Sample records for localization method based

  1. RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint

    PubMed Central

    Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun

    2016-01-01

    The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882

  2. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  3. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  4. Local-in-Time Adjoint-Based Method for Optimal Control/Design Optimization of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2009-01-01

    .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.

  5. Local coding based matching kernel method for image classification.

    PubMed

    Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong

    2014-01-01

    This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.

  6. Similarity indices based on link weight assignment for link prediction of unweighted complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi

    2017-01-01

    Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.

  7. Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods

    PubMed Central

    Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.

    2013-01-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822

  8. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    PubMed

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  9. Formulation analysis and computation of an optimization-based local-to-nonlocal coupling method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Elia, Marta; Bochev, Pavel Blagoveston

    2017-01-01

    In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.

  10. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    PubMed Central

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-01-01

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field. PMID:26861348

  11. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    PubMed Central

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048

  12. Anchor-free localization method for mobile targets in coal mine wireless sensor networks.

    PubMed

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  13. Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey

    NASA Astrophysics Data System (ADS)

    Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.

    2017-02-01

    Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.

  14. An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.

    PubMed

    Singh, Parth Raj; Wang, Yide; Chargé, Pascal

    2017-03-30

    In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.

  15. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  16. A Modified Magnetic Gradient Contraction Based Method for Ferromagnetic Target Localization

    PubMed Central

    Wang, Chen; Zhang, Xiaojuan; Qu, Xiaodong; Pan, Xiao; Fang, Guangyou; Chen, Luzhao

    2016-01-01

    The Scalar Triangulation and Ranging (STAR) method, which is based upon the unique properties of magnetic gradient contraction, is a high real-time ferromagnetic target localization method. Only one measurement point is required in the STAR method and it is not sensitive to changes in sensing platform orientation. However, the localization accuracy of the method is limited by the asphericity errors and the inaccurate value of position leads to larger errors in the estimation of magnetic moment. To improve the localization accuracy, a modified STAR method is proposed. In the proposed method, the asphericity errors of the traditional STAR method are compensated with an iterative algorithm. The proposed method has a fast convergence rate which meets the requirement of high real-time localization. Simulations and field experiments have been done to evaluate the performance of the proposed method. The results indicate that target parameters estimated by the modified STAR method are more accurate than the traditional STAR method. PMID:27999322

  17. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles

    PubMed Central

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-01-01

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145

  18. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.

    PubMed

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-12-25

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.

  19. Local multifractal detrended fluctuation analysis for non-stationary image's texture segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Zong-shou; Li, Jin-wei

    2014-12-01

    Feature extraction plays a great important role in image processing and pattern recognition. As a power tool, multifractal theory is recently employed for this job. However, traditional multifractal methods are proposed to analyze the objects with stationary measure and cannot for non-stationary measure. The works of this paper is twofold. First, the definition of stationary image and 2D image feature detection methods are proposed. Second, a novel feature extraction scheme for non-stationary image is proposed by local multifractal detrended fluctuation analysis (Local MF-DFA), which is based on 2D MF-DFA. A set of new multifractal descriptors, called local generalized Hurst exponent (Lhq) is defined to characterize the local scaling properties of textures. To test the proposed method, both the novel texture descriptor and other two multifractal indicators, namely, local Hölder coefficients based on capacity measure and multifractal dimension Dq based on multifractal differential box-counting (MDBC) method, are compared in segmentation experiments. The first experiment indicates that the segmentation results obtained by the proposed Lhq are better than the MDBC-based Dq slightly and superior to the local Hölder coefficients significantly. The results in the second experiment demonstrate that the Lhq can distinguish the texture images more effectively and provide more robust segmentations than the MDBC-based Dq significantly.

  20. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng

    2015-10-01

    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  1. Method of preliminary localization of the iris in biometric access control systems

    NASA Astrophysics Data System (ADS)

    Minacova, N.; Petrov, I.

    2015-10-01

    This paper presents a method of preliminary localization of the iris, based on the stable brightness features of the iris in images of the eye. In tests on images of eyes from publicly available databases method showed good accuracy and speed compared to existing methods preliminary localization.

  2. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  3. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  4. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.

  5. Iterative Nonlocal Total Variation Regularization Method for Image Restoration

    PubMed Central

    Xu, Huanyu; Sun, Quansen; Luo, Nan; Cao, Guo; Xia, Deshen

    2013-01-01

    In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods. PMID:23776560

  6. Analysis on accuracy improvement of rotor-stator rubbing localization based on acoustic emission beamforming method.

    PubMed

    He, Tian; Xiao, Denghong; Pan, Qiang; Liu, Xiandong; Shan, Yingchun

    2014-01-01

    This paper attempts to introduce an improved acoustic emission (AE) beamforming method to localize rotor-stator rubbing fault in rotating machinery. To investigate the propagation characteristics of acoustic emission signals in casing shell plate of rotating machinery, the plate wave theory is used in a thin plate. A simulation is conducted and its result shows the localization accuracy of beamforming depends on multi-mode, dispersion, velocity and array dimension. In order to reduce the effect of propagation characteristics on the source localization, an AE signal pre-process method is introduced by combining plate wave theory and wavelet packet transform. And the revised localization velocity to reduce effect of array size is presented. The accuracy of rubbing localization based on beamforming and the improved method of present paper are compared by the rubbing test carried on a test table of rotating machinery. The results indicate that the improved method can localize rub fault effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Collaborative localization in wireless sensor networks via pattern recognition in radio irregularity using omnidirectional antennas.

    PubMed

    Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun

    2010-01-01

    In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.

  8. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.

    PubMed

    Tuta, Jure; Juric, Matjaz B

    2018-03-24

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  9. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method

    PubMed Central

    Juric, Matjaz B.

    2018-01-01

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage. PMID:29587352

  10. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  11. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort.

    PubMed

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai

    2017-01-13

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

  12. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort †

    PubMed Central

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai

    2017-01-01

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773

  13. The detection of local irreversibility in time series based on segmentation

    NASA Astrophysics Data System (ADS)

    Teng, Yue; Shang, Pengjian

    2018-06-01

    We propose a strategy for the detection of local irreversibility in stationary time series based on multiple scale. The detection is beneficial to evaluate the displacement of irreversibility toward local skewness. By means of this method, we can availably discuss the local irreversible fluctuations of time series as the scale changes. The method was applied to simulated nonlinear signals generated by the ARFIMA process and logistic map to show how the irreversibility functions react to the increasing of the multiple scale. The method was applied also to series of financial markets i.e., American, Chinese and European markets. The local irreversibility for different markets demonstrate distinct characteristics. Simulations and real data support the need of exploring local irreversibility.

  14. Brain tumor segmentation based on local independent projection-based classification.

    PubMed

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin

    2014-10-01

    Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.

  15. Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity

    PubMed Central

    Lee, Hui Sun; Im, Wonpil

    2013-01-01

    Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286

  16. Structural-change localization and monitoring through a perturbation-based inverse problem.

    PubMed

    Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa

    2014-11-01

    Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.

  17. Discriminant locality preserving projections based on L1-norm maximization.

    PubMed

    Zhong, Fujin; Zhang, Jiashu; Li, Defang

    2014-11-01

    Conventional discriminant locality preserving projection (DLPP) is a dimensionality reduction technique based on manifold learning, which has demonstrated good performance in pattern recognition. However, because its objective function is based on the distance criterion using L2-norm, conventional DLPP is not robust to outliers which are present in many applications. This paper proposes an effective and robust DLPP version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based locality preserving between-class dispersion and the L1-norm-based locality preserving within-class dispersion. The proposed method is proven to be feasible and also robust to outliers while overcoming the small sample size problem. The experimental results on artificial datasets, Binary Alphadigits dataset, FERET face dataset and PolyU palmprint dataset have demonstrated the effectiveness of the proposed method.

  18. Complex background suppression using global-local registration strategy for the detection of small-moving target on moving platform

    NASA Astrophysics Data System (ADS)

    Zou, Tianhao; Zuo, Zhengrong

    2018-02-01

    Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.

  19. Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes

    NASA Astrophysics Data System (ADS)

    Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping

    2017-01-01

    Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.

  20. Wlan-Based Indoor Localization Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Saleem, Fasiha; Wyne, Shurjeel

    2016-07-01

    Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

  1. Adjustment of interaural time difference in head related transfer functions based on listeners' anthropometry and its effect on sound localization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi

    2005-04-01

    Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.

  2. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  3. Image dehazing based on non-local saturation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting

    2018-04-01

    In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.

  4. Omni-Directional Scanning Localization Method of a Mobile Robot Based on Ultrasonic Sensors.

    PubMed

    Mu, Wei-Yi; Zhang, Guang-Peng; Huang, Yu-Mei; Yang, Xin-Gang; Liu, Hong-Yan; Yan, Wen

    2016-12-20

    Improved ranging accuracy is obtained by the development of a novel ultrasonic sensor ranging algorithm, unlike the conventional ranging algorithm, which considers the divergence angle and the incidence angle of the ultrasonic sensor synchronously. An ultrasonic sensor scanning method is developed based on this algorithm for the recognition of an inclined plate and to obtain the localization of the ultrasonic sensor relative to the inclined plate reference frame. The ultrasonic sensor scanning method is then leveraged for the omni-directional localization of a mobile robot, where the ultrasonic sensors are installed on a mobile robot and follow the spin of the robot, the inclined plate is recognized and the position and posture of the robot are acquired with respect to the coordinate system of the inclined plate, realizing the localization of the robot. Finally, the localization method is implemented into an omni-directional scanning localization experiment with the independently researched and developed mobile robot. Localization accuracies of up to ±3.33 mm for the front, up to ±6.21 for the lateral and up to ±0.20° for the posture are obtained, verifying the correctness and effectiveness of the proposed localization method.

  5. Effects and repercussions of local/hospital-based health technology assessment (HTA): a systematic review

    PubMed Central

    2014-01-01

    Background Health technology assessment (HTA) is increasingly performed at the local or hospital level where the costs, impacts, and benefits of health technologies can be directly assessed. Although local/hospital-based HTA has been implemented for more than two decades in some jurisdictions, little is known about its effects and impact on hospital budget, clinical practices, and patient outcomes. We conducted a mixed-methods systematic review that aimed to synthesize current evidence regarding the effects and impact of local/hospital-based HTA. Methods We identified articles through PubMed and Embase and by citation tracking of included studies. We selected qualitative, quantitative, or mixed-methods studies with empirical data about the effects or impact of local/hospital-based HTA on decision-making, budget, or perceptions of stakeholders. We extracted the following information from included studies: country, methodological approach, and use of conceptual framework; local/hospital HTA approach and activities described; reported effects and impacts of local/hospital-based HTA; factors facilitating/hampering the use of hospital-based HTA recommendations; and perceptions of stakeholders concerning local/hospital HTA. Due to the great heterogeneity among studies, we conducted a narrative synthesis of their results. Results A total of 18 studies met the inclusion criteria. We reported the results according to the four approaches for performing HTA proposed by the Hospital Based HTA Interest Sub-Group: ambassador model, mini-HTA, internal committee, and HTA unit. Results showed that each of these approaches for performing HTA corresponds to specific needs and structures and has its strengths and limitations. Overall, studies showed positive impacts related to local/hospital-based HTA on hospital decisions and budgets, as well as positive perceptions from managers and clinicians. Conclusions Local/hospital-based HTA could influence decision-making on several aspects. It is difficult to evaluate the real impacts of local HTA at the different levels of health care given the relatively small number of evaluations with quantitative data and the lack of clear comparators. Further research is necessary to explore the conditions under which local/hospital-based HTA results and recommendations can impact hospital policies, clinical decisions, and quality of care and optimize the use of scarce resources. PMID:25352182

  6. Determining localized garment insulation values from manikin studies: computational method and results.

    PubMed

    Nelson, D A; Curlee, J S; Curran, A R; Ziriax, J M; Mason, P A

    2005-12-01

    The localized thermal insulation value expresses a garment's thermal resistance over the region which is covered by the garment, rather than over the entire surface of a subject or manikin. The determination of localized garment insulation values is critical to the development of high-resolution models of sensible heat exchange. A method is presented for determining and validating localized garment insulation values, based on whole-body insulation values (clo units) and using computer-aided design and thermal analysis software. Localized insulation values are presented for a catalog consisting of 106 garments and verified using computer-generated models. The values presented are suitable for use on volume element-based or surface element-based models of heat transfer involving clothed subjects.

  7. Locating Structural Centers: A Density-Based Clustering Method for Community Detection

    PubMed Central

    Liu, Gongshen; Li, Jianhua; Nees, Jan P.

    2017-01-01

    Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030

  8. Novel joint TOA/RSSI-based WCE location tracking method without prior knowledge of biological human body tissues.

    PubMed

    Ito, Takahiro; Anzai, Daisuke; Jianqing Wang

    2014-01-01

    This paper proposes a novel joint time of arrival (TOA)/received signal strength indicator (RSSI)-based wireless capsule endoscope (WCE) location tracking method without prior knowledge of biological human tissues. Generally, TOA-based localization can achieve much higher localization accuracy than other radio frequency-based localization techniques, whereas wireless signals transmitted from a WCE pass through various kinds of human body tissues, as a result, the propagation velocity inside a human body should be different from one in free space. Because the variation of propagation velocity is mainly affected by the relative permittivity of human body tissues, instead of pre-measurement for the relative permittivity in advance, we simultaneously estimate not only the WCE location but also the relative permittivity information. For this purpose, this paper first derives the relative permittivity estimation model with measured RSSI information. Then, we pay attention to a particle filter algorithm with the TOA-based localization and the RSSI-based relative permittivity estimation. Our computer simulation results demonstrates that the proposed tracking methods with the particle filter can accomplish an excellent localization accuracy of around 2 mm without prior information of the relative permittivity of the human body tissues.

  9. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  10. Multi-objective community detection based on memetic algorithm.

    PubMed

    Wu, Peng; Pan, Li

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.

