proliferation and tumor growth in vitro and in vivo in conjunction with metabolic rewiring towards amino acid anabolism, thus paving the way for future combined pharmacological treatments. PMID:28039486

  5. CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming.

    PubMed

    Kendrick, Agnieszka A; Schafer, Johnathon; Dzieciatkowska, Monika; Nemkov, Travis; D'Alessandro, Angelo; Neelakantan, Deepika; Ford, Heide L; Pearson, Chad G; Weekes, Colin D; Hansen, Kirk C; Eisenmesser, Elan Z

    2017-01-24

    Increased expression of CD147 in pancreatic cancer has been proposed to play a critical role in cancer progression via CD147 chaperone function for lactate monocarboxylate transporters (MCTs). Here, we show for the first time that CD147 interacts with membrane transporters beyond MCTs and exhibits a protective role for several of its interacting partners. CD147 prevents its interacting partner's proteasome-dependent degradation and incorrect plasma membrane localization through the CD147 transmembrane (TM) region. The interactions with transmembrane small molecule and ion transporters identified here indicate a central role of CD147 in pancreatic cancer metabolic reprogramming, particularly with respect to amino acid anabolism and calcium signaling. Importantly, CD147 genetic ablation prevents pancreatic cancer cell proliferation and tumor growth in vitro and in vivo in conjunction with metabolic rewiring towards amino acid anabolism, thus paving the way for future combined pharmacological treatments.

  6. Gene-Based Sequencing Identifies Lipid-Influencing Variants with Ethnicity-Specific Effects in African Americans

    PubMed Central

    Bentley, Amy R.; Chen, Guanjie; Shriner, Daniel; Doumatey, Ayo P.; Zhou, Jie; Huang, Hanxia; Mullikin, James C.; Blakesley, Robert W.; Hansen, Nancy F.; Bouffard, Gerard G.; Cherukuri, Praveen F.; Maskeri, Baishali; Young, Alice C.; Adeyemo, Adebowale; Rotimi, Charles N.

    2014-01-01

    Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a “European” vs. “African” genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2–3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA. PMID:24603370

  7. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population

    PubMed Central

    Jones, F.A; Comita, L.S

    2008-01-01

    Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714

  8. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  9. Wetlands explain most in the genetic divergence pattern of Oncomelania hupensis.

    PubMed

    Liang, Lu; Liu, Yang; Liao, Jishan; Gong, Peng

    2014-10-01

    Understanding the divergence patterns of hosts could shed lights on the prediction of their parasite transmission. No effort has been devoted to understand the drivers of genetic divergence pattern of Oncomelania hupensis, the only intermediate host of Schistosoma japonicum. Based on a compilation of two O. hupensis gene datasets covering a wide geographic range in China and an array of geographical distance and environmental dissimilarity metrics built from earth observation data and ecological niche modeling, we conducted causal modeling analysis via simple, partial Mantel test and local polynomial fitting to understand the interactions among isolation-by-distance, isolation-by-environment, and genetic divergence. We found that geography contributes more to genetic divergence than environmental isolation, and among all variables involved, wetland showed the strongest correlation with the genetic pairwise distances. These results suggested that in China, O. hupensis dispersal is strongly linked to the distribution of wetlands, and the current divergence pattern of both O. hupensis and schistosomiasis might be altered due to the changed wetland pattern with the accomplishment of the Three Gorges Dam and the South-to-North water transfer project. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. designGG: an R-package and web tool for the optimal design of genetical genomics experiments.

    PubMed

    Li, Yang; Swertz, Morris A; Vera, Gonzalo; Fu, Jingyuan; Breitling, Rainer; Jansen, Ritsert C

    2009-06-18

    High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial. This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG. All software, including source code and documentation, is freely available. DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines, as well as to association analysis of natural populations.

  11. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  12. The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats

    PubMed Central

    Satyaki, P. R. V.; Cuykendall, Tawny N.; Wei, Kevin H-C.; Brideau, Nicholas J.; Kwak, Hojoong; Aruna, S.; Ferree, Patrick M.; Ji, Shuqing; Barbash, Daniel A.

    2014-01-01

    Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. PMID:24651406

  13. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143

  14. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.

  15. Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription

    NASA Astrophysics Data System (ADS)

    Schmidt, Moritz; Summerer, Daniel

    2014-02-01

    The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.

  16. Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks.

    PubMed

    Templeton, A R; Robertson, R J; Brisson, J; Strasburg, J

    2001-05-08

    Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.

  17. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) as Revealed by Mitochondrial and Microsatellite DNA

    PubMed Central

    Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding

    2014-01-01

    Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271

  18. Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf.

    PubMed

    Mège, Pascal; Schizas, Nikolaos V; Reyes, Joselyd García; Hrbek, Tomas

    2015-06-01

    It has been proposed that the elkhorn coral, Acropora palmata , is genetically separated into two distinct provinces in the Caribbean, an Eastern and a Western population admixing in western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analyses using five microsatellite markers showed that 75% of sampled colonies had unique genotypes, the rest being clone mates. Genetic diversity among genets was high (H E = 0.761) and consistent across localities (0.685 to 0.844). F ST ranged from -0.011 to 0.047 supporting low but significant genetic differentiation between localities within the previously reported Eastern and Western genetic provinces. Plots of genetic per geographic distances and significant Mantel tests supported isolation-by-distance (IBD) within Puerto Rico. Analysis with the software Structure favored a scenario with weak differentiation between two populations, assigning eastern Puerto Rican locations (Fajardo and Culebra), Guadeloupe and Curaçao to the Caribbean Eastern population and western Puerto Rican locations (west of Vega Baja and Ponce), Mona and the Bahamas to the Caribbean Western population. Vieques and San Juan area harbored admixed profiles. Standardized F ST s per 1,000 km unit further supported higher differentiation between localities belonging to different Structure populations, with IBD being stronger within Puerto Rico than on larger regional scales. This stronger genetic transition seems to separate localities between putative Eastern and Western provinces in the eastern Puerto Rican region, not around the Mona Passage.

  19. Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf

    PubMed Central

    Mège, Pascal; Schizas, Nikolaos V.; Reyes, Joselyd García; Hrbek, Tomas

    2014-01-01

    It has been proposed that the elkhorn coral, Acropora palmata, is genetically separated into two distinct provinces in the Caribbean, an Eastern and a Western population admixing in western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analyses using five microsatellite markers showed that 75% of sampled colonies had unique genotypes, the rest being clone mates. Genetic diversity among genets was high (HE = 0.761) and consistent across localities (0.685 to 0.844). FST ranged from −0.011 to 0.047 supporting low but significant genetic differentiation between localities within the previously reported Eastern and Western genetic provinces. Plots of genetic per geographic distances and significant Mantel tests supported isolation-by-distance (IBD) within Puerto Rico. Analysis with the software Structure favored a scenario with weak differentiation between two populations, assigning eastern Puerto Rican locations (Fajardo and Culebra), Guadeloupe and Curaçao to the Caribbean Eastern population and western Puerto Rican locations (west of Vega Baja and Ponce), Mona and the Bahamas to the Caribbean Western population. Vieques and San Juan area harbored admixed profiles. Standardized FSTs per 1,000 km unit further supported higher differentiation between localities belonging to different Structure populations, with IBD being stronger within Puerto Rico than on larger regional scales. This stronger genetic transition seems to separate localities between putative Eastern and Western provinces in the eastern Puerto Rican region, not around the Mona Passage. PMID:26085704

  20. Genotypic diversity in root-endophytic fungi reflects efficient dispersal and environmental adaptation.

    PubMed

    Glynou, Kyriaki; Ali, Tahir; Kia, Sevda Haghi; Thines, Marco; Maciá-Vicente, Jose G

    2017-09-01

    Studying community structure and dynamics of plant-associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS-based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta-tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter- and intraspecific biotic interactions, may be more important for the local assembly of their communities. © 2017 John Wiley & Sons Ltd.

  1. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean.

    PubMed

    Ledoux, Jean-Baptiste; Aurelle, Didier; Bensoussan, Nathaniel; Marschal, Christian; Féral, Jean-Pierre; Garrabou, Joaquim

    2015-03-01

    Studying population-by-environment interactions (PEIs) at species range margins offers the opportunity to characterize the responses of populations facing an extreme regime of selection, as expected due to global change. Nevertheless, the importance of these marginal populations as putative reservoirs of adaptive genetic variation has scarcely been considered in conservation biology. This is particularly true in marine ecosystems for which the deep refugia hypothesis proposes that disturbed shallow and marginal populations of a given species can be replenished by mesophotic ones. This hypothesis therefore assumes that identical PEIs exist between populations, neglecting the potential for adaptation at species range margins. Here, we combine reciprocal transplant and common garden experiments with population genetics analyses to decipher the PEIs in the red coral, Corallium rubrum. Our analyses reveal partially contrasting PEIs between shallow and mesophotic populations separated by approximately one hundred meters, suggesting that red coral populations may potentially be locally adapted to their environment. Based on the effective population size and connectivity analyses, we posit that genetic drift may be more important than gene flow in the adaptation of the red coral. We further investigate how adaptive divergence could impact population viability in the context of warming and demonstrate differential phenotypic buffering capacities against thermal stress. Our study questions the relevance of the deep refugia hypothesis and highlights the conservation value of marginal populations as a putative reservoir of adaptive genetic polymorphism.

  2. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche

    PubMed Central

    2014-01-01

    Background Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. Results We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Conclusions Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present. PMID:24915756

  3. Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin.

    PubMed

    Kita, Ryosuke; Fraser, Hunter B

    2016-10-01

    Sun-exposure is a key environmental variable in the study of human evolution. Several skin-pigmentation genes serve as classical examples of positive selection, suggesting that sun-exposure has significantly shaped worldwide genomic variation. Here we investigate the interaction between genetic variation and sun-exposure, and how this impacts gene expression regulation. Using RNA-Seq data from 607 human skin samples, we identified thousands of transcripts that are differentially expressed between sun-exposed skin and non-sun-exposed skin. We then tested whether genetic variants may influence each individual's gene expression response to sun-exposure. Our analysis revealed 10 sun-exposure-dependent gene expression quantitative trait loci (se-eQTLs), including genes involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the magnitude of solar radiation experienced by these populations, suggesting local adaptation to varying levels of sunlight. These results provide the first examples of sun-exposure-dependent regulatory variation and suggest that this variation has contributed to recent human adaptation.

  4. A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging

    PubMed Central

    Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463

  5. A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging.

    PubMed

    Hanna, Samer; Miskolci, Veronika; Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized.

  6. Mutations in CSPP1 lead to classical Joubert syndrome.

    PubMed

    Akizu, Naiara; Silhavy, Jennifer L; Rosti, Rasim Ozgur; Scott, Eric; Fenstermaker, Ali G; Schroth, Jana; Zaki, Maha S; Sanchez, Henry; Gupta, Neerja; Kabra, Madhulika; Kara, Majdi; Ben-Omran, Tawfeg; Rosti, Basak; Guemez-Gamboa, Alicia; Spencer, Emily; Pan, Roger; Cai, Na; Abdellateef, Mostafa; Gabriel, Stacey; Halbritter, Jan; Hildebrandt, Friedhelm; van Bokhoven, Hans; Gunel, Murat; Gleeson, Joseph G

    2014-01-02

    Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. An integrated approach to characterize genetic interaction networks in yeast metabolism

    PubMed Central

    Szappanos, Balázs; Kovács, Károly; Szamecz, Béla; Honti, Frantisek; Costanzo, Michael; Baryshnikova, Anastasia; Gelius-Dietrich, Gabriel; Lercher, Martin J.; Jelasity, Márk; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles; Oliver, Stephen G.; Pál, Csaba; Papp, Balázs

    2011-01-01

    Intense experimental and theoretical efforts have been made to globally map genetic interactions, yet we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we: i) quantitatively measure genetic interactions between ~185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii) superpose the data on a detailed systems biology model of metabolism, and iii) introduce a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigate the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions. We also provide a mechanistic explanation for the link between the degree of genetic interaction, pleiotropy, and gene dispensability. Last, we demonstrate the feasibility of automated metabolic model refinement by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments. PMID:21623372

  8. Environmental confounding in gene-environment interaction studies.

    PubMed

    Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar

    2013-07-01

    We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.

  9. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  10. An Interdomain Interaction of the Androgen Receptor Is Required for Its Aggregation and Toxicity in Spinal and Bulbar Muscular Atrophy*

    PubMed Central

    Orr, Christopher R.; Montie, Heather L.; Liu, Yuhong; Bolzoni, Elena; Jenkins, Shannon C.; Wilson, Elizabeth M.; Joseph, James D.; McDonnell, Donald P.; Merry, Diane E.

    2010-01-01

    Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function. PMID:20826791

  11. Market organization and animal genetic resource management: a revealed preference analysis of sheep pricing.

    PubMed

    Tindano, K; Moula, N; Leroy, P; Traoré, A; Antoine-Moussiaux, N

    2017-10-01

    Farm animal genetic resources are threatened worldwide. Participation in markets, while representing a crucial way out of poverty for many smallholders, affects genetic management choices with associated sustainability concerns. This paper proposes a contextualized study of the interactions between markets and animal genetic resources management, in the case of sheep markets in Ouagadougou, Burkina Faso. It focusses on the organization of marketing chains and the valuation of genetic characteristics by value chain actors. Marketing chain characterization was tackled through semi-structured interviews with 25 exporters and 15 butchers, both specialized in sheep. Moreover, revealed preference methods were applied to analyse the impact of animals' attributes on market pricing. Data were collected from 338 transactions during three different periods: Eid al-Adha, Christmas and New Year period, and a neutral period. The neutral period is understood as a period not close to any event likely to influence the demand for sheep. The results show that physical characteristics such as live weight, height at withers and coat colour have a strong influence on the animals' prices. Live weight has also had an increasing marginal impact on price. The different markets (local butcher, feasts, export market, sacrifices) represent distinct demands for genetic characteristics, entailing interesting consequences for animal genetic resource management. Any breeding programme should therefore take this diversity into account to allow this sector to contribute better to a sustainable development of the country.

  12. Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions.

    PubMed

    Hoban, Sean; Kelley, Joanna L; Lotterhos, Katie E; Antolin, Michael F; Bradburd, Gideon; Lowry, David B; Poss, Mary L; Reed, Laura K; Storfer, Andrew; Whitlock, Michael C

    2016-10-01

    Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species' demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.

  13. Assessing Pseudomonas virulence with a nonmammalian host: Drosophila melanogaster.

    PubMed

    Haller, Samantha; Limmer, Stefanie; Ferrandon, Dominique

    2014-01-01

    Drosophila melanogaster flies represent an interesting model to study host-pathogen interactions as: (1) they are cheap and easy to raise rapidly and do not bring up ethical issues, (2) available genetic tools are highly sophisticated, for instance allowing tissue-specific alteration of gene expression, e.g., of immune genes, (3) they have a relatively complex organization, with distinct digestive tract and body cavity in which local or systemic infections, respectively, take place, (4) a medium throughput can be achieved in genetic screens, for instance looking for Pseudomonas aeruginosa mutants with altered virulence. We present here the techniques used to investigate host-pathogen relationships, namely the two major models of infections as well as the relevant parameters used to monitor the infection (survival, bacterial titer, induction of host immune response).

  14. Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2016-07-05

    The magnitude and genetic basis of local adaptation is of fundamental interest in evolutionary biology. However, field experiments usually do not consider early life stages, and therefore may underestimate local adaptation and miss genetically based tradeoffs. We examined the contribution of differences in seedling establishment to adaptive differentiation and the genetic architecture of local adaptation using recombinant inbred lines (RIL) derived from a cross between two locally adapted populations (Italy and Sweden) of the annual plant Arabidopsis thaliana We planted freshly matured, dormant seeds (>180 000) representing >200 RILs at the native field sites of the parental genotypes, estimated the strength of selection during different life stages, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on seed dormancy. We found that selection during the seedling establishment phase contributed strongly to the fitness advantage of the local genotype at both sites. With one exception, local alleles of the eight distinct establishment QTL were favored. The major QTL for establishment and total fitness showed evidence of a fitness tradeoff and was located in the same region as the major seed dormancy QTL and the dormancy gene DELAY OF GERMINATION 1 (DOG1). RIL seed dormancy could explain variation in seedling establishment and fitness across the life cycle. Our results demonstrate that genetically based differences in traits affecting performance during early life stages can contribute strongly to adaptive differentiation and genetic tradeoffs, and should be considered for a full understanding of the ecology and genetics of local adaptation.

  15. Maintenance of genetic diversity through plant-herbivore interactions

    PubMed Central

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously. PMID:23834766

  16. God and Genes in the Caring Professions: Clinician and Clergy Perceptions of Religion and Genetics

    PubMed Central

    Bartlett, Virginia L; Johnson, Rolanda L

    2013-01-01

    Little is known about how care providers’ perceptions of religion and genetics affect interactions with patients/parishioners. This study investigates clinicians’ and clergy’s perceptions of and experiences with religion and genetics in their clinical and pastoral interactions. An exploratory qualitative study designed to elicit care providers’ descriptions of experiences with religion and genetics in clinical or pastoral interactions. Thirteen focus groups were conducted with members of the caring professions: physicians, nurses, and genetics counselors (clinicians), ministers and chaplains (clergy). Preliminary analysis of qualitative data is presented here. Preliminary analysis highlights four positions in professional perceptions of the relationship between science and faith. Further, differences among professional perceptions appear to influence perceptions of needed or available resources for interactions with religion and genetics. Clinicians’ and clergy’s perceptions of how religion and genetics relate are not defined solely by professional affiliation. These non-role-defined perceptions may affect clinical and pastoral interactions, especially regarding resources for patients and parishioners. PMID:19170091

  17. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.

    PubMed

    Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N

    2016-09-14

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).

  18. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    PubMed Central

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  19. Temporal Genetic Dynamics of an Invasive Species, Frankliniella occidentalis (Pergande), in an Early Phase of Establishment.

    PubMed

    Yang, Xian-Ming; Lou, Heng; Sun, Jing-Tao; Zhu, Yi-Ming; Xue, Xiao-Feng; Hong, Xiao-Yue

    2015-07-03

    Many species can successfully colonize new areas despite their propagules having low genetic variation. We assessed whether the decreased genetic diversity could result in temporal fluctuations of genetic parameters of the new populations of an invasive species, western flower thrips, Frankliniella occidentalis, using mitochondrial and microsatellite markers. This study was conducted in eight localities from four climate regions in China, where F. occidentalis was introduced in the year 2000 and had lower genetic diversity than its native populations. We also tested the level of genetic differentiation in these introduced populations. The genetic diversity of the samples at different years in the same locality was not significantly different from each other in most localities. FST and STRUCTURE analysis also showed that most temporal population comparisons from the same sites were not significantly differentiated. Our results showed that the invasive populations of F. occidentalis in China can maintain temporal stability in genetic composition at an early phase of establishment despite having lower genetic diversity than in their native range.

  20. It is all about location: how to pinpoint microorganisms and their functions in multispecies biofilms.

    PubMed

    Costa, Angela M; Mergulhão, Filipe J; Briandet, Romain; Azevedo, Nuno F

    2017-09-01

    Multispecies biofilms represent the dominant mode of life for the vast majority of microorganisms. Bacterial spatial localization in such biostructures governs ecological interactions between different populations and triggers the overall community functions. Here, we discuss the pros and cons of fluorescence-based techniques used to decipher bacterial species patterns in biofilms at single cell level, including fluorescence in situ hybridization and the use of genetically modified bacteria that express fluorescent proteins, reporting the significant improvements of those techniques. The development of tools for spatial and temporal study of multispecies biofilms will allow live imaging and spatial localization of cells in naturally occurring biofilms coupled with metabolic information, increasing insight of microbial community and the relation between its structure and functions.

  1. Genetic counselling in tribals in India

    PubMed Central

    Mohanty, Dipika; Das, Kishalaya

    2011-01-01

    Genetic counselling in tribals unlike general population residing in cities and near villages is a difficult task due of their lower literacy and poor socio-economic status. However, sustained effort is essential with a close interaction in the local language, certain misbeliefs need to be removed gradually taking into account their socio-cultural background. The present communication deals with our experience in counselling for haemoglobinopathies during Neonatal Screening Programme undertaken for sickle cell disease in Kalahandi district of Orissa and Community Screening Programmes in primitive tribes of India in four States viz. Orissa, Gujarat, Tamil Nadu and Maharashtra. Counselling during neonatal screening programme was very well accepted demonstrating the benefit to the small babies as regards the morbidity. Premarital marriage counselling was also accepted by them. The success rate as followed up for 5 years is almost 50 per cent, the limitation being long follow up. Genetic counselling in these areas has to be continuous to achieve success and therefore the need for setting up of permanent centres in the tribal areas in India. PMID:22089621

  2. Golgi-to-Endoplasmic Reticulum (ER) Retrograde Traffic in Yeast Requires Dsl1p, a Component of the ER Target Site that Interacts with a COPI Coat Subunit

    PubMed Central

    Reilly, Barbara A.; Kraynack, Bryan A.; VanRheenen, Susan M.; Waters, M. Gerard

    2001-01-01

    DSL1 was identified through its genetic interaction with SLY1, which encodes a t-SNARE-interacting protein that functions in endoplasmic reticulum (ER)-to-Golgi traffic. Conditional dsl1 mutants exhibit a block in ER-to-Golgi traffic at the restrictive temperature. Here, we show that dsl1 mutants are defective for retrograde Golgi-to-ER traffic, even under conditions where no anterograde transport block is evident. These results suggest that the primary function of Dsl1p may be in retrograde traffic, and that retrograde defects can lead to secondary defects in anterograde traffic. Dsl1p is an ER-localized peripheral membrane protein that can be extracted from the membrane in a multiprotein complex. Immunoisolation of the complex yielded Dsl1p and proteins of ∼80 and ∼55 kDa. The ∼80-kDa protein has been identified as Tip20p, a protein that others have shown to exist in a tight complex with Sec20p, which is ∼50 kDa. Both Sec20p and Tip20p function in retrograde Golgi-to-ER traffic, are ER-localized, and bind to the ER t-SNARE Ufe1p. These findings suggest that an ER-localized complex of Dsl1p, Sec20p, and Tip20p functions in retrograde traffic, perhaps upstream of a Sly1p/Ufe1p complex. Last, we show that Dsl1p interacts with the δ-subunit of the retrograde COPI coat, Ret2p, and discuss possible roles for this interaction. PMID:11739780

  3. Genetic diversity, population structure, and correlations between locally adapted zebu and taurine breeds in Brazil using SNP markers.

    PubMed

    Campos, Bárbara Machado; do Carmo, Adriana Santana; do Egito, Andrea Alves; da Mariante, Arthur Silva; do Albuquerque, Maria Socorro Muaés; de Gouveia, João José Simoni; Malhado, Carlos Henrique Mendes; Verardo, Lucas Lima; da Silva, Marcos Vinícius Gualberto Barbosa; Carneiro, Paulo Luiz Souza

    2017-12-01

    Genetic diversity is one of the most important issues in studies on conservation of cattle breeds and endangered species. The objective of this study was to estimate the levels of genetic differentiation between locally adapted taurine (Bos taurus taurus) and zebu (Bos taurus indicus) breeds in Brazil, which were genotyped for more than 777,000 SNPs. The fixation index (F ST ), principal component analysis (PCA), and Bayesian clustering were estimated. The F ST highlighted genetic differentiation between taurine and zebu breeds. The taurine lines, Caracu and Caracu Caldeano, had significant genetic differentiation (F ST close to 5%) despite their recent selection for different uses (meat and milk). This genetic variability can be used for conservation of locally adapted animals, as well as for breeding programs on zebu breeds. Introgression of zebu in locally adapted breeds was identified, especially in Curraleiro Pé-Duro breed. The Gyr breed, however, had low breed purity at genomic level due to its very heterogeneous mixing pattern.

  4. Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila.

    PubMed

    Philippe, Anne-Sophie; Jeanson, Raphael; Pasquaretta, Cristian; Rebaudo, Francois; Sueur, Cedric; Mery, Frederic

    2016-03-30

    Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics in Drosophila To do this, we used two different natural lines of Drosophila that arise from a polymorphism in the foraging gene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions. © 2016 The Author(s).

  5. GABAergic neurons in ferret visual cortex participate in functionally specific networks

    PubMed Central

    Wilson, Daniel E.; Smith, Gordon B.; Jacob, Amanda; Walker, Theo; Dimidschstein, Jordane; Fishell, Gord J.; Fitzpatrick, David

    2017-01-01

    Summary Functional circuits in the visual cortex require the coordinated activity of excitatory and inhibitory neurons. Molecular genetic approaches in the mouse have led to the ‘local nonspecific pooling principle’ of inhibitory connectivity, in which inhibitory neurons are untuned for stimulus features due to the random pooling of local inputs. However, it remains unclear whether this principle generalizes to species with a columnar organization of feature selectivity such as carnivores, primates, and humans. Here we use virally-mediated GABAergic-specific GCaMP6f expression to demonstrate that inhibitory neurons in ferret visual cortex respond robustly and selectively to oriented stimuli. We find that the tuning of inhibitory neurons is inconsistent with the local non-specific pooling of excitatory inputs, and that inhibitory neurons exhibit orientation-specific noise correlations with local and distant excitatory neurons. These findings challenge the generality of the non-specific pooling principle for inhibitory neurons, suggesting different rules for functional excitatory-inhibitory interactions in non-murine species. PMID:28279352

  6. Collective Genetic Interaction Effects and the Role of Antigen Presenting Cells in Autoimmune Diseases

    DTIC Science & Technology

    2017-01-12

    RESEARCH ARTICLE Collective Genetic Interaction Effects and the Role of Antigen-Presenting Cells in Autoimmune Diseases Hyung Jun Woo*, Chenggang Yu...autoimmunity. Genetic predispositions center around the major histocompatibility complex (MHC) class II loci involved in antigen presentation, the key...helper and regulatory T cells showing strong dis- ease-associated interactions with B cells. Our results provide direct genetic evidence point- ing to

  7. C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization.

    PubMed

    Kim, Joanne S M; Hung, Wesley; Narbonne, Patrick; Roy, Richard; Zhen, Mei

    2010-01-01

    Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.

  8. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    PubMed

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common, tropical tree over multiple habitats and provide information for managers of a successional forest in a protected area.

  9. Host genetic variation influences gene expression response to rhinovirus infection.

    PubMed

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  10. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis).

    PubMed

    López, Rosana; López de Heredia, Unai; Collada, Carmen; Cano, Francisco Javier; Emerson, Brent C; Cochard, Hervé; Gil, Luis

    2013-06-01

    It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = -0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.

  11. Microbiome and Malignancy

    PubMed Central

    Plottel, Claudia S.; Blaser, Martin J.

    2011-01-01

    Current knowledge is insufficient to explain why only a proportion of individuals exposed to environmental carcinogens or carrying a genetic predisposition to cancer develop disease. Clearly, other factors must be important and one such element that has recently received attention is the human microbiome, the residential microbes including Bacteria, Archaea, Eukaryotes, and viruses that colonize humans. Here, we review principles and paradigms of microbiome-related malignancy, as illustrated by three specific microbial-host interactions. We review the effects of the microbiota on local and adjacent-neoplasia, present the estrobolome model of distant effects, and discuss the complex interactions with a latent virus leading to malignancy. These are separate facets of a complex biology interfacing all the microbial species we harbor from birth onward toward early reproductive success and eventual senescence. PMID:22018233

  12. Gene-Gene and Gene-Environment Interactions in Ulcerative Colitis

    PubMed Central

    Wang, Ming-Hsi; Fiocchi, Claudio; Zhu, Xiaofeng; Ripke, Stephan; Kamboh, M. Ilyas; Rebert, Nancy; Duerr, Richard H.; Achkar, Jean-Paul

    2014-01-01

    Genome-wide association studies (GWAS) have identified at least 133 ulcerative colitis (UC) associated loci. The role of genetic factors in clinical practice is not clearly defined. The relevance of genetic variants to disease pathogenesis is still uncertain because of not characterized gene-gene and gene-environment interactions. We examined the predictive value of combining the 133 UC risk loci with genetic interactions in an ongoing inflammatory bowel disease (IBD) GWAS. The Wellcome Trust Case-Control Consortium (WTCCC) IBD GWAS was used as a replication cohort. We applied logic regression (LR), a novel adaptive regression methodology, to search for high order interactions. Exploratory genotype correlations with UC sub-phenotypes (extent of disease, need of surgery, age of onset, extra-intestinal manifestations and primary sclerosing cholangitis (PSC)) were conducted. The combination of 133 UC loci yielded good UC risk predictability (area under the curve [AUC] of 0.86). A higher cumulative allele score predicted higher UC risk. Through LR, several lines of evidence for genetic interactions were identified and successfully replicated in the WTCCC cohort. The genetic interactions combined with the gene-smoking interaction significantly improved predictability in the model (AUC, from 0.86 to 0.89, P=3.26E-05). Explained UC variance increased from 37% to 42% after adding the interaction terms. A within case analysis found suggested genetic association with PSC. Our study demonstrates that the LR methodology allows the identification and replication of high order genetic interactions in UC GWAS datasets. UC risk can be predicted by a 133 loci and improved by adding gene-gene and gene-environment interactions. PMID:24241240

  13. Characterization of local goat breeds using RAP-DNA markers

    NASA Astrophysics Data System (ADS)

    Al-Barzinji, Yousif M. S.; Hamad, Aram O.