  11. A Novel Local Learning based Approach With Application to Breast Cancer Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Tourassi, Georgia

    2012-01-01

    The purpose of this study is to develop and evaluate a novel local learning-based approach for computer-assisted diagnosis of breast cancer. Our new local learning based algorithm using the linear logistic regression method as its base learner is described. Overall, our algorithm will perform its stochastic searching process until the total allowed computing time is used up by our random walk process in identifying the most suitable population subdivision scheme and their corresponding individual base learners. The proposed local learning-based approach was applied for the prediction of breast cancer given 11 mammographic and clinical findings reported by physicians using themore » BI-RADS lexicon. Our database consisted of 850 patients with biopsy confirmed diagnosis (290 malignant and 560 benign). We also compared the performance of our method with a collection of publicly available state-of-the-art machine learning methods. Predictive performance for all classifiers was evaluated using 10-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Figure 1 reports the performance of 54 machine learning methods implemented in the machine learning toolkit Weka (version 3.0). We introduced a novel local learning-based classifier and compared it with an extensive list of other classifiers for the problem of breast cancer diagnosis. Our experiments show that the algorithm superior prediction performance outperforming a wide range of other well established machine learning techniques. Our conclusion complements the existing understanding in the machine learning field that local learning may capture complicated, non-linear relationships exhibited by real-world datasets.« less

  12. Guided SAR image despeckling with probabilistic non local weights

    NASA Astrophysics Data System (ADS)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  13. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique

    PubMed Central

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J.

    2017-01-01

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system’s configuration and LS’s relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS’ localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision. PMID:28125056

  14. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique.

    PubMed

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J

    2017-01-25

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system's configuration and LS's relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS' localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision.

  15. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  16. [Local Regression Algorithm Based on Net Analyte Signal and Its Application in Near Infrared Spectral Analysis].

    PubMed

    Zhang, Hong-guang; Lu, Jian-gang

    2016-02-01

    Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.

  17. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    PubMed

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower computational complexity when compared with a super-resolution method based on convolutional neural nets (SRCNN15). Compared with the previous SI method that is limited with a scale factor of 2, GLM-SI shows superior performance with average 0.79 dB higher in PSNR, and can be used for scale factors of 3 or higher.

  18. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the fourmore » daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction.« less

  19. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.

    PubMed

    Huang, Jiyan; Zhang, Ying; Luo, Shan

    2017-12-15

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.

  20. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars

    PubMed Central

    Zhang, Ying; Luo, Shan

    2017-01-01

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727

  1. Embedded System Implementation of Sound Localization in Proximal Region

    NASA Astrophysics Data System (ADS)

    Iwanaga, Nobuyuki; Matsumura, Tomoya; Yoshida, Akihiro; Kobayashi, Wataru; Onoye, Takao

    A sound localization method in the proximal region is proposed, which is based on a low-cost 3D sound localization algorithm with the use of head-related transfer functions (HRTFs). The auditory parallax model is applied to the current algorithm so that more accurate HRTFs can be used for sound localization in the proximal region. In addition, head-shadowing effects based on rigid-sphere model are reproduced in the proximal region by means of a second-order IIR filter. A subjective listening test demonstrates the effectiveness of the proposed method. Embedded system implementation of the proposed method is also described claiming that the proposed method improves sound effects in the proximal region only with 5.1% increase of memory capacity and 8.3% of computational costs.

  2. Search-free license plate localization based on saliency and local variance estimation

    NASA Astrophysics Data System (ADS)

    Safaei, Amin; Tang, H. L.; Sanei, S.

    2015-02-01

    In recent years, the performance and accuracy of automatic license plate number recognition (ALPR) systems have greatly improved, however the increasing number of applications for such systems have made ALPR research more challenging than ever. The inherent computational complexity of search dependent algorithms remains a major problem for current ALPR systems. This paper proposes a novel search-free method of localization based on the estimation of saliency and local variance. Gabor functions are then used to validate the choice of candidate license plate. The algorithm was applied to three image datasets with different levels of complexity and the results compared with a number of benchmark methods, particularly in terms of speed. The proposed method outperforms the state of the art methods and can be used for real time applications.

  3. Protein subcellular localization prediction using artificial intelligence technology.

    PubMed

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.

  4. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  5. Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

    PubMed

    Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling

    2016-05-01

    Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  7. Collaborative voxel-based surgical virtual environments.

    PubMed

    Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan

    2008-01-01

    Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.

  8. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals

    PubMed Central

    Duecker, Daniel-André; Geist, A. René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-01-01

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles (μAUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μAUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μAUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system. PMID:28445419

  9. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals.

    PubMed

    Duecker, Daniel-André; Geist, A René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-04-26

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( μ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.

  10. Kernelized Locality-Sensitive Hashing for Fast Image Landmark Association

    DTIC Science & Technology

    2011-03-24

    based Simultaneous Localization and Mapping ( SLAM ). The problem, however, is that vision-based navigation techniques can re- quire excessive amounts of...up and optimizing the data association process in vision-based SLAM . Specifically, this work studies the current methods that algorithms use to...required for location identification than that of other methods. This work can then be extended into a vision- SLAM implementation to subsequently

  11. Robust active contour via additive local and global intensity information based on local entropy

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Monkam, Patrice; Zhang, Feng; Luan, Fangjun; Koomson, Ben Alfred

    2018-01-01

    Active contour-based image segmentation can be a very challenging task due to many factors such as high intensity inhomogeneity, presence of noise, complex shape, weak boundaries objects, and dependence on the position of the initial contour. We propose a level set-based active contour method to segment complex shape objects from images corrupted by noise and high intensity inhomogeneity. The energy function of the proposed method results from combining the global intensity information and local intensity information with some regularization factors. First, the global intensity term is proposed based on a scheme formulation that considers two intensity values for each region instead of one, which outperforms the well-known Chan-Vese model in delineating the image information. Second, the local intensity term is formulated based on local entropy computed considering the distribution of the image brightness and using the generalized Gaussian distribution as the kernel function. Therefore, it can accurately handle high intensity inhomogeneity and noise. Moreover, our model is not dependent on the position occupied by the initial curve. Finally, extensive experiments using various images have been carried out to illustrate the performance of the proposed method.

  12. Extensibility in local sensor based planning for hyper-redundant manipulators (robot snakes)

    NASA Technical Reports Server (NTRS)

    Choset, Howie; Burdick, Joel

    1994-01-01

    Partial Shape Modification (PSM) is a local sensor feedback method used for hyper-redundant robot manipulators, in which the redundancy is very large or infinite such as that of a robot snake. This aspect of redundancy enables local obstacle avoidance and end-effector placement in real time. Due to the large number of joints or actuators in a hyper-redundant manipulator, small displacement errors of such easily accumulate to large errors in the position of the tip relative to the base. The accuracy could be improved by a local sensor based planning method in which sensors are distributed along the length of the hyper-redundant robot. This paper extends the local sensor based planning strategy beyond the limitations of the fixed length of such a manipulator when its joint limits are met. This is achieved with an algorithm where the length of the deforming part of the robot is variable. Thus , the robot's local avoidance of obstacles is improved through the enhancement of its extensibility.

  13. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle †

    PubMed Central

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-01

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy. PMID:29320434

  14. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.

    PubMed

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-10

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

  15. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  16. Missing value imputation in DNA microarrays based on conjugate gradient method.

    PubMed

    Dorri, Fatemeh; Azmi, Paeiz; Dorri, Faezeh

    2012-02-01

    Analysis of gene expression profiles needs a complete matrix of gene array values; consequently, imputation methods have been suggested. In this paper, an algorithm that is based on conjugate gradient (CG) method is proposed to estimate missing values. k-nearest neighbors of the missed entry are first selected based on absolute values of their Pearson correlation coefficient. Then a subset of genes among the k-nearest neighbors is labeled as the best similar ones. CG algorithm with this subset as its input is then used to estimate the missing values. Our proposed CG based algorithm (CGimpute) is evaluated on different data sets. The results are compared with sequential local least squares (SLLSimpute), Bayesian principle component analysis (BPCAimpute), local least squares imputation (LLSimpute), iterated local least squares imputation (ILLSimpute) and adaptive k-nearest neighbors imputation (KNNKimpute) methods. The average of normalized root mean squares error (NRMSE) and relative NRMSE in different data sets with various missing rates shows CGimpute outperforms other methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review.

    PubMed

    Pascual-Marqui, R D; Esslen, M; Kochi, K; Lehmann, D

    2002-01-01

    This paper reviews several recent publications that have successfully used the functional brain imaging method known as LORETA. Emphasis is placed on the electrophysiological and neuroanatomical basis of the method, on the localization properties of the method, and on the validation of the method in real experimental human data. Papers that criticize LORETA are briefly discussed. LORETA publications in the 1994-1997 period based localization inference on images of raw electric neuronal activity. In 1998, a series of papers appeared that based localization inference on the statistical parametric mapping methodology applied to high-time resolution LORETA images. Starting in 1999, quantitative neuroanatomy was added to the methodology, based on the digitized Talairach atlas provided by the Brain Imaging Centre, Montreal Neurological Institute. The combination of these methodological developments has placed LORETA at a level that compares favorably to the more classical functional imaging methods, such as PET and fMRI.

  18. Active Electro-Location of Objects in the Underwater Environment Based on the Mixed Polarization Multiple Signal Classification Algorithm

    PubMed Central

    Guo, Lili; Qi, Junwei; Xue, Wei

    2018-01-01

    This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating. PMID:29439495

  19. Spatial sparsity based indoor localization in wireless sensor network for assistive healthcare.

    PubMed

    Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark

    2012-01-01

    Indoor localization is one of the key topics in the area of wireless networks with increasing applications in assistive healthcare, where tracking the position and actions of the patient or elderly are required for medical observation or accident prevention. Most of the common indoor localization methods are based on estimating one or more location-dependent signal parameters like TOA, AOA or RSS. However, some difficulties and challenges caused by the complex scenarios within a closed space significantly limit the applicability of those existing approaches in an indoor assistive environment, such as the well-known multipath effect. In this paper, we develop a new one-stage localization method based on spatial sparsity of the x-y plane. In this method, we directly estimate the location of the emitter without going through the intermediate stage of TOA or signal strength estimation. We evaluate the performance of the proposed method using Monte Carlo simulation. The results show that the proposed method is (i) very accurate even with a small number of sensors and (ii) very effective in addressing the multi-path issues.

  20. A comparison of locally adaptive multigrid methods: LDC, FAC and FIC

    NASA Technical Reports Server (NTRS)

    Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul

    1993-01-01

    This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.

  1. A Novel Locally Linear KNN Method With Applications to Visual Recognition.

    PubMed

    Liu, Qingfeng; Liu, Chengjun

    2017-09-01

    A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.

  2. Damage localization by statistical evaluation of signal-processed mode shapes

    NASA Astrophysics Data System (ADS)

    Ulriksen, M. D.; Damkilde, L.

    2015-07-01

    Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.

  3. Combining global and local approximations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1991-01-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.

  4. Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source.

    PubMed

    Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin

    2016-01-01

    Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.

  5. A Local Agreement Pattern Measure Based on Hazard Functions for Survival Outcomes

    PubMed Central

    Dai, Tian; Guo, Ying; Peng, Limin; Manatunga, Amita K.

    2017-01-01

    Summary Assessing agreement is often of interest in biomedical and clinical research when measurements are obtained on the same subjects by different raters or methods. Most classical agreement methods have been focused on global summary statistics, which cannot be used to describe various local agreement patterns. The objective of this work is to study the local agreement pattern between two continuous measurements subject to censoring. In this paper, we propose a new agreement measure based on bivariate hazard functions to characterize the local agreement pattern between two correlated survival outcomes. The proposed measure naturally accommodates censored observations, fully captures the dependence structure between bivariate survival times and provides detailed information on how the strength of agreement evolves over time. We develop a nonparametric estimation method for the proposed local agreement pattern measure and study theoretical properties including strong consistency and asymptotical normality. We then evaluate the performance of the estimator through simulation studies and illustrate the method using a prostate cancer data example. PMID:28724196

  6. A local agreement pattern measure based on hazard functions for survival outcomes.

    PubMed

    Dai, Tian; Guo, Ying; Peng, Limin; Manatunga, Amita K

    2018-03-01

    Assessing agreement is often of interest in biomedical and clinical research when measurements are obtained on the same subjects by different raters or methods. Most classical agreement methods have been focused on global summary statistics, which cannot be used to describe various local agreement patterns. The objective of this work is to study the local agreement pattern between two continuous measurements subject to censoring. In this article, we propose a new agreement measure based on bivariate hazard functions to characterize the local agreement pattern between two correlated survival outcomes. The proposed measure naturally accommodates censored observations, fully captures the dependence structure between bivariate survival times and provides detailed information on how the strength of agreement evolves over time. We develop a nonparametric estimation method for the proposed local agreement pattern measure and study theoretical properties including strong consistency and asymptotical normality. We then evaluate the performance of the estimator through simulation studies and illustrate the method using a prostate cancer data example. © 2017, The International Biometric Society.

  7. Prediction of protein subcellular localization by weighted gene ontology terms.

    PubMed

    Chi, Sang-Mun

    2010-08-27

    We develop a new weighting approach of gene ontology (GO) terms for predicting protein subcellular localization. The weights of individual GO terms, corresponding to their contribution to the prediction algorithm, are determined by the term-weighting methods used in text categorization. We evaluate several term-weighting methods, which are based on inverse document frequency, information gain, gain ratio, odds ratio, and chi-square and its variants. Additionally, we propose a new term-weighting method based on the logarithmic transformation of chi-square. The proposed term-weighting method performs better than other term-weighting methods, and also outperforms state-of-the-art subcellular prediction methods. Our proposed method achieves 98.1%, 99.3%, 98.1%, 98.1%, and 95.9% overall accuracies for the animal BaCelLo independent dataset (IDS), fungal BaCelLo IDS, animal Höglund IDS, fungal Höglund IDS, and PLOC dataset, respectively. Furthermore, the close correlation between high-weighted GO terms and subcellular localizations suggests that our proposed method appropriately weights GO terms according to their relevance to the localizations. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Facial expression recognition under partial occlusion based on fusion of global and local features

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Xia, Chen; Hu, Min; Ren, Fuji

    2018-04-01

    Facial expression recognition under partial occlusion is a challenging research. This paper proposes a novel framework for facial expression recognition under occlusion by fusing the global and local features. In global aspect, first, information entropy are employed to locate the occluded region. Second, principal Component Analysis (PCA) method is adopted to reconstruct the occlusion region of image. After that, a replace strategy is applied to reconstruct image by replacing the occluded region with the corresponding region of the best matched image in training set, Pyramid Weber Local Descriptor (PWLD) feature is then extracted. At last, the outputs of SVM are fitted to the probabilities of the target class by using sigmoid function. For the local aspect, an overlapping block-based method is adopted to extract WLD features, and each block is weighted adaptively by information entropy, Chi-square distance and similar block summation methods are then applied to obtain the probabilities which emotion belongs to. Finally, fusion at the decision level is employed for the data fusion of the global and local features based on Dempster-Shafer theory of evidence. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the effectiveness and fault tolerance of this method.