    2017-09-01

    The present study was conducted on different colors of local goat breeds. A number of 216 does were sampled from the seven groups. Genomic DNA was extracted from the blood samples. From the twenty used RAPD primers 12 of them were amplified, and presence of bands. The total fragment number of 12 primers over all the goat breed samples was 485 fragments. Out of the 485 fragments, 90 of them were Polymorphic fragments numbers (PFN). From all bands obtained, 20 of them possessed unique bands. The highest unique band was found in locus RAP 6 which has 4 unique bands, three of them in the Maraz Brown and one in the local Koor. Nei's gene diversity and Shanon's information index in this study were averaged 0.38 and 0.60, respectively. The genetic distance among several goat breeds ranged from 9.11 to 43.33%. The highest genetic distance 43.33% recorded between Maraz goat and other goat breeds and between local Koor and other goat (except Maraz goats) breeds (37.79%). However, the lowest genetic distance recorded between local white and Pnok. The distance between (local Black and Pnok) and (local Black and local white) was 22.75%. In conclusions, the high distance among these goat breeds, polymorphism and high numbers of unique bands found in present study indicates that these goat breeds have the required amount of genetic variation to made genetic improvement. This study helps us to clarify the image of the genetic diversity of the local goat breeds and the breeders can used it for mating system when need to make the crossing among these goat breeds.

  14. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.

    PubMed

    Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi

    2010-02-01

    In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.

  15. Rapid recovery of genetic diversity of dogwhelk (Nucella lapillus L.) populations after local extinction and recolonization contradicts predictions from life-history characteristics.

    PubMed

    Colson, I; Hughes, R N

    2004-08-01

    The dogwhelk Nucella lapillus is a predatory marine gastropod populating North Atlantic rocky shores. As with many other gastropod species, N. lapillus was affected by tributyltin (TBT) pollution during the 1970s and 1980s, when local populations became extinct. After a partial ban on TBT in the United Kingdom in 1987, vacant sites have been recolonized. N. lapillus lacks a planktonic larval stage and is therefore expected to have limited dispersal ability. Relatively fast recolonization of some sites, however, contradicts this assumption. We compared levels of genetic diversity and genetic structuring between recolonized sites and sites that showed continuous population at three localities across the British Isles. No significant genetic effects of extinction/recolonization events were observed in SW Scotland and NE England. In SW England we observed a decrease in genetic diversity and an increase in genetic structure in recolonized populations. This last result could be an artefact, however, due to the superposition of other local factors influencing the genetic structuring of dogwhelk populations. We conclude that recolonization of vacant sites was accomplished by a relatively high number of individuals originating from several source populations (the 'migrant-pool' model of recolonization), implying that movements are more widespread than expected on the basis of development mode alone. Comparison with published data on genetic structure of marine organisms with contrasted larval dispersal supports this hypothesis. Our results also stress the importance of local factors (geographical or ecological) in determining genetic structure of dogwhelk populations. Copyright 2004 Blackwell Publishing Ltd

  16. Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23

    PubMed Central

    Ting, See-Yeun; Yan, Nicholas L; Schilke, Brenda A; Craig, Elizabeth A

    2017-01-01

    Proteins destined for the mitochondrial matrix are targeted to the inner membrane Tim17/23 translocon by their presequences. Inward movement is driven by the matrix-localized, Hsp70-based motor. The scaffold Tim44, interacting with the matrix face of the translocon, recruits other motor subunits and binds incoming presequence. The basis of these interactions and their functional relationships remains unclear. Using site-specific in vivo crosslinking and genetic approaches in Saccharomyces cerevisiae, we found that both domains of Tim44 interact with the major matrix-exposed loop of Tim23, with the C-terminal domain (CTD) binding Tim17 as well. Results of in vitro experiments showed that the N-terminal domain (NTD) is intrinsically disordered and binds presequence near a region important for interaction with Hsp70 and Tim23. Our data suggest a model in which the CTD serves primarily to anchor Tim44 to the translocon, whereas the NTD is a dynamic arm, interacting with multiple components to drive efficient translocation. DOI: http://dx.doi.org/10.7554/eLife.23609.001 PMID:28440746

  17. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    ERIC Educational Resources Information Center

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  18. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.

    PubMed

    Lind, M I; Johansson, F

    2011-12-01

    Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  19. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem

    PubMed Central

    Rudman, Seth M.; Rodriguez-Cabal, Mariano A.; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W.; Crutsinger, Gregory M.

    2015-01-01

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004

  20. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.

    PubMed

    Rudman, Seth M; Rodriguez-Cabal, Mariano A; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W; Crutsinger, Gregory M

    2015-08-07

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. © 2015 The Author(s).

  1. Nasal Bone Shape Is under Complex Epistatic Genetic Control in Mouse Interspecific Recombinant Congenic Strains

    PubMed Central

    Burgio, Gaétan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier

    2012-01-01

    Background Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. Results The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb) and 18 (∼13 Mb) showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. Conclusions Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors. PMID:22662199

  2. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

    PubMed

    Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah; Pasaniuc, Bogdan

    2017-11-02

    Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Temporal Genetic Dynamics of an Invasive Species, Frankliniella occidentalis (Pergande), in an Early Phase of Establishment

    PubMed Central

    Yang, Xian-Ming; Lou, Heng; Sun, Jing-Tao; Zhu, Yi-Ming; Xue, Xiao-Feng; Hong, Xiao-Yue

    2015-01-01

    Many species can successfully colonize new areas despite their propagules having low genetic variation. We assessed whether the decreased genetic diversity could result in temporal fluctuations of genetic parameters of the new populations of an invasive species, western flower thrips, Frankliniella occidentalis, using mitochondrial and microsatellite markers. This study was conducted in eight localities from four climate regions in China, where F. occidentalis was introduced in the year 2000 and had lower genetic diversity than its native populations. We also tested the level of genetic differentiation in these introduced populations. The genetic diversity of the samples at different years in the same locality was not significantly different from each other in most localities. FST and STRUCTURE analysis also showed that most temporal population comparisons from the same sites were not significantly differentiated. Our results showed that the invasive populations of F. occidentalis in China can maintain temporal stability in genetic composition at an early phase of establishment despite having lower genetic diversity than in their native range. PMID:26138760

  4. Challenges and opportunities in genetic improvement of local livestock breeds

    PubMed Central

    Biscarini, Filippo; Nicolazzi, Ezequiel L.; Stella, Alessandra; Boettcher, Paul J.; Gandini, Gustavo

    2015-01-01

    Sufficient genetic variation in livestock populations is necessary both for adaptation to future changes in climate and consumer demand, and for continual genetic improvement of economically important traits. Unfortunately, the current trend is for reduced genetic variation, both within and across breeds. The latter occurs primarily through the loss of small, local breeds. Inferior production is a key driver for loss of small breeds, as they are replaced by high-output international transboundary breeds. Selection to improve productivity of small local breeds is therefore critical for their long term survival. The objective of this paper is to review the technology options available for the genetic improvement of small local breeds and discuss their feasibility. Most technologies have been developed for the high-input breeds and consequently are more favorably applied in that context. Nevertheless, their application in local breeds is not precluded and can yield significant benefits, especially when multiple technologies are applied in close collaboration with farmers and breeders. Breeding strategies that require cooperation and centralized decision-making, such as optimal contribution selection, may in fact be more easily implemented in small breeds. PMID:25763010

  5. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  6. Theodor and Marcella Boveri: chromosomes and cytoplasm in heredity and development.

    PubMed

    Satzinger, Helga

    2008-03-01

    The chromosome theory of heredity, developed in 1902-1904, became one of the foundation stones of twentieth-century genetics. It is usually referred to as the Sutton-Boveri theory after Walter Sutton and Theodor Boveri. However, the contributions of Theodor Boveri and his co-worker, Marcella O'Grady Boveri (also his wife), to the understanding of heredity and development go beyond the localization of the Mendelian hereditary factors onto the chromosomes. They investigated the interaction of cytoplasm and chromosomes, and demonstrated its relevance in heredity and development.

  7. Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats.

    PubMed

    Gass, N; Becker, R; Schwarz, A J; Weber-Fahr, W; Clemm von Hohenberg, C; Vollmayr, B; Sartorius, A

    2016-12-06

    Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the specificity of the involved brain circuits. The rat strain bred for negative cognitive state (NC) represents a genetic animal model of TRD with high face, construct and predictive validity. Vice versa, the positive cognitive state (PC) strain represents a stress-resilient phenotype. Although NC rats show depressive-like behavior, some symptoms such as anhedonia require an external trigger, i.e. a stressful event, which is similar to humans when stressful event induces a depressive episode in genetically predisposed individuals (gene-environment interaction). We aimed to distinguish neurobiological predisposition from the depressogenic pathology at the level of brain-network reorganization. For this purpose, resting-state functional magnetic resonance imaging time series were acquired at 9.4 Tesla scanner in NC (N=11) and PC (N=7) rats before and after stressful event. We used a graph theory analytical approach to calculate the brain-network global and local properties. There was no difference in the global characteristics between the strains. At the local level, the response in the risk strain was characterized with an increased internodal role and reduced local clustering and efficiency of the anterior cingulate cortex (ACC) and prelimbic cortex compared to the stress-resilient strain. We suggest that the increased internodal role of these prefrontal regions could be due to the enhancement of some of their long-range connections, given their connectivity with the amygdala and other default-mode-like network hubs, which could create a bias to attend to negative information characteristic for depression.

  8. Natural selection and genetic variation for reproductive reaction norms in a wild bird population.

    PubMed

    Brommer, Jon E; Merilä, Juha; Sheldon, Ben C; Gustafsson, Lars

    2005-06-01

    Many morphological and life-history traits show phenotypic plasticity that can be described by reaction norms, but few studies have attempted individual-level analyses of reaction norms in the wild. We analyzed variation in individual reaction norms between laying date and three climatic variables (local temperature, local rainfall, and North Atlantic Oscillation) of 1126 female collared flycatchers (Ficedula albicollis) with a restricted maximum likehood linear mixed model approach using random-effect best linear unbiased predictor estimates for the elevation (i.e., expected laying date in the average environment) and slope (i.e., adjustment in laying date as a function of environment) of females' reaction norms. Variation in laying date was best explained by local temperature, and individual females differed in both the elevation and the slope of their laying date-temperature reaction norms. As revealed by animal model analyses, there was weak evidence for additive genetic variance of elevation (h2 +/- SE = 0.09 +/- 0.09), whereas there was no evidence for heritability of slope (h2 +/- SE = 0.00 +/- 0.01). Selection analysis, using a female's lifetime production of fledglings or recruits as an estimate of her fitness, revealed significant selection for a lower phenotypic value and breeding value for elevation (i.e., earlier laying date at the average temperature). There was selection for steeper phenotypic values of slope (i.e., greater plasticity in the adjustment of laying date to temperature), but no significant selection on the breeding values of slope. Although these results suggest that phenotypic laying date is influenced by additive genetic factors, as well as by an interaction with the environment, selection on plasticity would not produce an evolutionary response.

  9. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network

    PubMed Central

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-01-01

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812

  10. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    PubMed

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  11. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  12. Fine-mapping and transethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21.

    PubMed

    Hughes, Travis; Kim-Howard, Xana; Kelly, Jennifer A; Kaufman, Kenneth M; Langefeld, Carl D; Ziegler, Julie; Sanchez, Elena; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Reveille, John D; Martín, Javier; Brown, Elizabeth E; Vilá, Luis M; Alarcón, Graciela S; James, Judith A; Gilkeson, Gary S; Moser, Kathy L; Gaffney, Patrick M; Merrill, Joan T; Vyse, Timothy J; Alarcón-Riquelme, Marta E; Nath, Swapan K; Harley, John B; Sawalha, Amr H

    2011-06-01

    Genetic association of the IL2/IL21 region at chromosome 4q27 has previously been reported in lupus and a number of autoimmune and inflammatory diseases. This study was undertaken to determine whether this genetic effect could be localized, using a very large cohort of lupus patients and controls. We genotyped 45 tag single-nucleotide polymorphisms (SNPs) across the IL2/IL21 locus in 2 large independent lupus sample sets. We studied a set of subjects of European descent consisting of 4,248 lupus patients and 3,818 healthy controls, and an African American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 additional controls from the Wellcome Trust Case Control Consortium was also performed. Genetic association between the genotyped markers was determined, and pairwise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus. We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and transethnic mapping, we localized the genetic effect in this locus to 2 SNPs in high linkage disequilibrium: rs907715 located within IL21 (odds ratio 1.16 [95% confidence interval 1.10-1.22], P=2.17×10(-8)) and rs6835457 located in the 3'-untranslated flanking region of IL21 (odds ratio 1.11 [95% confidence interval 1.05-1.17], P=9.35×10(-5)). Our findings establish the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, our findings indicate that this genetic association within the IL2/IL21 linkage disequilibrium block is localized to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate by a fundamental mechanism that influences the course of a number of autoimmune disease processes. Copyright © 2011 by the American College of Rheumatology.

  13. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    PubMed

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we recommend to use internal weights from the study population itself to construct weighted GRS for GxE interaction studies. If the SNPs were chosen because a strong marginal genetic effect was hypothesized, GRS-marginal-internal should be used. If the SNPs were chosen because of their collective impact on the biological mechanisms mediating the environmental effect (hypothesis of predominant interactions) GRS-interaction-training should be applied.

  14. Genomic networks of hybrid sterility.

    PubMed

    Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A

    2014-02-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics.

  15. Simulating the Interacting Effects of Intraspecific Variation, Disturbance, and Competition on Climate-Driven Range Shifts in Trees.

    PubMed

    Moran, Emily V; Ormond, Rhys A

    2015-01-01

    Climate change is expected to favor shifts in plant distributions; some such shifts are already being observed along elevation gradients. However, the rate of such shifts may be limited by their ability to reach newly suitable areas and by competition from resident species. The degree of local adaptation and genetic variation may also play a role in the interaction between migrants and residents by affecting relative fitness. We used a simulation model to explore the interacting effects of dispersal, fecundity, disturbance, and genetic variation on range-edge dynamics between a pair of demographically similar tree species. Ideal climate for an individual is determined by genotype. The simulated landscape undergoes an 80-year period of climate change in which climate bands shift upslope; subsequently, climate is held constant for 300 years. The presence of a high-elevation competitor caused a significant lag in the range shift of the low-elevation species relative to competition-free scenarios. Increases in fecundity and dispersal distance both helped to speed up the replacement of the high-elevation species by the low-elevation species at their range boundary. While some disturbance scenarios facilitated this transition, frequent canopy disturbance inhibited colonization by removing reproductive adults and led to range contractions in both species. Differences between dispersal scenarios were more pronounced when disturbance was frequent (15 vs. 25 year return interval) and dispersal was limited. When the high-elevation species lacked genetic variation, its range was more-easily invaded by the low-elevation species, while a similar lack of variation in the low-elevation species inhibited colonization-but only when this lack of variation decreased the fitness of the affected species near the range boundary. Our model results support the importance of measuring and including dispersal/fecundity, disturbance type and frequency, and genetic variation when assessing the potential for range shifts and species vulnerability to climate change.

  16. Genomic Networks of Hybrid Sterility

    PubMed Central

    Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.

    2014-01-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics. PMID:24586194

  17. Simulating the Interacting Effects of Intraspecific Variation, Disturbance, and Competition on Climate-Driven Range Shifts in Trees

    PubMed Central

    2015-01-01

    Climate change is expected to favor shifts in plant distributions; some such shifts are already being observed along elevation gradients. However, the rate of such shifts may be limited by their ability to reach newly suitable areas and by competition from resident species. The degree of local adaptation and genetic variation may also play a role in the interaction between migrants and residents by affecting relative fitness. We used a simulation model to explore the interacting effects of dispersal, fecundity, disturbance, and genetic variation on range-edge dynamics between a pair of demographically similar tree species. Ideal climate for an individual is determined by genotype. The simulated landscape undergoes an 80-year period of climate change in which climate bands shift upslope; subsequently, climate is held constant for 300 years. The presence of a high-elevation competitor caused a significant lag in the range shift of the low-elevation species relative to competition-free scenarios. Increases in fecundity and dispersal distance both helped to speed up the replacement of the high-elevation species by the low-elevation species at their range boundary. While some disturbance scenarios facilitated this transition, frequent canopy disturbance inhibited colonization by removing reproductive adults and led to range contractions in both species. Differences between dispersal scenarios were more pronounced when disturbance was frequent (15 vs. 25 year return interval) and dispersal was limited. When the high-elevation species lacked genetic variation, its range was more-easily invaded by the low-elevation species, while a similar lack of variation in the low-elevation species inhibited colonization—but only when this lack of variation decreased the fitness of the affected species near the range boundary. Our model results support the importance of measuring and including dispersal/fecundity, disturbance type and frequency, and genetic variation when assessing the potential for range shifts and species vulnerability to climate change. PMID:26560869

  18. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status

    PubMed Central

    Karlsson, Torgny; Ek, Weronica E.

    2017-01-01

    Previous genome-wide association studies (GWAS) have identified hundreds of genetic loci to be associated with body mass index (BMI) and risk of obesity. Genetic effects can differ between individuals depending on lifestyle or environmental factors due to gene-environment interactions. In this study, we examine gene-environment interactions in 362,496 unrelated participants with Caucasian ancestry from the UK Biobank resource. A total of 94 BMI-associated SNPs, selected from a previous GWAS on BMI, were used to construct weighted genetic scores for BMI (GSBMI). Linear regression modeling was used to estimate the effect of gene-environment interactions on BMI for 131 lifestyle factors related to: dietary habits, smoking and alcohol consumption, physical activity, socioeconomic status, mental health, sleeping patterns, as well as female-specific factors such as menopause and childbirth. In total, 15 lifestyle factors were observed to interact with GSBMI, of which alcohol intake frequency, usual walking pace, and Townsend deprivation index, a measure of socioeconomic status, were all highly significant (p = 1.45*10−29, p = 3.83*10−26, p = 4.66*10−11, respectively). Interestingly, the frequency of alcohol consumption, rather than the total weekly amount resulted in a significant interaction. The FTO locus was the strongest single locus interacting with any of the lifestyle factors. However, 13 significant interactions were also observed after omitting the FTO locus from the genetic score. Our analyses indicate that many lifestyle factors modify the genetic effects on BMI with some groups of individuals having more than double the effect of the genetic score. However, the underlying causal mechanisms of gene-environmental interactions are difficult to deduce from cross-sectional data alone and controlled experiments are required to fully characterise the causal factors. PMID:28873402

  19. Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France.

    PubMed

    Dutech, C; Fabreguettes, O; Capdevielle, X; Robin, C

    2010-08-01

    The occurrence of multiple introductions may be a crucial factor in the successful establishment of invasive species, but few studies focus on the introduction of fungal pathogens, despite their significant effect on invaded habitats. Although Cryphonectria parasitica, the chestnut blight fungus introduced in North America and Europe from Asia during the 20th century, caused dramatic changes in its new range, the history of its introduction is not well retraced in Europe. Using 10 microsatellite loci, we investigated the genetic diversity of 583 isolates in France, where several introductions have been hypothesized. Our analyses showed that the seven most frequent multilocus genotypes belonged to three genetic lineages, which had a different and geographically limited distribution. These results suggest that different introduction events occurred in France. Genetic recombination was low among these lineages, despite the presence of the two mating types in each chestnut stand analysed. The spatial distribution of lineages suggests that the history of introductions in France associated with the slow expansion of the disease has contributed to the low observed rate of recombination among the divergent lineages. However, we discuss the possibility that environmental conditions or viral interactions could locally reduce recombination among genotypes.

  20. Behavioral and Pharmacogenetics of Aggressive Behavior

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of a specific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to “phasic” effects of pharmacological agents vs “trait”-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene × environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters (e.g., MAO A) or rate-limiting synthetic and metabolic enzymes of 5-HT determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsal raphe nucleus by GABA, glutamate, and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides (arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g. BDNF, nNOS, αCaMKII, Neuropeptide Y). The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior. PMID:22297576

  1. Genotype by environment interactions for behavioral reactivity in sheep.

    PubMed

    Hazard, D; Bouix, J; Chassier, M; Delval, E; Foulquié, D; Fassier, T; Bourdillon, Y; François, D; Boissy, A

    2016-04-01

    In sheep, social reactivity and reactivity to humans are relevant behavioral responses that are used to investigate the behavioral adaptation of farm animals to various rearing conditions. Such traits were previously reported as heritable and associated with several QTLs. However, few behavior-related genotype by environment (G × E) interactions have been reported to date. The experiment was performed on 2,989 male and female lambs issued from 30 sires. Every sire had progeny reared under both intensive and extensive conditions. After weaning, all lambs were individually exposed to two standardized behavioral tests. A broad range of behaviors including vocalizations, locomotion, localization, vigilance, and flight distance were assessed. Two complementary statistic approaches, with and without assumptions on the biological significance of behaviors, were performed to investigate social reactivity and reactivity to humans. G × E interactions were investigated based on the genetic correlations estimated for each factor or trait between farming conditions; those significantly different from 1 indicating a G × E. Environmental effects showed that social reactivity and reactivity to humans were higher in intensively reared lambs. The heritability of factors or traits used to measure social reactivity and reactivity to humans was similar in both rearing conditions. Estimated heritabilities were high for vocalizations in response to social isolation, moderate for locomotion and vigilance in response to social isolation, and low for both flight distance to an approaching human and proximity to a motionless human. No significant G × E interaction was found for vocalizations. G × E interactions were found for locomotion, vigilance and flight distance. Genetic correlations between both environments were low to moderate for vigilance, locomotion and flight distance. Vocalization in response to social isolation with or without human presence was identified as a robust trait and could be used to improve sheep sociability, independently of the environment. A G × E interaction was observed for behavioral reactivity to humans. Although moderate, the genetic correlation for this trait between intensive and extensive conditions could be used to select sires in the same environment by taking into account the G × E and to produce in different environments progenies that are less reactive to humans.

  2. Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies.

    PubMed

    Wang, Tiange; Huang, Tao; Kang, Jae H; Zheng, Yan; Jensen, Majken K; Wiggs, Janey L; Pasquale, Louis R; Fuchs, Charles S; Campos, Hannia; Rimm, Eric B; Willett, Walter C; Hu, Frank B; Qi, Lu

    2017-05-09

    Whether habitual coffee consumption interacts with the genetic predisposition to obesity in relation to body mass index (BMI) and obesity is unknown. We analyzed the interactions between genetic predisposition and habitual coffee consumption in relation to BMI and obesity risk in 5116 men from the Health Professionals Follow-up Study (HPFS), in 9841 women from the Nurses' Health Study (NHS), and in 5648 women from the Women's Health Initiative (WHI). The genetic risk score was calculated based on 77 BMI-associated loci. Coffee consumption was examined prospectively in relation to BMI. The genetic association with BMI was attenuated among participants with higher consumption of coffee than among those with lower consumption in the HPFS (P interaction  = 0.023) and NHS (P interaction  = 0.039); similar results were replicated in the WHI (P interaction  = 0.044). In the combined data of all cohorts, differences in BMI per increment of 10-risk allele were 1.38 (standard error (SE), 0.28), 1.02 (SE, 0.10), and 0.95 (SE, 0.12) kg/m 2 for coffee consumption of < 1, 1-3 and > 3 cup(s)/day, respectively (P interaction  < 0.001). Such interaction was partly due to slightly higher BMI with higher coffee consumption among participants at lower genetic risk and slightly lower BMI with higher coffee consumption among those at higher genetic risk. Each increment of 10-risk allele was associated with 78% (95% confidence interval (CI), 59-99%), 48% (95% CI, 36-62%), and 43% (95% CI, 28-59%) increased risk for obesity across these subgroups of coffee consumption (P interaction  = 0.008). From another perspective, differences in BMI per increment of 1 cup/day coffee consumption were 0.02 (SE, 0.09), -0.02 (SE, 0.04), and -0.14 (SE, 0.04) kg/m 2 across tertiles of the genetic risk score. Higher coffee consumption might attenuate the genetic associations with BMI and obesity risk, and individuals with greater genetic predisposition to obesity appeared to have lower BMI associated with higher coffee consumption.

  3. Determinants of genetic structure in a nonequilibrium metapopulation of the plant Silene latifolia.

    PubMed

    Fields, Peter D; Taylor, Douglas R

    2014-01-01

    Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase FST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. FST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.

  4. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1.

    PubMed

    Dobriyal, Neha; Tripathi, Prerna; Sarkar, Susrita; Tak, Yogesh; Verma, Amit K; Sahi, Chandan

    2017-05-01

    J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.

  5. Interspecific Tests of Allelism Reveal the Evolutionary Timing and Pattern of Accumulation of Reproductive Isolation Mutations

    PubMed Central

    Sherman, Natasha A.; Victorine, Anna; Wang, Richard J.; Moyle, Leonie C.

    2014-01-01

    Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations. PMID:25211473

  6. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration.

    PubMed

    Walsh, Gregory S; Grant, Paul K; Morgan, John A; Moens, Cecilia B

    2011-07-01

    Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.

  7. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration

    PubMed Central

    Walsh, Gregory S.; Grant, Paul K.; Morgan, John A.; Moens, Cecilia B.

    2011-01-01

    Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons. PMID:21693519

  8. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    PubMed Central

    Ulitsky, Igor; Shamir, Ron

    2007-01-01

    The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029

  9. An ecological genetic delineation of local seed-source provenance for ecological restoration

    PubMed Central

    Krauss, Siegfried L; Sinclair, Elizabeth A; Bussell, John D; Hobbs, Richard J

    2013-01-01

    An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range-wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R-statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ∼60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat-matched sites within a 30-km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability-based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration. PMID:23919158

  10. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line. © 2016 John Wiley & Sons Ltd.

  11. GENOME-WIDE GENETIC INTERACTION ANALYSIS OF GLAUCOMA USING EXPERT KNOWLEDGE DERIVED FROM HUMAN PHENOTYPE NETWORKS

    PubMed Central

    HU, TING; DARABOS, CHRISTIAN; CRICCO, MARIA E.; KONG, EMILY; MOORE, JASON H.

    2014-01-01

    The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease. PMID:25592582

  12. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia

    PubMed Central

    2013-01-01

    Background Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date. Methods We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities. Results All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure. Conclusions The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation. PMID:23924629

  13. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia.

    PubMed

    Olival, Kevin J; Dick, Carl W; Simmons, Nancy B; Morales, Juan Carlos; Melnick, Don J; Dittmar, Katharina; Perkins, Susan L; Daszak, Peter; Desalle, Rob

    2013-08-08

    Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date. We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities. All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure. The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.

  14. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  15. Gene-Environment Interactions in Cardiovascular Disease

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2011-01-01

    Background Historically, models to describe disease were exclusively nature-based or nurture-based. Current theoretical models for complex conditions such as cardiovascular disease acknowledge the importance of both biologic and non-biologic contributors to disease. A critical feature is the occurrence of interactions between numerous risk factors for disease. The interaction between genetic (i.e. biologic, nature) and environmental (i.e. non-biologic, nurture) causes of disease is an important mechanism for understanding both the etiology and public health impact of cardiovascular disease. Objectives The purpose of this paper is to describe theoretical underpinnings of gene-environment interactions, models of interaction, methods for studying gene-environment interactions, and the related concept of interactions between epigenetic mechanisms and the environment. Discussion Advances in methods for measurement of genetic predictors of disease have enabled an increasingly comprehensive understanding of the causes of disease. In order to fully describe the effects of genetic predictors of disease, it is necessary to place genetic predictors within the context of known environmental risk factors. The additive or multiplicative effect of the interaction between genetic and environmental risk factors is often greater than the contribution of either risk factor alone. PMID:21684212

  16. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Treesearch

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  17. Genetic Interaction Score (S-Score) Calculation, Clustering, and Visualization of Genetic Interaction Profiles for Yeast.

    PubMed

    Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Colson, Isabelle; Hartsuiker, Edgar; Krogan, Nevan

    2018-02-01

    This protocol describes computational analysis of genetic interaction screens, ranging from data capture (plate imaging) to downstream analyses. Plate imaging approaches using both digital camera and office flatbed scanners are included, along with a protocol for the extraction of colony size measurements from the resulting images. A commonly used genetic interaction scoring method, calculation of the S-score, is discussed. These methods require minimal computer skills, but some familiarity with MATLAB and Linux/Unix is a plus. Finally, an outline for using clustering and visualization software for analysis of resulting data sets is provided. © 2018 Cold Spring Harbor Laboratory Press.

  18. Integrating physical and genetic maps: from genomes to interaction networks

    PubMed Central

    Beyer, Andreas; Bandyopadhyay, Sourav; Ideker, Trey

    2009-01-01

    Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree. PMID:17703239

  19. Ethical, legal and social issues in restoring genetic identity after forced disappearance and suppression of identity in Argentina.

    PubMed

    Penchaszadeh, Victor B

    2015-07-01

    Human genetic identification has been increasingly associated with the preservation, defence and reparation of human rights, in particular the right to genetic identity. The Argentinian military dictatorship of 1976-1983 engaged in a savage repression and egregious violations of human rights, including forced disappearance, torture, assassination and appropriation of children of the disappeared with suppression of their identity. The ethical, legal and social nuances in the use of forensic genetics to support the right to identity in Argentina included issues such as the best interest of children being raised by criminals, the right to learn the truth of one's origin and identity, rights of their biological families, the issue of voluntary versus compulsory testing of victims, as well as the duty of the state to investigate crimes against humanity, punish perpetrators and provide justice and reparation to the victims. In the 30 years following the return to democracy in 1984, the search, localization and DNA testing of disappeared children and young adults has led, so far, to the genetic identification of 116 persons who had been abducted as babies. The high value placed on DNA testing to identify victims of identity suppression did not conflict with the social consensus that personal identity is a complex and dynamic concept, attained by the interaction of genetics with historical, social, emotional, educational, cultural and other important environmental factors. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics within a developing set of ethical and political circumstances.

  20. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  1. The Coxsackievirus and Adenovirus Receptor: a new adhesion protein in cochlear development.

    PubMed

    Excoffon, Katherine J D A; Avenarius, Matthew R; Hansen, Marlan R; Kimberling, William J; Najmabadi, Hossein; Smith, Richard J H; Zabner, Joseph

    2006-05-01

    The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness.

  2. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast

    PubMed Central

    Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan

    2016-01-01

    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909

  3. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast.

    PubMed

    Sethi, Kriti; Palani, Saravanan; Cortés, Juan C G; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I; Ribas, Juan Carlos; Balasubramanian, Mohan

    2016-10-01

    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast.

  4. Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1.

    PubMed

    Wünsch, Désirée; Hahlbrock, Angelina; Heiselmayer, Christina; Bäcker, Sandra; Heun, Patrick; Goesswein, Dorothee; Stöcker, Walter; Schirmeister, Tanja; Schneider, Günter; Krämer, Oliver H; Knauer, Shirley K; Stauber, Roland H

    2015-05-01

    Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism. © FASEB.

  5. The coupling hypothesis: why genome scans may fail to map local adaptation genes.

    PubMed

    Bierne, Nicolas; Welch, John; Loire, Etienne; Bonhomme, François; David, Patrice

    2011-05-01

    Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables. © 2011 Blackwell Publishing Ltd.

  6. A Kernel Machine Method for Detecting Effects of Interaction Between Multidimensional Variable Sets: An Imaging Genetics Application

    PubMed Central

    Ge, Tian; Nichols, Thomas E.; Ghosh, Debashis; Mormino, Elizabeth C.

    2015-01-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. PMID:25600633

  7. Role for protein–protein interaction databases in human genetics

    PubMed Central

    Pattin, Kristine A; Moore, Jason H

    2010-01-01

    Proteomics and the study of protein–protein interactions are becoming increasingly important in our effort to understand human diseases on a system-wide level. Thanks to the development and curation of protein-interaction databases, up-to-date information on these interaction networks is accessible and publicly available to the scientific community. As our knowledge of protein–protein interactions increases, it is important to give thought to the different ways that these resources can impact biomedical research. In this article, we highlight the importance of protein–protein interactions in human genetics and genetic epidemiology. Since protein–protein interactions demonstrate one of the strongest functional relationships between genes, combining genomic data with available proteomic data may provide us with a more in-depth understanding of common human diseases. In this review, we will discuss some of the fundamentals of protein interactions, the databases that are publicly available and how information from these databases can be used to facilitate genome-wide genetic studies. PMID:19929610

  8. Nanopore sensing of individual transcription factors bound to DNA

    PubMed Central

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-01-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509

  9. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  10. A Laminin G-EGF-Laminin G module in Neurexin IV is essential for the apico-lateral localization of Contactin and organization of septate junctions.

    PubMed

    Banerjee, Swati; Paik, Raehum; Mino, Rosa E; Blauth, Kevin; Fisher, Elizabeth S; Madden, Victoria J; Fanning, Alan S; Bhat, Manzoor A

    2011-01-01

    Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.

  11. A Laminin G-EGF-Laminin G Module in Neurexin IV Is Essential for the Apico-Lateral Localization of Contactin and Organization of Septate Junctions

    PubMed Central

    Banerjee, Swati; Paik, Raehum; Mino, Rosa E.; Blauth, Kevin; Fisher, Elizabeth S.; Madden, Victoria J.; Fanning, Alan S.; Bhat, Manzoor A.

    2011-01-01

    Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons. PMID:22022470

  12. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    PubMed

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R package for QTL studies. Pheno2Geno is freely available on CRAN under "GNU GPL v3". The Pheno2Geno package as well as the tutorial can also be found at: http://pheno2geno.nl .

  13. Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote

    PubMed Central

    Heller, Jens; Zhao, Jiuhai; Rosenfield, Gabriel; Kowbel, David J.; Gladieux, Pierre; Glass, N. Louise

    2016-01-01

    Microorganisms are capable of communication and cooperation to perform social activities. Cooperation can be enforced using kind discrimination mechanisms in which individuals preferentially help or punish others, depending on genetic relatedness only at certain loci. In the filamentous fungus Neurospora crassa, genetically identical asexual spores (germlings) communicate and fuse in a highly regulated process, which is associated with fitness benefits during colony establishment. Recognition and chemotropic interactions between isogenic germlings requires oscillation of the mitogen-activated protein kinase (MAPK) signal transduction protein complex (NRC-1, MEK-2, MAK-2, and the scaffold protein HAM-5) to specialized cell fusion structures termed conidial anastomosis tubes. Using a population of 110 wild N. crassa isolates, we investigated germling fusion between genetically unrelated individuals and discovered that chemotropic interactions are regulated by kind discrimination. Distinct communication groups were identified, in which germlings within one communication group interacted at high frequency, while germlings from different communication groups avoided each other. Bulk segregant analysis followed by whole genome resequencing identified three linked genes (doc-1, doc-2, and doc-3), which were associated with communication group phenotype. Alleles at doc-1, doc-2, and doc-3 fell into five haplotypes that showed transspecies polymorphism. Swapping doc-1 and doc-2 alleles from different communication group strains was necessary and sufficient to confer communication group affiliation. During chemotropic interactions, DOC-1 oscillated with MAK-2 to the tips of conidial anastomosis tubes, while DOC-2 was statically localized to the plasma membrane. Our data indicate that doc-1, doc-2, and doc-3 function as “greenbeard” genes, involved in mediating long-distance kind recognition that involves actively searching for one’s own type, resulting in cooperation between non-genealogical relatives. Our findings serve as a basis for investigations into the mechanisms associated with attraction, fusion, and kind recognition in other eukaryotic species. PMID:27077707

  14. The Septins Function in G1 Pathways that Influence the Pattern of Cell Growth in Budding Yeast

    PubMed Central

    Egelhofer, Thea A.; Villén, Judit; McCusker, Derek; Gygi, Steven P.; Kellogg, Douglas R.

    2008-01-01

    The septins are a conserved family of proteins that have been proposed to carry out diverse functions. In budding yeast, the septins become localized to the site of bud emergence in G1 but have not been thought to carry out important functions at this stage of the cell cycle. We show here that the septins function in redundant mechanisms that are required for formation of the bud neck and for the normal pattern of cell growth early in the cell cycle. The Shs1 septin shows strong genetic interactions with G1 cyclins and is directly phosphorylated by G1 cyclin-dependent kinases, consistent with a role in early cell cycle events. However, Shs1 phosphorylation site mutants do not show genetic interactions with the G1 cyclins or obvious defects early in the cell cycle. Rather, they cause an increased cell size and aberrant cell morphology that are dependent upon inhibitory phosphorylation of Cdk1 at the G2/M transition. Shs1 phosphorylation mutants also show defects in interaction with the Gin4 kinase, which associates with the septins during G2/M and plays a role in regulating inhibitory phosphorylation of Cdk1. Phosphorylation of Shs1 by G1 cyclin-dependent kinases plays a role in events that influence Cdk1 inhibitory phosphorylation. PMID:18431499

  15. Parallel paleogenomic transects reveal complex genetic history of early European farmers

    PubMed Central

    Lipson, Mark; Szécsényi-Nagy, Anna; Mallick, Swapan; Pósa, Annamária; Stégmár, Balázs; Keerl, Victoria; Rohland, Nadin; Stewardson, Kristin; Ferry, Matthew; Michel, Megan; Oppenheimer, Jonas; Broomandkhoshbacht, Nasreen; Harney, Eadaoin; Nordenfelt, Susanne; Llamas, Bastien; Mende, Balázs Gusztáv; Köhler, Kitti; Oross, Krisztián; Bondár, Mária; Marton, Tibor; Osztás, Anett; Jakucs, János; Paluch, Tibor; Horváth, Ferenc; Csengeri, Piroska; Koós, Judit; Sebők, Katalin; Anders, Alexandra; Raczky, Pál; Regenye, Judit; Barna, Judit P.; Fábián, Szilvia; Serlegi, Gábor; Toldi, Zoltán; Nagy, Emese Gyöngyvér; Dani, János; Molnár, Erika; Pálfi, György; Márk, László; Melegh, Béla; Bánfai, Zsolt; Domboróczki, László; Fernández-Eraso, Javier; Mujika-Alustiza, José Antonio; Fernández, Carmen Alonso; Echevarría, Javier Jiménez; Bollongino, Ruth; Orschiedt, Jörg; Schierhold, Kerstin; Meller, Harald; Cooper, Alan; Burger, Joachim; Bánffy, Eszter; Alt, Kurt W.; Lalueza-Fox, Carles; Haak, Wolfgang; Reich, David

    2017-01-01

    Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants1–8 who received a limited amount of admixture from resident hunter-gatherers3–5,9. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Using the highest-resolution genome-wide ancient DNA data set assembled to date—a total of 180 samples, 130 newly reported here, from the Neolithic and Chalcolithic of Hungary (6000–2900 BCE, n = 100), Germany (5500–3000 BCE, n = 42), and Spain (5500–2200 BCE, n = 38)—we investigate the population dynamics of Neolithization across Europe. We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways that gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modeling approaches to elucidate multiple dimensions of historical population interactions. PMID:29144465

  16. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    PubMed

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M

    2008-09-23

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  17. A Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis

    PubMed Central

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A. M

    2008-01-01

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition. PMID:18816165

  18. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.

    PubMed

    Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  19. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia's system of Children's Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as tomore » educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.« less

  20. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia`s system of Children`s Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as tomore » educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.« less

  1. Microsatellite variation in Donax trunculus from the Iberian Peninsula, with particular attention to Galician estuaries (NW Spain)

    NASA Astrophysics Data System (ADS)

    Nantón, A.; Arias-Pérez, A.; Freire, R.; Fernández-Pérez, J.; Nóvoa, S.; Méndez, J.

    2017-10-01

    Genetic variation and population structure information is essential for conservation and stock management policies. The wedge clam Donax trunculus is an important fishing resource in the Iberian Peninsula and in some areas, such as the northwestern Spain, wild stocks have decreased greatly. Despite this, information is mainly from the southwestern Atlantic to the northwestern Mediterranean of the Iberian Peninsula. In this study, fifteen microsatellite loci were examined at 17 localities along the Iberian Peninsula to characterize its genetic diversity and population structure. Particular attention was paid to the northwestern Atlantic area, and to test if the pattern previously described for this species is confirmed when localities distributed across the Atlantic coast are included and different microsatellite markers are used. All localities displayed similar allelic richness values and heterozygosity levels but when genetic diversity levels were compared among groups of localities, tests were significant and samples from the northwestern area (Galicia) showed the lowest values. The analysis of population structure indicated that localities from the Atlantic coast are genetically homogeneous although some samples showed significant pairwise Fst values. These values were low and Bayesian analysis of genetic differentiation did not show a consistent structure along the Atlantic coast of the Iberian Peninsula. However, Atlantic samples were genetically different from those located in Mediterranean coast, which may be explained by the existence of the Almeria-Oran front. Moreover, Fuengirola, locality situated in the Alboran Sea between the Strait of Gibraltar and Mediterranean Sea, showed significant differences from all remaining localities included in the study. Overall, the data showed the existence of genetic homogeneity along the Atlantic coast of the Iberian Peninsula and support the three management units (Atlantic Ocean, the Alboran Sea and the northwestern Mediterranean) previously described in this species. Reduced diversity in the northwestern Spain samples could be related to the exploitation of this resource.

  2. TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells

    PubMed Central

    Nguyen, Trieu; Iyer, Dharini; Liu, Boxiang; Wang, Ting; Sazonova, Olga; Matic, Ljubica Perisic; Maegdefessel, Lars; Quertermous, Thomas

    2017-01-01

    Both environmental factors and genetic loci have been associated with coronary artery disease (CAD), however gene-gene and gene-environment interactions that might identify molecular mechanisms of risk are not easily studied by human genetic approaches. We have previously identified the transcription factor TCF21 as the causal CAD gene at 6q23.2 and characterized its downstream transcriptional network that is enriched for CAD GWAS genes. Here we investigate the hypothesis that TCF21 interacts with a downstream target gene, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates the cellular response to environmental contaminants, including dioxin and polycyclic aromatic hydrocarbons (e.g., tobacco smoke). Perturbation of TCF21 expression in human coronary artery smooth muscle cells (HCASMC) revealed that TCF21 promotes expression of AHR, its heterodimerization partner ARNT, and cooperates with these factors to upregulate a number of inflammatory downstream disease related genes including IL1A, MMP1, and CYP1A1. TCF21 was shown to bind in AHR, ARNT and downstream target gene loci, and co-localization was noted for AHR-ARNT and TCF21 binding sites genome-wide in regions of HCASMC open chromatin. These regions of co-localization were found to be enriched for GWAS signals associated with cardio-metabolic as well as chronic inflammatory disease phenotypes. Finally, we show that similar to TCF21, AHR gene expression is increased in atherosclerotic lesions in mice in vivo using laser capture microdissection, and AHR protein is localized in human carotid atherosclerotic lesions where it is associated with protein kinases with a critical role in innate immune response. These data suggest that TCF21 can cooperate with AHR to activate an inflammatory gene expression program that is exacerbated by environmental stimuli, and may contribute to the overall risk for CAD. PMID:28481916

  3. Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates.

    PubMed

    O'Brien, Eleanor K; Higgie, Megan; Reynolds, Alan; Hoffmann, Ary A; Bridle, Jon R

    2017-05-01

    Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species' range and will remain so in future and (ii) that abiotic factors (e.g. temperature, humidity) determine species' distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high-altitude sites, and declined towards warmer, low-altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower-altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species' range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high-altitude than low-altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (i) measuring genetic variation in key traits under ecologically relevant conditions, and (ii) considering the effect of biotic interactions when predicting species' responses to environmental change. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  5. Inferring genetic interactions from comparative fitness data

    PubMed Central

    2017-01-01

    Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that genetic interactions can often be inferred from fitness rank orders, where all genotypes are ordered according to fitness, and even from partial fitness orders. We provide a complete characterization of rank orders that imply higher order epistasis. Our theory applies to all common types of gene interactions and facilitates comprehensive investigations of diverse genetic interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite Plasmodium vivax, the fungus Aspergillus niger, and the TEM-family of β-lactamase associated with antibiotic resistance. For all systems, our approach revealed higher order interactions among mutations. PMID:29260711

  6. Inferring genetic interactions from comparative fitness data.

    PubMed

    Crona, Kristina; Gavryushkin, Alex; Greene, Devin; Beerenwinkel, Niko

    2017-12-20

    Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that genetic interactions can often be inferred from fitness rank orders, where all genotypes are ordered according to fitness, and even from partial fitness orders. We provide a complete characterization of rank orders that imply higher order epistasis. Our theory applies to all common types of gene interactions and facilitates comprehensive investigations of diverse genetic interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite Plasmodium vivax , the fungus Aspergillus niger , and the TEM-family of β-lactamase associated with antibiotic resistance. For all systems, our approach revealed higher order interactions among mutations.

  7. Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping.

    PubMed

    Jia, Congjun; Wu, Xinming; Chen, Min; Wang, Yunqi; Liu, Xiqiang; Gong, Pan; Xu, Qingfang; Wang, Xuemin; Gao, Hongwen; Wang, Zan

    2017-06-06

    Alfalfa (Medicago sativa) is one of the most important legume forage species in China and many other countries of the world. It provides a quality source of proteins and minerals to animals. Genetic underpinnings for these important traits, however, are elusive. An alfalfa (M. sativa) association mapping study for six traits, namely crude protein (CP), rumen undegraded protein (RUP), and four mineral elements (Ca, K, Mg and P), was conducted in three consecutive years using a large collection encompassing 336 genotypes genotyped with 85 simple sequence repeat (SSR) markers. All the traits were significantly influenced by genotype, environment, and genotype × environment interaction. Eight-five significant associations (P < 0.005) were identified. Among these, five associations with Ca were repeatedly observed and six co-localized associations were identified. The identified marker alleles significantly associated with the traits provided important information for understanding genetic controls of alfalfa quality. The markers could be used in assisting selection for the individual traits in breeding populations for developing new alfalfa cultivars.

  8. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  9. Cancer genetics education in a low- to middle-income country: evaluation of an interactive workshop for clinicians in Kenya.

    PubMed

    Hill, Jessica A; Lee, Su Yeon; Njambi, Lucy; Corson, Timothy W; Dimaras, Helen

    2015-01-01

    Clinical genetic testing is becoming an integral part of medical care for inherited disorders. While genetic testing and counseling are readily available in high-income countries, in low- and middle-income countries like Kenya genetic testing is limited and genetic counseling is virtually non-existent. Genetic testing is likely to become widespread in Kenya within the next decade, yet there has not been a concomitant increase in genetic counseling resources. To address this gap, we designed an interactive workshop for clinicians in Kenya focused on the genetics of the childhood eye cancer retinoblastoma. The objectives were to increase retinoblastoma genetics knowledge, build genetic counseling skills and increase confidence in those skills. The workshop was conducted at the 2013 Kenyan National Retinoblastoma Strategy meeting. It included a retinoblastoma genetics presentation, small group discussion of case studies and genetic counseling role-play. Knowledge was assessed by standardized test, and genetic counseling skills and confidence by questionnaire. Knowledge increased significantly post-workshop, driven by increased knowledge of retinoblastoma causative genetics. One-year post-workshop, participant knowledge had returned to baseline, indicating that knowledge retention requires more frequent reinforcement. Participants reported feeling more confident discussing genetics with patients, and had integrated more genetic counseling into patient interactions. A comprehensive retinoblastoma genetics workshop can increase the knowledge and skills necessary for effective retinoblastoma genetic counseling.

  10. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE PAGES

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; ...

    2014-11-20

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal communication.« less

  11. HAM-5 Functions As a MAP Kinase Scaffold during Cell Fusion in Neurospora crassa

    PubMed Central

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; Wang, Yuexi; Yang, Feng; Starr, Trevor L.; Camp, David G.; Smith, Richard D.; Glass, N. Louise

    2014-01-01

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. PMID:25412208

  12. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal communication.« less

  13. [Studying the association between genetic polymorphism of growth factors and the development of primary open-angle glaucoma].

    PubMed

    Kirilenko, M Yu; Tikunova, E V; Sirotina, S S; Polonikov, A V; Bushueva, O Yu; Churnosov, M I

    Primary open-angle glaucoma (POAG) is a multifactorial disease, etiopathogenesis of which largely depends on growth factors. Possessing a variety of medical and biological effects, these cytokines may influence the development and progression of POAG. to reveal the role of genetic polymorphisms of growth factors in predisposition to developing POAG that is refractory to local hypotensive therapy. The object of the study were 162 patients with stage II-III POAG, in whom local hypotensive therapy was inefficient, 90 patients with stage II-III POAG well controlled on local hypotensive therapy, and 191 controls. The material for the study was venous blood taken from the cubital vein of a proband. Isolation of genomic DNA was performed by phenol-chloroform extraction. Analysis of genetic polymorphisms of growth factors was performed through allelic discrimination. For that, synthesis of DNA was carried out via polymerase chain reaction (PCR). It is found that the T IGFR-1 genetic variant (OR=1.34) and a combination of the C VEGF-A and T IGFR-1 genetic variants (OR=1.90) are risk factors of developing POAG that is refractory to local hypotensive therapy. A statistical model for predicting such a risk has been proposed that includes: VEGF-A с.-958C>T genetic marker (rs 833,061), age, concomitant non-inflammatory ocular diseases, microvascular changes in the conjunctiva, the degree of pigmentation of the angle of the anterior chamber, and pseudoexfoliative syndrome. Recognition accuracy of the model is 90.42%. The T IGFR-1 genetic variant and a combination of the C VEGF-A and T IGFR-1 genetic variants increase the risk of developing POAG that is refractory to local hypotensive therapy.

  14. Gene-by-Psychosocial Factor Interactions Influence Diastolic Blood Pressure in European and African Ancestry Populations: Meta-Analysis of Four Cohort Studies.

    PubMed

    Smith, Jennifer A; Zhao, Wei; Yasutake, Kalyn; August, Carmella; Ratliff, Scott M; Faul, Jessica D; Boerwinkle, Eric; Chakravarti, Aravinda; Diez Roux, Ana V; Gao, Yan; Griswold, Michael E; Heiss, Gerardo; Kardia, Sharon L R; Morrison, Alanna C; Musani, Solomon K; Mwasongwe, Stanford; North, Kari E; Rose, Kathryn M; Sims, Mario; Sun, Yan V; Weir, David R; Needham, Belinda L

    2017-12-18

    Inter-individual variability in blood pressure (BP) is influenced by both genetic and non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European and/or African ancestry. After correction for multiple testing, two interactions were significantly associated with diastolic BP. In European ancestry participants, outward/trait anger score had a significant interaction with the C10orf107 genomic region ( p = 0.0019). In African ancestry participants, depressive symptom score had a significant interaction with the HFE genomic region ( p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis to identify subgroups of the population that may be at greater risk of elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.

  15. Complex Patterns of Local Adaptation in Teosinte

    PubMed Central

    Pyhäjärvi, Tanja; Hufford, Matthew B.; Mezmouk, Sofiane; Ross-Ibarra, Jeffrey

    2013-01-01

    Populations of widely distributed species encounter and must adapt to local environmental conditions. However, comprehensive characterization of the genetic basis of adaptation is demanding, requiring genome-wide genotype data, multiple sampled populations, and an understanding of population structure and potential selection pressures. Here, we used single-nucleotide polymorphism genotyping and data on numerous environmental variables to describe the genetic basis of local adaptation in 21 populations of teosinte, the wild ancestor of maize. We found complex hierarchical genetic structure created by altitude, dispersal events, and admixture among subspecies, which complicated identification of locally beneficial alleles. Patterns of linkage disequilibrium revealed four large putative inversion polymorphisms showing clinal patterns of frequency. Population differentiation and environmental correlations suggest that both inversions and intergenic polymorphisms are involved in local adaptation. PMID:23902747

  16. A RECENT HOST RANGE EXPANSION IN JUNONIA COENIA HÜBNER (NYMPHALIDAE): OVIPOSITION PREFERENCE, SURVIVAL, GROWTH, AND CHEMICAL DEFENSE.

    PubMed

    Camara, Mark D

    1997-06-01

    This paper reports on an investigation of two populations of Junonia coenia, the buckeye butterfly, one that feeds on the species' typical host plant (Plantago lanceolata) and one that utilizes a novel host plant (Kickxia elatine). I examined these populations for local adaptive responses in terms of oviposition behavior, growth, and chemical defense, on both P. lanceolata and K. elatine. In addition, I examined the genetic architecture underlying these traits using a full-sib quantitative genetic analysis. I found that a significant majority of females prefer the host plant species found at their collection sites in oviposition tests, but that there is no evidence that they are locally adapted in growth performance, as measured by fifth-instar and pupal weights and development times. Neither are there correlations between oviposition preferences of females and the growth performance or levels of chemical defense of their offspring. The two populations studied do, however, show specialization in terms of the levels of chemical defense they sequester from their host plants. I argue that these results indicate that natural enemies are the normal barriers to host range expansion in this oligophagous herbivore because a breakdown in those barriers results in genetic changes that enhance resistance to predation. This is despite the fact that adaptive responses in physiology are unlikely to be limited by a lack of genetic variability; the genetic architecture among traits would be conducive to specialization in growth performance; and there are costs to chemical defense in this species. All these conditions would tend to argue that J. coenia harbors considerable potential for coevolutionary interactions with its chemically defended hosts, but this potential is not realized, probably because natural selection on diet breadth by natural enemies is much stronger than selection from host plants in this system. © 1997 The Society for the Study of Evolution.

  17. Interactions between Genetics and Sugar-Sweetened Beverage Consumption on Health Outcomes: A Review of Gene–Diet Interaction Studies

    PubMed Central

    Haslam, Danielle E.; McKeown, Nicola M.; Herman, Mark A.; Lichtenstein, Alice H.; Dashti, Hassan S.

    2018-01-01

    The consumption of sugar-sweetened beverages (SSB), which includes soft drinks, fruit drinks, and other energy drinks, is associated with excess energy intake and increased risk for chronic metabolic disease among children and adults. Thus, reducing SSB consumption is an important strategy to prevent the onset of chronic diseases, and achieve and maintain a healthy body weight. The mechanisms by which excessive SSB consumption may contribute to complex chronic diseases may partially depend on an individual’s genetic predisposition. Gene–SSB interaction investigations, either limited to single genetic loci or including multiple genetic variants, aim to use genomic information to define mechanistic pathways linking added sugar consumption from SSBs to those complex diseases. The purpose of this review is to summarize the available gene-SSB interaction studies investigating the relationships between genetics, SSB consumption, and various health outcomes. Current evidence suggests there are genetic predispositions for an association between SSB intake and adiposity; evidence for a genetic predisposition between SSB and type 2 diabetes or cardiovascular disease is limited. PMID:29375475

  18. Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study

    PubMed Central

    Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.

    2010-01-01

    Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597

  19. Invasion Biology of Aedes japonicus japonicus (Diptera: Culicidae)

    PubMed Central

    Fonseca, Dina M.

    2014-01-01

    Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii. PMID:24397520

  20. [Copy number variation: markers and predictors for type 2 diabetes].

    PubMed

    Ramírez-Valverde, Alan Gilberto; Antúnez-Ortiz, Diana Lizzete; Méndez-Beleche, Alberto; Flores-Alfaro, Eugenia; Ascencio-Montiel, Iván Jesús; Cruz, Miguel

    2015-01-01

    Type 2 diabetes (T2D) is a disease characterized by a deficiency in production or action of insulin. It is the result mainly of the interaction of the environment, lifestyle, as well as genetic factors. It is considered as one of the major health issues in the world because it affects severely the psychological well-being and overall life quality. Recently it has been shown that DNA copy number variations (CNVs) are associated with several diseases, including obesity and T2D. The CNVs are present from 9 to 18 % of the genome and can modify the expression levels of mRNA and proteins encoded by genes located near their localization. Less is known about their contribution to the pathogenesis of metabolic diseases, which is necessary to characterize so that these variations can be potentially used as biomarkers of genetic risk CNVs of T2D.

  1. NLR mutations suppressing immune hybrid incompatibility and their effects on disease resistance.

    PubMed

    Atanasov, Kostadin Evgeniev; Liu, Changxin; Erban, Alexander; Kopka, Joachim; Parker, Jane E; Alcázar, Rubén

    2018-05-23

    Genetic divergence between populations can lead to reproductive isolation. Hybrid incompatibilities (HI) represent intermediate points along a continuum towards speciation. In plants, genetic variation in disease resistance (R) genes underlies several cases of HI. The progeny of a cross between Arabidopsis (Arabidopsis thaliana) accessions Landsberg (Ler, Poland) and Kashmir-2 (Kas-2, central Asia) exhibits immune-related HI. This incompatibility is due to a genetic interaction between a cluster of eight TNL (TOLL/INTERLEUKIN1 RECEPTOR- NUCLEOTIDE BINDING - LEUCINE RICH REPEAT) RPP1 (RECOGNITION OF PERONOSPORA PARASITICA 1)- like genes (R1- R8) from Ler and central Asian alleles of a Strubbelig-family receptor-like kinase (SRF3) from Kas-2. In characterizing mutants altered in Ler/Kas-2 HI, we mapped multiple mutations to the RPP1-like Ler locus. Analysis of these suppressor of Ler/Kas-2 incompatibility (sulki) mutants reveals complex, additive and epistatic interactions underlying RPP1-like Ler locus activity. The effects of these mutations were measured on basal defense, global gene expression, primary metabolism, and disease resistance to a local Hyaloperonospora arabidopsidis isolate (Hpa Gw) collected from Gorzów (Gw), where the Landsberg accession originated. Gene expression sectors and metabolic hallmarks identified for HI are both dependent and independent of RPP1-like Ler members. We establish that mutations suppressing immune-related Ler/Kas-2 HI do not compromise resistance to Hpa Gw. QTL mapping analysis of Hpa Gw resistance point to RPP7 as the causal locus. This work provides insight into the complex genetic architecture of the RPP1-like Ler locus and immune-related HI in Arabidopsis and into the contributions of RPP1-like genes to HI and defense. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  2. Assessment of genetic and nongenetic interactions for the prediction of depressive symptomatology: an analysis of the Wisconsin Longitudinal Study using machine learning algorithms.

    PubMed

    Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S

    2013-10-01

    We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.

  3. A genome-wide survey of transgenerational genetic effects in autism.

    PubMed

    Tsang, Kathryn M; Croen, Lisa A; Torres, Anthony R; Kharrazi, Martin; Delorenze, Gerald N; Windham, Gayle C; Yoshida, Cathleen K; Zerbo, Ousseny; Weiss, Lauren A

    2013-01-01

    Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4)) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.