  9. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.

    PubMed

    Carrascal, A; Manrique, D; Ríos, J; Rossi, C

    2003-01-01

    This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.

  10. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  11. Small-target leak detection for a closed vessel via infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Yang, Hongjiu

    2017-03-01

    This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.

  12. Finger vein recognition using local line binary pattern.

    PubMed

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).

  13. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.

    PubMed

    Napoletano, Paolo; Piccoli, Flavio; Schettini, Raimondo

    2018-01-12

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  14. A Synthetic Comparator Approach to Local Evaluation of School-Based Substance Use Prevention Programming.

    PubMed

    Hansen, William B; Derzon, James H; Reese, Eric L

    2014-06-01

    We propose a method for creating groups against which outcomes of local pretest-posttest evaluations of evidence-based programs can be judged. This involves assessing pretest markers for new and previously conducted evaluations to identify groups that have high pretest similarity. A database of 802 prior local evaluations provided six summary measures for analysis. The proximity of all groups using these variables is calculated as standardized proximities having values between 0 and 1. Five methods for creating standardized proximities are demonstrated. The approach allows proximity limits to be adjusted to find sufficient numbers of synthetic comparators. Several index cases are examined to assess the numbers of groups available to serve as comparators. Results show that most local evaluations would have sufficient numbers of comparators available for estimating program effects. This method holds promise as a tool for local evaluations to estimate relative effectiveness. © The Author(s) 2012.

  15. The effect of using genealogy-based haplotypes for genomic prediction

    PubMed Central

    2013-01-01

    Background Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. Results About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Conclusions Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy. PMID:23496971

  16. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion.

    PubMed

    Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D

    2013-07-01

    To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.

  17. Binding ligand prediction for proteins using partial matching of local surface patches.

    PubMed

    Sael, Lee; Kihara, Daisuke

    2010-01-01

    Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  18. Binding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches

    PubMed Central

    Sael, Lee; Kihara, Daisuke

    2010-01-01

    Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group. PMID:21614188

  19. mLASSO-Hum: A LASSO-based interpretable human-protein subcellular localization predictor.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-10-07

    Knowing the subcellular compartments of human proteins is essential to shed light on the mechanisms of a broad range of human diseases. In computational methods for protein subcellular localization, knowledge-based methods (especially gene ontology (GO) based methods) are known to perform better than sequence-based methods. However, existing GO-based predictors often lack interpretability and suffer from overfitting due to the high dimensionality of feature vectors. To address these problems, this paper proposes an interpretable multi-label predictor, namely mLASSO-Hum, which can yield sparse and interpretable solutions for large-scale prediction of human protein subcellular localization. By using the one-vs-rest LASSO-based classifiers, 87 out of more than 8000 GO terms are found to play more significant roles in determining the subcellular localization. Based on these 87 essential GO terms, we can decide not only where a protein resides within a cell, but also why it is located there. To further exploit information from the remaining GO terms, a method based on the GO hierarchical information derived from the depth distance of GO terms is proposed. Experimental results show that mLASSO-Hum performs significantly better than state-of-the-art predictors. We also found that in addition to the GO terms from the cellular component category, GO terms from the other two categories also play important roles in the final classification decisions. For readers' convenience, the mLASSO-Hum server is available online at http://bioinfo.eie.polyu.edu.hk/mLASSOHumServer/. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Local durian (Durio zibethinus murr.) exploration for potentially superior tree as parents in Ngrambe District, Ngawi

    NASA Astrophysics Data System (ADS)

    Yuniastuti, E.; Anggita, A.; Nandariyah; Sukaya

    2018-03-01

    The characteristics durian based on specific area gives a wide diversity of phenotype. This research objective was to build an inventory of the local durian of Ngrambe as well as to obtain potentially superior local durian as prospective parent trees. The research was conducted in Ngrambe sub-district, on October 2015 until April 2016 using the explorative descriptive method. The determination of sample point used the non-probability method of snowball sampling type. Primary data include the morphology of plant characters, trunks, leaves, flower, fruits and seeds and their superiority. The data of the research were analyzed using SIMQUAL (Similarity for Qualitative) function based on the DICE coefficient on NTSYS v.2.02. The data cluster and dendrogram analyses were determined by Unweighted Pair-Group Arithmetic Average (UPGMA) method. The result of DICE coefficient analyses of 58 local durian accession based on the phenotypic character of vegetative organs ranged from 0.84-1.0. The phenotypic character of the vegetative and generative organ from 3 local durian accession superior potential ranged from 0.7 to 0.8. In conclusion, the accession of local durian which were Miyem and Rusmiyati have advantage and potential as prospective parent trees.

  1. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion

    PubMed Central

    Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.

    2013-01-01

    Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413

  2. Analysis of Non Local Image Denoising Methods

    NASA Astrophysics Data System (ADS)

    Pardo, Álvaro

    Image denoising is probably one of the most studied problems in the image processing community. Recently a new paradigm on non local denoising was introduced. The Non Local Means method proposed by Buades, Morel and Coll attracted the attention of other researches who proposed improvements and modifications to their proposal. In this work we analyze those methods trying to understand their properties while connecting them to segmentation based on spectral graph properties. We also propose some improvements to automatically estimate the parameters used on these methods.

  3. The review and results of different methods for facial recognition

    NASA Astrophysics Data System (ADS)

    Le, Yifan

    2017-09-01

    In recent years, facial recognition draws much attention due to its wide potential applications. As a unique technology in Biometric Identification, facial recognition represents a significant improvement since it could be operated without cooperation of people under detection. Hence, facial recognition will be taken into defense system, medical detection, human behavior understanding, etc. Several theories and methods have been established to make progress in facial recognition: (1) A novel two-stage facial landmark localization method is proposed which has more accurate facial localization effect under specific database; (2) A statistical face frontalization method is proposed which outperforms state-of-the-art methods for face landmark localization; (3) It proposes a general facial landmark detection algorithm to handle images with severe occlusion and images with large head poses; (4) There are three methods proposed on Face Alignment including shape augmented regression method, pose-indexed based multi-view method and a learning based method via regressing local binary features. The aim of this paper is to analyze previous work of different aspects in facial recognition, focusing on concrete method and performance under various databases. In addition, some improvement measures and suggestions in potential applications will be put forward.

  4. Talker Localization Based on Interference between Transmitted and Reflected Audible Sound

    NASA Astrophysics Data System (ADS)

    Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji

    In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.

  5. Economic Learning Media Development Based on Local Locality

    ERIC Educational Resources Information Center

    Hadi, Rizali; Supriyanto; Hasanah, Mahmudah

    2017-01-01

    This study aims to describe the learning medium of economic education at senior High School in Banjarmasin with media based on local wisdom. This research uses qualitative method as developed by Miles & Huberman, starting from data collection, data reduction data display, and then made conclusion. Data were collected in the order of Basic…

  6. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  7. Facial expression recognition based on weber local descriptor and sparse representation

    NASA Astrophysics Data System (ADS)

    Ouyang, Yan

    2018-03-01

    Automatic facial expression recognition has been one of the research hotspots in the area of computer vision for nearly ten years. During the decade, many state-of-the-art methods have been proposed which perform very high accurate rate based on the face images without any interference. Nowadays, many researchers begin to challenge the task of classifying the facial expression images with corruptions and occlusions and the Sparse Representation based Classification framework has been wildly used because it can robust to the corruptions and occlusions. Therefore, this paper proposed a novel facial expression recognition method based on Weber local descriptor (WLD) and Sparse representation. The method includes three parts: firstly the face images are divided into many local patches, and then the WLD histograms of each patch are extracted, finally all the WLD histograms features are composed into a vector and combined with SRC to classify the facial expressions. The experiment results on the Cohn-Kanade database show that the proposed method is robust to occlusions and corruptions.

  8. On the Formulation of Weakly Singular Displacement/Traction Integral Equations; and Their Solution by the MLPG Method

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.; Shen, Shengping

    2002-01-01

    In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.

  9. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  10. A microwave imaging-based 3D localization algorithm for an in-body RF source as in wireless capsule endoscopes.

    PubMed

    Chandra, Rohit; Balasingham, Ilangko

    2015-01-01

    A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.

  11. A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S.

    2017-02-01

    A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the "pollution effect" in the literature on numerical simulations of long-range wave propagation.

  12. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  13. Impact localization in dispersive waveguides based on energy-attenuation of waves with the traveled distance

    NASA Astrophysics Data System (ADS)

    Alajlouni, Sa'ed; Albakri, Mohammad; Tarazaga, Pablo

    2018-05-01

    An algorithm is introduced to solve the general multilateration (source localization) problem in a dispersive waveguide. The algorithm is designed with the intention of localizing impact forces in a dispersive floor, and can potentially be used to localize and track occupants in a building using vibration sensors connected to the lower surface of the walking floor. The lower the wave frequencies generated by the impact force, the more accurate the localization is expected to be. An impact force acting on a floor, generates a seismic wave that gets distorted as it travels away from the source. This distortion is noticeable even over relatively short traveled distances, and is mainly caused by the dispersion phenomenon among other reasons, therefore using conventional localization/multilateration methods will produce localization error values that are highly variable and occasionally large. The proposed localization approach is based on the fact that the wave's energy, calculated over some time window, decays exponentially as the wave travels away from the source. Although localization methods that assume exponential decay exist in the literature (in the field of wireless communications), these methods have only been considered for wave propagation in non-dispersive media, in addition to the limiting assumption required by these methods that the source must not coincide with a sensor location. As a result, these methods cannot be applied to the indoor localization problem in their current form. We show how our proposed method is different from the other methods, and that it overcomes the source-sensor location coincidence limitation. Theoretical analysis and experimental data will be used to motivate and justify the pursuit of the proposed approach for localization in a dispersive medium. Additionally, hammer impacts on an instrumented floor section inside an operational building, as well as finite element model simulations, are used to evaluate the performance of the algorithm. It is shown that the algorithm produces promising results providing a foundation for further future development and optimization.

  14. Exact density functional and wave function embedding schemes based on orbital localization

    NASA Astrophysics Data System (ADS)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  15. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  16. Real-time localization of mobile device by filtering method for sensor fusion

    NASA Astrophysics Data System (ADS)

    Fuse, Takashi; Nagara, Keita

    2017-06-01

    Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.

  17. Geophysics-based method of locating a stationary earth object

    DOEpatents

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  18. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    PubMed Central

    Schettini, Raimondo

    2018-01-01

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art. PMID:29329268

  19. Finger Vein Recognition Using Local Line Binary Pattern

    PubMed Central

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670

  20. Stochastic seismic inversion based on an improved local gradual deformation method

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Zhu, Peimin

    2017-12-01

    A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.

  1. Local Linear Observed-Score Equating

    ERIC Educational Resources Information Center

    Wiberg, Marie; van der Linden, Wim J.

    2011-01-01

    Two methods of local linear observed-score equating for use with anchor-test and single-group designs are introduced. In an empirical study, the two methods were compared with the current traditional linear methods for observed-score equating. As a criterion, the bias in the equated scores relative to true equating based on Lord's (1980)…

  2. A Novel Method of Localization for Moving Objects with an Alternating Magnetic Field

    PubMed Central

    Gao, Xiang; Yan, Shenggang; Li, Bin

    2017-01-01

    Magnetic detection technology has wide applications in the fields of geological exploration, biomedical treatment, wreck removal and localization of unexploded ordinance. A large number of methods have been developed to locate targets with static magnetic fields, however, the relation between the problem of localization of moving objectives with alternating magnetic fields and the localization with a static magnetic field is rarely studied. A novel method of target localization based on coherent demodulation was proposed in this paper. The problem of localization of moving objects with an alternating magnetic field was transformed into the localization with a static magnetic field. The Levenberg-Marquardt (L-M) algorithm was applied to calculate the position of the target with magnetic field data measured by a single three-component magnetic sensor. Theoretical simulation and experimental results demonstrate the effectiveness of the proposed method. PMID:28430153

  3. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  4. Effects and repercussions of local/hospital-based health technology assessment (HTA): a systematic review.

    PubMed

    Gagnon, Marie-Pierre; Desmartis, Marie; Poder, Thomas; Witteman, William

    2014-10-28

    Health technology assessment (HTA) is increasingly performed at the local or hospital level where the costs, impacts, and benefits of health technologies can be directly assessed. Although local/hospital-based HTA has been implemented for more than two decades in some jurisdictions, little is known about its effects and impact on hospital budget, clinical practices, and patient outcomes. We conducted a mixed-methods systematic review that aimed to synthesize current evidence regarding the effects and impact of local/hospital-based HTA. We identified articles through PubMed and Embase and by citation tracking of included studies. We selected qualitative, quantitative, or mixed-methods studies with empirical data about the effects or impact of local/hospital-based HTA on decision-making, budget, or perceptions of stakeholders. We extracted the following information from included studies: country, methodological approach, and use of conceptual framework; local/hospital HTA approach and activities described; reported effects and impacts of local/hospital-based HTA; factors facilitating/hampering the use of hospital-based HTA recommendations; and perceptions of stakeholders concerning local/hospital HTA. Due to the great heterogeneity among studies, we conducted a narrative synthesis of their results. A total of 18 studies met the inclusion criteria. We reported the results according to the four approaches for performing HTA proposed by the Hospital Based HTA Interest Sub-Group: ambassador model, mini-HTA, internal committee, and HTA unit. Results showed that each of these approaches for performing HTA corresponds to specific needs and structures and has its strengths and limitations. Overall, studies showed positive impacts related to local/hospital-based HTA on hospital decisions and budgets, as well as positive perceptions from managers and clinicians. Local/hospital-based HTA could influence decision-making on several aspects. It is difficult to evaluate the real impacts of local HTA at the different levels of health care given the relatively small number of evaluations with quantitative data and the lack of clear comparators. Further research is necessary to explore the conditions under which local/hospital-based HTA results and recommendations can impact hospital policies, clinical decisions, and quality of care and optimize the use of scarce resources.

  5. Salient object detection: manifold-based similarity adaptation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing

    2014-11-01

    A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.

  6. Exploring local regularities for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Tian, Huaiwen; Qin, Shengfeng

    2016-11-01

    In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.