  4. The Impact of Gene-Environment Dependence and Misclassification in Genetic Association Studies Incorporating Gene-Environment Interactions

    PubMed Central

    Lindström, Sara; Yen, Yu-Chun; Spiegelman, Donna; Kraft, Peter

    2009-01-01

    The possibility of gene-environment interaction can be exploited to identify genetic variants associated with disease using a joint test of genetic main effect and gene-environment interaction. We consider how exposure misclassification and dependence between the true exposure E and the tested genetic variant G affect this joint test in absolute terms and relative to three other tests: the marginal test (G), the standard test for multiplicative gene-environment interaction (GE), and the case-only test for interaction (GE-CO). All tests can have inflated Type I error rate when E and G are correlated in the underlying population. For the GE and G-GE tests this inflation is only noticeable when the gene-environment dependence is unusually strong; the inflation can be large for the GE-CO test even for modest correlation. The joint G-GE test has greater power than the GE test generally, and greater power than the G test when there is no genetic main effect and the measurement error is small to moderate. The joint G-GE test is an attractive test for assessing genetic association when there is limited knowledge about casual mechanisms a priori, even in the presence of misclassification in environmental exposure measurement and correlation between exposure and genetic variants. PMID:19521099

  5. Spatial difference in genetic variation for fenitrothion tolerance between local populations of Daphnia galeata in Lake Kasumigaura, Japan.

    PubMed

    Mano, Hiroyuki; Tanaka, Yoshinari

    2017-12-01

    This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.

  6. Comparative Phylogeography in a Specific and Obligate Pollination Antagonism

    PubMed Central

    Espíndola, Anahí; Alvarez, Nadir

    2011-01-01

    In specific and obligate interactions the nature and abundance of a given species can have important effects on the survival and population dynamics of associated organisms. In a phylogeographic framework, we therefore expect that the fates of organisms interacting specifically are also tightly interrelated. Here we investigate such a scenario by analyzing the genetic structures of species interacting in an obligate plant-insect pollination lure-and-trap antagonism, involving Arum maculatum (Araceae) and its specific psychodid (Diptera) visitors Psychoda phalaenoides and Psycha grisescens. Because the interaction is asymmetric (i.e., only the plant depends on the insect), we expect the genetic structure of the plant to be related with the historical pollinator availability, yielding incongruent phylogeographic patterns between the interacting organisms. Using insect mtDNA sequences and plant AFLP genome fingerprinting, we inferred the large-scale phylogeographies of each species and the distribution of genetic diversities throughout the sampled range, and evaluated the congruence in their respective genetic structures using hierarchical analyses of molecular variances (AMOVA). Because the composition of pollinator species varies in Europe, we also examined its association with the spatial genetic structure of the plant. Our findings indicate that while the plant presents a spatially well-defined genetic structure, this is not the case in the insects. Patterns of genetic diversities also show dissimilar distributions among the three interacting species. Phylogeographic histories of the plant and its pollinating insects are thus not congruent, a result that would indicate that plant and insect lineages do not share the same glacial and postglacial histories. However, the genetic structure of the plant can, at least partially, be explained by the type of pollinators available at a regional scale. Differences in life-history traits of available pollinators might therefore have influenced the genetic structure of the plant, the dependent organism, in this antagonistic interaction. PMID:22216104

  7. A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application.

    PubMed

    Ge, Tian; Nichols, Thomas E; Ghosh, Debashis; Mormino, Elizabeth C; Smoller, Jordan W; Sabuncu, Mert R

    2015-04-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of the interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    PubMed Central

    Dunlop, Malcolm G.; Houlston, Richard S.; Tomlinson, Ian P.; Holmes, Chris C.

    2012-01-01

    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions. PMID:23236349

  9. “Sickle cell anemia: tracking down a mutation”: an interactive learning laboratory that communicates basic principles of genetics and cellular biology

    PubMed Central

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David

    2016-01-01

    “Sickle cell anemia: tracking down a mutation” is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. PMID:26873898

  10. "Sickle cell anemia: tracking down a mutation": an interactive learning laboratory that communicates basic principles of genetics and cellular biology.

    PubMed

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J Michael

    2016-03-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. Copyright © 2016 The American Physiological Society.

  11. Genetic relationships among Vietnamese local pigs investigated using genome-wide SNP markers.

    PubMed

    Ishihara, S; Arakawa, A; Taniguchi, M; Luu, Q M; Pham, D L; Nguyen, B V; Mikawa, S; Kikuchi, K

    2018-02-01

    Vietnam is one of the most important countries for pig domestication, and a total of 26 local breeds have been reported. In the present study, genetic relationships among the various pig breeds were investigated using 90 samples collected from local pigs (15 breeds) in 15 distantly separated, distinct areas of the country and six samples from Landrace pigs in Hanoi as an out-group of a common Western breed. All samples were genotyped using the Illumina Porcine SNP60 v2 Genotyping BeadChip. We used 15 160-15 217 SNPs that showed a high degree of polymorphism in the Vietnamese breeds for identifying genetic relationships among the Vietnamese breeds. Principal components analysis showed that most pigs indigenous to Vietnam formed clusters correlated with their original geographic locations. Some Vietnamese breeds formed a cluster that was genetically related to the Western breed Landrace, suggesting the possibility of crossbreeding. These findings will be useful for the conservation and management of Vietnamese local pig breeds. © 2018 Stichting International Foundation for Animal Genetics.

  12. Ecogeographic Genetic Epidemiology

    PubMed Central

    Sloan, Chantel D.; Duell, Eric J.; Shi, Xun; Irwin, Rebecca; Andrew, Angeline S.; Williams, Scott M.; Moore, Jason H.

    2009-01-01

    Complex diseases such as cancer and heart disease result from interactions between an individual's genetics and environment, i.e. their human ecology. Rates of complex diseases have consistently demonstrated geographic patterns of incidence, or spatial “clusters” of increased incidence relative to the general population. Likewise, genetic subpopulations and environmental influences are not evenly distributed across space. Merging appropriate methods from genetic epidemiology, ecology and geography will provide a more complete understanding of the spatial interactions between genetics and environment that result in spatial patterning of disease rates. Geographic Information Systems (GIS), which are tools designed specifically for dealing with geographic data and performing spatial analyses to determine their relationship, are key to this kind of data integration. Here the authors introduce a new interdisciplinary paradigm, ecogeographic genetic epidemiology, which uses GIS and spatial statistical analyses to layer genetic subpopulation and environmental data with disease rates and thereby discern the complex gene-environment interactions which result in spatial patterns of incidence. PMID:19025788

  13. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe.

    PubMed

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C

    2007-11-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.

  14. Msc1 Acts Through Histone H2A.Z to Promote Chromosome Stability in Schizosaccharomyces pombe

    PubMed Central

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C.

    2007-01-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage. PMID:17947424

  15. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    PubMed Central

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  16. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish.

    PubMed

    Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe

    2016-11-15

    The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.

  17. Cyclophilin B enhances HIV-1 Infection

    PubMed Central

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-01-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. PMID:26774171

  18. Cyclophilin B enhances HIV-1 infection.

    PubMed

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Interactive genetic algorithm for user-centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana Debora; Babbar-Sebens, Meghna; Mukhopadhyay, Snehasis; Kleinberg, Austin

    2017-05-01

    Interactive Genetic Algorithms (IGA) are advanced human-in-the-loop optimization methods that enable humans to give feedback, based on their subjective and unquantified preferences and knowledge, during the algorithm's search process. While these methods are gaining popularity in multiple fields, there is a critical lack of data and analyses on (a) the nature of interactions of different humans with interfaces of decision support systems (DSS) that employ IGA in water resources planning problems and on (b) the effect of human feedback on the algorithm's ability to search for design alternatives desirable to end-users. In this paper, we present results and analyses of observational experiments in which different human participants (surrogates and stakeholders) interacted with an IGA-based, watershed DSS called WRESTORE to identify plans of conservation practices in a watershed. The main goal of this paper is to evaluate how the IGA adapts its search process in the objective space to a user's feedback, and identify whether any similarities exist in the objective space of plans found by different participants. Some participants focused on the entire watershed, while others focused only on specific local subbasins. Additionally, two different hydrology models were used to identify any potential differences in interactive search outcomes that could arise from differences in the numerical values of benefits displayed to participants. Results indicate that stakeholders, in comparison to their surrogates, were more likely to use multiple features of the DSS interface to collect information before giving feedback, and dissimilarities existed among participants in the objective space of design alternatives.

  20. ViSEN: methodology and software for visualization of statistical epistasis networks

    PubMed Central

    Hu, Ting; Chen, Yuanzhu; Kiralis, Jeff W.; Moore, Jason H.

    2013-01-01

    The non-linear interaction effect among multiple genetic factors, i.e. epistasis, has been recognized as a key component in understanding the underlying genetic basis of complex human diseases and phenotypic traits. Due to the statistical and computational complexity, most epistasis studies are limited to interactions with an order of two. We developed ViSEN to analyze and visualize epistatic interactions of both two-way and three-way. ViSEN not only identifies strong interactions among pairs or trios of genetic attributes, but also provides a global interaction map that shows neighborhood and clustering structures. This visualized information could be very helpful to infer the underlying genetic architecture of complex diseases and to generate plausible hypotheses for further biological validations. ViSEN is implemented in Java and freely available at https://sourceforge.net/projects/visen/. PMID:23468157

  1. Genetic structure of local populations of Lutzomyia longipalpis (Diptera: Psychodidae) in central Colombia.

    PubMed

    Munstermann, L E; Morrison, A C; Ferro, C; Pardo, R; Torres, M

    1998-01-01

    Lutzomyia longipalpis (Lutz & Neiva), the sand fly vector of American visceral leishmaniasis in the New World tropics, has a broad but discontinuous geographical distribution from southern Mexico to Argentina. A baseline for population genetic structure and genetic variability for this species was obtained by analyzing 5 local, peridomestic populations at the approximate center of its distribution, the Magdalena River Valley of central Colombia. Three populations of L. longipalpis from El Callejón, a small rural community, were compared with 2 populations from neighboring areas 12 and 25 km distant for genetic variation at 15 isoenzyme loci. The mean heterozygosity ranged from 11 to 16%, with 1.2 to 2.3 alleles detected per locus. Nei's genetic distances among the populations were very low, ranging from 0.001 to 0.007. Gene flow estimates based on FST indicated high levels of gene flow among local L. longipalpis populations, with minimal population substructuring.

  2. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region.

    PubMed

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-03-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.

  3. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    PubMed Central

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991

  4. Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they identify that genetic identity plays a significant role in phenotypic variation in female behaviour and fecundity. This variation may be potentially due to ongoing sexual conflict found between the sexes for interacting phenotypes. Our unexpected observation of a negative correlation between female choosiness and male attractiveness highlights the need for more explicit theoretical models of genetic covariance to investigate the coevolution of female choosiness and male attractiveness. PMID:24884361

  5. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel

    PubMed Central

    Makina, Sithembile O.; Muchadeyi, Farai C.; van Marle-Köster, Este; MacNeil, Michael D.; Maiwashe, Azwihangwisi

    2014-01-01

    Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds. PMID:25295053

  6. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel.

    PubMed

    Makina, Sithembile O; Muchadeyi, Farai C; van Marle-Köster, Este; MacNeil, Michael D; Maiwashe, Azwihangwisi

    2014-01-01

    Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds.

  7. Challenges and Opportunities in Genome-Wide Environmental Interaction (GWEI) studies

    PubMed Central

    Aschard, Hugues; Lutz, Sharon; Maus, Bärbel; Duell, Eric J.; Fingerlin, Tasha; Chatterjee, Nilanjan; Kraft, Peter; Van Steen, Kristel

    2012-01-01

    The interest in performing gene-environment interaction studies has seen a significant increase with the increase of advanced molecular genetics techniques. Practically, it became possible to investigate the role of environmental factors in disease risk and hence to investigate their role as genetic effect modifiers. The understanding that genetics is important in the uptake and metabolism of toxic substances is an example of how genetic profiles can modify important environmental risk factors to disease. Several rationales exist to set up gene-environment interaction studies and the technical challenges related to these studies – when the number of environmental or genetic risk factors is relatively small – has been described before. In the post-genomic era, it is now possible to study thousands of genes and their interaction with the environment. This brings along a whole range of new challenges and opportunities. Despite a continuing effort in developing efficient methods and optimal bioinformatics infrastructures to deal with the available wealth of data, the challenge remains how to best present and analyze Genome-Wide Environmental Interaction (GWEI) studies involving multiple genetic and environmental factors. Since GWEIs are performed at the intersection of statistical genetics, bioinformatics and epidemiology, usually similar problems need to be dealt with as for Genome-Wide Association gene-gene Interaction (GWAI) studies. However, additional complexities need to be considered which are typical for large-scale epidemiological studies, but are also related to “joining” two heterogeneous types of data in explaining complex disease trait variation or for prediction purposes. PMID:22760307

  8. Connectivity and genetic structure of the queen conch on the Mesoamerican Reef

    NASA Astrophysics Data System (ADS)

    Machkour-M'Rabet, Salima; Cruz-Medina, Jorge; García-De León, Francisco J.; De Jesús-Navarrete, Alberto; Hénaut, Yann

    2017-06-01

    The queen conch ( Strombus gigas) is a commercially important marine invertebrate that is widely distributed throughout the western Atlantic, from Bermuda to Brazil. Intense exploitation has resulted in a decrease in population numbers of this species, which is listed as protected from commercial exploitation under IUCN and CITES. Previous studies on population genetics have demonstrated contrasting results in terms of the population structure of S. gigas. This research analyzed the genetic connectivity of the queen conch over a wide area of the Mesoamerican Reef System to determine whether S. gigas presents one panmictic population or a more complex structure. Furthermore, we evaluated the risk of local extinction by establishing the genetic diversity of the studied populations. High resolution was obtained for the five ISSR markers used for a total of 190 individuals, from seven localities along the Mesoamerican Reef. Our results reject the panmictic structure hypothesis for the queen conch in the study area and demonstrate genetic patchiness, indicating general homogeneity among localities that present an isolation-by-distance pattern. However, some genetic temporal variation was confirmed for the Cozumel locality. Furthermore, our results reveal self-recruitment for the Alacranes Reef aggregation and suggest sufficient connectivity with localities on the Caribbean coast to maintain high genetic diversity. With regard to genetic diversity, the results demonstrate that the queen conch is not genetically threatened in the study area. This is probably due to high annual recruitment within Caribbean queen conch aggregations, and suggests that S. gigas is a highly resilient organism. We advocate that the appropriate management of S. gigas (fishing quota and/or closed season) must be followed to attain a rapid recovery of queen conch populations. This study represents a fundamental step in the understanding of the dynamic population structure of S. gigas in the Mesoamerican Reef and is an important contribution toward improving the future management of this commercially protected species.

  9. Mixing of Honeybees with Different Genotypes Affects Individual Worker Behavior and Transcription of Genes in the Neuronal Substrate

    PubMed Central

    Bienefeld, Kaspar; Beye, Martin

    2012-01-01

    Division of labor in social insects has made the evolution of collective traits possible that cannot be achieved by individuals alone. Differences in behavioral responses produce variation in engagement in behavioral tasks, which as a consequence, generates a division of labor. We still have little understanding of the genetic components influencing these behaviors, although several candidate genomic regions and genes influencing individual behavior have been identified. Here, we report that mixing of worker honeybees with different genotypes influences the expression of individual worker behaviors and the transcription of genes in the neuronal substrate. These indirect genetic effects arise in a colony because numerous interactions between workers produce interacting phenotypes and genotypes across organisms. We studied hygienic behavior of honeybee workers, which involves the cleaning of diseased brood cells in the colony. We mixed ∼500 newly emerged honeybee workers with genotypes of preferred Low (L) and High (H) hygienic behaviors. The L/H genotypic mixing affected the behavioral engagement of L worker bees in a hygienic task, the cooperation among workers in uncapping single brood cells, and switching between hygienic tasks. We found no evidence that recruiting and task-related stimuli are the primary source of the indirect genetic effects on behavior. We suggested that behavioral responsiveness of L bees was affected by genotypic mixing and found evidence for changes in the brain in terms of 943 differently expressed genes. The functional categories of cell adhesion, cellular component organization, anatomical structure development, protein localization, developmental growth and cell morphogenesis were overrepresented in this set of 943 genes, suggesting that indirect genetic effects can play a role in modulating and modifying the neuronal substrate. Our results suggest that genotypes of social partners affect the behavioral responsiveness and the neuronal substrate of individual workers, indicating a complex genetic architecture underlying the expression of behavior. PMID:22348118

  10. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    PubMed

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and salt-sensitive hypertension in Dahl rats based upon reported blood pressure QTLs in equivalent (Dahl S x R)-intercrosses.

  11. Media portrayals and health inequalities: a case study of characterizations of Gene x Environment interactions.

    PubMed

    Horwitz, Allan V

    2005-10-01

    This article examines how genetic and environmental interactions associated with health inequalities are constructed and framed in the presentation of scientific research. It uses the example of a major article about depression in a longitudinal study of young adults that appeared in Science in 2003. This portrayal of findings related to health inequalities uses a genetic lens that privileges genetic influences and diminishes environmental ones. The emphasis on the genetic side of Gene x Environment interactions can serve to deflect attention away from the important impact of social inequalities on health.

  12. Genetic Population Structure of Local Populations of the Endangered Saltmarsh Sesarmid Crab Clistocoeloma sinense in Japan

    PubMed Central

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species. PMID:24400112

  13. Positive density-dependent reproduction regulated by local kinship and size in an understorey tropical tree

    PubMed Central

    Castilla, Antonio R.; Pope, Nathaniel; Jha, Shalene

    2016-01-01

    Background and Aims Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. Methods We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Key Results Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. Conclusions This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. PMID:26602288

  14. Positive density-dependent reproduction regulated by local kinship and size in an understorey tropical tree.

    PubMed

    Castilla, Antonio R; Pope, Nathaniel; Jha, Shalene

    2016-02-01

    Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans.

    PubMed

    van Dongen, Wouter F D; Robinson, Randall W; Weston, Michael A; Mulder, Raoul A; Guay, Patrick-Jean

    2015-12-11

    Interactions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes. Wariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations. Our results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals.

  16. The mathematical limits of genetic prediction for complex chronic disease.

    PubMed

    Keyes, Katherine M; Smith, George Davey; Koenen, Karestan C; Galea, Sandro

    2015-06-01

    Attempts at predicting individual risk of disease based on common germline genetic variation have largely been disappointing. The present paper formalises why genetic prediction at the individual level is and will continue to have limited utility given the aetiological architecture of most common complex diseases. Data were simulated on one million populations with 10 000 individuals in each populations with varying prevalences of a genetic risk factor, an interacting environmental factor and the background rate of disease. The determinant risk ratio and risk difference magnitude for the association between a gene variant and disease is a function of the prevalence of the interacting factors that activate the gene, and the background rate of disease. The risk ratio and total excess cases due to the genetic factor increase as the prevalence of interacting factors increase, and decrease as the background rate of disease increases. Germline genetic variations have high predictive capacity for individual disease only under conditions of high heritability of particular genetic sequences, plausible only under rare variant hypotheses. Under a model of common germline genetic variants that interact with other genes and/or environmental factors in order to cause disease, the predictive capacity of common genetic variants is determined by the prevalence of the factors that interact with the variant and the background rate. A focus on estimating genetic associations for the purpose of prediction without explicitly grounding such work in an understanding of modifiable (including environmentally influenced) factors will be limited in its ability to yield important insights about the risk of disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis)

    PubMed Central

    López, Rosana; López de Heredia, Unai; Collada, Carmen; Cano, Francisco Javier; Emerson, Brent C.; Cochard, Hervé; Gil, Luis

    2013-01-01

    Background and Aims It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. Methods A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. Key Results The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. Conclusions The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions. PMID:23644361

  18. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development

    DOE PAGES

    Virdi, Kamaldeep S.; Wamboldt, Yashitola; Kundariya, Hardik; ...

    2015-11-14

    As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein–protein interactions data indicate that MSH1 also associates with the thylakoidmore » membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%–10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.« less

  19. Overexpression of a SNARE protein AtBS14b alters BR response in Arabidopsis.

    PubMed

    Zhu, Zhong Xin; Ye, Hong Bo; Xuan, Yuan Hu; Yao, Da Nian

    2014-12-01

    N-ethyl-maleimide sensitive factor adaptor protein receptor (SNAREs) domain-containing proteins were known as key players in vesicle-associated membrane fusion. Genetic screening has revealed the function of SNAREs in different aspects of plant biology, but the role of many SNAREs are still unknown. In this study, we have characterized the role of Arabidopsis Qc-SNARE protein AtBS14b in brassinosteroids (BRs) signaling pathway. AtBS14b overexpression (AtBS14b ox) plants exhibited short hypocotyl and petioles lengths as well as insensitivity to exogenously supplied BR, while AtBS14b mutants did not show any visible BR-dependent morphological differences. BR biosynthesis enzyme BR6OX2 expression was slightly lower in AtBS14b ox than in wild type plants. Further BR-mediated repression of BR6OX2, CPD and DWF4 was inhibited in AtBS14b ox plants. AtBS14b-mCherry fusion protein localized in vesicular compartments surrounding plasma membrane in N. benthamiana leaves. In addition, isolation of AtBS14b-interacting BR signaling protein, which localized in plasma membrane, showed that AtBS14b directly interacted with membrane steroid binding protein 1 (MSBP1), but did not interact with BAK1 or BRI1. These data suggested that Qc-SNARE protein AtBS14b is the first SNARE protein identified that interacts with MSBP1, and the overexpression of AtBS14b modulates BR response in Arabidopsis.

  20. Uncovering Local Trends in Genetic Effects of Multiple Phenotypes via Functional Linear Models.

    PubMed

    Vsevolozhskaya, Olga A; Zaykin, Dmitri V; Barondess, David A; Tong, Xiaoren; Jadhav, Sneha; Lu, Qing

    2016-04-01

    Recent technological advances equipped researchers with capabilities that go beyond traditional genotyping of loci known to be polymorphic in a general population. Genetic sequences of study participants can now be assessed directly. This capability removed technology-driven bias toward scoring predominantly common polymorphisms and let researchers reveal a wealth of rare and sample-specific variants. Although the relative contributions of rare and common polymorphisms to trait variation are being debated, researchers are faced with the need for new statistical tools for simultaneous evaluation of all variants within a region. Several research groups demonstrated flexibility and good statistical power of the functional linear model approach. In this work we extend previous developments to allow inclusion of multiple traits and adjustment for additional covariates. Our functional approach is unique in that it provides a nuanced depiction of effects and interactions for the variables in the model by representing them as curves varying over a genetic region. We demonstrate flexibility and competitive power of our approach by contrasting its performance with commonly used statistical tools and illustrate its potential for discovery and characterization of genetic architecture of complex traits using sequencing data from the Dallas Heart Study. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Demonstrating the suitability of genetic algorithms for driving microbial ecosystems in desirable directions.

    PubMed

    Vandecasteele, Frederik P J; Hess, Thomas F; Crawford, Ronald L

    2007-07-01

    The functioning of natural microbial ecosystems is determined by biotic interactions, which are in turn influenced by abiotic environmental conditions. Direct experimental manipulation of such conditions can be used to purposefully drive ecosystems toward exhibiting desirable functions. When a set of environmental conditions can be manipulated to be present at a discrete number of levels, finding the right combination of conditions to obtain the optimal desired effect becomes a typical combinatorial optimisation problem. Genetic algorithms are a class of robust and flexible search and optimisation techniques from the field of computer science that may be very suitable for such a task. To verify this idea, datasets containing growth levels of the total microbial community of four different natural microbial ecosystems in response to all possible combinations of a set of five chemical supplements were obtained. Subsequently, the ability of a genetic algorithm to search this parameter space for combinations of supplements driving the microbial communities to high levels of growth was compared to that of a random search, a local search, and a hill-climbing algorithm, three intuitive alternative optimisation approaches. The results indicate that a genetic algorithm is very suitable for driving microbial ecosystems in desirable directions, which opens opportunities for both fundamental ecological research and industrial applications.

  2. The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder: an explorative study.

    PubMed

    Lekman, Magnus; Hössjer, Ola; Andrews, Peter; Källberg, Henrik; Uvehag, Daniel; Charney, Dennis; Manji, Husseini; Rush, John A; McMahon, Francis J; Moore, Jason H; Kockum, Ingrid

    2014-01-01

    Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from β3) value = 4.99) the area under the curve (AUC) estimates were low (< 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (< 0.15). We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously unsuspected effects that could provide novel insights into MDD risk, but much larger sample sizes are needed before this strategy can be powerfully applied.

  3. Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation.

    PubMed

    Shinada, Hiroshi; Yamamoto, Toshio; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Matsuba, Shuichi; Fujino, Kenji

    2014-04-01

    The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.

  4. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium.

    PubMed

    Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A

    2016-02-01

    Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Plasticity of genetic interactions in metabolic networks of yeast.

    PubMed

    Harrison, Richard; Papp, Balázs; Pál, Csaba; Oliver, Stephen G; Delneri, Daniela

    2007-02-13

    Why are most genes dispensable? The impact of gene deletions may depend on the environment (plasticity), the presence of compensatory mechanisms (mutational robustness), or both. Here, we analyze the interaction between these two forces by exploring the condition-dependence of synthetic genetic interactions that define redundant functions and alternative pathways. We performed systems-level flux balance analysis of the yeast (Saccharomyces cerevisiae) metabolic network to identify genetic interactions and then tested the model's predictions with in vivo gene-deletion studies. We found that the majority of synthetic genetic interactions are restricted to certain environmental conditions, partly because of the lack of compensation under some (but not all) nutrient conditions. Moreover, the phylogenetic cooccurrence of synthetically interacting pairs is not significantly different from random expectation. These findings suggest that these gene pairs have at least partially independent functions, and, hence, compensation is only a byproduct of their evolutionary history. Experimental analyses that used multiple gene deletion strains not only confirmed predictions of the model but also showed that investigation of false predictions may both improve functional annotation within the model and also lead to the discovery of higher-order genetic interactions. Our work supports the view that functional redundancy may be more apparent than real, and it offers a unified framework for the evolution of environmental adaptation and mutational robustness.

  6. Genetic Expression Outside the Skin: Clues to Mechanisms of Genotype × Environment Interaction

    PubMed Central

    Reiss, David; Leve, Leslie D.

    2007-01-01

    The rapidly moving study of Gene × Environment interaction needs interim conceptual tools to track progress, integrate findings, and apply this knowledge to preventive intervention. We define two closely related concepts: the social mediation of the expression of genetic influences and the interaction between the entire genotype and the social environment (Genotype × Environment interaction; G×E). G×E interaction, the primary focus of this report, assesses individual differences in the full genotype using twin, sibling, and adoption designs and, for the most part, employs fine-grained analyses of relational processes in the social environment. In comparison, studies of Allele × Environment interaction (A×E) assess the influence on development of one or more measured polymorphisms as modified by environmental factors. G×E studies build on work showing how the social environment responds to genetic influences and how genetic influences shape the social environment. Recent G×E research has yielded new insight into variations in the sensitivity of the social environment to genotypic influences and provides clues to the specificity and timing of these environmental responses that can be leveraged to inform preventive interventions aimed at reducing genetic risk for problem behavior. PMID:17931431

  7. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.

    PubMed

    Roux, F; Bergelson, J

    2016-01-01

    In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. © 2016 Elsevier Inc. All rights reserved.

  8. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  9. Identifying Genotype-by-Environment Interactions in the Metabolism of Germinating Arabidopsis Seeds Using Generalized Genetical Genomics 1[C][W][OA

    PubMed Central

    Joosen, Ronny Viktor Louis; Arends, Danny; Li, Yang; Willems, Leo A.J.; Keurentjes, Joost J.B.; Ligterink, Wilco; Jansen, Ritsert C.; Hilhorst, Henk W.M.

    2013-01-01

    A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the concerted action of many genes. The use of well-structured recombinant inbred lines in combination with “omics” analysis can help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively capture both genetic and epistatic interactions. However, to understand how the environment interacts with genomic-encoded information, a better understanding of the perception and processing of environmental signals is needed. In a classical genetical genomics setup, this requires replication of the whole experiment in different environmental conditions. A novel generalized setup overcomes this limitation and includes environmental perturbation within a single experimental design. We developed a dedicated quantitative trait loci mapping procedure to implement this approach and used existing phenotypical data to demonstrate its power. In addition, we studied the genetic regulation of primary metabolism in dry and imbibed Arabidopsis (Arabidopsis thaliana) seeds. In the metabolome, many changes were observed that were under both environmental and genetic controls and their interaction. This concept offers unique reduction of experimental load with minimal compromise of statistical power and is of great potential in the field of systems genetics, which requires a broad understanding of both plasticity and dynamic regulation. PMID:23606598

  10. Etiology in psychiatry: embracing the reality of poly‐gene‐environmental causation of mental illness

    PubMed Central

    Uher, Rudolf; Zwicker, Alyson

    2017-01-01

    Intriguing findings on genetic and environmental causation suggest a need to reframe the etiology of mental disorders. Molecular genetics shows that thousands of common and rare genetic variants contribute to mental illness. Epidemiological studies have identified dozens of environmental exposures that are associated with psychopathology. The effect of environment is likely conditional on genetic factors, resulting in gene‐environment interactions. The impact of environmental factors also depends on previous exposures, resulting in environment‐environment interactions. Most known genetic and environmental factors are shared across multiple mental disorders. Schizophrenia, bipolar disorder and major depressive disorder, in particular, are closely causally linked. Synthesis of findings from twin studies, molecular genetics and epidemiological research suggests that joint consideration of multiple genetic and environmental factors has much greater explanatory power than separate studies of genetic or environmental causation. Multi‐factorial gene‐environment interactions are likely to be a generic mechanism involved in the majority of cases of mental illness, which is only partially tapped by existing gene‐environment studies. Future research may cut across psychiatric disorders and address poly‐causation by considering multiple genetic and environmental measures across the life course with a specific focus on the first two decades of life. Integrative analyses of poly‐causation including gene‐environment and environment‐environment interactions can realize the potential for discovering causal types and mechanisms that are likely to generate new preventive and therapeutic tools. PMID:28498595

  11. Gene-Environment Interactions in Schizophrenia: Review of Epidemiological Findings and Future Directions

    PubMed Central

    van Os, Jim; Rutten, Bart PF; Poulton, Richie

    2008-01-01

    Concern is building about high rates of schizophrenia in large cities, and among immigrants, cannabis users, and traumatized individuals, some of which likely reflects the causal influence of environmental exposures. This, in combination with very slow progress in the area of molecular genetics, has generated interest in more complicated models of schizophrenia etiology that explicitly posit gene-environment interactions (EU-GEI. European Network of Schizophrenia Networks for the Study of Gene Environment Interactions. Schizophrenia aetiology: do gene-environment interactions hold the key? [published online ahead of print April 25, 2008] Schizophr Res; S0920-9964(08) 00170–9). Although findings of epidemiological gene-environment interaction (G × E) studies are suggestive of widespread gene-environment interactions in the etiology of schizophrenia, numerous challenges remain. For example, attempts to identify gene-environment interactions cannot be equated with molecular genetic studies with a few putative environmental variables “thrown in”: G × E is a multidisciplinary exercise involving epidemiology, psychology, psychiatry, neuroscience, neuroimaging, pharmacology, biostatistics, and genetics. Epidemiological G × E studies using indirect measures of genetic risk in genetically sensitive designs have the advantage that they are able to model the net, albeit nonspecific, genetic load. In studies using direct molecular measures of genetic variation, a hypothesis-driven approach postulating synergistic effects between genes and environment impacting on a final common pathway, such as “sensitization” of mesolimbic dopamine neurotransmission, while simplistic, may provide initial focus and protection against the numerous false-positive and false-negative results that these investigations engender. Experimental ecogenetic approaches with randomized assignment may help to overcome some of the limitations of observational studies and allow for the additional elucidation of underlying mechanisms using a combination of functional enviromics and functional genomics. PMID:18791076

  12. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  13. Learning directed acyclic graphs from large-scale genomics data.

    PubMed

    Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos

    2017-09-20

    In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

  14. Decoding directional genetic dependencies through orthogonal CRISPR/Cas screens | Office of Cancer Genomics

    Cancer.gov

    Genetic interaction studies are a powerful approach to identify functional interactions between genes. This approach can reveal networks of regulatory hubs and connect uncharacterized genes to well-studied pathways. However, this approach has previously been limited to simple gene inactivation studies. Here, we present an orthogonal CRISPR/Cas-mediated genetic interaction approach that allows the systematic activation of one gene while simultaneously knocking out a second gene in the same cell.

  15. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome

    PubMed Central

    Suhasini, Avvaru N; Rawtani, Nina A; Wu, Yuliang; Sommers, Joshua A; Sharma, Sudha; Mosedale, Georgina; North, Phillip S; Cantor, Sharon B; Hickson, Ian D; Brosh, Robert M

    2011-01-01

    Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co-localize to nuclear foci in response to replication stress. The cellular level of BLM is strongly dependent upon FANCJ, and BLM is degraded by a proteasome-mediated pathway when FANCJ is depleted. FANCJ-deficient cells display increased sister chromatid exchange and sensitivity to replication stress. Expression of a FANCJ C-terminal fragment that interacts with BLM exerted a dominant negative effect on hydroxyurea resistance by interfering with the FANCJ–BLM interaction. FANCJ and BLM synergistically unwound a DNA duplex substrate with sugar phosphate backbone discontinuity, but not an ‘undamaged' duplex. Collectively, the results suggest that FANCJ catalytic activity and its effect on BLM protein stability contribute to preservation of genomic stability and a normal response to replication stress. PMID:21240188

  16. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice–fish system

    PubMed Central

    Ren, Weizheng; Hu, Liangliang; Guo, Liang; Zhang, Jian; Tang, Lu; Zhang, Entao; Zhang, Jiaen; Luo, Shiming; Tang, Jianjun; Chen, Xin

    2018-01-01

    We examined how traditional farmers preserve the genetic diversity of a local common carp (Cyprinus carpio), which is locally referred to as “paddy field carp” (PF-carp), in a “globally important agricultural heritage system” (GIAHS), i.e., the 1,200-y-old rice–fish coculture system in Zhejiang Province, China. Our molecular and morphological analysis showed that the PF-carp has changed into a distinct local population with higher genetic diversity and diverse color types. Within this GIAHS region, PF-carps exist as a continuous metapopulation, although three genetic groups could be identified by microsatellite markers. Thousands of small farmer households interdependently obtained fry and parental carps for their own rice–fish production, resulting in a high gene flow and large numbers of parent carps distributing in a mosaic pattern in the region. Landscape genetic analysis indicated that farmers’ connectivity was one of the major factors that shaped this genetic pattern. Population viability analysis further revealed that the numbers of these interconnected small farmer households and their connection intensity affect the carps’ inherent genetic diversity. The practice of mixed culturing of carps with diverse color types helped to preserve a wide range of genetic resources in the paddy field. This widespread traditional practice increases fish yield and resource use, which, in return, encourages famers to continue their practice of selecting and conserving diverse color types of PF-carp. Our results suggested that traditional farmers secure the genetic diversity of PF-carp and its viability over generations in this region through interdependently incubating and mixed-culturing practices within the rice−fish system. PMID:29295926

  17. Posttranslational Modifications and Plant-Environment Interaction.

    PubMed

    Hashiguchi, A; Komatsu, S

    2017-01-01

    Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account. © 2017 Elsevier Inc. All rights reserved.

  18. Family Conflict Interacts with Genetic Liability in Predicting Childhood and Adolescent Depression

    ERIC Educational Resources Information Center

    Rice, Frances; Harold, Gordon T.; Shelton, Katherine H.; Thapar, Anita

    2006-01-01

    Objective: To test for gene-environment interaction with depressive symptoms and family conflict. Specifically, to first examine whether the influence of family conflict in predicting depressive symptoms is increased in individuals at genetic risk of depression. Second, to test whether the genetic component of variance in depressive symptoms…

  19. Genetic Vulnerability Interacts with Parenting and Early Care and Education to Predict Increasing Externalizing Behavior

    ERIC Educational Resources Information Center

    Lipscomb, Shannon T.; Laurent, Heidemarie; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David; Leve, Leslie D.

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental…

  20. Genetically informed ecological niche models improve climate change predictions.

    PubMed

    Ikeda, Dana H; Max, Tamara L; Allan, Gerard J; Lau, Matthew K; Shuster, Stephen M; Whitham, Thomas G

    2017-01-01

    We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species' ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species' niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change. © 2016 John Wiley & Sons Ltd.

  1. Experimental evidence for the evolution of indirect genetic effects: changes in the interaction effect coefficient, psi (Psi), due to sexual selection.

    PubMed

    Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W

    2010-06-01

    Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.

  2. Coalescent patterns for chromosomal inversions in divergent populations

    PubMed Central

    Guerrero, Rafael F.; Rousset, François; Kirkpatrick, Mark

    2012-01-01

    Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation. PMID:22201172

  3. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    PubMed Central

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  4. Genetic Influences Can Protect Against Unresponsive Parenting in the Prediction of Child Social Competence

    PubMed Central

    Van Ryzin, Mark J.; Leve, Leslie D.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David

    2014-01-01

    Although social competence in children has been linked to the quality of parenting, prior research has typically not accounted for genetic similarities between parents and children, or for interactions between environmental (i.e., parental) and genetic influences. In this paper, we evaluate the possibility of a gene-by-environment (GxE) interaction in the prediction of social competence in school-age children. Using a longitudinal, multi-method dataset from a sample of children adopted at birth (N = 361), we found a significant interaction between birth parent sociability and sensitive, responsive adoptive parenting when predicting child social competence at school entry (age 6), even when controlling for potential confounds. An analysis of the interaction revealed that genetic strengths can buffer the effects of unresponsive parenting. PMID:25581124

  5. Dissecting the molecular mechanisms of gene x environment interactions: implications for diagnosis and treatment of stress-related psychiatric disorders

    PubMed Central

    Binder, Elisabeth B.

    2017-01-01

    ABSTRACT Epidemiological studies indicate a combined contribution of genetic and environmental factors, mainly exposure to adverse life events, in the risk for psychiatric disease. Understanding how adverse life events interact with genetic predisposition on the molecular level to shape risk and resilience to psychiatric disorders may yield important insight into disease mechanism. Using the example of the molecular mechanisms of interaction of functional genetic variants within the stress-regulating gene FKBP5 and early adversity, it is delineated how this interaction could contribute to transdiagnostic disease risk via a combined genetic and epigenetic disinhibition of FKBP5 transcription. This knowledge may now allow to develop biomarkers for a transdiagnostic subset of psychiatric patients and to personalize treatment. PMID:29372006

  6. Swept away: ocean currents and seascape features influence genetic structure across the 18,000 Km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera.

    PubMed

    Lal, Monal M; Southgate, Paul C; Jerry, Dean R; Bosserelle, Cyprien; Zenger, Kyall R

    2017-01-10

    Genetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture. Under the Core-Periphery Hypothesis (CPH), genetic diversity is expected to be highest at the centre of a species' distribution, progressively decreasing with increased differentiation towards outer range limits, as populations become increasingly isolated, fragmented and locally adapted. The unique life history characteristics of many marine invertebrates such as high dispersal rates, stochastic survival and variable recruitment are also likely to influence how populations are organised. To examine the microevolutionary forces influencing population structure, connectivity and adaptive variation in a highly-dispersive bivalve, populations of the black-lip pearl oyster Pinctada margaritifera were examined across its ~18,000 km Indo-Pacific distribution. Analyses utilising 9,624 genome-wide SNPs and 580 oysters, discovered differing patterns of significant and substantial broad-scale genetic structure between the Indian and Pacific Ocean basins. Indian Ocean populations were markedly divergent (F st  = 0.2534-0.4177, p < 0.001), compared to Pacific Ocean oysters, where basin-wide gene flow was much higher (F st  = 0.0007-0.1090, p < 0.001). Partitioning of genetic diversity (hierarchical AMOVA) attributed 18.1% of variance between ocean basins, whereas greater proportions were resolved within samples and populations (45.8% and 35.7% respectively). Visualisation of population structure at selectively neutral loci resolved three and five discrete genetic clusters for the Indian and Pacific Oceans respectively. Evaluation of genetic structure at adaptive loci for Pacific populations (89 SNPs under directional selection; F st  = 0.1012-0.4371, FDR = 0.05), revealed five clusters identical to those detected at neutral SNPs, suggesting environmental heterogeneity within the Pacific. Patterns of structure and connectivity were supported by Mantel tests of isolation by distance (IBD) and independent hydrodynamic particle dispersal simulations. It is evident that genetic structure and connectivity across the natural range of P. margaritifera is highly complex, and produced by the interaction of ocean currents, IBD and seascape features at a broad scale, together with habitat geomorphology and local adaptation at regional levels. Overall population organisation is far more elaborate than generalised CPH predictions, however valuable insights for regional fishery management, and a greater understanding of range-wide genetic structure in a highly-dispersive marine invertebrate have been gained.

  7. Non-Linear Pattern Formation in Bone Growth and Architecture

    PubMed Central

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter. PMID:25653638

  8. Non-linear pattern formation in bone growth and architecture.

    PubMed

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter.

  9. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta

    PubMed Central

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S.; Reid, Bryan M.; Lin, Brent P.; Wang, Susan J.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C.-C.

    2014-01-01

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell–ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance–Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell–matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects. PMID:24305999

  10. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline.

    PubMed

    Pek, Jun Wei; Patil, Veena S; Kai, Toshie

    2012-01-01

    The accurate transfer of genetic material in germline cells during the formation of gametes is important for the continuity of the species. However, animal germline cells face challenges from transposons, which seek to spread themselves in the genome. This review focuses on studies in Drosophila melanogaster on how the genome protects itself from such a mutational burden via a class of gonad-specific small interfering RNAs, known as piRNAs (Piwi-interacting RNAs). In addition to silencing transposons, piRNAs also regulate other processes, such as chromosome segregation, mRNA degradation and germline differentiation. Recent studies revealed two modes of piRNA processing – primary processing and secondary processing (also known as ping-pong amplification). The primary processing pathway functions in both germline and somatic cells in the Drosophila ovaries by processing precursor piRNAs into 23–29 nt piRNAs. In contrast, the secondary processing pathway functions only in the germline cells where piRNAs are amplified in a feed-forward loop and require the Piwi-family proteins Aubergine and Argonaute3. Aubergine and Argonaute3 localize to a unique structure found in animal germline cells, the nuage, which has been proposed to function as a compartmentalized site for the ping-pong cycle. The nuage and the localized proteins are well-conserved, implying the importance of the piRNA amplification loop in animal germline cells. Nuage components include various types of proteins that are known to interact both physically and genetically, and therefore appear to be assembled in a sequential order to exert their function, resulting in a macromolecular RNA-protein complex dedicated to the silencing of transposons.

  11. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    PubMed

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  12. On the use of sibling recurrence risks to select environmental factors liable to interact with genetic risk factors.

    PubMed

    Kazma, Rémi; Bonaïti-Pellié, Catherine; Norris, Jill M; Génin, Emmanuelle

    2010-01-01

    Gene-environment interactions are likely to be involved in the susceptibility to multifactorial diseases but are difficult to detect. Available methods usually concentrate on some particular genetic and environmental factors. In this paper, we propose a new method to determine whether a given exposure is susceptible to interact with unknown genetic factors. Rather than focusing on a specific genetic factor, the degree of familial aggregation is used as a surrogate for genetic factors. A test comparing the recurrence risks in sibs according to the exposure of indexes is proposed and its power is studied for varying values of model parameters. The Exposed versus Unexposed Recurrence Analysis (EURECA) is valuable for common diseases with moderate familial aggregation, only when the role of exposure has been clearly outlined. Interestingly, accounting for a sibling correlation for the exposure increases the power of EURECA. An application on a sample ascertained through one index affected with type 2 diabetes is presented where gene-environment interactions involving obesity and physical inactivity are investigated. Association of obesity with type 2 diabetes is clearly evidenced and a potential interaction involving this factor is suggested in Hispanics (P=0.045), whereas a clear gene-environment interaction is evidenced involving physical inactivity only in non-Hispanic whites (P=0.028). The proposed method might be of particular interest before genetic studies to help determine the environmental risk factors that will need to be accounted for to increase the power to detect genetic risk factors and to select the most appropriate samples to genotype.

  13. Exploring local borders of distribution in the shrub Daphne laureola: Individual and populations traits

    NASA Astrophysics Data System (ADS)

    Castilla, Antonio R.; Alonso, Conchita; Herrera, Carlos M.

    2011-05-01

    Biogeographic models predict that marginal populations should be more geographically isolated and smaller than central populations, linked to more stressful conditions and likely also to a reduction in density of individuals, individual growth, survival and reproductive output. This variation in population features could have important consequences for different aspects of plant ecology such as individual reproductive success, population genetic structure or plant-animal interactions. In this study, we analyze if individuals of the evergreen shrub Daphne laureola at disjunt populations in a local border of its distribution area in southern Iberian Peninsula differ in individual size, shoot growth, reproductive output and the pollination environment from central continuous populations within the area. Plants of central continuous populations were larger and produced more flowers and fruits than plants of marginal disjunct populations suggesting more optimal conditions, although they had lower annual shoot growth. In contrast, fruit set was higher in plants at the local border, suggesting a more efficient pollinator service in these populations where the main pollinator in central continuous populations, the pollen beetle Meligethes elongatus, was not present. Our results do not support strong differences in the ecological stress between marginal disjunct and central continuous populations of D. laureola in the south of the Iberian Peninsula but indicate some changes in plant-pollinator interactions that could be relevant for the sexual polymorphism in this gynodioecious species.

  14. Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome

    PubMed Central

    Zilberberg, Lior; Phoon, Colin K. L.; Robertson, Ian; Dabovic, Branka; Ramirez, Francesco; Rifkin, Daniel B.

    2015-01-01

    Marfan syndrome (MFS) is an autosomal dominant disorder of connective tissue, caused by mutations of the microfibrillar protein fibrillin-1, that predisposes affected individuals to aortic aneurysm and rupture and is associated with increased TGFβ signaling. TGFβ is secreted from cells as a latent complex consisting of TGFβ, the TGFβ propeptide, and a molecule of latent TGFβ binding protein (LTBP). Improper extracellular localization of the latent complex can alter active TGFβ levels, and has been hypothesized as an explanation for enhanced TGFβ signaling observed in MFS. We previously reported the absence of LTBP-3 in matrices lacking fibrillin-1, suggesting that perturbed TGFβ signaling in MFS might be due to defective interaction of latent TGFβ complexes containing LTBP-3 with mutant fibrillin-1 microfibrils. To test this hypothesis, we genetically suppressed Ltbp3 expression in a mouse model of progressively severe MFS. Here, we present evidence that MFS mice lacking LTBP-3 have improved survival, essentially no aneurysms, reduced disruption and fragmentation of medial elastic fibers, and decreased Smad2/3 and Erk1/2 activation in their aortas. These data suggest that, in MFS, improper localization of latent TGFβ complexes composed of LTBP-3 and TGFβ contributes to aortic disease progression. PMID:26494287

  15. Surfing the vegetal pole in a small population: extracellular vertical transmission of an 'intracellular' deep-sea clam symbiont.

    PubMed

    Ikuta, Tetsuro; Igawa, Kanae; Tame, Akihiro; Kuroiwa, Tsuneyoshi; Kuroiwa, Haruko; Aoki, Yui; Takaki, Yoshihiro; Nagai, Yukiko; Ozawa, Genki; Yamamoto, Masahiro; Deguchi, Ryusaku; Fujikura, Katsunori; Maruyama, Tadashi; Yoshida, Takao

    2016-05-01

    Symbiont transmission is a key event for understanding the processes underlying symbiotic associations and their evolution. However, our understanding of the mechanisms of symbiont transmission remains still fragmentary. The deep-sea clam Calyptogena okutanii harbours obligate sulfur-oxidizing intracellular symbiotic bacteria in the gill epithelial cells. In this study, we determined the localization of their symbiont associating with the spawned eggs, and the population size of the symbiont transmitted via the eggs. We show that the symbionts are located on the outer surface of the egg plasma membrane at the vegetal pole, and that each egg carries approximately 400 symbiont cells, each of which contains close to 10 genomic copies. The very small population size of the symbiont transmitted via the eggs might narrow the bottleneck and increase genetic drift, while polyploidy and its transient extracellular lifestyle might slow the rate of genome reduction. Additionally, the extracellular localization of the symbiont on the egg surface may increase the chance of symbiont exchange. This new type of extracellular transovarial transmission provides insights into complex interactions between the host and symbiont, development of both host and symbiont, as well as the population dynamics underlying genetic drift and genome evolution in microorganisms.

  16. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Genetic Local Search for Optimum Multiuser Detection Problem in DS-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Wang, Shaowei; Ji, Xiaoyong

    Optimum multiuser detection (OMD) in direct-sequence code-division multiple access (DS-CDMA) systems is an NP-complete problem. In this paper, we present a genetic local search algorithm, which consists of an evolution strategy framework and a local improvement procedure. The evolution strategy searches the space of feasible, locally optimal solutions only. A fast iterated local search algorithm, which employs the proprietary characteristics of the OMD problem, produces local optima with great efficiency. Computer simulations show the bit error rate (BER) performance of the GLS outperforms other multiuser detectors in all cases discussed. The computation time is polynomial complexity in the number of users.

  18. Gene-environment interactions in atherosclerosis.

    PubMed

    Hegele, R A

    1991-06-01

    It is becoming clear that genetic and environmental factors can interact to varying degrees in a given individual. In some cases, genetically determined resistance to CAD (eg, genetic hyperalpha- or hypobetalipoproteinemia), or genetically determined susceptibility to CAD (eg, high Lp[a] levels) may not be significantly modulated by a prudent lifestyle. Estimates of the prevalence in the general population of these genetic extremes average around 5% (4). In the remaining 95% of cases, nature and nurture interact. For example, a genetic flaw that is usually expressed phenotypically as premature death due to CAD (eg, some cases of FH) can be ameliorated by a prudent diet. There is little doubt that an individual's responsiveness to environmental factors can be determined by many different genes. The exact candidate genes and the nature of most of the genetic changes affecting response to diet still need to be determined. Once identified, they may one day form the basis for early diagnosis of metabolic problems and individually tailored diet and drug treatment programs.

  19. Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga

    PubMed Central

    Tahvanainen, Pia; Alpermann, Tilman J.; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms. PMID:23300940

  20. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor.

    PubMed

    Jorde, Per Erik; Søvik, Guldborg; Westgaard, Jon-Ivar; Albretsen, Jon; André, Carl; Hvingel, Carsten; Johansen, Torild; Sandvik, Anne Dagrun; Kingsley, Michael; Jørstad, Knut Eirik

    2015-04-01

    The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment. © 2015 John Wiley & Sons Ltd.

  1. Fine-scale genetic response to landscape change in a gliding mammal.

    PubMed

    Goldingay, Ross L; Harrisson, Katherine A; Taylor, Andrea C; Ball, Tina M; Sharpe, David J; Taylor, Brendan D

    2013-01-01

    Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity.

  2. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    PubMed

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  3. Social interactions predict genetic diversification: an experimental manipulation in shorebirds.

    PubMed

    Cunningham, Charles; Parra, Jorge E; Coals, Lucy; Beltrán, Marcela; Zefania, Sama; Székely, Tamás

    2018-01-01

    Mating strategy and social behavior influence gene flow and hence affect levels of genetic differentiation and potentially speciation. Previous genetic analyses of closely related plovers Charadrius spp. found strikingly different population genetic structure in Madagascar: Kittlitz's plovers are spatially homogenous whereas white-fronted plovers have well segregated and geographically distinct populations. Here, we test the hypotheses that Kittlitz's plovers are spatially interconnected and have extensive social interactions that facilitate gene flow, whereas white-fronted plovers are spatially discrete and have limited social interactions. By experimentally removing mates from breeding pairs and observing the movements of mate-searching plovers in both species, we compare the spatial behavior of Kittlitz's and white-fronted plovers within a breeding season. The behavior of experimental birds was largely consistent with expectations: Kittlitz's plovers travelled further, sought new mates in larger areas, and interacted with more individuals than white-fronted plovers, however there was no difference in breeding dispersal. These results suggest that mating strategies, through spatial behavior and social interactions, are predictors of gene flow and thus genetic differentiation and speciation. Our study highlights the importance of using social behavior to understand gene flow. However, further work is needed to investigate the relative importance of social structure, as well as intra- and inter-season dispersal, in influencing the genetic structures of populations.

  4. Genetic diversity and relationships among six local cattle populations in semi-arid areas assessed by a bovine medium-density single nucleotide polymorphism data.

    PubMed

    Boushaba, N; Boujenane, I; Moazami-Goudarzi, K; Flori, L; Saïdi-Mehtar, N; Tabet-Aoul, N; Laloë, D

    2018-06-18

    The local cattle populations belonging to the 'Brune de l'Atlas' cattle in Algeria and Morocco are potential resources in terms of genetic diversity and socioeconomic prevalence and their characterization is an essential step in any program designed to conserve genetic diversity. Our objectives were to assess the genetic diversity, the population structure and relationships among four Algerian cattle breeds, the Biskra, Cheurfa, Chelifienne and Guelmoise and of two Moroccan, the Oulmès-Zaër and Tidili by genotyping 50 309 single nucleotide polymorphism in 203 unrelated animals. A low population structure was observed across breeds with pairwise F ST values ranging from 0.008 to 0.043, suggesting a high level of gene flow. These data were combined with the available data on cattle populations representative of Europe (EUT), West African taurine (WAT) and zebu (ZEB). Principle Components Analysis was carried out which revealed that the Maghrebin populations are closer to the EUT/ZEB population than to the WAT. Structure analysis confirmed this mixed origin of the Maghrebin cattle populations. We also detected the influence of zebu breeds in Cheurfa and Guelmoise populations. This study provides the first information about genetic diversity within and between Algerian and Moroccan cattle populations and gives a detailed description of their genetic structure and relationships according to their historical origins. This study revealed that several combined effects contributed to shape the genetic diversity of the six Maghrebin populations studied: (i) gene flow among local breeds, (ii) the recent introgression of European breeds in local Algerian breeds and (iii) the traditional management systems. The results of this study will primarily assist policy makers and livestock keepers to make useful decisions for improvement of genetic resources while ensuring the preservation and conservation of local breeds in Algeria and Morocco.

  5. Genetic Interactions with Prenatal Social Environment: Effects on Academic and Behavioral Outcomes

    ERIC Educational Resources Information Center

    Conley, Dalton; Rauscher, Emily

    2013-01-01

    Numerous studies report gene-environment interactions, suggesting that specific alleles have different effects on social outcomes depending on environment. In all these studies, however, environmental conditions are potentially endogenous to unmeasured genetic characteristics. That is, it could be that the observed interaction effects actually…

  6. Genetic interactions within inositol-related pathways are associated with longitudinal changes in ventricle size

    PubMed Central

    Koran, Mary Ellen I.; Hohman, Timothy J.; Meda, Shashwath A.; Thornton-Wells, Tricia A.

    2013-01-01

    The genetic etiology of late onset Alzheimer disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies (GWAS) in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p=9.10×10−12; LILV: p=8.20×10−13). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles. PMID:24077433

  7. Genetic diversity of dispersed seeds is highly variable among leks of the long-wattled umbrellabird

    NASA Astrophysics Data System (ADS)

    Ottewell, Kym; Browne, Luke; Cabrera, Domingo; Olivo, Jorge; Karubian, Jordan

    2018-01-01

    Frugivorous animals frequently generate clumped distributions of seeds away from source trees, but genetic consequences of this phenomenon remain poorly resolved. Seed dispersal of the palm Oenocarpus bataua by long-wattled umbrellabirds Cephalopterus penduliger generates high seed densities in leks (i.e., multi-male display sites), providing a suitable venue to investigate how dispersal by this frugivore may influence seed source diversity and genetic structure at local and landscape levels. We found moderate levels of maternal seed source diversity in primary seed rain across five leks in northwest Ecuador (unweighted mean alpha diversity α = 9.52, weighted mean αr = 3.52), with considerable variation among leks (αr range: 1.81-24.55). Qualitatively similar findings were obtained for allelic diversity and heterozygosity. Higher densities of O. bataua adults around leks were associated with higher values of αr and heterozygosity (non-significant trends) and allelic diversity (significant correlation). Seed source overlap between different leks was not common but did occur at low frequency, providing evidence for long-distance seed dispersal by umbrellabirds into leks. Our findings are consistent with the idea that seed pool diversity within leks may be shaped by the interaction between density of local trees, which can vary considerably between leks, and umbrellabird foraging ecology, particularly a lack of territorial defense of fruiting trees. Taken as a whole, this work adds to our growing appreciation of the ways resource distribution and associated frugivore foraging behaviors mechanistically shape seed dispersal outcomes and the distribution of plant genotypes across the landscape.

  8. Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations

    PubMed Central

    Remington, David L.; Leinonen, Päivi H.; Leppälä, Johanna; Savolainen, Outi

    2013-01-01

    Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. PMID:23979581

  9. Plant-pollinator interactions under climate change: The use of spatial and temporal transplants.

    PubMed

    Morton, Eva M; Rafferty, Nicole E

    2017-06-01

    Climate change is affecting both the timing of life history events and the spatial distributions of many species, including plants and pollinators. Shifts in phenology and range affect not only individual plant and pollinator species but also interactions among them, with possible negative consequences for both parties due to unfavorable abiotic conditions or mismatches caused by differences in shift magnitude or direction. Ultimately, population extinctions and reductions in pollination services could occur as a result of these climate change-induced shifts, or plants and pollinators could be buffered by plastic or genetic responses or novel interactions. Either scenario will likely involve altered selection pressures, making an understanding of plasticity and local adaptation in space and time especially important. In this review, we discuss two methods for studying plant-pollinator interactions under climate change: spatial and temporal transplants, both of which offer insight into whether plants and pollinators will be able to adapt to novel conditions. We discuss the advantages and limitations of each method and the future possibilities for this area of study. We advocate for consideration of how joint shifts in both dimensions might affect plant-pollinator interactions and point to key insights that can be gained with experimental transplants.

  10. Genotype-environment interaction and sociology: contributions and complexities.

    PubMed

    Seabrook, Jamie A; Avison, William R

    2010-05-01

    Genotype-environment interaction (G x E) refers to situations in which genetic effects connected to a phenotype are dependent upon variability in the environment, or when genes modify an organism's sensitivity to particular environmental features. Using a typology suggested in the G x E literature, we provide an overview of recent papers that show how social context can trigger a genetic vulnerability, compensate for a genetic vulnerability, control behaviors for which a genetic vulnerability exists, and improve adaptation via proximal causes. We argue that to improve their understanding of social structure, sociologists can take advantage of research in behavior genetics by assessing the impact of within-group variance of various health outcomes and complex human behaviors that are explainable by genotype, environment and their interaction. Insights from life course sociology can aid in ensuring that the dynamic nature of the environment in G x E has been accounted for. Identification of an appropriate entry point for sociologists interested in G x E research could begin with the choice of an environmental feature of interest, a genetic factor of interest, and/or behavior of interest. Optimizing measurement in order to capture the complexity of G x E is critical. Examining the interaction between poorly measured environmental factors and well measured genetic variables will overestimate the effects of genetic variables while underestimating the effect of environmental influences, thereby distorting the interaction between genotype and environment. Although the expense of collecting environmental data is very high, reliable and precise measurement of an environmental pathogen enhances a study's statistical power. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Evolution Under Environmental Stress at Macro- and Microscales

    PubMed Central

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589–610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717–745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) “Evolution Canyon”; 5) human brain evolution, and 6) global warming. PMID:21979157

  12. Evolution under environmental stress at macro- and microscales.

    PubMed

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589-610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717-745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) "Evolution Canyon"; 5) human brain evolution, and 6) global warming.