  7. Terrain clutter simulation using physics-based scattering model and digital terrain profile data

    NASA Astrophysics Data System (ADS)

    Park, James; Johnson, Joel T.; Ding, Kung-Hau; Kim, Kristopher; Tenbarge, Joseph

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  8. Hybrid region merging method for segmentation of high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi; Wang, Jiangeng; Wang, Zuo

    2014-12-01

    Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.

  9. Computationally efficient method for localizing the spiral rotor source using synthetic intracardiac electrograms during atrial fibrillation.

    PubMed

    Shariat, M H; Gazor, S; Redfearn, D

    2015-08-01

    Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is an extremely costly public health problem. Catheter-based ablation is a common minimally invasive procedure to treat AF. Contemporary mapping methods are highly dependent on the accuracy of anatomic localization of rotor sources within the atria. In this paper, using simulated atrial intracardiac electrograms (IEGMs) during AF, we propose a computationally efficient method for localizing the tip of the electrical rotor with an Archimedean/arithmetic spiral wavefront. The proposed method deploys the locations of electrodes of a catheter and their IEGMs activation times to estimate the unknown parameters of the spiral wavefront including its tip location. The proposed method is able to localize the spiral as soon as the wave hits three electrodes of the catheter. Our simulation results show that the method can efficiently localize the spiral wavefront that rotates either clockwise or counterclockwise.

  10. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells.

    PubMed

    Nguyen, P T T; Challis, K J; Jack, M W

    2016-11-01

    We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.

  11. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.

    2016-11-01

    We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.

  12. Speeding up local correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kats, Daniel

    2014-12-28

    We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.

  13. Near-Field Source Localization by Using Focusing Technique

    NASA Astrophysics Data System (ADS)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  14. Component-based subspace linear discriminant analysis method for face recognition with one training sample

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Yuen, Pong C.; Chen, Wen-Sheng; Lai, J. H.

    2005-05-01

    Many face recognition algorithms/systems have been developed in the last decade and excellent performances have also been reported when there is a sufficient number of representative training samples. In many real-life applications such as passport identification, only one well-controlled frontal sample image is available for training. Under this situation, the performance of existing algorithms will degrade dramatically or may not even be implemented. We propose a component-based linear discriminant analysis (LDA) method to solve the one training sample problem. The basic idea of the proposed method is to construct local facial feature component bunches by moving each local feature region in four directions. In this way, we not only generate more samples with lower dimension than the original image, but also consider the face detection localization error while training. After that, we propose a subspace LDA method, which is tailor-made for a small number of training samples, for the local feature projection to maximize the discrimination power. Theoretical analysis and experiment results show that our proposed subspace LDA is efficient and overcomes the limitations in existing LDA methods. Finally, we combine the contributions of each local component bunch with a weighted combination scheme to draw the recognition decision. A FERET database is used for evaluating the proposed method and results are encouraging.

  15. The effect of using genealogy-based haplotypes for genomic prediction.

    PubMed

    Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt

    2013-03-06

    Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy.

  16. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    PubMed Central

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  17. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    PubMed

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  18. Adaptive non-local smoothing-based weberface for illumination-insensitive face recognition

    NASA Astrophysics Data System (ADS)

    Yao, Min; Zhu, Changming

    2017-07-01

    Compensating the illumination of a face image is an important process to achieve effective face recognition under severe illumination conditions. This paper present a novel illumination normalization method which specifically considers removing the illumination boundaries as well as reducing the regional illumination. We begin with the analysis of the commonly used reflectance model and then expatiate the hybrid usage of adaptive non-local smoothing and the local information coding based on Weber's law. The effectiveness and advantages of this combination are evidenced visually and experimentally. Results on Extended YaleB database show its better performance than several other famous methods.

  19. MR-based source localization for MR-guided HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  20. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.

  1. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    PubMed

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Statistical lamb wave localization based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Harley, Joel B.

    2018-04-01

    Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.

  3. Intelligent query by humming system based on score level fusion of multiple classifiers

    NASA Astrophysics Data System (ADS)

    Pyo Nam, Gi; Thu Trang Luong, Thi; Ha Nam, Hyun; Ryoung Park, Kang; Park, Sung-Joo

    2011-12-01

    Recently, the necessity for content-based music retrieval that can return results even if a user does not know information such as the title or singer has increased. Query-by-humming (QBH) systems have been introduced to address this need, as they allow the user to simply hum snatches of the tune to find the right song. Even though there have been many studies on QBH, few have combined multiple classifiers based on various fusion methods. Here we propose a new QBH system based on the score level fusion of multiple classifiers. This research is novel in the following three respects: three local classifiers [quantized binary (QB) code-based linear scaling (LS), pitch-based dynamic time warping (DTW), and LS] are employed; local maximum and minimum point-based LS and pitch distribution feature-based LS are used as global classifiers; and the combination of local and global classifiers based on the score level fusion by the PRODUCT rule is used to achieve enhanced matching accuracy. Experimental results with the 2006 MIREX QBSH and 2009 MIR-QBSH corpus databases show that the performance of the proposed method is better than that of single classifier and other fusion methods.

  4. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    PubMed

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  5. Spin-injection into epitaxial graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Cui, Zhixin; Hiraki, Takahiro; Yoh, Kanji

    2013-09-01

    We have studied the spin-injection properties in epitaxial graphene on SiC. The ferromagnetic metal (FM) electrodes were composed of a tunnel barrier layer AlOx (14 Å) and a ferromagnetic Co (600 Å) layer. We have successfully observed the clear resistance peaks indicating spin-injection both in the "local" and "non-local" spin measurement set-ups at low temperatures. We estimate spin-injection rate of 1% based on "non-local" measurement and 1.6% based on local measurements. Spin-injection rate of multilayer graphene by mechanical exfoliation method was twice as high as single layer graphene on SiC based on "local" measurement.

  6. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  7. Localization of diffusion sources in complex networks with sparse observations

    NASA Astrophysics Data System (ADS)

    Hu, Zhao-Long; Shen, Zhesi; Tang, Chang-Bing; Xie, Bin-Bin; Lu, Jian-Feng

    2018-04-01

    Locating sources in a large network is of paramount importance to reduce the spreading of disruptive behavior. Based on the backward diffusion-based method and integer programming, we propose an efficient approach to locate sources in complex networks with limited observers. The results on model networks and empirical networks demonstrate that, for a certain fraction of observers, the accuracy of our method for source localization will improve as the increase of network size. Besides, compared with the previous method (the maximum-minimum method), the performance of our method is much better with a small fraction of observers, especially in heterogeneous networks. Furthermore, our method is more robust against noise environments and strategies of choosing observers.

  8. An evidential link prediction method and link predictability based on Shannon entropy

    NASA Astrophysics Data System (ADS)

    Yin, Likang; Zheng, Haoyang; Bian, Tian; Deng, Yong

    2017-09-01

    Predicting missing links is of both theoretical value and practical interest in network science. In this paper, we empirically investigate a new link prediction method base on similarity and compare nine well-known local similarity measures on nine real networks. Most of the previous studies focus on the accuracy, however, it is crucial to consider the link predictability as an initial property of networks itself. Hence, this paper has proposed a new link prediction approach called evidential measure (EM) based on Dempster-Shafer theory. Moreover, this paper proposed a new method to measure link predictability via local information and Shannon entropy.

  9. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  10. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  11. Research on social communication network evolution based on topology potential distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng

    2011-12-01

    Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.

  12. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    PubMed

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  13. MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches

    PubMed Central

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered. PMID:23418485

  14. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  15. Damage localization of marine risers using time series of vibration signals

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yang, Hezhen; Liu, Fushun

    2014-10-01

    Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.

  16. Robust 3D face landmark localization based on local coordinate coding.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J

    2014-12-01

    In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy.

  17. The effect of the PROSPER partnership model on cultivating local stakeholder knowledge of evidence-based programs: a five-year longitudinal study of 28 communities.

    PubMed

    Crowley, D Max; Greenberg, Mark T; Feinberg, Mark E; Spoth, Richard L; Redmond, Cleve R

    2012-02-01

    A substantial challenge in improving public health is how to facilitate the local adoption of evidence-based interventions (EBIs). To do so, an important step is to build local stakeholders' knowledge and decision-making skills regarding the adoption and implementation of EBIs. One EBI delivery system, called PROSPER (PROmoting School-community-university Partnerships to Enhance Resilience), has effectively mobilized community prevention efforts, implemented prevention programming with quality, and consequently decreased youth substance abuse. While these results are encouraging, another objective is to increase local stakeholder knowledge of best practices for adoption, implementation and evaluation of EBIs. Using a mixed methods approach, we assessed local stakeholder knowledge of these best practices over 5 years, in 28 intervention and control communities. Results indicated that the PROSPER partnership model led to significant increases in expert knowledge regarding the selection, implementation, and evaluation of evidence-based interventions. Findings illustrate the limited programming knowledge possessed by members of local prevention efforts, the difficulty of complete knowledge transfer, and highlight one method for cultivating that knowledge.

  18. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    DOE PAGES

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  19. A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212

  20. Homogenization of periodic bi-isotropic composite materials

    NASA Astrophysics Data System (ADS)

    Ouchetto, Ouail; Essakhi, Brahim

    2018-07-01

    In this paper, we present a new method for homogenizing the bi-periodic materials with bi-isotropic components phases. The presented method is a numerical method based on the finite element method to compute the local electromagnetic properties. The homogenized constitutive parameters are expressed as a function of the macroscopic electromagnetic properties which are obtained from the local properties. The obtained results are compared to Unfolding Finite Element Method and Maxwell-Garnett formulas.

  1. An infrared small target detection method based on multiscale local homogeneity measure

    NASA Astrophysics Data System (ADS)

    Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen

    2018-05-01

    Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.

  2. Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi.

    PubMed

    Chen, Jing; Zhang, Yi; Xue, Wei

    2018-04-28

    In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.

  3. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  4. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    PubMed

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  6. Improving the intake of nutritious food in children aged 6-23 months in Wuyi County, China – a multi-method approach

    PubMed Central

    Wu, Qiong; van Velthoven, Michelle H.M.M.T.; Chen, Li; Car, Josip; Rudan, Diana; Saftić, Vanja; Zhang, Yanfeng; Li, Ye; Scherpbier, Robert W.

    2013-01-01

    Aim To develop affordable, appropriate, and nutritious recipes based on local food resources and dietary practices that have the potential to improve infant feeding practices. Methods We carried out a mixed methods study following the World Health Organization’s evaluation guidelines on the promotion of child feeding. We recruited caregivers with children aged 6-23 months in Wuyi County, Hebei Province, China. The study included a 24-hour dietary recall survey, local food market survey, and development of a key local food list, food combinations, and recipes. Mothers tested selected recipes at their homes for two weeks. We interviewed mothers to obtain their perceptions on the recipes. Results The 24-hour dietary recall survey included 110 mothers. Dietary diversity was poor; approximately 10% of children consumed meat and only 2% consumed vitamin A-rich vegetables. The main reason for not giving meat was the mothers’ belief that their children could not chew and digest meat. With the help of mothers, we developed six improved nutritious recipes with locally available and affordable foods. Overall, mothers liked the recipes and were willing to continue using them. Conclusions This is the first study using a systematic evidence-based method to develop infant complementary recipes that can address complementary feeding problems in China. We developed recipes based on local foods and preparation practices and identified the barriers that mothers faced toward feeding their children with nutritious food. To improve nutrition practices, it is important to both give mothers correct feeding knowledge and assist them in cooking nutritious foods for their children based on locally available products. Further research is needed to assess long-term effects of those recipes on the nutritional status of children. PMID:23630143

  7. Local knowledge: Empirical Fact to Develop Community Based Disaster Risk Management Concept for Community Resilience at Mangkang Kulon Village, Semarang City

    NASA Astrophysics Data System (ADS)

    Kapiarsa, A. B.; Sariffuddin, S.

    2018-02-01

    Local knowledge in disaster management should not be neglected in developing community resilience. The circular relation between humans and their living habitat and community social relation have developed the local knowledge namely specialized knowledge, shared knowledge, and common knowledge. Its correlation with community-based disaster management has become an important discussion specially to answer can local knowledge underlie community-based disaster risk reduction concept development? To answer this question, this research used mix-method. Interview and crosstab method for 73 respondents with 90% trust rate were used to determine the correlation between local knowledge and community characteristics. This research found out that shared knowledge dominated community local knowledge (77%). While common knowledge and specialized knowledge were sequentially 8% and 15%. The high score of shared value (77%) indicated that local knowledge was occurred in household level and not yet indicated in community level. Shared knowledge was found in 3 phases of the resilient community in dealing with disaster, namely mitigation, emergency response, and recovery phase. This research, therefore, has opened a new scientific discussion on the self-help concept in community-help concept in CBDRM concept development in Indonesia.

  8. Local-feature analysis for automated coarse-graining of bulk-polymer molecular dynamics simulations.

    PubMed

    Xue, Y; Ludovice, P J; Grover, M A

    2012-12-01

    A method for automated coarse-graining of bulk polymers is presented, using the data-mining tool of local feature analysis. Most existing methods for polymer coarse-graining define superatoms based on their covalent bonding topology along the polymer backbone, but here superatoms are defined based only on their correlated motions, as observed in molecular dynamics simulations. Correlated atomic motions are identified in the simulation data using local feature analysis, between atoms in the same or in different polymer chains. Groups of highly correlated atoms constitute the superatoms in the coarse-graining scheme, and the positions of their seed coordinates are then projected forward in time. Based on only the seed positions, local feature analysis enables the full reconstruction of all atomic positions. This reconstruction suggests an iterative scheme to reduce the computation of the simulations to initialize another short molecular dynamic simulation, identify new superatoms, and again project forward in time.

  9. Local versus Global Information Relevance in Website Use: A Case Study with the Information Literacy Portal AlfinEEES

    ERIC Educational Resources Information Center

    Marco, Francisco Javier Garcia; Pinto, Maria

    2010-01-01

    Introduction: A model to explore the relations among local and global relevance-based information behaviour is proposed that is based on objective and subjective measures of the relevance of the Website contents. Method: Global interest for the Website was researched using data on visits, while local use was explored with two surveys on the…

  10. An Unsupervised kNN Method to Systematically Detect Changes in Protein Localization in High-Throughput Microscopy Images.