  13. The global obesity pandemic: shaped by global drivers and local environments.

    PubMed

    Swinburn, Boyd A; Sacks, Gary; Hall, Kevin D; McPherson, Klim; Finegood, Diane T; Moodie, Marjory L; Gortmaker, Steven L

    2011-08-27

    The simultaneous increases in obesity in almost all countries seem to be driven mainly by changes in the global food system, which is producing more processed, affordable, and effectively marketed food than ever before. This passive overconsumption of energy leading to obesity is a predictable outcome of market economies predicated on consumption-based growth. The global food system drivers interact with local environmental factors to create a wide variation in obesity prevalence between populations. Within populations, the interactions between environmental and individual factors, including genetic makeup, explain variability in body size between individuals. However, even with this individual variation, the epidemic has predictable patterns in subpopulations. In low-income countries, obesity mostly affects middle-aged adults (especially women) from wealthy, urban environments; whereas in high-income countries it affects both sexes and all ages, but is disproportionately greater in disadvantaged groups. Unlike other major causes of preventable death and disability, such as tobacco use, injuries, and infectious diseases, there are no exemplar populations in which the obesity epidemic has been reversed by public health measures. This absence increases the urgency for evidence-creating policy action, with a priority on reduction of the supply-side drivers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Eosinophils, probiotics, and the microbiome.

    PubMed

    Rosenberg, Helene F; Masterson, Joanne C; Furuta, Glenn T

    2016-11-01

    There is currently substantial interest in the therapeutic properties of probiotic microorganisms as recent research suggests that oral administration of specific bacterial strains may reduce inflammation and alter the nature of endogenous microflora in the gastrointestinal tract. Eosinophils are multifunctional tissue leukocytes, prominent among the resident cells of the gastrointestinal mucosa that promote local immunity. Recent studies with genetically altered mice indicate that eosinophils not only participate in maintaining gut homeostasis, but that the absence of eosinophils may have significant impact on the nature of the endogenous gut microflora and responses to gut pathogens, notably Clostridium difficile Furthermore, in human subjects, there is an intriguing relationship between eosinophils, allergic inflammation, and the nature of the lung microflora, notably a distinct association between eosinophil infiltration and detection of bacteria of the phylum Actinobacteria. Among topics for future research, it will be important to determine whether homeostatic mechanisms involve direct interactions between eosinophils and bacteria or whether they involve primarily eosinophil-mediated responses to cytokine signaling in the local microenvironment. Likewise, although is it clear that eosinophils can and do interact with bacteria in vivo, their ability to discern between pathogenic and probiotic species in various settings remains to be explored. © Society for Leukocyte Biology.

  15. The Genetics of Hybrid Male Sterility Between the Allopatric Species Pair Drosophila persimilis and D. pseudoobscura bogotana: Dominant Sterility Alleles in Collinear Autosomal Regions

    PubMed Central

    Chang, Audrey S.; Noor, Mohamed A. F.

    2007-01-01

    F1 hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F1 hybrid sterility. PMID:17277364

  16. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions.

    PubMed

    Chang, Audrey S; Noor, Mohamed A F

    2007-05-01

    F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.

  17. TMEM237 Is Mutated in Individuals with a Joubert Syndrome Related Disorder and Expands the Role of the TMEM Family at the Ciliary Transition Zone

    PubMed Central

    Huang, Lijia; Szymanska, Katarzyna; Jensen, Victor L.; Janecke, Andreas R.; Innes, A. Micheil; Davis, Erica E.; Frosk, Patrick; Li, Chunmei; Willer, Jason R.; Chodirker, Bernard N.; Greenberg, Cheryl R.; McLeod, D. Ross; Bernier, Francois P.; Chudley, Albert E.; Müller, Thomas; Shboul, Mohammad; Logan, Clare V.; Loucks, Catrina M.; Beaulieu, Chandree L.; Bowie, Rachel V.; Bell, Sandra M.; Adkins, Jonathan; Zuniga, Freddi I.; Ross, Kevin D.; Wang, Jian; Ban, Matthew R.; Becker, Christian; Nürnberg, Peter; Douglas, Stuart; Craft, Cheryl M.; Akimenko, Marie-Andree; Hegele, Robert A.; Ober, Carole; Utermann, Gerd; Bolz, Hanno J.; Bulman, Dennis E.; Katsanis, Nicholas; Blacque, Oliver E.; Doherty, Dan; Parboosingh, Jillian S.; Leroux, Michel R.; Johnson, Colin A.; Boycott, Kym M.

    2011-01-01

    Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes. PMID:22152675

  18. Interplay between sugar and hormone signaling pathways modulate floral signal transduction

    PubMed Central

    Matsoukas, Ianis G.

    2014-01-01

    NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research. PMID:25165468

  19. Interplay between sugar and hormone signaling pathways modulate floral signal transduction.

    PubMed

    Matsoukas, Ianis G

    2014-01-01

    NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.

  20. Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time.

    PubMed

    Savary, Romain; Dufresnes, Christophe; Champigneulle, Alexis; Caudron, Arnaud; Dubey, Sylvain; Perrin, Nicolas; Fumagalli, Luca

    2017-07-01

    Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr ( Salvelinus alpinus ) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate protocols to limit the genetic homogenization of this Arctic charr population.

  1. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    USDA-ARS?s Scientific Manuscript database

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  2. Meta-analysis of interaction between dietary magnesium intake and genetic risk variants on diabetes phenotypes in the charge consortium

    USDA-ARS?s Scientific Manuscript database

    Little is known about whether genetic variation modifies the effect of magnesium (Mg) intake on two important diabetes risk factors: fasting glucose (FG) and insulin (FI). We examined interactions between dietary Mg and genetic variants associated with glucose (16 SNPs), insulin (2 SNPs), or Mg home...

  3. Genetic and Behavioral Influences on Received Aggression during Observed Play among Unfamiliar Preschool-Aged Peers

    ERIC Educational Resources Information Center

    DiLalla, Lisabeth Fisher; John, Sufna Gheyara

    2014-01-01

    Peer victimization appears heritable, but it is unclear whether the traits that confer genetic risk require time and familiarity with a perpetrator to manifest or whether novel and brief interactions can lead to received aggression that demonstrates similar genetic risk. We examined 20-minute, peer-play interactions between 5-year-olds, pairing…

  4. Systematic analysis of Ca2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles

    PubMed Central

    Ghanegolmohammadi, Farzan; Yoshida, Mitsunori; Ohnuki, Shinsuke; Sukegawa, Yuko; Okada, Hiroki; Obara, Keisuke; Kihara, Akio; Suzuki, Kuninori; Kojima, Tetsuya; Yachie, Nozomu; Hirata, Dai; Ohya, Yoshikazu

    2017-01-01

    We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+. After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+–cls interactions. We found that high-dimensional, morphological Ca2+–cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+–cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+–cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis. PMID:28566553

  5. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  6. High genetic-risk individuals benefit less from resistance exercise intervention

    PubMed Central

    Klimentidis, Yann C.; Bea, Jennifer W.; Lohman, Timothy; Hsieh, Pei-Shan; Going, Scott; Chen, Zhao

    2015-01-01

    Background/Objectives Genetic factors play an important role in body mass index (BMI) variation, and also likely play a role in the weight-loss and body composition response to physical activity/exercise. With the recent identification of BMI–associated genetic variants, it is possible to investigate the interaction of these genetic factors with exercise on body composition outcomes. Subjects/Methods In a block-randomized clinical trial of resistance exercise among women (n=148), we examined whether the putative effect of exercise on weight and DXA-derived body composition measurements differs according to genetic risk for obesity. Approximately one-half of the sample was randomized to an intervention consisting of a supervised, intensive, resistance exercise program, lasting one year. Genetic risk for obesity was defined as a genetic risk score (GRS) comprised of 21 SNPs known to be associated with normal BMI variation. We examined the interaction of exercise intervention and the GRS on anthropometric and body composition measurements after one year of the exercise intervention. Results We found statistically significant interactions for body weight (p=0.01), body fat (p=0.01), body fat % (p=0.02), and abdominal fat (p=0.02), whereby the putative effect of exercise is greater among those with a lower level of genetic risk for obesity. No single SNP appears to be a major driver of these interactions. Conclusions The weight-loss response to resistance exercise, including changes in body composition, differs according to an individual’s genetic risk for obesity. PMID:25924711

  7. No boundaries: genomes, organisms, and ecological interactions responsible for divergence and reproductive isolation.

    PubMed

    Etges, William J

    2014-01-01

    Revealing the genetic basis of traits that cause reproductive isolation, particularly premating or sexual isolation, usually involves the same challenges as most attempts at genotype-phenotype mapping and so requires knowledge of how these traits are expressed in different individuals, populations, and environments, particularly under natural conditions. Genetic dissection of speciation phenotypes thus requires understanding of the internal and external contexts in which underlying genetic elements are expressed. Gene expression is a product of complex interacting factors internal and external to the organism including developmental programs, the genetic background including nuclear-cytotype interactions, epistatic relationships, interactions among individuals or social effects, stochasticity, and prevailing variation in ecological conditions. Understanding of genomic divergence associated with reproductive isolation will be facilitated by functional expression analysis of annotated genomes in organisms with well-studied evolutionary histories, phylogenetic affinities, and known patterns of ecological variation throughout their life cycles. I review progress and prospects for understanding the pervasive role of host plant use on genetic and phenotypic expression of reproductive isolating mechanisms in cactophilic Drosophila mojavensis and suggest how this system can be used as a model for revealing the genetic basis for species formation in organisms where speciation phenotypes are under the joint influences of genetic and environmental factors. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent

    PubMed Central

    Follis, Jack L.; Dashti, Hassan S.; Tanaka, Toshiko; Graff, Mariaelisa; Fretts, Amanda M.; Kilpeläinen, Tuomas O.; Wojczynski, Mary K.; Richardson, Kris; Nalls, Mike A.; Schulz, Christina-Alexandra; Liu, Yongmei; Frazier-Wood, Alexis C.; van Eekelen, Esther; Wang, Carol; de Vries, Paul S.; Mikkilä, Vera; Rohde, Rebecca; Psaty, Bruce M.; Hansen, Torben; Feitosa, Mary F.; Lai, Chao-Qiang; Houston, Denise K.; Ferruci, Luigi; Ericson, Ulrika; Wang, Zhe; de Mutsert, Renée; Oddy, Wendy H.; de Jonge, Ester A. L.; Seppälä, Ilkka; Justice, Anne E.; Lemaitre, Rozenn N.; Sørensen, Thorkild I. A.; Province, Michael A.; Parnell, Laurence D.; Garcia, Melissa E.; Bandinelli, Stefania; Orho-Melander, Marju; Rich, Stephen S.; Rosendaal, Frits R.; Pennell, Craig E.; Kiefte-de Jong, Jessica C.; Kähönen, Mika; Young, Kristin L.; Pedersen, Oluf; Aslibekyan, Stella; Rotter, Jerome I.; Mook-Kanamori, Dennis O.; Zillikens, M. Carola; Raitakari, Olli T.; North, Kari E.; Overvad, Kim; Arnett, Donna K.; Hofman, Albert; Lehtimäki, Terho; Tjønneland, Anne; Uitterlinden, André G.; Rivadeneira, Fernando; Franco, Oscar H.; German, J. Bruce; Siscovick, David S.; Cupples, L. Adrienne; Ordovás, José M.

    2017-01-01

    Scope Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. Methods and results A genome-wide interaction study to discover genetic variants that account for variation in BMI in the context of low-fat, high-fat and total dairy intake in cross-sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta-analyzed. Twenty-six genetic variants reached the selected significance threshold (p-interaction<10−7), and six independent variants (LINC01512-rs7751666, PALM2/AKAP2-rs914359, ACTA2-rs1388, PPP1R12A-rs7961195, LINC00333-rs9635058, AC098847.1-rs1791355) were evaluated meta-analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3′ of LINC00333) was replicated (p-interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p-interaction = 7.36 × 10−8) such that each serving of low-fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2-rs1388) approached interaction replication significance for low-fat dairy exposure. Conclusion Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight. PMID:28941034

  9. Local genes for local bacteria: Evidence of allopatry in the genomes of transatlantic Campylobacter populations

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of bacterial populations can be related to the geographical isolation source. In some species, there is a strong correlation between geographical distances and genetic distances, which can be caused by different evolutionary mechanisms. The patterns of ancient admixture in Heli...

  10. Genetic structure in the European endemic seabird, Phalacrocorax aristotelis, shaped by a complex interaction of historical and contemporary, physical and nonphysical drivers.

    PubMed

    Thanou, Evanthia; Sponza, Stefano; Nelson, Emily J; Perry, Annika; Wanless, Sarah; Daunt, Francis; Cavers, Stephen

    2017-05-01

    Geographically separated populations tend to be less connected by gene flow, as a result of physical or nonphysical barriers preventing dispersal, and this can lead to genetic structure. In this context, highly mobile organisms such as seabirds are interesting because the small effect of physical barriers means nonphysical ones may be relatively more important. Here, we use microsatellite and mitochondrial data to explore the genetic structure and phylogeography of Atlantic and Mediterranean populations of a European endemic seabird, the European shag, Phalacrocorax aristotelis, and identify the primary drivers of their diversification. Analyses of mitochondrial markers revealed three phylogenetic lineages grouping the North Atlantic, Spanish/Corsican and eastern Mediterranean populations, apparently arising from fragmentation during the Pleistocene followed by range expansion. These traces of historical fragmentation were also evident in the genetic structure estimated by microsatellite markers, despite significant contemporary gene flow among adjacent populations. Stronger genetic structure, probably promoted by landscape, philopatry and local adaptation, was found among distant populations and those separated by physical and ecological barriers. This study highlights the enduring effect of Pleistocene climatic changes on shag populations, especially within the Mediterranean Basin, and suggests a role for cryptic northern refugia, as well as known southern refugia, on the genetic structure of European seabirds. Finally, it outlines how contemporary ecological barriers and behavioural traits may maintain population divergence, despite long-distance dispersal triggered by extreme environmental conditions (e.g. population crashes). © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  11. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    2011-01-01

    Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118

  12. Predicting type 2 diabetes using genetic and environmental risk factors in a multi-ethnic Malaysian cohort.

    PubMed

    Abdullah, N; Abdul Murad, N A; Mohd Haniff, E A; Syafruddin, S E; Attia, J; Oldmeadow, C; Kamaruddin, M A; Abd Jalal, N; Ismail, N; Ishak, M; Jamal, R; Scott, R J; Holliday, E G

    2017-08-01

    Malaysia has a high and rising prevalence of type 2 diabetes (T2D). While environmental (non-genetic) risk factors for the disease are well established, the role of genetic variations and gene-environment interactions remain understudied in this population. This study aimed to estimate the relative contributions of environmental and genetic risk factors to T2D in Malaysia and also to assess evidence for gene-environment interactions that may explain additional risk variation. This was a case-control study including 1604 Malays, 1654 Chinese and 1728 Indians from the Malaysian Cohort Project. The proportion of T2D risk variance explained by known genetic and environmental factors was assessed by fitting multivariable logistic regression models and evaluating McFadden's pseudo R 2 and the area under the receiver-operating characteristic curve (AUC). Models with and without the genetic risk score (GRS) were compared using the log likelihood ratio Chi-squared test and AUCs. Multiplicative interaction between genetic and environmental risk factors was assessed via logistic regression within and across ancestral groups. Interactions were assessed for the GRS and its 62 constituent variants. The models including environmental risk factors only had pseudo R 2 values of 16.5-28.3% and AUC of 0.75-0.83. Incorporating a genetic score aggregating 62 T2D-associated risk variants significantly increased the model fit (likelihood ratio P-value of 2.50 × 10 -4 -4.83 × 10 -12 ) and increased the pseudo R 2 by about 1-2% and AUC by 1-3%. None of the gene-environment interactions reached significance after multiple testing adjustment, either for the GRS or individual variants. For individual variants, 33 out of 310 tested associations showed nominal statistical significance with 0.001 < P < 0.05. This study suggests that known genetic risk variants contribute a significant but small amount to overall T2D risk variation in Malaysian population groups. If gene-environment interactions involving common genetic variants exist, they are likely of small effect, requiring substantially larger samples for detection. Copyright © 2017 The Royal Society for Public Health. All rights reserved.

  13. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  14. Host specificity in parasitic plants—perspectives from mistletoes

    PubMed Central

    Okubamichael, Desale Y.; Griffiths, Megan E.; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe–host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal–plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. PMID:27658817

  15. Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.).

    PubMed

    Nishio, Sogo; Takada, Norio; Saito, Toshihiro; Yamamoto, Toshiya; Iketani, Hiroyuki

    2016-06-14

    Pears (Pyrus spp.) are one of the most important fruit crops in temperate regions. Japanese pear breeding has been carried out for over 100 years, working to release new cultivars that have good fruit quality and other desirable traits. Local cultivar 'Nijisseiki' and its relatives, which have excellent fruit texture, have been repeatedly used as parents in the breeding program. This strategy has led to inbreeding within recent cultivars and selections. To avoid inbreeding depression, we need to clarify the degree of inbreeding among crossbred cultivars and to introgress genetic resources that are genetically different from modern cultivars and selections. The objective of the present study was to clarify the genetic relatedness between modern Japanese pear cultivars and diverse Asian pear genetic resources. We genotyped 207 diverse accessions by using 19 simple sequence repeat (SSR) markers. The heterozygosity and allelic richness of modern cultivars was obviously decreased compared with that of wild individuals, Chinese pear cultivars, and local cultivars. In analyses using Structure software, the 207 accessions were classified into four clusters (K = 4): one consisting primarily of wild individuals, one of Chinese pear cultivars, one of local cultivars from outside the Kanto region, and one containing both local cultivars from the Kanto region and crossbred cultivars. The results of principal coordinate analysis (PCoA) were similar to those from the Structure analysis. Wild individuals and Chinese pears appeared to be distinct from other groups, and crossbred cultivars became closer to 'Nijisseiki' as the year of release became more recent. Both Structure and PCoA results suggest that the modern Japanese pear cultivars are genetically close to local cultivars that originated in the Kanto region, and that the genotypes of the modern cultivars were markedly biased toward 'Nijisseiki'. Introgression of germplasm from Chinese pear and wild individuals that are genetically different from modern cultivars seems to be key to broadening the genetic diversity of Japanese pear. The information obtained in this study will be useful for pear breeders and other fruit breeders who have observed inbreeding depression.

  16. Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans

    PubMed Central

    Bendesky, Andres; Pitts, Jason; Rockman, Matthew V.; Chen, William C.; Tan, Man-Wah; Kruglyak, Leonid; Bargmann, Cornelia I.

    2012-01-01

    Aggregation is a social behavior that varies between and within species, providing a model to study the genetic basis of behavioral diversity. In the nematode Caenorhabditis elegans, aggregation is regulated by environmental context and by two neuromodulatory pathways, one dependent on the neuropeptide receptor NPR-1 and one dependent on the TGF-β family protein DAF-7. To gain further insight into the genetic regulation of aggregation, we characterize natural variation underlying behavioral differences between two wild-type C. elegans strains, N2 and CB4856. Using quantitative genetic techniques, including a survey of chromosome substitution strains and QTL analysis of recombinant inbred lines, we identify three new QTLs affecting aggregation in addition to the two known N2 mutations in npr-1 and glb-5. Fine-mapping with near-isogenic lines localized one QTL, accounting for 5%–8% of the behavioral variance between N2 and CB4856, 3′ to the transcript of the GABA neurotransmitter receptor gene exp-1. Quantitative complementation tests demonstrated that this QTL affects exp-1, identifying exp-1 and GABA signaling as new regulators of aggregation. exp-1 interacts genetically with the daf-7 TGF-β pathway, which integrates food availability and population density, and exp-1 mutations affect the level of daf-7 expression. Our results add to growing evidence that genetic variation affecting neurotransmitter receptor genes is a source of natural behavioral variation. PMID:23284308

  17. Interactions between Multiple Genetic Determinants in the 5′ UTR and VP1 Capsid Control Pathogenesis of Chronic Post-Viral Myopathy caused by Coxsackievirus B1

    PubMed Central

    Sandager, Maribeth M.; Nugent, Jaime L.; Schulz, Wade L.; Messner, Ronald P.; Tam, Patricia E.

    2008-01-01

    Mice infected with coxsackievirus B1 Tucson (CVB1T) develop chronic, post-viral myopathy (PVM) with clinical manifestations of hind limb muscle weakness and myositis. The objective of the current study was to establish the genetic basis of myopathogenicity in CVB1T. Using a reverse genetics approach, full attenuation of PVM could only be achieved by simultaneously mutating four sites located at C706U in the 5′ untranslated region (5′ UTR) and at Y87F, V136A, and T276A in the VP1 capsid. Engineering these four myopathic determinants into an amyopathic CVB1T variant restored the ability to cause PVM. Moreover, these same four determinants controlled PVM expression in a second strain of mice, indicating that the underlying mechanism is operational in mice of different genetic backgrounds. Modeling studies predict that C706U alters both local and long-range pairing in the 5′ UTR, and that VP1 determinants are located on the capsid surface. However, these differences did not affect viral titers, temperature stability, pH stability, or the antibody response to virus. These studies demonstrate that PVM develops from a complex interplay between viral determinants in the 5′ UTR and VP1 capsid and have uncovered intriguing similarities between genetic determinants that cause PVM and those involved in pathogenesis of other enteroviruses. PMID:18029287

  18. Structured parenting of toddlers at high versus low genetic risk: two pathways to child problems.

    PubMed

    Leve, Leslie D; Harold, Gordon T; Ge, Xiaojia; Neiderhiser, Jenae M; Shaw, Daniel; Scaramella, Laura V; Reiss, David

    2009-11-01

    Little is known about how parenting might offset genetic risk to prevent the onset of child problems during toddlerhood. We used a prospective adoption design to separate genetic and environmental influences and test whether associations between structured parenting and toddler behavior problems were conditioned by genetic risk for psychopathology. The sample included 290 linked sets of adoptive families and birth mothers and 95 linked birth fathers. Genetic risk was assessed via birth mother and birth father psychopathology (anxiety, depression, antisociality, and drug use). Structured parenting was assessed via microsocial coding of adoptive mothers' behavior during a cleanup task. Toddler behavior problems were assessed with the Child Behavior Checklist. Controlling for temperamental risk at 9 months, there was an interaction between birth mother psychopathology and adoptive mothers' parenting on toddler behavior problems at 18 months. The interaction indicated two pathways to child problems: structured parenting was beneficial for toddlers at high genetic risk but was related to behavior problems for toddlers at low genetic risk. This crossover interaction pattern was replicated with birth father psychopathology as the index of genetic risk. The effects of structured parenting on toddler behavior problems varied as a function of genetic risk. Children at genetic risk might benefit from parenting interventions during toddlerhood that enhance structured parenting.

  19. Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2

    PubMed Central

    Wallace, Heather A.; Klebba, Joseph E.; Kusch, Thomas; Rogers, Gregory C.; Bosco, Giovanni

    2015-01-01

    The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization. PMID:25758823

  20. Gene–environment interaction in tobacco-related cancers

    PubMed Central

    Taioli, Emanuela

    2008-01-01

    This review summarizes the carcinogenic effects of tobacco smoke and the basis for interaction between tobacco smoke and genetic factors. Examples of published papers on gene–tobacco interaction and cancer risk are presented. The assessment of gene–environment interaction in tobacco-related cancers has been more complex than originally expected for several reasons, including the multiplicity of genes involved in tobacco metabolism, the numerous substrates metabolized by the relevant genes and the interaction of smoking with other metabolic pathways. Future studies on gene–environment interaction and cancer risk should include biomarkers of smoking dose, along with markers of quantitative historical exposure to tobacco. Epigenetic studies should be added to classic genetic analyses, in order to better understand gene–environmental interaction and individual susceptibility. Other metabolic pathways in competition with tobacco genetic metabolism/repair should be incorporated in epidemiological studies to generate a more complete picture of individual cancer risk associated with environmental exposure to carcinogens. PMID:18550573

  1. Design and analysis issues in gene and environment studies

    PubMed Central

    2012-01-01

    Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the “-omics” era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed. PMID:23253229

  2. Design and analysis issues in gene and environment studies.

    PubMed

    Liu, Chen-yu; Maity, Arnab; Lin, Xihong; Wright, Robert O; Christiani, David C

    2012-12-19

    Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the "-omics" era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed.

  3. Serotonin Transporter Gene Polymorphisms and Early Parent-Infant Interactions Are Related to Adult Male Heart Rate Response to Female Crying

    PubMed Central

    Truzzi, Anna; Bornstein, Marc H.; Senese, Vincenzo P.; Shinohara, Kazuyuki; Setoh, Peipei; Esposito, Gianluca

    2017-01-01

    Adults' adaptive interactions with intimate partners enhance well-being. Here we hypothesized that adult males' physiological responses to opposite-sex conspecifics' distress result from an interaction between an environmental factor (early social interaction with caregivers) and a genetic factor (a polymorphism within the promoter region of the serotonin transporter gene, 5-HTTLPR). We assessed heart rate changes in 42 non-married male adults to distress vocalizations (female, infant, and bonobo cries). Males' early interaction with parents was assessed using the Parental Bonding Instrument. Buccal mucosa cell samples were collected to assess their 5-HTTLPR genotype. A significant interaction emerged between early experience and genetic predisposition. Males with a genetic predisposition for higher sensitivity to environmental factors showed atypical physiological responses to adult female cries according to their experienced early maternal parenting. Environmental experiences and genetic characteristics are associated with adult males' physiological responses to socially meaningfully stimuli. Understanding the mechanisms that modulate responses to opposite-sex conspecifics may improve personal well-being and social adaptiveness. PMID:28293197

  4. Scaling up: human genetics as a Cold War network.

    PubMed

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment.

    PubMed

    Green, Nicole; Odell, Nadia; Zych, Molly; Clark, Cheryl; Wang, Zong-Heng; Biersmith, Bridget; Bajzek, Clara; Cook, Kevin R; Dushay, Mitchell S; Geisbrecht, Erika R

    2016-11-01

    The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein-protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment. Copyright © 2016 by the Genetics Society of America.

  6. Enlazin, a Natural Fusion of Two Classes of Canonical Cytoskeletal Proteins, Contributes to Cytokinesis Dynamics

    PubMed Central

    Octtaviani, Edelyn; Effler, Janet C.

    2006-01-01

    Cytokinesis requires a complex network of equatorial and global proteins to regulate cell shape changes. Here, using interaction genetics, we report the first characterization of a novel protein, enlazin. Enlazin is a natural fusion of two canonical classes of actin-associated proteins, the ezrin-radixin-moesin family and fimbrin, and it is localized to actin-rich structures. A fragment of enlazin, enl-tr, was isolated as a genetic suppressor of the cytokinesis defect of cortexillin-I mutants. Expression of enl-tr disrupts expression of endogenous enlazin, indicating that enl-tr functions as a dominant-negative lesion. Enlazin is distributed globally during cytokinesis and is required for cortical tension and cell adhesion. Consistent with a role in cell mechanics, inhibition of enlazin in a cortexillin-I background restores cytokinesis furrowing dynamics and suppresses the growth-in-suspension defect. However, as expected for a role in cell adhesion, inhibiting enlazin in a myosin-II background induces a synthetic cytokinesis phenotype, frequently arresting furrow ingression at the dumbbell shape and/or causing recession of the furrow. Thus, enlazin has roles in cell mechanics and adhesion, and these roles seem to be differentially significant for cytokinesis, depending on the genetic background. PMID:17050732

  7. Genetically encoded multispectral labeling of proteins with polyfluorophores on a DNA backbone.

    PubMed

    Singh, Vijay; Wang, Shenliang; Chan, Ke Min; Clark, Spencer A; Kool, Eric T

    2013-04-24

    Genetically encoded methods for protein conjugation are of high importance as biological tools. Here we describe the development of a new class of dyes for genetically encoded tagging that add new capabilities for protein reporting and detection via HaloTag methodology. Oligodeoxyfluorosides (ODFs) are short DNA-like oligomers in which the natural nucleic acid bases are replaced by interacting fluorescent chromophores, yielding a broad range of emission colors using a single excitation wavelength. We describe the development of an alkyl halide dehalogenase-compatible chloroalkane linker phosphoramidite derivative that enables the rapid automated synthesis of many possible dyes for protein conjugation. Experiments to test the enzymatic self-conjugation of nine different DNA-like dyes to proteins with HaloTag domains in vitro were performed, and the data confirmed the rapid and efficient covalent labeling of the proteins. Notably, a number of the ODF dyes were found to increase in brightness or change color upon protein conjugation. Tests in mammalian cellular settings revealed that the dyes are functional in multiple cellular contexts, both on the cell surface and within the cytoplasm, allowing protein localization to be imaged in live cells by epifluorescence and laser confocal microscopy.

  8. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions.

    PubMed

    Demers, Catherine H; Drabant Conley, Emily; Bogdan, Ryan; Hariri, Ahmad R

    2016-09-01

    Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

    PubMed Central

    Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O'Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason

    2013-01-01

    Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model. PMID:24104479

  10. Understanding the evolution of rice technology in China - from traditional agriculture to GM rice today.

    PubMed

    Shen, Xiaobai

    2010-01-01

    This paper provides an historical survey of the evolution of rice technology in China, from the traditional farming system to genetically modified rice today. Using sociotechnological analytical framework, it analyses rice technology as a socio-technical ensemble - a complex interaction of material and social elements, and discusses the specificity of technology development and its socio-technical outcomes. It points to two imperatives in rice variety development: wholesale transporting agricultural technology and social mechanism to developing countries are likely lead to negative consequences; indigenous innovation including deploying GM technology for seed varietal development and capturing/cultivating local knowledge will provide better solutions.

  11. Predicting human genetic interactions from cancer genome evolution.

    PubMed

    Lu, Xiaowen; Megchelenbrink, Wout; Notebaart, Richard A; Huynen, Martijn A

    2015-01-01

    Synthetic Lethal (SL) genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75) for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  12. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK.

    PubMed

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M; Wojcik, Jerome; Kozyrev, Sergey V; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Moser, Kathy L; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B; Gaffney, Patrick M; Martin, Javier; Guthridge, Joel M; Alarcón-Riquelme, Marta E

    2012-01-01

    Altered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis. The GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. This study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.

  13. Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies

    Treesearch

    Melanie A. Murphy; Jeffrey S. Evans; Samuel A. Cushman; Andrew Storfer

    2008-01-01

    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population...

  14. The Genetic Architecture of Type 1 Diabetes

    PubMed Central

    Jerram, Samuel T.; Leslie, Richard David

    2017-01-01

    Type 1 diabetes (T1D) is classically characterised by the clinical need for insulin, the presence of disease-associated serum autoantibodies, and an onset in childhood. The disease, as with other autoimmune diseases, is due to the interaction of genetic and non-genetic effects, which induce a destructive process damaging insulin-secreting cells. In this review, we focus on the nature of this interaction, and how our understanding of that gene–environment interaction has changed our understanding of the nature of the disease. We discuss the early onset of the disease, the development of distinct immunogenotypes, and the declining heritability with increasing age at diagnosis. Whilst Human Leukocyte Antigens (HLA) have a major role in causing T1D, we note that some of these HLA genes have a protective role, especially in children, whilst other non-HLA genes are also important. In adult-onset T1D, the disease is often not insulin-dependent at diagnosis, and has a dissimilar immunogenotype with reduced genetic predisposition. Finally, we discuss the putative nature of the non-genetic factors and how they might interact with genetic susceptibility, including preliminary studies of the epigenome associated with T1D. PMID:28829396

  15. Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles.

    PubMed

    Erster, Oran; Eisenstein, Miriam; Liscovitch, Mordechai

    2007-05-01

    The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand-regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 beta-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).

  16. Coevolution between positive reciprocity, punishment, and partner switching in repeated interactions.

    PubMed

    Wubs, Matthias; Bshary, Redouan; Lehmann, Laurent

    2016-06-15

    Cooperation based on mutual investments can occur between unrelated individuals when they are engaged in repeated interactions. Individuals then need to use a conditional strategy to deter their interaction partners from defecting. Responding to defection such that the future payoff of a defector is reduced relative to cooperating with it is called a partner control mechanism. Three main partner control mechanisms are (i) to switch from cooperation to defection when being defected ('positive reciprocity'), (ii) to actively reduce the payoff of a defecting partner ('punishment'), or (iii) to stop interacting and switch partner ('partner switching'). However, such mechanisms to stabilize cooperation are often studied in isolation from each other. In order to better understand the conditions under which each partner control mechanism tends to be favoured by selection, we here analyse by way of individual-based simulations the coevolution between positive reciprocity, punishment, and partner switching. We show that random interactions in an unstructured population and a high number of rounds increase the likelihood that selection favours partner switching. In contrast, interactions localized in small groups (without genetic structure) increase the likelihood that selection favours punishment and/or positive reciprocity. This study thus highlights the importance of comparing different control mechanisms for cooperation under different conditions. © 2016 The Author(s).

  17. A theoretical quantitative genetic study of negative ecological interactions and extinction times in changing environments.

    PubMed

    Jones, Adam G

    2008-04-25

    Rapid human-induced changes in the environment at local, regional and global scales appear to be contributing to population declines and extinctions, resulting in an unprecedented biodiversity crisis. Although in the short term populations can respond ecologically to environmental alterations, in the face of persistent change populations must evolve or become extinct. Existing models of evolution and extinction in changing environments focus only on single species, even though the dynamics of extinction almost certainly depend upon the nature of species interactions. Here, I use a model of quantitative trait evolution in a two-species community to show that negative ecological interactions, such as predation and competition, can produce unexpected results regarding time to extinction. Under some circumstances, negative interactions can be expected to hasten the extinction of species declining in numbers. However, under other circumstances, negative interactions can actually increase times to extinction. This effect occurs across a wide range of parameter values and can be substantial, in some cases allowing a population to persist for 40 percent longer than it would in the absence of the species interaction. This theoretical study indicates that negative species interactions can have unexpected positive effects on times to extinction. Consequently, detailed studies of selection and demographics will be necessary to predict the consequences of species interactions in changing environments for any particular ecological community.

  18. Oceanographic Currents and Local Ecological Knowledge Indicate, and Genetics Does Not Refute, a Contemporary Pattern of Larval Dispersal for The Ornate Spiny Lobster, Panulirus ornatus in the South-East Asian Archipelago

    PubMed Central

    Dao, Hoc Tan; Smith-Keune, Carolyn; Wolanski, Eric; Jones, Clive M.; Jerry, Dean R.

    2015-01-01

    Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock. PMID:25951344

  19. Ecological and genetic impact of the 2011 Tohoku Earthquake Tsunami on intertidal mud snails

    PubMed Central

    Miura, Osamu; Kanaya, Gen; Nakai, Shizuko; Itoh, Hajime; Chiba, Satoshi; Makino, Wataru; Nishimura, Tomohiro; Kojima, Shigeaki; Urabe, Jotaro

    2017-01-01

    Natural disturbances often destroy local populations and can considerably affect the genetic properties of these populations. The 2011 Tohoku Earthquake Tsunami greatly damaged local populations of various coastal organisms, including the mud snail Batillaria attramentaria, which was an abundant macroinvertebrate on the tidal flats in the Tohoku region. To evaluate the impact of the tsunami on the ecology and population genetic properties of these snails, we monitored the density, shell size, and microsatellite DNA variation of B. attramentaria for more than ten years (2005–2015) throughout the disturbance event. We found that the density of snails declined immediately after the tsunami. Bayesian inference of the genetically effective population size (Ne) demonstrated that the Ne declined by 60–99% at the study sites exposed to the tsunami. However, we found that their genetic diversity was not significantly reduced after the tsunami. The maintenance of genetic diversity is essential for long-term survival of local populations, and thus, the observed genetic robustness could play a key role in the persistence of snail populations in this region which has been devastated by similar tsunamis every 500–800 years. Our findings have significant implications for understanding the sustainability of populations damaged by natural disturbances. PMID:28281698

  20. Oceanographic Currents and Local Ecological Knowledge Indicate, and Genetics Does Not Refute, a Contemporary Pattern of Larval Dispersal for The Ornate Spiny Lobster, Panulirus ornatus in the South-East Asian Archipelago.

    PubMed

    Dao, Hoc Tan; Smith-Keune, Carolyn; Wolanski, Eric; Jones, Clive M; Jerry, Dean R

    2015-01-01

    Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock.

  1. Genetic effects on gene expression across human tissues

    PubMed Central

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597

  2. Genetic effects on gene expression across human tissues.

    PubMed

    Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B

    2017-10-11

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

  3. Genetic relationship between the Echinococcus granulosus sensu stricto cysts located in lung and liver of hosts.

    PubMed

    Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda

    2016-10-01

    G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Prefrontal cortex lesions and MAO-A modulate aggression in penetrating traumatic brain injury

    PubMed Central

    Pardini, M.; Krueger, F.; Hodgkinson, C.; Raymont, V.; Ferrier, C.; Goldman, D.; Strenziok, M.; Guida, S.

    2011-01-01

    Objective: This study investigates the interaction between brain lesion location and monoamine oxidase A (MAO-A) in the genesis of aggression in patients with penetrating traumatic brain injury (PTBI). Methods: We enrolled 155 patients with PTBI and 42 controls drawn from the Vietnam Head Injury Study registry. Patients with PTBI were divided according to lesion localization (prefrontal cortex [PFC] vs non-PFC) and were genotyped for the MAO-A polymorphism linked to low and high transcriptional activity. Aggression was assessed with the aggression/agitation subscale of the Neuropsychiatric Inventory (NPI-a). Results: Patients with the highest levels of aggression preferentially presented lesions in PFC territories. A significant interaction between MAO-A transcriptional activity and lesion localization on aggression was revealed. In the control group, carriers of the low-activity allele demonstrated higher aggression than high-activity allele carriers. In the PFC lesion group, no significant differences in aggression were observed between carriers of the 2 MAO-A alleles, whereas in the non-PFC lesion group higher aggression was observed in the high-activity allele than in the low-activity allele carriers. Higher NPI-a scores were linked to more severe childhood psychological traumatic experiences and posttraumatic stress disorder symptomatology in the control and non-PFC lesion groups but not in the PFC lesion group. Conclusions: Lesion location and MAO-A genotype interact in mediating aggression in PTBI. Importantly, PFC integrity is necessary for modulation of aggressive behaviors by genetic susceptibilities and traumatic experiences. Potentially, lesion localization and MAO-A genotype data could be combined to develop risk-stratification algorithms and individualized treatments for aggression in PTBI. PMID:21422455

  5. Fine-Scale Genetic Response to Landscape Change in a Gliding Mammal

    PubMed Central

    Goldingay, Ross L.; Harrisson, Katherine A.; Taylor, Andrea C.; Ball, Tina M.; Sharpe, David J.; Taylor, Brendan D.

    2013-01-01

    Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity. PMID:24386079

  6. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  7. Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes

    PubMed Central

    Yu, Huimin; Ye, Xin; Guo, Nini; Nathans, Jeremy

    2012-01-01

    Frizzled (Fz) 2 and Fz7, together with Fz1, form a distinct subfamily within the Frizzled family of Wnt receptors. Using targeted gene deletion, we show that: Fz7−/− mice exhibit tail truncation and kinking with 100% penetrance and ventricular septal defects (VSDs) with ~15% penetrance; Fz2+/−;Fz7−/− mice exhibit VSDs with ~50% penetrance and cleft palate with less than 10% penetrance; and Fz2−/−;Fz7−/− mice exhibit convergent extension defects and mid-gestational lethality with 100% penetrance. When Fz2 and/or Fz7 mutations are combined with mutations in Vangl2, Dvl3, Wnt3a, Wnt5a or Wnt11, an increased frequency of VSDs is observed with Dvl3, Wnt3a and Wnt11; an increased frequency of palate closure defects is observed with Vangl2; and early lethality and enhanced tail shortening are observed with Wnt5a. To assess the signaling pathways that underlie these and other Frizzled-mediated genetic interactions, we used transfected mammalian cells to analyze (1) canonical Wnt signaling induced by all pairwise combinations of the ten mouse Frizzleds and the 19 mouse Wnts and (2) localization of each Frizzled at cell-cell junctional complexes formed by mouse Celsr1, a likely indicator of competence for planar cell polarity signaling. These in vitro experiments indicate that Fz2 and Fz7 are competent to signal via the canonical pathway. Taken together, the data suggest that genetic interactions between Fz2, Fz7 and Vangl2, Dvl3 and Wnt genes reflect interactions among different signaling pathways in developmental processes that are highly sensitive to perturbations in Frizzled signaling. PMID:23095888

  8. Genome-wide association study of bipolar disorder accounting for effect of body mass index identifies a new risk allele in TCF7L2.

    PubMed

    Winham, S J; Cuellar-Barboza, A B; Oliveros, A; McElroy, S L; Crow, S; Colby, C; Choi, D-S; Chauhan, M; Frye, M; Biernacka, J M

    2014-09-01

    Bipolar disorder (BD) is associated with higher body mass index (BMI) and increased metabolic comorbidity. Considering the associated phenotypic traits in genetic studies of complex diseases, either by adjusting for covariates or by investigating interactions between genetic variants and covariates, may help to uncover the missing heritability. However, obesity-related traits have not been incorporated in prior genome-wide analyses of BD as covariates or potential interacting factors. To investigate the genetic factors underlying BD while considering BMI, we conducted genome-wide analyses using data from the Genetic Association Information Network BD study. We analyzed 729,454 genotyped single-nucleotide polymorphism (SNP) markers on 388 European-American BD cases and 1020 healthy controls with available data for maximum BMI. We performed genome-wide association analyses of the genetic effects while accounting for the effect of maximum BMI, and also evaluated SNP-BMI interactions. A joint test of main and interaction effects demonstrated significant evidence of association at the genome-wide level with rs12772424 in an intron of TCF7L2 (P=2.85E-8). This SNP exhibited interaction effects, indicating that the bipolar susceptibility risk of this SNP is dependent on BMI. TCF7L2 codes for the transcription factor TCF/LF, part of the Wnt canonical pathway, and is one of the strongest genetic risk variants for type 2 diabetes (T2D). This is consistent with BD pathophysiology, as the Wnt pathway has crucial implications in neurodevelopment, neurogenesis and neuroplasticity, and is involved in the mechanisms of action of BD and depression treatments. We hypothesize that genetic risk for BD is BMI dependent, possibly related to common genetic risk with T2D.

  9. Evolutionary genetics of plant adaptation.

    PubMed

    Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas

    2011-07-01

    Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Local Competition and Metapopulation Processes Drive Long-Term Seagrass-Epiphyte Population Dynamics

    PubMed Central

    Lobelle, Delphine; Kenyon, Emma J.; Cook, Kevan J.; Bull, James C.

    2013-01-01

    It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test some of the predictions of ecological theory in a natural ecosystem of global conservation and economic value. PMID:23437313

  11. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics.

    PubMed

    Lobelle, Delphine; Kenyon, Emma J; Cook, Kevan J; Bull, James C

    2013-01-01

    It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test some of the predictions of ecological theory in a natural ecosystem of global conservation and economic value.

  12. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  13. Effects of local adaptation and interspecific competition on species' responses to climate change.

    PubMed

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research. © 2013 New York Academy of Sciences.

  14. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype

    PubMed Central

    Lenihan-Geels, Georgia; Bishop, Karen S.; Ferguson, Lynnette R.

    2016-01-01

    Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis. PMID:26891335

  15. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs

    PubMed Central

    Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard

    2015-01-01

    Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953

  16. Androgen Receptor Gene Polymorphisms and Alterations in Prostate Cancer: Of Humanized Mice and Men

    PubMed Central

    Robins, Diane M.

    2011-01-01

    Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners. PMID:21689727

  17. Impact of US Brown Swiss genetics on milk quality from low-input herds in Switzerland: interactions with grazing intake and pasture type.

    PubMed

    Stergiadis, S; Bieber, A; Franceschin, E; Isensee, A; Eyre, M D; Maurer, V; Chatzidimitriou, E; Cozzi, G; Bapst, B; Stewart, G; Gordon, A; Butler, G

    2015-05-15

    This study investigated the effect of, and interactions between, contrasting crossbreed genetics (US Brown Swiss [BS] × Improved Braunvieh [BV] × Original Braunvieh [OB]) and feeding regimes (especially grazing intake and pasture type) on milk fatty acid (FA) profiles. Concentrations of total polyunsaturated FAs, total omega-3 FAs and trans palmitoleic, vaccenic, α-linolenic, eicosapentaenoic and docosapentaenoic acids were higher in cows with a low proportion of BS genetics. Highest concentrations of the nutritionally desirable FAs, trans palmitoleic, vaccenic and eicosapentaenoic acids were found for cows with a low proportion of BS genetics (0-24% and/or 25-49%) on high grazing intake (75-100% of dry matter intake) diets. Multivariate analysis indicated that the proportion of OB genetics is a positive driver for nutritionally desirable monounsaturated and polyunsaturated FAs while BS genetics proportion was positive driver for total and undesirable individual saturated FAs. Significant genetics × feeding regime interactions were also detected for a range of FAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).

    PubMed

    Momigliano, P; Harcourt, R; Robbins, W D; Jaiteh, V; Mahardika, G N; Sembiring, A; Stow, A

    2017-09-01

    With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.

  19. Genetic influences can protect against unresponsive parenting in the prediction of child social competence.

    PubMed

    Van Ryzin, Mark J; Leve, Leslie D; Neiderhiser, Jenae M; Shaw, Daniel S; Natsuaki, Misaki N; Reiss, David

    2015-01-01

    Although social competence in children has been linked to the quality of parenting, prior research has typically not accounted for genetic similarities between parents and children, or for interactions between environmental (i.e., parental) and genetic influences. In this article, the possibility of a Gene x Environment (G × E) interaction in the prediction of social competence in school-age children is evaluated. Using a longitudinal, multimethod data set from a sample of children adopted at birth (N = 361), a significant interaction was found between birth parent sociability and sensitive, responsive adoptive parenting when predicting child social competence at school entry (age 6), even when controlling for potential confounds. An analysis of the interaction revealed that genetic strengths can buffer the effects of unresponsive parenting. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  20. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions.

    PubMed

    Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy

    2018-04-19

    Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.

  1. A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans

    PubMed Central

    Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.

    2018-01-01

    Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088

  2. Antagonistic interactions peak at intermediate genetic distance in clinical and laboratory strains of Pseudomonas aeruginosa.

    PubMed

    Schoustra, Sijmen E; Dench, Jonathan; Dali, Rola; Aaron, Shawn D; Kassen, Rees

    2012-03-22

    Bacteria excrete costly toxins to defend their ecological niche. The evolution of such antagonistic interactions between individuals is expected to depend on both the social environment and the strength of resource competition. Antagonism is expected to be weak among highly similar genotypes because most individuals are immune to antagonistic agents and among dissimilar genotypes because these are unlikely to be competing for the same resources and antagonism should not yield much benefit. The strength of antagonism is therefore expected to peak at intermediate genetic distance. We studied the ability of laboratory strains of Pseudomonas aeruginosa to prevent growth of 55 different clinical P. aeruginosa isolates derived from cystic fibrosis patients. Genetic distance was determined using genetic fingerprints. We found that the strength of antagonism was maximal among genotypes of intermediate genetic distance and we show that genetic distance and resource use are linked. Our results suggest that the importance of social interactions like antagonism may be modulated by the strength of resource competition.

  3. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    PubMed

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  4. Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    PubMed Central

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J.

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair. PMID:19399174

  5. Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean.

    PubMed

    Iquira, Elmer; Gagnon, Eric; Belzile, François

    2010-05-01

    Soybean (Glycine max (L.) Merr.) was domesticated in China and the greatest genetic diversity for this species is found in Asia. In contrast, in North America, soybean cultivars trace back to a small number of plant introductions from Asia and genetic diversity is typically quite limited. The purpose of this work was to measure and compare the genetic diversity in two sets of soybean lines. The first set (termed "local") was composed of 100 lines used in a private breeding program in Quebec. The second set (termed "exotic") was composed of 200 lines from elsewhere in the world (but mostly from Asia) and included a few lines of Glycine soja, the wild progenitor of cultivated soybean. Almost all the genotypes belonged to maturity groups between 000 and II. A total of 39 microsatellites (SSRs) were used to genotype the two collections. The number of alleles per locus was almost twice as great in the exotic set compared with the local set. Also, the number of "unique" alleles, i.e., those uniquely present in one set and absent in the other, was almost fivefold greater (191 vs. 37) in a subset of 108 exotic lines with good adaptation than among the local set. A genetic distance matrix, a UPGMA cluster analysis, and a principal coordinate analysis were conducted based on the SSR data. These analyses all indicated that the exotic set was much more diverse and formed a clearly distinct group from the local set. Interestingly, some of the lines showing the best adaptation to local conditions were quite distinctive in terms of their genotype and could potentially contribute useful novel genetic variation within the breeding program.

  6. Drosophila Syd-1, Liprin-α, and Protein Phosphatase 2A B′ Subunit Wrd Function in a Linear Pathway to Prevent Ectopic Accumulation of Synaptic Materials in Distal Axons

    PubMed Central

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A.; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J.; Levitan, Edwin S.

    2014-01-01

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B′ [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). PMID:24948803

  7. Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons.

    PubMed

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J; Levitan, Edwin S; Wu, Chunlai

    2014-06-18

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). Copyright © 2014 the authors 0270-6474/14/348474-14$15.00/0.

  8. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14

    PubMed Central

    Jonkers, Wilfried; Fischer, Monika S.; Do, Hung P.; Starr, Trevor L.; Glass, N. Louise

    2016-01-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to “fusion puncta.” The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. PMID:27029735

  9. Sample size requirements for indirect association studies of gene-environment interactions (G x E).

    PubMed

    Hein, Rebecca; Beckmann, Lars; Chang-Claude, Jenny

    2008-04-01

    Association studies accounting for gene-environment interactions (G x E) may be useful for detecting genetic effects. Although current technology enables very dense marker spacing in genetic association studies, the true disease variants may not be genotyped. Thus, causal genes are searched for by indirect association using genetic markers in linkage disequilibrium (LD) with the true disease variants. Sample sizes needed to detect G x E effects in indirect case-control association studies depend on the true genetic main effects, disease allele frequencies, whether marker and disease allele frequencies match, LD between loci, main effects and prevalence of environmental exposures, and the magnitude of interactions. We explored variables influencing sample sizes needed to detect G x E, compared these sample sizes with those required to detect genetic marginal effects, and provide an algorithm for power and sample size estimations. Required sample sizes may be heavily inflated if LD between marker and disease loci decreases. More than 10,000 case-control pairs may be required to detect G x E. However, given weak true genetic main effects, moderate prevalence of environmental exposures, as well as strong interactions, G x E effects may be detected with smaller sample sizes than those needed for the detection of genetic marginal effects. Moreover, in this scenario, rare disease variants may only be detectable when G x E is included in the analyses. Thus, the analysis of G x E appears to be an attractive option for the detection of weak genetic main effects of rare variants that may not be detectable in the analysis of genetic marginal effects only.

  10. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    PubMed

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  11. Early rooting of dormant hardwood cuttings of Populus: analysis of quantitative genetics and genotype x environment interactions

    Treesearch

    Ronald S., Jr. Zalesny; Don E. Riemenschneider; Richard B. Hall

    2005-01-01

    Rooting of hardwood cuttings is under strong genetic control, although genotype x environment interactions affect selection of promising genotypes. Our objectives were (1) to assess the variation in rooting ability among 21 Populus clones and (2) to examine genotype x environment interactions to refine clonal recommendations. The clones belonged to...

  12. Evolving hard problems: Generating human genetics datasets with a complex etiology.

    PubMed

    Himmelstein, Daniel S; Greene, Casey S; Moore, Jason H

    2011-07-07

    A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  13. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods.

    PubMed

    Schuenemann, Verena J; Peltzer, Alexander; Welte, Beatrix; van Pelt, W Paul; Molak, Martyna; Wang, Chuan-Chao; Furtwängler, Anja; Urban, Christian; Reiter, Ella; Nieselt, Kay; Teßmann, Barbara; Francken, Michael; Harvati, Katerina; Haak, Wolfgang; Schiffels, Stephan; Krause, Johannes

    2017-05-30

    Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypt's past at a genome-wide level.

  14. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods

    PubMed Central

    Schuenemann, Verena J.; Peltzer, Alexander; Welte, Beatrix; van Pelt, W. Paul; Molak, Martyna; Wang, Chuan-Chao; Furtwängler, Anja; Urban, Christian; Reiter, Ella; Nieselt, Kay; Teßmann, Barbara; Francken, Michael; Harvati, Katerina; Haak, Wolfgang; Schiffels, Stephan; Krause, Johannes

    2017-01-01

    Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypt's past at a genome-wide level. PMID:28556824

  15. Differential positive selection of malaria resistance genes in three indigenous populations of Peninsular Malaysia.

    PubMed

    Liu, Xuanyao; Yunus, Yushimah; Lu, Dongsheng; Aghakhanian, Farhang; Saw, Woei-Yuh; Deng, Lian; Ali, Mohammad; Wang, Xu; Nor, Fadzilah Mohd; Ghazali, Fadzilah; Rahman, Thuhairah Abdul; Shaari, Shahrul Azlin; Salleh, Mohd Zaki; Phipps, Maude E; Ong, Rick Twee-Hee; Xu, Shuhua; Teo, Yik-Ying; Hoh, Boon-Peng

    2015-04-01

    The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.

  16. Cuts and the cutting edge: British science funding and the making of animal biotechnology in 1980s Edinburgh.

    PubMed

    Myelnikov, Dmitriy

    2017-12-01

    The Animal Breeding Research Organisation in Edinburgh (ABRO, founded in 1945) was a direct ancestor of the Roslin Institute, celebrated for the cloning of Dolly the sheep. After a period of sustained growth as an institute of the Agricultural Research Council (ARC), ABRO was to lose most of its funding in 1981. This decision has been absorbed into the narrative of the Thatcherite attack on science, but in this article I show that the choice to restructure ABRO pre-dated major government cuts to agricultural research, and stemmed from the ARC's wish to prioritize biotechnology in its portfolio. ABRO's management embraced this wish and campaigned against the cuts based on a promise of biotechnological innovation, shifting its focus from farm animal genetics to the production of recombinant pharmaceuticals in sheep milk. By tracing interaction between government policies, research council agendas and local strategies, I show how novel research programmes such as genetic modification could act as a lifeline for struggling institutions.

  17. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  18. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    PubMed

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  20. Assessment of Genetic and Nongenetic Interactions for the Prediction of Depressive Symptomatology: An Analysis of the Wisconsin Longitudinal Study Using Machine Learning Algorithms

    PubMed Central

    Roetker, Nicholas S.; Yonker, James A.; Chang, Vicky; Roan, Carol L.; Herd, Pamela; Hauser, Taissa S.; Hauser, Robert M.

    2013-01-01

    Objectives. We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. Methods. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors—13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors—18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. Results. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. Conclusions. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic–environmental–sociobehavioral interactions in depressive symptoms. PMID:23927508

  1. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the Archipelago of Bocas del Toro, Panama: A population at risk?

    PubMed Central

    Tezanos-Pinto, Gabriela; Islas-Villanueva, Valentina; Correa-Cárdenas, Camilo A.

    2017-01-01

    The current conservation status of the bottlenose dolphin (Tursiops truncatus) under the IUCN is ‘least concern’. However, in the Caribbean, small and localized populations of the ‘inshore form’ may be at higher risk of extinction than the ‘worldwide distributed form’ due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR) and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the ‘inshore form’, grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72–87), which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05). The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in Bocas del Toro should be elevated to ‘endangered’ at the national level, as a precautionary measure while population and viability estimates are conducted. PMID:29236757

  2. Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis.

    PubMed

    Kujala, S T; Knürr, T; Kärkkäinen, K; Neale, D B; Sillanpää, M J; Savolainen, O

    2017-05-01

    Local adaptation is a common feature of plant and animal populations. Adaptive phenotypic traits are genetically differentiated along environmental gradients, but the genetic basis of such adaptation is still poorly known. Genetic association studies of local adaptation combine data over populations. Correcting for population structure in these studies can be problematic since both selection and neutral demographic events can create similar allele frequency differences between populations. Correcting for demography with traditional methods may lead to eliminating some true associations. We developed a new Bayesian approach for identifying the loci underlying an adaptive trait in a multipopulation situation in the presence of possible double confounding due to population stratification and adaptation. With this method we studied the genetic basis of timing of bud set, a surrogate trait for timing of yearly growth cessation that confers local adaptation to the populations of Scots pine (Pinus sylvestris). Population means of timing of bud set were highly correlated with latitude. Most effects at individual loci were small. Interestingly, we found genetic heterogeneity (that is, different sets of loci associated with the trait) between the northern and central European parts of the cline. We also found indications of stronger stabilizing selection toward the northern part of the range. The harsh northern conditions may impose greater selective pressure on timing of growth cessation, and the relative importance of different environmental cues used for tracking the seasons might differ depending on latitude of origin.

  3. Childhood and adolescent anxiety and depression: beyond heritability.

    PubMed

    Franić, Sanja; Middeldorp, Christel M; Dolan, Conor V; Ligthart, Lannie; Boomsma, Dorret I

    2010-08-01

    To review the methodology of behavior genetics studies addressing research questions that go beyond simple heritability estimation and illustrate these using representative research on childhood and adolescent anxiety and depression. The classic twin design and its extensions may be used to examine age and gender differences in the genetic determinants of complex traits and disorders, the role of genetic factors in explaining comorbidity, the interaction of genes and the environment, and the effect of social interaction among family members. An overview of the methods typically employed to address such questions is illustrated by a review of 34 recent studies on childhood anxiety and depression. The review provides relatively consistent evidence for small to negligible sex differences in the genetic etiology of childhood anxiety and depression, a substantial role of genetic factors in accounting for the temporal stability of these disorders, a partly genetic basis of the comorbidity between anxiety and depression, a possible role of the interaction between genotype and the environment in affecting liability to these disorders, a role of genotype-environment correlation, and a minor, if any, etiological role of sibling interaction. The results clearly demonstrate a role for genetic factors in the etiology and temporal stability of individual differences in childhood anxiety and depression. Clinical implications of the findings are discussed. 2010 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. There is room for selection in a small local pig breed when using optimum contribution selection: a simulation study.