    PubMed

    Lu, Alex Xijie; Moses, Alan M

    2016-01-01

    Despite the importance of characterizing genes that exhibit subcellular localization changes between conditions in proteome-wide imaging experiments, many recent studies still rely upon manual evaluation to assess the results of high-throughput imaging experiments. We describe and demonstrate an unsupervised k-nearest neighbours method for the detection of localization changes. Compared to previous classification-based supervised change detection methods, our method is much simpler and faster, and operates directly on the feature space to overcome limitations in needing to manually curate training sets that may not generalize well between screens. In addition, the output of our method is flexible in its utility, generating both a quantitatively ranked list of localization changes that permit user-defined cut-offs, and a vector for each gene describing feature-wise direction and magnitude of localization changes. We demonstrate that our method is effective at the detection of localization changes using the Δrpd3 perturbation in Saccharomyces cerevisiae, where we capture 71.4% of previously known changes within the top 10% of ranked genes, and find at least four new localization changes within the top 1% of ranked genes. The results of our analysis indicate that simple unsupervised methods may be able to identify localization changes in images without laborious manual image labelling steps.

  11. Semi-supervised protein subcellular localization.

    PubMed

    Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang

    2009-01-30

    Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.

  12. Classification of Mls Point Clouds in Urban Scenes Using Detrended Geometric Features from Supervoxel-Based Local Contexts

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.

    2018-05-01

    In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.

  13. Local motion compensation in image sequences degraded by atmospheric turbulence: a comparative analysis of optical flow vs. block matching methods

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.

    2016-10-01

    As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).

  14. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    PubMed Central

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  15. A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method.

    PubMed

    Tuta, Jure; Juric, Matjaz B

    2016-12-06

    This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments-some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models-free space path loss and ITU models-which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2-3 and 3-4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements.

  16. A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method

    PubMed Central

    Tuta, Jure; Juric, Matjaz B.

    2016-01-01

    This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments—some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models—free space path loss and ITU models—which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2–3 and 3–4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements. PMID:27929453

  17. Locally Weighted Ensemble Clustering.

    PubMed

    Huang, Dong; Wang, Chang-Dong; Lai, Jian-Huang

    2018-05-01

    Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.

  18. [Spectral scatter correction of coal samples based on quasi-linear local weighted method].

    PubMed

    Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng

    2014-07-01

    The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.

  19. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  20. Hippocampus Segmentation Based on Local Linear Mapping

    PubMed Central

    Pang, Shumao; Jiang, Jun; Lu, Zhentai; Li, Xueli; Yang, Wei; Huang, Meiyan; Zhang, Yu; Feng, Yanqiu; Huang, Wenhua; Feng, Qianjin

    2017-01-01

    We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively. PMID:28368016

  1. Hippocampus Segmentation Based on Local Linear Mapping.

    PubMed

    Pang, Shumao; Jiang, Jun; Lu, Zhentai; Li, Xueli; Yang, Wei; Huang, Meiyan; Zhang, Yu; Feng, Yanqiu; Huang, Wenhua; Feng, Qianjin

    2017-04-03

    We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively.

  2. Palm Vein Verification Using Multiple Features and Locality Preserving Projections

    PubMed Central

    Bu, Wei; Wu, Xiangqian; Zhao, Qiushi

    2014-01-01

    Biometrics is defined as identifying people by their physiological characteristic, such as iris pattern, fingerprint, and face, or by some aspects of their behavior, such as voice, signature, and gesture. Considerable attention has been drawn on these issues during the last several decades. And many biometric systems for commercial applications have been successfully developed. Recently, the vein pattern biometric becomes increasingly attractive for its uniqueness, stability, and noninvasiveness. A vein pattern is the physical distribution structure of the blood vessels underneath a person's skin. The palm vein pattern is very ganglion and it shows a huge number of vessels. The attitude of the palm vein vessels stays in the same location for the whole life and its pattern is definitely unique. In our work, the matching filter method is proposed for the palm vein image enhancement. New palm vein features extraction methods, global feature extracted based on wavelet coefficients and locality preserving projections (WLPP), and local feature based on local binary pattern variance and locality preserving projections (LBPV_LPP) have been proposed. Finally, the nearest neighbour matching method has been proposed that verified the test palm vein images. The experimental result shows that the EER to the proposed method is 0.1378%. PMID:24693230

  3. Hippocampus Segmentation Based on Local Linear Mapping

    NASA Astrophysics Data System (ADS)

    Pang, Shumao; Jiang, Jun; Lu, Zhentai; Li, Xueli; Yang, Wei; Huang, Meiyan; Zhang, Yu; Feng, Yanqiu; Huang, Wenhua; Feng, Qianjin

    2017-04-01

    We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively.

  4. Palm vein verification using multiple features and locality preserving projections.

    PubMed

    Al-Juboori, Ali Mohsin; Bu, Wei; Wu, Xiangqian; Zhao, Qiushi

    2014-01-01

    Biometrics is defined as identifying people by their physiological characteristic, such as iris pattern, fingerprint, and face, or by some aspects of their behavior, such as voice, signature, and gesture. Considerable attention has been drawn on these issues during the last several decades. And many biometric systems for commercial applications have been successfully developed. Recently, the vein pattern biometric becomes increasingly attractive for its uniqueness, stability, and noninvasiveness. A vein pattern is the physical distribution structure of the blood vessels underneath a person's skin. The palm vein pattern is very ganglion and it shows a huge number of vessels. The attitude of the palm vein vessels stays in the same location for the whole life and its pattern is definitely unique. In our work, the matching filter method is proposed for the palm vein image enhancement. New palm vein features extraction methods, global feature extracted based on wavelet coefficients and locality preserving projections (WLPP), and local feature based on local binary pattern variance and locality preserving projections (LBPV_LPP) have been proposed. Finally, the nearest neighbour matching method has been proposed that verified the test palm vein images. The experimental result shows that the EER to the proposed method is 0.1378%.

  5. A new similarity index for nonlinear signal analysis based on local extrema patterns

    NASA Astrophysics Data System (ADS)

    Niknazar, Hamid; Motie Nasrabadi, Ali; Shamsollahi, Mohammad Bagher

    2018-02-01

    Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By adding time information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography (EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a real-world application tool.

  6. Sound source localization method in an environment with flow based on Amiet-IMACS

    NASA Astrophysics Data System (ADS)

    Wei, Long; Li, Min; Qin, Sheng; Fu, Qiang; Yang, Debin

    2017-05-01

    A sound source localization method is proposed to localize and analyze the sound source in an environment with airflow. It combines the improved mapping of acoustic correlated sources (IMACS) method and Amiet's method, and is called Amiet-IMACS. It can localize uncorrelated and correlated sound sources with airflow. To implement this approach, Amiet's method is used to correct the sound propagation path in 3D, which improves the accuracy of the array manifold matrix and decreases the position error of the localized source. Then, the mapping of acoustic correlated sources (MACS) method, which is as a high-resolution sound source localization algorithm, is improved by self-adjusting the constraint parameter at each irritation process to increase convergence speed. A sound source localization experiment using a pair of loud speakers in an anechoic wind tunnel under different flow speeds is conducted. The experiment exhibits the advantage of Amiet-IMACS in localizing a more accurate sound source position compared with implementing IMACS alone in an environment with flow. Moreover, the aerodynamic noise produced by a NASA EPPLER 862 STRUT airfoil model in airflow with a velocity of 80 m/s is localized using the proposed method, which further proves its effectiveness in a flow environment. Finally, the relationship between the source position of this airfoil model and its frequency, along with its generation mechanism, is determined and interpreted.

  7. Remote pedestrians detection at night time in FIR Image using contrast filtering and locally projected region based CNN

    NASA Astrophysics Data System (ADS)

    Kim, Taehwan; Kim, Sungho

    2017-02-01

    This paper presents a novel method to detect the remote pedestrians. After producing the human temperature based brightness enhancement image using the temperature data input, we generates the regions of interest (ROIs) by the multiscale contrast filtering based approach including the biased hysteresis threshold and clustering, remote pedestrian's height, pixel area and central position information. Afterwards, we conduct local vertical and horizontal projection based ROI refinement and weak aspect ratio based ROI limitation to solve the problem of region expansion in the contrast filtering stage. Finally, we detect the remote pedestrians by validating the final ROIs using transfer learning with convolutional neural network (CNN) feature, following non-maximal suppression (NMS) with strong aspect ratio limitation to improve the detection performance. In the experimental results, we confirmed that the proposed contrast filtering and locally projected region based CNN (CFLP-CNN) outperforms the baseline method by 8% in term of logaveraged miss rate. Also, the proposed method is more effective than the baseline approach and the proposed method provides the better regions that are suitably adjusted to the shape and appearance of remote pedestrians, which makes it detect the pedestrian that didn't find in the baseline approach and are able to help detect pedestrians by splitting the people group into a person.

  8. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  9. Factorization-based texture segmentation

    DOE PAGES

    Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.

    2015-06-17

    This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less

  10. A fully-automated multiscale kernel graph cuts based particle localization scheme for temporal focusing two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei

    2017-03-01

    The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.

  11. Secure Indoor Localization Based on Extracting Trusted Fingerprint

    PubMed Central

    Yin, Xixi; Zheng, Yanliu; Wang, Chun

    2018-01-01

    Indoor localization based on WiFi has attracted a lot of research effort because of the widespread application of WiFi. Fingerprinting techniques have received much attention due to their simplicity and compatibility with existing hardware. However, existing fingerprinting localization algorithms may not resist abnormal received signal strength indication (RSSI), such as unexpected environmental changes, impaired access points (APs) or the introduction of new APs. Traditional fingerprinting algorithms do not consider the problem of new APs and impaired APs in the environment when using RSSI. In this paper, we propose a secure fingerprinting localization (SFL) method that is robust to variable environments, impaired APs and the introduction of new APs. In the offline phase, a voting mechanism and a fingerprint database update method are proposed. We use the mutual cooperation between reference anchor nodes to update the fingerprint database, which can reduce the interference caused by the user measurement data. We analyze the standard deviation of RSSI, mobilize the reference points in the database to vote on APs and then calculate the trust factors of APs based on the voting results. In the online phase, we first make a judgment about the new APs and the broken APs, then extract the secure fingerprints according to the trusted factors of APs and obtain the localization results by using the trusted fingerprints. In the experiment section, we demonstrate the proposed method and find that the proposed strategy can resist abnormal RSSI and can improve the localization accuracy effectively compared with the existing fingerprinting localization algorithms. PMID:29401755

  12. Secure Indoor Localization Based on Extracting Trusted Fingerprint.

    PubMed

    Luo, Juan; Yin, Xixi; Zheng, Yanliu; Wang, Chun

    2018-02-05

    [-5]Indoor localization based on WiFi has attracted a lot of research effort because of the widespread application of WiFi. Fingerprinting techniques have received much attention due to their simplicity and compatibility with existing hardware. However, existing fingerprinting localization algorithms may not resist abnormal received signal strength indication (RSSI), such as unexpected environmental changes, impaired access points (APs) or the introduction of new APs. Traditional fingerprinting algorithms do not consider the problem of new APs and impaired APs in the environment when using RSSI. In this paper, we propose a secure fingerprinting localization (SFL) method that is robust to variable environments, impaired APs and the introduction of new APs. In the offline phase, a voting mechanism and a fingerprint database update method are proposed. We use the mutual cooperation between reference anchor nodes to update the fingerprint database, which can reduce the interference caused by the user measurement data. We analyze the standard deviation of RSSI, mobilize the reference points in the database to vote on APs and then calculate the trust factors of APs based on the voting results. In the online phase, we first make a judgment about the new APs and the broken APs, then extract the secure fingerprints according to the trusted factors of APs and obtain the localization results by using the trusted fingerprints. In the experiment section, we demonstrate the proposed method and find that the proposed strategy can resist abnormal RSSI and can improve the localization accuracy effectively compared with the existing fingerprinting localization algorithms.

  13. A maximally stable extremal region based scene text localization method

    NASA Astrophysics Data System (ADS)

    Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei

    2015-07-01

    Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.

  14. A Multilevel Testlet Model for Dual Local Dependence

    ERIC Educational Resources Information Center

    Jiao, Hong; Kamata, Akihito; Wang, Shudong; Jin, Ying

    2012-01-01

    The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet-based assessment, both local item dependence and local person dependence are likely to be induced.…

  15. Squeezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation

    NASA Astrophysics Data System (ADS)

    Müller, M. S.; Urban, S.; Jutzi, B.

    2017-08-01

    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.

  16. Least Median of Squares Filtering of Locally Optimal Point Matches for Compressible Flow Image Registration

    PubMed Central

    Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602

  17. Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses

    PubMed Central

    Park, Danny S.; Brown, Brielin; Eng, Celeste; Huntsman, Scott; Hu, Donglei; Torgerson, Dara G.; Burchard, Esteban G.; Zaitlen, Noah

    2015-01-01

    Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix. Contact: noah.zaitlen@ucsf.edu PMID:26072481

  18. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Bredel, M; Brezovich, I

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods frommore » a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.« less

  19. Generative Models for Similarity-based Classification

    DTIC Science & Technology

    2007-01-01

    NC), local nearest centroid (local NC), k-nearest neighbors ( kNN ), and condensed nearest neighbors (CNN) are all similarity-based classifiers which...vector machine to the k nearest neighbors of the test sample [80]. The SVM- KNN method was developed to address the robustness and dimensionality...concerns that afflict nearest neighbors and SVMs. Similarly to the nearest-means classifier, the SVM- KNN is a hybrid local and global classifier developed

  20. Low-dose CT reconstruction with patch based sparsity and similarity constraints

    NASA Astrophysics Data System (ADS)

    Xu, Qiong; Mou, Xuanqin

    2014-03-01

    As the rapid growth of CT based medical application, low-dose CT reconstruction becomes more and more important to human health. Compared with other methods, statistical iterative reconstruction (SIR) usually performs better in lowdose case. However, the reconstructed image quality of SIR highly depends on the prior based regularization due to the insufficient of low-dose data. The frequently-used regularization is developed from pixel based prior, such as the smoothness between adjacent pixels. This kind of pixel based constraint cannot distinguish noise and structures effectively. Recently, patch based methods, such as dictionary learning and non-local means filtering, have outperformed the conventional pixel based methods. Patch is a small area of image, which expresses structural information of image. In this paper, we propose to use patch based constraint to improve the image quality of low-dose CT reconstruction. In the SIR framework, both patch based sparsity and similarity are considered in the regularization term. On one hand, patch based sparsity is addressed by sparse representation and dictionary learning methods, on the other hand, patch based similarity is addressed by non-local means filtering method. We conducted a real data experiment to evaluate the proposed method. The experimental results validate this method can lead to better image with less noise and more detail than other methods in low-count and few-views cases.

  1. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    PubMed

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  2. Infrastructure-Free Mapping and Localization for Tunnel-Based Rail Applications Using 2D Lidar

    NASA Astrophysics Data System (ADS)

    Daoust, Tyler

    This thesis presents an infrastructure-free mapping and localization framework for rail vehicles using only a lidar sensor. The method was designed to handle modern underground tunnels: narrow, parallel, and relatively smooth concrete walls. A sliding-window algorithm was developed to estimate the train's motion, using a Renyi's Quadratic Entropy (RQE)-based point-cloud alignment system. The method was tested with datasets gathered on a subway train travelling at high speeds, with 75 km of data across 14 runs, simulating 500 km of localization. The system was capable of mapping with an average error of less than 0.6 % by distance. It was capable of continuously localizing, relative to the map, to within 10 cm in stations and at crossovers, and 2.3 m in pathological sections of tunnel. This work has the potential to improve train localization in a tunnel, which can be used to increase capacity and for automation purposes.

  3. APPLICATION OF ISOTOPE ENCEPHALOGRAPHY AND ELECTROENCEPHALOSCOPY FOR LOCALIZATION OF BRAIN TUMOURS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamov, V.N.; Badmayev, C.N.; Bekhtereva, N.P.

    1959-10-31

    The problems of diagnosis and localization of brain tumors in some cases present many difficulities and make the neurosurgeon seek for additional methods of investigation. In such circumstances usage of the tracer technique in diagnostics is of considerable help, as it has obvious advantages compared with other methods of investigation, such as safety, painlessness, non-traumatism, absence of undesirable after effects, accuracy, and relative simplicity. The present communication is based on the results of clinical observations on 150 patients with verified brain tumors. Analyses of the data show that the accuracy of the brain tumor localizations vary, depending upon the depthmore » of the tumor site and conceniration of labelled material in the area of tumor growth. The diagnostic value of the method is doubtful in cases of tumors of posterior fossa, base of the brain, or the lesions of median line. The application of isotope encephalography is successfully supplemented by the new method of investigations, i.e., electroencephaloscopy, which allows the localization of deeply set tumors. Possibilities and limitations of the method are discussed. It is concluded that the isotope encephalography and electroencephaloscopy represent very valuable diagnostic methods which alongside with other auxiliary methods are widely used in diagnosis of brain tumors. (C.H.)« less

  4. Streamflow Prediction based on Chaos Theory

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, X.; Babovic, V. M.

    2015-12-01

    Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.

  5. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  6. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation.

    PubMed

    Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid

    2013-06-01

    Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Local surface curvature analysis based on reflection estimation

    NASA Astrophysics Data System (ADS)

    Lu, Qinglin; Laligant, Olivier; Fauvet, Eric; Zakharova, Anastasia

    2015-07-01

    In this paper, we propose a novel reflection based method to estimate the local orientation of a specular surface. For a calibrated scene with a fixed light band, the band is reflected by the surface to the image plane of a camera. Then the local geometry between the surface and reflected band is estimated. Firstly, in order to find the relationship relying the object position, the object surface orientation and the band reflection, we study the fundamental theory of the geometry between a specular mirror surface and a band source. Then we extend our approach to the spherical surface with arbitrary curvature. Experiments are conducted with mirror surface and spherical surface. Results show that our method is able to obtain the local surface orientation merely by measuring the displacement and the form of the reflection.

  8. Crowd-sourced pictures geo-localization method based on street view images and 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Yuan, Yi; Xia, Nan; Chen, Song; Chen, Yanming; Yang, Kang; Ma, Lei; Li, Manchun

    2018-07-01

    People are increasingly becoming accustomed to taking photos of everyday life in modern cities and uploading them on major photo-sharing social media sites. These sites contain numerous pictures, but some have incomplete or blurred location information. The geo-localization of crowd-sourced pictures enriches the information contained therein, and is applicable to activities such as urban construction, urban landscape analysis, and crime tracking. However, geo-localization faces huge technical challenges. This paper proposes a method for large-scale geo-localization of crowd-sourced pictures. Our approach uses structured, organized Street View images as a reference dataset and employs a three-step strategy of coarse geo-localization by image retrieval, selecting reliable matches by image registration, and fine geo-localization by 3D reconstruction to attach geographic tags to pictures from unidentified sources. In study area, 3D reconstruction based on close-range photogrammetry is used to restore the 3D geographical information of the crowd-sourced pictures, resulting in the proposed method improving the median error from 256.7 m to 69.0 m, and the percentage of the geo-localized query pictures under a 50 m error from 17.2% to 43.2% compared with the previous method. Another discovery using the proposed method is that, in respect of the causes of reconstruction error, closer distances from the cameras to the main objects in query pictures tend to produce lower errors and the component of error parallel to the road makes a more significant contribution to the Total Error. The proposed method is not limited to small areas, and could be expanded to cities and larger areas owing to its flexible parameters.

  9. Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.

    PubMed

    Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael

    2015-08-01

    In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.

  10. Database Selection: One Size Does Not Fit All.

    ERIC Educational Resources Information Center

    Allison, DeeAnn; McNeil, Beth; Swanson, Signe

    2000-01-01

    Describes a strategy for selecting a delivery method for electronic resources based on experiences at the University of Nebraska-Lincoln. Considers local conditions, pricing, feature options, hardware costs, and network availability and presents a model for evaluating the decision based on dollar requirements and local issues. (Author/LRW)

  11. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    NASA Astrophysics Data System (ADS)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei

    2017-05-01

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  12. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping

    2017-05-10

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregationmore » in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.« less

  13. Near-isotropic 3D optical nanoscopy with photon-limited chromophores

    PubMed Central

    Tang, Jianyong; Akerboom, Jasper; Vaziri, Alipasha; Looger, Loren L.; Shank, Charles V.

    2010-01-01

    Imaging approaches based on single molecule localization break the diffraction barrier of conventional fluorescence microscopy, allowing for bioimaging with nanometer resolution. It remains a challenge, however, to precisely localize photon-limited single molecules in 3D. We have developed a new localization-based imaging technique achieving almost isotropic subdiffraction resolution in 3D. A tilted mirror is used to generate a side view in addition to the front view of activated single emitters, allowing their 3D localization to be precisely determined for superresolution imaging. Because both front and side views are in focus, this method is able to efficiently collect emitted photons. The technique is simple to implement on a commercial fluorescence microscope, and especially suitable for biological samples with photon-limited chromophores such as endogenously expressed photoactivatable fluorescent proteins. Moreover, this method is relatively resistant to optical aberration, as it requires only centroid determination for localization analysis. Here we demonstrate the application of this method to 3D imaging of bacterial protein distribution and neuron dendritic morphology with subdiffraction resolution. PMID:20472826

  14. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.

    2018-01-01

    Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.

  15. Three-dimensional deformable-model-based localization and recognition of road vehicles.

    PubMed

    Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong

    2012-01-01

    We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.

  16. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  17. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks.

    PubMed

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-05-21

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.

  18. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks

    PubMed Central

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-01-01

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410

  19. Infrared target recognition based on improved joint local ternary pattern

    NASA Astrophysics Data System (ADS)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  20. [New methods of treatment applied in the hospital of Sochi during the Great Patriotic War].

    PubMed

    Artiukhov, S A

    2013-05-01

    During the Great Patriotic War 1941-1945 Sochi was turned into the largest hospital base in the south of the USSR. All told, 335 thousand wonded and seriously ill soldiers were treated in the hospitals of Sochi. During the war physicians applied many new, including, early unknown medical methods of treatment. Poor provision with medical equipment, instruments, bandages and medicines was made up for using of local resources. Adoption of new treatment methods based on the use of local medicines allowed the Sochi's physicians to save many lives during the war.

  1. A Correlation-Based Transition Model using Local Variables. Part 2; Test Cases and Industrial Applications

    NASA Technical Reports Server (NTRS)

    Langtry, R. B.; Menter, F. R.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods.

  2. A new local-global approach for classification.

    PubMed

    Peres, R T; Pedreira, C E

    2010-09-01

    In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Simple Test Functions in Meshless Local Petrov-Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.

    2016-01-01

    Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.

  4. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.

    PubMed

    Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin

    2013-05-01

    Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a postimplantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10(-18)). The maximum errors derived using prior methods of localization ranged from 8.2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.

  5. Improved protein model quality assessments by changing the target function.

    PubMed

    Uziela, Karolis; Menéndez Hurtado, David; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2018-06-01

    Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates. © 2018 Wiley Periodicals, Inc.

  6. A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences

    PubMed Central

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933

  7. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks.

    PubMed

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-08-23

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.

  8. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  9. Boosting instance prototypes to detect local dermoscopic features.

    PubMed

    Situ, Ning; Yuan, Xiaojing; Zouridakis, George

    2010-01-01

    Local dermoscopic features are useful in many dermoscopic criteria for skin cancer detection. We address the problem of detecting local dermoscopic features from epiluminescence (ELM) microscopy skin lesion images. We formulate the recognition of local dermoscopic features as a multi-instance learning (MIL) problem. We employ the method of diverse density (DD) and evidence confidence (EC) function to convert MIL to a single-instance learning (SIL) problem. We apply Adaboost to improve the classification performance with support vector machines (SVMs) as the base classifier. We also propose to boost the selection of instance prototypes through changing the data weights in the DD function. We validate the methods on detecting ten local dermoscopic features from a dataset with 360 images. We compare the performance of the MIL approach, its boosting version, and a baseline method without using MIL. Our results show that boosting can provide performance improvement compared to the other two methods.

  10. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  11. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    PubMed Central

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  12. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  13. The Development of Interactive Mathematics Learning Material Based on Local Wisdom with .swf Format

    NASA Astrophysics Data System (ADS)

    Abadi, M. K.; Asih, E. C. M.; Jupri, A.

    2018-05-01

    Learning materials used by students and schools in Serang district are lacking because they do not contain local wisdom content. The aim of this study is to improve the deficiencies in learning materials used by students by making interactive materials based on local wisdom content with format .swf. The method in this research is research and development (RnD) with ADDIE model. In making this interactive learning materials in accordance with the stages of the ADDIE study. The results of this study include interactive learning materials based on local wisdom. This learning material is suitable for digital students.

  14. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  15. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  16. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE PAGES

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...

    2017-02-13

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  17. A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.

    PubMed

    Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying

    2018-06-13

    The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.

  18. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  19. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  20. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  1. Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2006-03-20

    We propose a novel approach to retrieving the phase map coded by a single closed-fringe pattern in digital speckle pattern interferometry, which is based on the estimation of the local sign of the quadrature component. We obtain the estimate by calculating the local orientation of the fringes that have previously been denoised by a weighted smoothing spline method. We carry out the procedure of sign estimation by determining the local abrupt jumps of size pi in the orientation field of the fringes and by segmenting the regions defined by these jumps. The segmentation method is based on the application of two-dimensional active contours (snakes), with which one can also estimate absent jumps, i.e., those that cannot be detected from the local orientation of the fringes. The performance of the proposed phase-retrieval technique is evaluated for synthetic and experimental fringes and compared with the results obtained with the spiral-phase- and Fourier-transform methods.

  2. Digital image registration method based upon binary boundary maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Andrus, J. F.; Campbell, C. W.

    1974-01-01

    A relatively fast method is presented for matching or registering the digital data of imagery from the same ground scene acquired at different times, or from different multispectral images, sensors, or both. It is assumed that the digital images can be registed by using translations and rotations only, that the images are of the same scale, and that little or no distortion exists between images. It is further assumed that by working with several local areas of the image, the rotational effects in the local areas can be neglected. Thus, by treating the misalignments of local areas as translations, it is possible to determine rotational and translational misalignments for a larger portion of the image containing the local areas. This procedure of determining the misalignment and then registering the data according to the misalignment can be repeated until the desired degree of registration is achieved. The method to be presented is based upon the use of binary boundary maps produced from the raw digital imagery rather than the raw digital data.

  3. Improving local clustering based top-L link prediction methods via asymmetric link clustering information

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan

    2018-02-01

    Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

  4. Hue-preserving and saturation-improved color histogram equalization algorithm.

    PubMed

    Song, Ki Sun; Kang, Hee; Kang, Moon Gi

    2016-06-01

    In this paper, an algorithm is proposed to improve contrast and saturation without color degradation. The local histogram equalization (HE) method offers better performance than the global HE method, whereas the local HE method sometimes produces undesirable results due to the block-based processing. The proposed contrast-enhancement (CE) algorithm reflects the characteristics of the global HE method in the local HE method to avoid the artifacts, while global and local contrasts are enhanced. There are two ways to apply the proposed CE algorithm to color images. One is luminance processing methods, and the other one is each channel processing methods. However, these ways incur excessive or reduced saturation and color degradation problems. The proposed algorithm solves these problems by using channel adaptive equalization and similarity of ratios between the channels. Experimental results show that the proposed algorithm enhances contrast and saturation while preserving the hue and producing better performance than existing methods in terms of objective evaluation metrics.

  5. PLPD: reliable protein localization prediction from imbalanced and overlapped datasets

    PubMed Central

    Lee, KiYoung; Kim, Dae-Won; Na, DoKyun; Lee, Kwang H.; Lee, Doheon

    2006-01-01

    Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has too many classes (there are more than 10 localizations in a cell), it is a multi-label dataset (a protein may occur in several different subcellular locations), and it is too imbalanced (the number of proteins in each localization is remarkably different). Even though many previous works have been done for the prediction of protein subcellular localization, none of them tackles effectively these characteristics at the same time. Thus, a new computational method for protein localization is eventually needed for more reliable outcomes. To address the issue, we present a protein localization predictor based on D-SVDD (PLPD) for the prediction of protein localization, which can find the likelihood of a specific localization of a protein more easily and more correctly. Moreover, we introduce three measurements for the more precise evaluation of a protein localization predictor. As the results of various datasets which are made from the experiments of Huh et al. (2003), the proposed PLPD method represents a different approach that might play a complimentary role to the existing methods, such as Nearest Neighbor method and discriminate covariant method. Finally, after finding a good boundary for each localization using the 5184 classified proteins as training data, we predicted 138 proteins whose subcellular localizations could not be clearly observed by the experiments of Huh et al. (2003). PMID:16966337

  6. Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.