    PubMed

    Gourdine, J L; Sørensen, A C; Rydhmer, L

    2012-01-01

    Selection progress must be carefully balanced against the conservation of genetic variation in small populations of local breeds. Well-defined breeding programs with specified selection traits are rare in local pig breeds. Given the small population size, the focus is often on the management of genetic diversity. However, in local breeds, optimum contribution selection can be applied to control the rate of inbreeding and to avoid reduced performance in traits with high market value. The aim of this study was to assess the extent to which a breeding program aiming for improved product quality in a small local breed would be feasible. We used stochastic simulations to compare 25 scenarios. The scenarios differed in size of population, selection intensity of boars, type of selection (random selection, truncation selection based on BLUP breeding values, or optimum contribution selection based on BLUP breeding values), and heritability of the selection trait. It was assumed that the local breed is used in an extensive system for a high-meat-quality market. The simulations showed that in the smallest population (300 female reproducers), inbreeding increased by 0.8% when selection was performed at random. With optimum contribution selection, genetic progress can be achieved that is almost as great as that with truncation selection based on BLUP breeding values (0.2 to 0.5 vs. 0.3 to 0.5 genetic SD, P < 0.05), but at a considerably decreased rate of inbreeding (0.7 to 1.2 vs. 2.3 to 5.7%, P < 0.01). This confirmation of the potential utilization of OCS even in small populations is important in the context of sustainable management and the use of animal genetic resources.

  5. Phenylketonuria Genetic Screening Simulation

    ERIC Educational Resources Information Center

    Erickson, Patti

    2012-01-01

    After agreeing to host over 200 students on a daylong genetics field trip, the author needed an easy-to-prepare genetics experiment to accompany the DNA-necklace and gel-electrophoresis activities already planned. One of the student's mothers is a pediatric physician at the local hospital, and she suggested exploring genetic-disease screening…

  6. [Genetics and criminology: a new concept].

    PubMed

    Jeffery, C R; Jeffery, I A

    1975-01-01

    The early history of criminology was one of interaction with genetics and biology, but since the sociological school emerged in the 1920's there has occurred a major split between sociological criminology and biology. Behavioral genetics as it has developed since 1950 has great relevance to criminology in terms of neurological and brain functioning, learning processes, violence and the XYY syndrome, and the sociopathy. A new interdisciplinary research effort must be undertaken in order to look at the interaction of genetics, human behavior, criminal law and criminology. If criminology is interested in learning, motivation, aggression and behavior, it must incorporate the new genetics into its theoretical structure.

  7. Genome-wide search followed by replication reveals genetic interaction of CD80 and ALOX5AP associated with systemic lupus erythematosus in Asian populations.

    PubMed

    Zhang, Yan; Yang, Jing; Zhang, Jing; Sun, Liangdan; Hirankarn, Nattiya; Pan, Hai-Feng; Lau, Chak Sing; Chan, Tak Mao; Lee, Tsz Leung; Leung, Alexander Moon Ho; Mok, Chi Chiu; Zhang, Lu; Wang, Yongfei; Shen, Jiangshan Jane; Wong, Sik Nin; Lee, Ka Wing; Ho, Marco Hok Kung; Lee, Pamela Pui Wah; Chung, Brian Hon-Yin; Chong, Chun Yin; Wong, Raymond Woon Sing; Mok, Mo Yin; Wong, Wilfred Hing Sang; Tong, Kwok Lung; Tse, Niko Kei Chiu; Li, Xiang-Pei; Avihingsanon, Yingyos; Rianthavorn, Pornpimol; Deekajorndej, Thavatchai; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk; Ying, Shirley King Yee; Fung, Samuel Ka Shun; Lai, Wai Ming; Wong, Chun-Ming; Ng, Irene Oi Lin; Garcia-Barcelo, Maria-Merce; Cherny, Stacey S; Cui, Yong; Sham, Pak Chung; Yang, Sen; Ye, Dong-Qing; Zhang, Xue-Jun; Lau, Yu Lung; Yang, Wanling

    2016-05-01

    Genetic interaction has been considered as a hallmark of the genetic architecture of systemic lupus erythematosus (SLE). Based on two independent genome-wide association studies (GWAS) on Chinese populations, we performed a genome-wide search for genetic interactions contributing to SLE susceptibility. The study involved a total of 1 659 cases and 3 398 controls in the discovery stage and 2 612 cases and 3 441 controls in three cohorts for replication. Logistic regression and multifactor dimensionality reduction were used to search for genetic interaction. Interaction of CD80 (rs2222631) and ALOX5AP (rs12876893) was found to be significantly associated with SLE (OR_int=1.16, P_int_all=7.7E-04 at false discovery rate<0.05). Single nuclear polymorphism rs2222631 was found associated with SLE with genome-wide significance (P_all=4.5E-08, OR=0.86) and is independent of rs6804441 in CD80, whose association was reported previously. Significant correlation was observed between expression of these two genes in healthy controls and SLE cases, together with differential expression of these genes between cases and controls, observed from individuals from the Hong Kong cohort. Genetic interactions between BLK (rs13277113) and DDX6 (rs4639966), and between TNFSF4 (rs844648) and PXK (rs6445975) were also observed in both GWAS data sets. Our study represents the first genome-wide evaluation of epistasis interactions on SLE and the findings suggest interactions and independent variants may help partially explain missing heritability for complex diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Selection with inbreeding control in simulated young bull schemes for local dairy cattle breeds.

    PubMed

    Gandini, G; Stella, A; Del Corvo, M; Jansen, G B

    2014-03-01

    Local breeds are rarely subject to modern selection techniques; however, selection programs will be required if local breeds are to remain a viable livelihood option for farmers. Selection in small populations needs to take into account accurate inbreeding control. Optimum contribution selection (OCS) is efficient in controlling inbreeding and maximizes genetic gain. The current paper investigates genetic progress in simulated dairy cattle populations from 500 to 6,000 cows undergoing young bull selection schemes with OCS compared with truncation selection (TS) at an annual inbreeding rate of 0.003. Selection is carried out for a dairy trait with a base heritability of 0.3. A young bull selection scheme was used because of its simplicity in implementation. With TS, annual genetic gain from 0.111 standard deviation units with 500 cows increases rapidly to 0.145 standard deviation units with 4,000 cows. Then, genetic gain increases more slowly up to 6,000 cows. At the same inbreeding rate, OCS produces higher genetic progress than TS. Differences in genetic gain between OCS and TS vary from to 2 to 6.3%. Genetic gain is also improved by increasing the number of years that males can be used as sires of sires. When comparing OCS versus TS at different heritabilities, we observe an advantage of OCS only at high heritability, up to 8% with heritability of 0.9. By increasing the constraint on inbreeding, the difference of genetic gain between the 2 selection methods increases in favor of OCS, and the advantage at the inbreeding rate of 0.001 per generation is 6 times more than at the inbreeding rate of 0.003. Opportunities exist for selection even in dairy cattle populations of a few hundred females. In any case, selection in local breeds will most often require specific investments in infrastructure and manpower, including systems for accurate data recording and selection skills and the presence of artificial insemination and breeders organizations. A cost-benefit analysis is therefore advisable before considering the implementation of selection schemes in local dairy cattle breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Risk of genetic maladaptation due to climate change in three major European tree species

    Treesearch

    Aline Frank; Glenn T. Howe; Christoph Sperisen; Peter Brang; Brad St. Clair; Dirk R. Schmatz; Caroline Heiri

    2017-01-01

    Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest...

  10. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Cancer.gov

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  11. SNP by SNP by environment interaction network of alcoholism.

    PubMed

    Zollanvari, Amin; Alterovitz, Gil

    2017-03-14

    Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large proportion of phenotypic variance of alcoholism ranging from 50-80%. The search for genetic variants associated with this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or SNP by environment interactions has recently gained much interest. Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the genes, demographic factors, biological pathways, and the interactions represented by our SNP [Formula: see text]SNP[Formula: see text]E network. The proposed framework is quite general and can be potentially applied to the study of other complex traits.

  12. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis

    PubMed Central

    Ju, Chuanli; Yoon, Gyeong Mee; Shemansky, Jennifer Marie; Lin, David Y.; Ying, Z. Irene; Chang, Jianhong; Garrett, Wesley M.; Kessenbrock, Mareike; Groth, Georg; Tucker, Mark L.; Cooper, Bret; Kieber, Joseph J.; Chang, Caren

    2012-01-01

    The gaseous phytohormone ethylene C2H4 mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction. PMID:23132950

  13. A genetic linkage map of the Durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits.

    PubMed

    Elouafi, I; Nachit, M M

    2004-02-01

    Durum wheat ( Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5 /Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites x years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTLxE interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.

  14. The genetics of music accomplishment: evidence for gene-environment correlation and interaction.

    PubMed

    Hambrick, David Z; Tucker-Drob, Elliot M

    2015-02-01

    Theories of skilled performance that emphasize training history, such as K. Anders Ericsson and colleagues' deliberate-practice theory, have received a great deal of recent attention in both the scientific literature and the popular press. Twin studies, however, have demonstrated evidence for moderate-to-strong genetic influences on skilled performance. Focusing on musical accomplishment in a sample of over 800 pairs of twins, we found evidence for gene-environment correlation, in the form of a genetic effect on music practice. However, only about one quarter of the genetic effect on music accomplishment was explained by this genetic effect on music practice, suggesting that genetically influenced factors other than practice contribute to individual differences in music accomplishment. We also found evidence for gene-environment interaction, such that genetic effects on music accomplishment were most pronounced among those engaging in music practice, suggesting that genetic potentials for skilled performance are most fully expressed and fostered by practice.

  15. visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data.

    PubMed

    Scales, Matthew; Jäger, Roland; Migliorini, Gabriele; Houlston, Richard S; Henrion, Marc Y R

    2014-01-01

    We present VISual Plotting Interface for Genetics (visPIG; http://vispig.icr.ac.uk), a web application to produce multi-track, multi-scale, multi-region plots of genetic data. visPIG has been designed to allow users not well versed with mathematical software packages and/or programming languages such as R, Matlab®, Python, etc., to integrate data from multiple sources for interpretation and to easily create publication-ready figures. While web tools such as the UCSC Genome Browser or the WashU Epigenome Browser allow custom data uploads, such tools are primarily designed for data exploration. This is also true for the desktop-run Integrative Genomics Viewer (IGV). Other locally run data visualisation software such as Circos require significant computer skills of the user. The visPIG web application is a menu-based interface that allows users to upload custom data tracks and set track-specific parameters. Figures can be downloaded as PDF or PNG files. For sensitive data, the underlying R code can also be downloaded and run locally. visPIG is multi-track: it can display many different data types (e.g association, functional annotation, intensity, interaction, heat map data,…). It also allows annotation of genes and other custom features in the plotted region(s). Data tracks can be plotted individually or on a single figure. visPIG is multi-region: it supports plotting multiple regions, be they kilo- or megabases apart or even on different chromosomes. Finally, visPIG is multi-scale: a sub-region of particular interest can be 'zoomed' in. We describe the various features of visPIG and illustrate its utility with examples. visPIG is freely available through http://vispig.icr.ac.uk under a GNU General Public License (GPLv3).

  16. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads.

    PubMed

    Arntzen, Jan W; de Vries, Wouter; Canestrelli, Daniele; Martínez-Solano, Iñigo

    2017-10-01

    Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid zones. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid zone temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the Alps. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long-distance dispersal and spatial shifts in hybrid zone location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present-day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the Alps, driving B. spinosus southwards. A pendulum moving hybrid zone, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact zones. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information

    PubMed Central

    2013-01-01

    Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484

  18. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus

    PubMed Central

    Yakhnina, Anastasiya A.; Gitai, Zemer

    2014-01-01

    Summary In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA over-expression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. PMID:22804814

  19. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.

    PubMed

    Yakhnina, Anastasiya A; Gitai, Zemer

    2012-09-01

    In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. © 2012 Blackwell Publishing Ltd.

  20. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  1. Geographical genetics of Pseudoplatystoma punctifer (Castelnau, 1855) (Siluriformes, Pimelodidae) in the Amazon Basin.

    PubMed

    Telles, M P C; Collevatti, R G; Braga, R S; Guedes, L B S; Castro, T G; Costa, M C; Silva-Júnior, N J; Barthem, R B; Diniz-Filho, J A F

    2014-05-09

    Geographical genetics allows the evaluation of evolutionary processes underlying genetic variation within and among local populations and forms the basis for establishing more effective strategies for biodiversity conservation at the population level. In this study, we used explicit spatial analyses to investigate molecular genetic variation (estimated using 7 microsatellite markers) of Pseudoplatystoma punctifer, by using samples obtained from 15 localities along the Madeira River and Solimões, Amazon Basin. A high genetic diversity was observed associated with a relatively low FST (0.057; P < 0.001), but pairwise FST values ranged from zero up to 0.21 when some pairs of populations were compared. These FST values have a relatively low correlation with geographic distances (r = 0.343; P = 0.074 by Mantel test), but a Mantel correlogram revealed that close populations (up to 80 km) tended to be more similar than expected by chance (r = 0.360; P = 0.015). The correlogram also showed a exponential-like decrease of genetic similarity with distance, with a patch-size of around 200 km, compatible with isolation-by-distance and analogous processes related to local constraints of dispersal and spatially structured levels of gene flow. The pattern revealed herein has important implications for establishing strategies to maintain genetic diversity in the species, especially considering the threats due to human impacts caused by building large dams in this river system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yitan; Xu, Yanxun; Helseth, Donald L.

    Background: Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. Methods: We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood modelmore » derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes “Prior interaction map + TCGA data → Posterior interaction map.” Results: Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. Conclusions: Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.« less

  3. MOSAIC: a chemical-genetic interaction data repository and web resource for exploring chemical modes of action.

    PubMed

    Nelson, Justin; Simpkins, Scott W; Safizadeh, Hamid; Li, Sheena C; Piotrowski, Jeff S; Hirano, Hiroyuki; Yashiroda, Yoko; Osada, Hiroyuki; Yoshida, Minoru; Boone, Charles; Myers, Chad L

    2018-04-01

    Chemical-genomic approaches that map interactions between small molecules and genetic perturbations offer a promising strategy for functional annotation of uncharacterized bioactive compounds. We recently developed a new high-throughput platform for mapping chemical-genetic (CG) interactions in yeast that can be scaled to screen large compound collections, and we applied this system to generate CG interaction profiles for more than 13 000 compounds. When integrated with the existing global yeast genetic interaction network, CG interaction profiles can enable mode-of-action prediction for previously uncharacterized compounds as well as discover unexpected secondary effects for known drugs. To facilitate future analysis of these valuable data, we developed a public database and web interface named MOSAIC. The website provides a convenient interface for querying compounds, bioprocesses (Gene Ontology terms) and genes for CG information including direct CG interactions, bioprocesses and gene-level target predictions. MOSAIC also provides access to chemical structure information of screened molecules, chemical-genomic profiles and the ability to search for compounds sharing structural and functional similarity. This resource will be of interest to chemical biologists for discovering new small molecule probes with specific modes-of-action as well as computational biologists interested in analysing CG interaction networks. MOSAIC is available at http://mosaic.cs.umn.edu. hisyo@riken.jp, yoshidam@riken.jp, charlie.boone@utoronto.ca or chadm@umn.edu. Supplementary data are available at Bioinformatics online.

  4. Genetic characterization of local Criollo pig breeds from the Americas using microsatellite markers.

    PubMed

    Revidatti, M A; Delgado Bermejo, J V; Gama, L T; Landi Periati, V; Ginja, C; Alvarez, L A; Vega-Pla, J L; Martínez, A M

    2014-11-01

    Little is known about local Criollo pig genetic resources and relationships among the various populations. In this paper, genetic diversity and relationships among 17 Criollo pig populations from 11 American countries were assessed with 24 microsatellite markers. Heterozygosities, F-statistics, and genetic distances were estimated, and multivariate, genetic structure and admixture analyses were performed. The overall means for genetic variability parameters based on the 24 microsatellite markers were the following: mean number of alleles per locus of 6.25 ± 2.3; effective number of alleles per locus of 3.33 ± 1.56; allelic richness per locus of 4.61 ± 1.37; expected and observed heterozygosity of 0.62 ± 0.04 and 0.57 ± 0.02, respectively; within-population inbreeding coefficient of 0.089; and proportion of genetic variability accounted for by differences among breeds of 0.11 ± 0.01. Genetic differences were not significantly associated with the geographical location to which breeds were assigned or their country of origin. Still, the NeighborNet dendrogram depicted the clustering by geographic origin of several South American breeds (Criollo Boliviano, Criollo of northeastern Argentina wet, and Criollo of northeastern Argentina dry), but some unexpected results were also observed, such as the grouping of breeds from countries as distant as El Salvador, Mexico, Ecuador, and Cuba. The results of genetic structure and admixture analyses indicated that the most likely number of ancestral populations was 11, and most breeds clustered separately when this was the number of predefined populations, with the exception of some closely related breeds that shared the same cluster and others that were admixed. These results indicate that Criollo pigs represent important reservoirs of pig genetic diversity useful for local development as well as for the pig industry.

  5. Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.

    PubMed

    Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

    2011-01-01

    The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.

  6. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    PubMed Central

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge. PMID:26462579

  7. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes.

    PubMed

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-11-11

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome.Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs.Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  9. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    PubMed

    Scriber, Jon Mark

    2013-12-24

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.

  10. Targeting the complex interactions between microbiota, host epithelial and immune cells in inflammatory bowel disease.

    PubMed

    Hirata, Yoshihiro; Ihara, Sozaburo; Koike, Kazuhiko

    2016-11-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that includes two distinct disease categories: ulcerative colitis and Crohn's disease. Epidemiological, genetic, and experimental studies have revealed many important aspects of IBD. Genetic susceptibility, inappropriate immune responses, environmental changes, and intestinal microbiota are all associated with the development of IBD. However, the exact mechanisms of the disease and the interactions among these pathogenic factors are largely unknown. Here we introduce recent findings from experimental colitis models that investigated the interactions between host genetic susceptibility and gut microbiota. In addition, we discuss new strategies for the treatment of IBD, focusing on the complex interactions between microbiota and host epithelial and immune cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Interactions within the MHC contribute to the genetic architecture of celiac disease.

    PubMed

    Goudey, Benjamin; Abraham, Gad; Kikianty, Eder; Wang, Qiao; Rawlinson, Dave; Shi, Fan; Haviv, Izhak; Stern, Linda; Kowalczyk, Adam; Inouye, Michael

    2017-01-01

    Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets.

  12. Generation of enteroendocrine cell diversity in midgut stem cell lineages

    PubMed Central

    Beehler-Evans, Ryan; Micchelli, Craig A.

    2015-01-01

    The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792

  13. Experimental evolution: Assortative mating and sexual selection, independent of local adaptation, lead to reproductive isolation in the nematode Caenorhabditis remanei.

    PubMed

    Castillo, Dean M; Burger, Melissa K; Lively, Curtis M; Delph, Lynda F

    2015-12-01

    Using experimental evolution, we investigated the contributions of ecological divergence, sexual selection, and genetic drift to the evolution of reproductive isolation in Caenorhabditis remanei. The nematodes were reared on two different environments for 100 generations. They were assayed for fitness on both environments after 30, 64, and 100 generations, and hybrid fitness were analyzed after 64 and 100 generations. Mating propensity within and between populations was also analyzed. The design allowed us to determine whether local adaptation was synchronous with pre- and postzygotic reproductive isolation. Prezygotic isolation evolved quickly but was unconnected with adaptation to the divergent environments. Instead, prezygotic isolation was driven by mate preferences favoring individuals from the same replicate population. A bottleneck treatment, meant to enhance the opportunity for genetic drift, had no effect on prezygotic isolation. Postzygotic isolation occurred in crosses where at least one population had a large fitness advantage in its "home" environment. Taken together, our results suggest that prezygotic isolation did not depend on drift or adaptation to divergent environments, but instead resulted from differences in sexual interactions within individual replicates. Furthermore, our results suggest that postzygotic isolation can occur between populations even when only one population has greater fitness in its home environment. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. Automated global structure extraction for effective local building block processing in XCS.

    PubMed

    Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E

    2006-01-01

    Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.

  15. Are Interactions between cis-Regulatory Variants Evidence for Biological Epistasis or Statistical Artifacts?

    PubMed

    Fish, Alexandra E; Capra, John A; Bush, William S

    2016-10-06

    The importance of epistasis-or statistical interactions between genetic variants-to the development of complex disease in humans has been controversial. Genome-wide association studies of statistical interactions influencing human traits have recently become computationally feasible and have identified many putative interactions. However, statistical models used to detect interactions can be confounded, which makes it difficult to be certain that observed statistical interactions are evidence for true molecular epistasis. In this study, we investigate whether there is evidence for epistatic interactions between genetic variants within the cis-regulatory region that influence gene expression after accounting for technical, statistical, and biological confounding factors. We identified 1,119 (FDR = 5%) interactions that appear to regulate gene expression in human lymphoblastoid cell lines, a tightly controlled, largely genetically determined phenotype. Many of these interactions replicated in an independent dataset (90 of 803 tested, Bonferroni threshold). We then performed an exhaustive analysis of both known and novel confounders, including ceiling/floor effects, missing genotype combinations, haplotype effects, single variants tagged through linkage disequilibrium, and population stratification. Every interaction could be explained by at least one of these confounders, and replication in independent datasets did not protect against some confounders. Assuming that the confounding factors provide a more parsimonious explanation for each interaction, we find it unlikely that cis-regulatory interactions contribute strongly to human gene expression, which calls into question the relevance of cis-regulatory interactions for other human phenotypes. We additionally propose several best practices for epistasis testing to protect future studies from confounding. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing.

    PubMed

    Basquin, Denis; Spierer, Anne; Begeot, Flora; Koryakov, Dmitry E; Todeschini, Anne-Laure; Ronsseray, Stéphane; Vieira, Cristina; Spierer, Pierre; Delattre, Marion

    2014-01-01

    Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.

  17. Double Dissociation of the Roles of Metabotropic Glutamate Receptor 5 and Oxytocin Receptor in Discrete Social Behaviors.

    PubMed

    Mesic, Ivana; Guzman, Yomayra F; Guedea, Anita L; Jovasevic, Vladimir; Corcoran, Kevin A; Leaderbrand, Katherine; Nishimori, Katsuhiko; Contractor, Anis; Radulovic, Jelena

    2015-09-01

    Social interactions in vertebrates are complex phenomena based on affective and cognitive processes. Multiple brain regions and neurotransmitter systems are involved in the expression of social behaviors, but their individual roles in specific aspects of social interactions are not well understood. Here we investigated how Gq-protein-coupled metabotropic glutamate receptor 5 (mGluR5) and oxytocin receptor (Oxtr) affect social affiliation and social memory. We used conditional genetic approaches in which the genes coding for these receptors were knocked out in the lateral septum by infusion of recombinant adeno-associated viral vectors containing Cre recombinase (AAV-Cre). Social behavior was assessed 2 weeks later using a three-chamber paradigm for sociability and preference for social novelty. Septal deletion of mGluR5 abolished sociability while leaving preference for social novelty intact. In contrast, deletion of Oxtr did not affect sociability but significantly impaired preference for social novelty. Nonsocial behaviors or memories, including novel object recognition or fear conditioning, were not affected by these genetic manipulations. Immunohistochemical analyses of the distribution of mGluR5 and Oxtr revealed non-overlapping localization of these receptors within the lateral septum, suggesting that not only different neurotransmitters but also different neuronal types contribute to sociability versus preference for social novelty. Our findings identify highly specialized roles of lateral septal mGluR5 and Oxtr in the the regulation of discrete social behaviors, and suggest that deficits in social interactions, which accompany many mental illnesses, would benefit from comprehensive treatments targeting different components of social functioning.

  18. Novel loci interacting epistatically with Bone Morphogenetic Protein Receptor 2 cause familial pulmonary arterial hypertension

    PubMed Central

    Rodriguez-Murillo, Laura; Subaran, Ryan; Stewart, William C. L.; Pramanik, Sreemanta; Marathe, Sudhir; Barst, Robyn J.; Chung, Wendy K.; Greenberg, David A.

    2009-01-01

    Background Familial pulmonary arterial hypertension (FPAH) is a rare, autosomal-dominant inherited disease with low penetrance. Mutations in the Bone Morphogenetic Protein Receptor 2 (BMPR2) have been identified in at least 70% of FPAH patients. However, the lifetime penetrance of these BMPR2 mutations is 10-20%, suggesting that genetic and/or environmental modifiers are required for disease expression. Our goal in this study is to identify genetic loci that may influence FPAH expression in BMPR2-mutation-carriers. Methods We performed a genome-wide linkage scan in 15 FPAH families segregating for BMPR2 mutations. We used a dense SNP array and a novel multi-scan linkage procedure that provides increased power and precision for the localization of linked loci. Results We observed linkage evidence in four regions: 3q22 (median LOD=3.43), 3p12 (median LOD = 2.35), 2p22 (median LOD = 2.21), and 13q21 (median LOD = 2.09). When used in conjunction with the nonparametric bootstrap, our approach yields high-resolution to identify candidate gene regions containing putative BMPR2-interacting genes. Imputation of the disease model by LOD score maximization indicates that the 3q22 locus alone predicts most FPAH cases in BMPR2-mutation carriers, providing strong evidence that BMPR2 and the 3q22 locus interact epistatically. Conclusions Our findings suggest that genotypes at loci in the newly-identified regions, especially at 3q22, could improve FPAH risk prediction in FPAH families and suggest other targets for therapeutic intervention. PMID:19864167

  19. Novel loci interacting epistatically with bone morphogenetic protein receptor 2 cause familial pulmonary arterial hypertension.

    PubMed

    Rodriguez-Murillo, Laura; Subaran, Ryan; Stewart, William C L; Pramanik, Sreemanta; Marathe, Sudhir; Barst, Robyn J; Chung, Wendy K; Greenberg, David A

    2010-02-01

    Familial pulmonary arterial hypertension (FPAH) is a rare, autosomal-dominant, inherited disease with low penetrance. Mutations in the bone morphogenetic protein receptor 2 (BMPR2) have been identified in at least 70% of FPAH patients. However, the lifetime penetrance of these BMPR2 mutations is 10% to 20%, suggesting that genetic and/or environmental modifiers are required for disease expression. Our goal in this study was to identify genetic loci that may influence FPAH expression in BMPR2 mutation carriers. We performed a genome-wide linkage scan in 15 FPAH families segregating for BMPR2 mutations. We used a dense single-nucleotide polymorphism (SNP) array and a novel multi-scan linkage procedure that provides increased power and precision for the localization of linked loci. We observed linkage evidence in four regions: 3q22 ([median log of the odds (LOD) = 3.43]), 3p12 (median LOD) = 2.35), 2p22 (median LOD = 2.21), and 13q21 (median LOD = 2.09). When used in conjunction with the non-parametric bootstrap, our approach yields high-resolution to identify candidate gene regions containing putative BMPR2-interacting genes. Imputation of the disease model by LOD-score maximization indicates that the 3q22 locus alone predicts most FPAH cases in BMPR2 mutation carriers, providing strong evidence that BMPR2 and the 3q22 locus interact epistatically. Our findings suggest that genotypes at loci in the newly identified regions, especially at 3q22, could improve FPAH risk prediction in FPAH families. We also suggest other targets for therapeutic intervention.

  20. Double Dissociation of the Roles of Metabotropic Glutamate Receptor 5 and Oxytocin Receptor in Discrete Social Behaviors

    PubMed Central

    Mesic, Ivana; Guzman, Yomayra F; Guedea, Anita L; Jovasevic, Vladimir; Corcoran, Kevin A; Leaderbrand, Katherine; Nishimori, Katsuhiko; Contractor, Anis; Radulovic, Jelena

    2015-01-01

    Social interactions in vertebrates are complex phenomena based on affective and cognitive processes. Multiple brain regions and neurotransmitter systems are involved in the expression of social behaviors, but their individual roles in specific aspects of social interactions are not well understood. Here we investigated how Gq-protein-coupled metabotropic glutamate receptor 5 (mGluR5) and oxytocin receptor (Oxtr) affect social affiliation and social memory. We used conditional genetic approaches in which the genes coding for these receptors were knocked out in the lateral septum by infusion of recombinant adeno-associated viral vectors containing Cre recombinase (AAV-Cre). Social behavior was assessed 2 weeks later using a three-chamber paradigm for sociability and preference for social novelty. Septal deletion of mGluR5 abolished sociability while leaving preference for social novelty intact. In contrast, deletion of Oxtr did not affect sociability but significantly impaired preference for social novelty. Nonsocial behaviors or memories, including novel object recognition or fear conditioning, were not affected by these genetic manipulations. Immunohistochemical analyses of the distribution of mGluR5 and Oxtr revealed non-overlapping localization of these receptors within the lateral septum, suggesting that not only different neurotransmitters but also different neuronal types contribute to sociability versus preference for social novelty. Our findings identify highly specialized roles of lateral septal mGluR5 and Oxtr in the the regulation of discrete social behaviors, and suggest that deficits in social interactions, which accompany many mental illnesses, would benefit from comprehensive treatments targeting different components of social functioning. PMID:25824423

Top