    PubMed

    Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing

    2017-10-11

    In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.

  7. Investigation on local ductility of 6xxx-aluminium sheet alloys

    NASA Astrophysics Data System (ADS)

    Henn, P.; Liewald, M.; Sindel, M.

    2017-09-01

    Within the scope of this paper influence of localization of loading conditions on the ductility of two different 6xxx-aluminium sheet alloys is investigated. In order to improve the prediction of sheet material crash performance, material parameters based on uniaxial tensile and notched tensile tests are determined with varying consolidation areas. Especially evaluation methods based on the localized necking behaviour in tensile tests are investigated. The potential of local ductility characterisation is validated with results of Edge-Compression Tests (ECT) which applies load conditions that occur in actual crash events.

  8. A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation

    PubMed Central

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.

    2010-01-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  9. PATL: A RFID Tag Localization based on Phased Array Antenna.

    PubMed

    Qiu, Lanxin; Liang, Xiaoxuan; Huang, Zhangqin

    2017-03-15

    In RFID systems, how to detect the position precisely is an important and challenging research topic. In this paper, we propose a range-free 2D tag localization method based on phased array antenna, called PATL. This method takes advantage of the adjustable radiation angle of the phased array antenna to scan the surveillance region in turns. By using the statistics of the tags' number in different antenna beam directions, a weighting algorithm is used to calculate the position of the tag. This method can be applied to real-time location of multiple targets without usage of any reference tags or additional readers. Additionally, we present an optimized weighting method based on RSSI to increase the locating accuracy. We use a Commercial Off-the-Shelf (COTS) UHF RFID reader which is integrated with a phased array antenna to evaluate our method. The experiment results from an indoor office environment demonstrate the average distance error of PATL is about 21 cm and the optimized approach achieves an accuracy of 13 cm. This novel 2D localization scheme is a simple, yet promising, solution that is especially applicable to the smart shelf visualized management in storage or retail area.

  10. PATL: A RFID Tag Localization based on Phased Array Antenna

    PubMed Central

    Qiu, Lanxin; Liang, Xiaoxuan; Huang, Zhangqin

    2017-01-01

    In RFID systems, how to detect the position precisely is an important and challenging research topic. In this paper, we propose a range-free 2D tag localization method based on phased array antenna, called PATL. This method takes advantage of the adjustable radiation angle of the phased array antenna to scan the surveillance region in turns. By using the statistics of the tags’ number in different antenna beam directions, a weighting algorithm is used to calculate the position of the tag. This method can be applied to real-time location of multiple targets without usage of any reference tags or additional readers. Additionally, we present an optimized weighting method based on RSSI to increase the locating accuracy. We use a Commercial Off-the-Shelf (COTS) UHF RFID reader which is integrated with a phased array antenna to evaluate our method. The experiment results from an indoor office environment demonstrate the average distance error of PATL is about 21 cm and the optimized approach achieves an accuracy of 13 cm. This novel 2D localization scheme is a simple, yet promising, solution that is especially applicable to the smart shelf visualized management in storage or retail area. PMID:28295014

  11. Point cloud registration from local feature correspondences-Evaluation on challenging datasets.

    PubMed

    Petricek, Tomas; Svoboda, Tomas

    2017-01-01

    Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.

  12. Controlling the joint local false discovery rate is more powerful than meta-analysis methods in joint analysis of summary statistics from multiple genome-wide association studies.

    PubMed

    Jiang, Wei; Yu, Weichuan

    2017-02-15

    In genome-wide association studies (GWASs) of common diseases/traits, we often analyze multiple GWASs with the same phenotype together to discover associated genetic variants with higher power. Since it is difficult to access data with detailed individual measurements, summary-statistics-based meta-analysis methods have become popular to jointly analyze datasets from multiple GWASs. In this paper, we propose a novel summary-statistics-based joint analysis method based on controlling the joint local false discovery rate (Jlfdr). We prove that our method is the most powerful summary-statistics-based joint analysis method when controlling the false discovery rate at a certain level. In particular, the Jlfdr-based method achieves higher power than commonly used meta-analysis methods when analyzing heterogeneous datasets from multiple GWASs. Simulation experiments demonstrate the superior power of our method over meta-analysis methods. Also, our method discovers more associations than meta-analysis methods from empirical datasets of four phenotypes. The R-package is available at: http://bioinformatics.ust.hk/Jlfdr.html . eeyu@ust.hk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Local SIMPLE multi-atlas-based segmentation applied to lung lobe detection on chest CT

    NASA Astrophysics Data System (ADS)

    Agarwal, M.; Hendriks, E. A.; Stoel, B. C.; Bakker, M. E.; Reiber, J. H. C.; Staring, M.

    2012-02-01

    For multi atlas-based segmentation approaches, a segmentation fusion scheme which considers local performance measures may be more accurate than a method which uses a global performance measure. We improve upon an existing segmentation fusion method called SIMPLE and extend it to be localized and suitable for multi-labeled segmentations. We demonstrate the algorithm performance on 23 CT scans of COPD patients using a leave-one- out experiment. Our algorithm performs significantly better (p < 0.01) than majority voting, STAPLE, and SIMPLE, with a median overlap of the fissure of 0.45, 0.48, 0.55 and 0.6 for majority voting, STAPLE, SIMPLE, and the proposed algorithm, respectively.

  14. Integrated Detection and Prediction of Influenza Activity for Real-Time Surveillance: Algorithm Design

    PubMed Central

    2017-01-01

    Background Influenza is a viral respiratory disease capable of causing epidemics that represent a threat to communities worldwide. The rapidly growing availability of electronic “big data” from diagnostic and prediagnostic sources in health care and public health settings permits advance of a new generation of methods for local detection and prediction of winter influenza seasons and influenza pandemics. Objective The aim of this study was to present a method for integrated detection and prediction of influenza virus activity in local settings using electronically available surveillance data and to evaluate its performance by retrospective application on authentic data from a Swedish county. Methods An integrated detection and prediction method was formally defined based on a design rationale for influenza detection and prediction methods adapted for local surveillance. The novel method was retrospectively applied on data from the winter influenza season 2008-09 in a Swedish county (population 445,000). Outcome data represented individuals who met a clinical case definition for influenza (based on International Classification of Diseases version 10 [ICD-10] codes) from an electronic health data repository. Information from calls to a telenursing service in the county was used as syndromic data source. Results The novel integrated detection and prediction method is based on nonmechanistic statistical models and is designed for integration in local health information systems. The method is divided into separate modules for detection and prediction of local influenza virus activity. The function of the detection module is to alert for an upcoming period of increased load of influenza cases on local health care (using influenza-diagnosis data), whereas the function of the prediction module is to predict the timing of the activity peak (using syndromic data) and its intensity (using influenza-diagnosis data). For detection modeling, exponential regression was used based on the assumption that the beginning of a winter influenza season has an exponential growth of infected individuals. For prediction modeling, linear regression was applied on 7-day periods at the time in order to find the peak timing, whereas a derivate of a normal distribution density function was used to find the peak intensity. We found that the integrated detection and prediction method detected the 2008-09 winter influenza season on its starting day (optimal timeliness 0 days), whereas the predicted peak was estimated to occur 7 days ahead of the factual peak and the predicted peak intensity was estimated to be 26% lower than the factual intensity (6.3 compared with 8.5 influenza-diagnosis cases/100,000). Conclusions Our detection and prediction method is one of the first integrated methods specifically designed for local application on influenza data electronically available for surveillance. The performance of the method in a retrospective study indicates that further prospective evaluations of the methods are justified. PMID:28619700

  15. Integrated Assessment by the People: Insights from AgMIP Regional Teams in Sub-Saharan Africa and South Asia

    NASA Astrophysics Data System (ADS)

    Antle, J. M.

    2017-12-01

    AgMIP has developed innovative protocol-based methods for regional integrated assessment (RIA) that can be implemented by national researchers working with local and national stakeholders (http://www.agmip.org/regional-integrated-assessments-handbook/). The approach has been implemented by regional teams in Sub-Saharan Africa and South Asia. This presentation first summarizes novel elements of the AgMIP RIA methods, and their strengths and limitations, based on their application by AgMIP researchers. Key insights from the application of these methods for climate impact and adaptation in Sub-Saharan Africa and South Asia are presented. A major finding is that detailed, site-specific, systems-based analysis show much more local and regional variation in impacts than studies based on analysis of individual crops, and provide the basis for analysis of multi-faceted technology and policy options to facilitate the transition to sustainable and resilient development pathways. The presentation concludes with observations about advancing integrated assessments carried out by and for national and local researchers and stakeholders.

  16. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  17. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    PubMed

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  18. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshihiro

    2018-04-01

    Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root mean square error (RMSE) of the rSMF[base]-derived estimates ranged from 7.1 days (corn) to 15.7 days (winter wheat). When using the rSMF[local] method, the RMSE of the rSMF[local]-derived estimates improved and ranged from 5.6 days (corn) to 12.3 days (winter wheat). The results showed that the second calibration step for the rSMF[local] method could correct the region-dependent bias error between the rSMF[base]-derived estimates and the statistical data. A comparison between the performances of the refined SMF methods and the MCD12Q2 products, indicated that both of the rSMF methods were superior to the MCD12Q2 products in estimating all phenological stages, except for the case of the rSMF[base]-derived barley emerged stages. The phenological stages for which the rSMF[local] showed the best estimation accuracy were the corn silking stage (RMSE = 4.3 days); the soybeans dropping leaves stage (RMSE = 4.9 days); the headed stages of winter wheat (RMSE = 11.1 days), barley (RMSE = 6.1 days), and sorghum (RMSE = 9.5 days); the spring-wheat harvested stage (RMSE = 5.5 days); the rice emerged stage (RMSE = 5.5 days), and the cotton squaring stage (RMSE = 6.6 days). These were more accurate than the results achieved by the MCD12Q2 products. In addition, the rSMF[local]-derived estimates were superior in terms of the reproducibility of the annual variation range, particularly of the late reproductive stages, such as the mature and harvested stages. The crop phenology maps derived from the SMF [local] method were also in good agreement with the relevant maps derived from statistics, and could reveal the characteristic spatial pattern of the key phenological stages at the continental scale with fine spatial resolution. For example, the winter-wheat headed stage clearly became later from south to north. The cotton squaring stage became earlier from the central region towards both coastal regions.

  19. Localization of rainfall and determination its intensity in the lower layers of the troposphere from the measurements of local RF transmitter characteristics

    NASA Astrophysics Data System (ADS)

    Podhorský, Dušan; Fabo, Peter

    2016-12-01

    The article deals with a method of acquiring the temporal and spatial distribution of local precipitation from measurement of performance characteristics of local sources of high frequency electromagnetic radiation in the 1-3GHz frequency range in the lower layers of the troposphere up to 100 m. The method was experimentally proven by monitoring the GSM G2 base stations of cell phone providers in the frequency range of 920-960MHz using methods of frequential and spatial diversity reception. Modification of the SART method for localization of precipitation was also proposed. The achieved results allow us to obtain the timeframe of the intensity of local precipitation in the observed area with a temporal resolution of 10 sec. A spatial accuracy of 100m in localization of precipitation is expected, after a network of receivers is built. The acquired data can be used as one of the inputs for meteorological forecasting models, in agriculture, hydrology as a supplementary method to ombrograph stations and measurements for the weather radar network, in transportation as part of a warning system and in many other areas.

  20. Community Currency Trading Method through Partial Transaction Intermediary Process

    NASA Astrophysics Data System (ADS)

    Kido, Kunihiko; Hasegawa, Seiichi; Komoda, Norihisa

    A community currency is local money that is issued by local governments or Non-Profit Organization (NPO) to support social services. The purpose of introducing community currencies is to regenerate communities by fostering mutual aids among community members. In this paper, we propose a community currency trading method through partial intermediary process, under operational environments without introducing coordinators all the time. In this method, coordinators perform coordination between service users and service providers during several months from the start point of transactions. After the period of coordination, participants spontaneously make transactions based on their trust area and a trust evaluation method based on the number of provided services and complaint information. This method is especially effective to communities with close social networks and low trustworthiness. The proposed method is evaluated through multi-agent simulation.

  1. A RSSI-based parameter tracking strategy for constrained position localization

    NASA Astrophysics Data System (ADS)

    Du, Jinze; Diouris, Jean-François; Wang, Yide

    2017-12-01

    In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.

  2. Influence of Intracranial Electrode Density and Spatial Configuration on Interictal Spike Localization: A Case Study.

    PubMed

    Lie, Octavian V; Papanastassiou, Alexander M; Cavazos, José E; Szabó, Ákos C

    2015-10-01

    Poor seizure outcomes after epilepsy surgery often reflect an incorrect localization of the epileptic sources by standard intracranial EEG interpretation because of limited electrode coverage of the epileptogenic zone. This study investigates whether, in such conditions, source modeling is able to provide more accurate source localization than the standard clinical method that can be used prospectively to improve surgical resection planning. Suboptimal epileptogenic zone sampling is simulated by subsets of the electrode configuration used to record intracranial EEG in a patient rendered seizure free after surgery. sLORETA and the clinical method solutions are applied to interictal spikes sampled with these electrode subsets and are compared for colocalization with the resection volume and displacement due to electrode downsampling. sLORETA provides often congruent and at times more accurate source localization when compared with the standard clinical method. However, with electrode downsampling, individual sLORETA solution locations can vary considerably and shift consistently toward the remaining electrodes. sLORETA application can improve source localization based on the clinical method but does not reliably compensate for suboptimal electrode placement. Incorporating sLORETA solutions based on intracranial EEG in surgical planning should proceed cautiously in cases where electrode repositioning is planned on clinical grounds.

  3. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  4. On experimental damage localization by SP2E: Application of H∞ estimation and oblique projections

    NASA Astrophysics Data System (ADS)

    Lenzen, Armin; Vollmering, Max

    2018-05-01

    In this article experimental damage localization based on H∞ estimation and state projection estimation error (SP2E) is studied. Based on an introduced difference process, a state space representation is derived for advantageous numerical solvability. Because real structural excitations are presumed to be unknown, a general input is applied therein, which allows synchronization and normalization. Furthermore, state projections are introduced to enhance damage identification. While first experiments to verify method SP2E have already been conducted and published, further laboratory results are analyzed here. Therefore, SP2E is used to experimentally localize stiffness degradations and mass alterations. Furthermore, the influence of projection techniques is analyzed. In summary, method SP2E is able to localize structural alterations, which has been observed by results of laboratory experiments.

  5. Data preprocessing for a vehicle-based localization system used in road traffic applications

    NASA Astrophysics Data System (ADS)

    Patelczyk, Timo; Löffler, Andreas; Biebl, Erwin

    2016-09-01

    This paper presents a fixed-point implementation of the preprocessing using a field programmable gate array (FPGA), which is required for a multipath joint angle and delay estimation (JADE) used in road traffic applications. This paper lays the foundation for many model-based parameter estimation methods. Here, a simulation of a vehicle-based localization system application for protecting vulnerable road users, which were equipped with appropriate transponders, is considered. For such safety critical applications, the robustness and real-time capability of the localization is particularly important. Additionally, a motivation to use a fixed-point implementation for the data preprocessing is a limited computing power of the head unit of a vehicle. This study aims to process the raw data provided by the localization system used in this paper. The data preprocessing applied includes a wideband calibration of the physical localization system, separation of relevant information from the received sampled signal, and preparation of the incoming data via further processing. Further, a channel matrix estimation was implemented to complete the data preprocessing, which contains information on channel parameters, e.g., the positions of the objects to be located. In the presented case of a vehicle-based localization system application we assume an urban environment, in which multipath propagation occurs. Since most methods for localization are based on uncorrelated signals, this fact must be addressed. Hence, a decorrelation of incoming data stream in terms of a further localization is required. This decorrelation was accomplished by considering several snapshots in different time slots. As a final aspect of the use of fixed-point arithmetic, quantization errors are considered. In addition, the resources and runtime of the presented implementation are discussed; these factors are strongly linked to a practical implementation.

  6. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...

  7. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...

  8. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...

  9. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...

  10. Task-based statistical image reconstruction for high-quality cone-beam CT

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-11-01

    Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.

  11. Combining local scaling and global methods to detect soil pore space

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan Jose; Saa-Requejo, Antonio; Grau, Juan B.; Tarquis, Ana M.

    2017-04-01

    The characterization of the spatial distribution of soil pore structures is essential to obtain different parameters that will influence in several models related to water flow and/or microbial growth processes. The first step in pore structure characterization is obtaining soil images that best approximate reality. Over the last decade, major technological advances in X-ray computed tomography (CT) have allowed for the investigation and reconstruction of natural porous media architectures at very fine scales. The subsequent step is delimiting the pore structure (pore space) from the CT soil images applying a thresholding. Many times we could find CT-scan images that show low contrast at the solid-void interface that difficult this step. Different delimitation methods can result in different spatial distributions of pores influencing the parameters used in the models. Recently, new local segmentation method using local greyscale value (GV) concentration variabilities, based on fractal concepts, has been presented. This method creates singularity maps to measure the GV concentration at each point. The C-A method was combined with the singularity map approach (Singularity-CA method) to define local thresholds that can be applied to binarize CT images. Comparing this method with classical methods, such as Otsu and Maximum Entropy, we observed that more pores can be detected mainly due to its ability to amplify anomalous concentrations. However, it delineated many small pores that were incorrect. In this work, we present an improve version of Singularity-CA method that avoid this problem basically combining it with the global classical methods. References Martín-Sotoca, J.J., A. Saa-Requejo, J.B. Grau, A.M. Tarquis. New segmentation method based on fractal properties using singularity maps. Geoderma, 287, 40-53, 2017. Martín-Sotoca, J.J, A. Saa-Requejo, J.B. Grau, A.M. Tarquis. Local 3D segmentation of soil pore space based on fractal properties using singularity maps. Geoderma, http://dx.doi.org/10.1016/j.geoderma.2016.11.029. Torre, Iván G., Juan C. Losada and A.M. Tarquis. Multiscaling properties of soil images. Biosystems Engineering, http://dx.doi.org/10.1016/j.biosystemseng.2016.11.006.

  12. Assessment of local pulse wave velocity distribution in mice using k-t BLAST PC-CMR with semi-automatic area segmentation.

    PubMed

    Herold, Volker; Herz, Stefan; Winter, Patrick; Gutjahr, Fabian Tobias; Andelovic, Kristina; Bauer, Wolfgang Rudolf; Jakob, Peter Michael

    2017-10-16

    Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE (-/-) -mice) at 12 adjacent locations along the abdominal aorta. Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE (-/-) -group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE (-/-) -animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE (-/-) -mice as a relevant model of atherosclerosis.

  13. Image fusion method based on regional feature and improved bidimensional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Qin, Xinqiang; Hu, Gang; Hu, Kai

    2018-01-01

    The decomposition of multiple source images using bidimensional empirical mode decomposition (BEMD) often produces mismatched bidimensional intrinsic mode functions, either by their number or their frequency, making image fusion difficult. A solution to this problem is proposed using a fixed number of iterations and a union operation in the sifting process. By combining the local regional features of the images, an image fusion method has been developed. First, the source images are decomposed using the proposed BEMD to produce the first intrinsic mode function (IMF) and residue component. Second, for the IMF component, a selection and weighted average strategy based on local area energy is used to obtain a high-frequency fusion component. Third, for the residue component, a selection and weighted average strategy based on local average gray difference is used to obtain a low-frequency fusion component. Finally, the fused image is obtained by applying the inverse BEMD transform. Experimental results show that the proposed algorithm provides superior performance over methods based on wavelet transform, line and column-based EMD, and complex empirical mode decomposition, both in terms of visual quality and objective evaluation criteria.

  14. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.

    PubMed

    Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong

    2018-05-11

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.

  15. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN

    PubMed Central

    Cheng, Gang; Chen, Xihui

    2018-01-01

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671

  16. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  17. Optoelectronic scanning system upgrade by energy center localization methods

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.

    2016-11-01

    A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.

  18. Integrated Detection and Prediction of Influenza Activity for Real-Time Surveillance: Algorithm Design.

    PubMed

    Spreco, Armin; Eriksson, Olle; Dahlström, Örjan; Cowling, Benjamin John; Timpka, Toomas

    2017-06-15

    Influenza is a viral respiratory disease capable of causing epidemics that represent a threat to communities worldwide. The rapidly growing availability of electronic "big data" from diagnostic and prediagnostic sources in health care and public health settings permits advance of a new generation of methods for local detection and prediction of winter influenza seasons and influenza pandemics. The aim of this study was to present a method for integrated detection and prediction of influenza virus activity in local settings using electronically available surveillance data and to evaluate its performance by retrospective application on authentic data from a Swedish county. An integrated detection and prediction method was formally defined based on a design rationale for influenza detection and prediction methods adapted for local surveillance. The novel method was retrospectively applied on data from the winter influenza season 2008-09 in a Swedish county (population 445,000). Outcome data represented individuals who met a clinical case definition for influenza (based on International Classification of Diseases version 10 [ICD-10] codes) from an electronic health data repository. Information from calls to a telenursing service in the county was used as syndromic data source. The novel integrated detection and prediction method is based on nonmechanistic statistical models and is designed for integration in local health information systems. The method is divided into separate modules for detection and prediction of local influenza virus activity. The function of the detection module is to alert for an upcoming period of increased load of influenza cases on local health care (using influenza-diagnosis data), whereas the function of the prediction module is to predict the timing of the activity peak (using syndromic data) and its intensity (using influenza-diagnosis data). For detection modeling, exponential regression was used based on the assumption that the beginning of a winter influenza season has an exponential growth of infected individuals. For prediction modeling, linear regression was applied on 7-day periods at the time in order to find the peak timing, whereas a derivate of a normal distribution density function was used to find the peak intensity. We found that the integrated detection and prediction method detected the 2008-09 winter influenza season on its starting day (optimal timeliness 0 days), whereas the predicted peak was estimated to occur 7 days ahead of the factual peak and the predicted peak intensity was estimated to be 26% lower than the factual intensity (6.3 compared with 8.5 influenza-diagnosis cases/100,000). Our detection and prediction method is one of the first integrated methods specifically designed for local application on influenza data electronically available for surveillance. The performance of the method in a retrospective study indicates that further prospective evaluations of the methods are justified. ©Armin Spreco, Olle Eriksson, Örjan Dahlström, Benjamin John Cowling, Toomas Timpka. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 15.06.2017.

  19. Photometry unlocks 3D information from 2D localization microscopy data.

    PubMed

    Franke, Christian; Sauer, Markus; van de Linde, Sebastian

    2017-01-01

    We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.

  20. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images.

    PubMed

    Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza

    2014-09-16

    Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.

  1. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2)

    NASA Astrophysics Data System (ADS)

    Pinski, Peter; Neese, Frank

    2018-01-01

    Electron correlation methods based on pair natural orbitals (PNOs) have gained an increasing degree of interest in recent years, as they permit energy calculations to be performed on systems containing up to many hundred atoms, while maintaining chemical accuracy for reaction energies. We present an approach for taking exact analytical first derivatives of the energy contributions in the simplest method of the family of Domain-based Local Pair Natural Orbital (DLPNO) methods, closed-shell DLPNO-MP2. The Lagrangian function contains constraints to account for the relaxation of PNOs. RI-MP2 reference geometries are reproduced accurately, as exemplified for four systems with a substantial degree of nonbonding interactions. By the example of electric field gradients, we demonstrate that omitting PNO-specific constraints can lead to dramatic errors for orbital-relaxed properties.

  2. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    PubMed Central

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972

  3. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  4. Uniform competency-based local feature extraction for remote sensing images

    NASA Astrophysics Data System (ADS)

    Sedaghat, Amin; Mohammadi, Nazila

    2018-01-01

    Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.

  5. An evaluation of talker localization based on direction of arrival estimation and statistical sound source identification

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2002-11-01

    It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.

  6. Localizing wushu players on a platform based on a video recording

    NASA Astrophysics Data System (ADS)

    Peczek, Piotr M.; Zabołotny, Wojciech M.

    2017-08-01

    This article describes the development of a method to localize an athlete during sports performance on a platform, based on a static video recording. Considered sport for this method is wushu - martial art. However, any other discipline can be applied. There are specified requirements, and 2 algorithms of image processing are described. The next part presents an experiment that was held based on recordings from the Pan American Wushu Championship. Based on those recordings the steps of the algorithm are shown. Results are evaluated manually. The last part of the article concludes if the algorithm is applicable and what improvements have to be implemented to use it during sports competitions as well as for offline analysis.

  7. Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2012-01-01

    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.

  8. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  9. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  10. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  11. Landmark based localization in urban environment

    NASA Astrophysics Data System (ADS)

    Qu, Xiaozhi; Soheilian, Bahman; Paparoditis, Nicolas

    2018-06-01

    A landmark based localization with uncertainty analysis based on cameras and geo-referenced landmarks is presented in this paper. The system is developed to adapt different camera configurations for six degree-of-freedom pose estimation. Local bundle adjustment is applied for optimization and the geo-referenced landmarks are integrated to reduce the drift. In particular, the uncertainty analysis is taken into account. On the one hand, we estimate the uncertainties of poses to predict the precision of localization. On the other hand, uncertainty propagation is considered for matching, tracking and landmark registering. The proposed method is evaluated on both KITTI benchmark and the data acquired by a mobile mapping system. In our experiments, decimeter level accuracy can be reached.

  12. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    PubMed Central

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  13. Distribution of Localized States from Fine Analysis of Electron Spin Resonance Spectra in Organic Transistors

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo

    2010-02-01

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  14. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors.

    PubMed

    Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo

    2010-02-05

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  15. Contour-Based Corner Detection and Classification by Using Mean Projection Transform

    PubMed Central

    Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein

    2014-01-01

    Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images. PMID:24590354

  16. Contour-based corner detection and classification by using mean projection transform.

    PubMed

    Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein

    2014-02-28

    Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.

  17. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    PubMed

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A state space based approach to localizing single molecules from multi-emitter images.

    PubMed

    Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J

    2017-01-28

    Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.

  20. Learning Rotation-Invariant Local Binary Descriptor.

    PubMed

    Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie

    2017-08-01

    In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.

  1. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  2. A local-circulation model for Darrieus vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  3. Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.

    PubMed

    Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona

    2016-05-31

    Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.

  4. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  5. Structure based alignment and clustering of proteins (STRALCP)

    DOEpatents

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  6. Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.

    PubMed

    Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu

    2016-08-01

    The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.

  7. Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri; Vay, Jean-Luc

    2018-07-01

    The advent of massively parallel supercomputers, with their distributed-memory technology using many processing units, has favored the development of highly-scalable local low-order solvers at the expense of harder-to-scale global very high-order spectral methods. Indeed, FFT-based methods, which were very popular on shared memory computers, have been largely replaced by finite-difference (FD) methods for the solution of many problems, including plasmas simulations with electromagnetic Particle-In-Cell methods. For some problems, such as the modeling of so-called "plasma mirrors" for the generation of high-energy particles and ultra-short radiations, we have shown that the inaccuracies of standard FD-based PIC methods prevent the modeling on present supercomputers at sufficient accuracy. We demonstrate here that a new method, based on the use of local FFTs, enables ultrahigh-order accuracy with unprecedented scalability, and thus for the first time the accurate modeling of plasma mirrors in 3D.

  8. Reflection on Prosperity: Localization of Pedagogy in China

    ERIC Educational Resources Information Center

    Wu, Daishu

    2009-01-01

    In the past 20 years, China has seen an influx of foreign pedagogies that emphasize Western concepts such as dualistic opposition and linear development. As educational studies have become localized to China's environment, there has been a tendency to substitute transplanted ideas for methods based on local research. As such Chinese educational…

  9. An Extension of IRT-Based Equating to the Dichotomous Testlet Response Theory Model

    ERIC Educational Resources Information Center

    Tao, Wei; Cao, Yi

    2016-01-01

    Current procedures for equating number-correct scores using traditional item response theory (IRT) methods assume local independence. However, when tests are constructed using testlets, one concern is the violation of the local item independence assumption. The testlet response theory (TRT) model is one way to accommodate local item dependence.…

  10. A Core Journal Decision Model Based on Weighted Page Rank

    ERIC Educational Resources Information Center

    Wang, Hei-Chia; Chou, Ya-lin; Guo, Jiunn-Liang

    2011-01-01

    Purpose: The paper's aim is to propose a core journal decision method, called the local impact factor (LIF), which can evaluate the requirements of the local user community by combining both the access rate and the weighted impact factor, and by tracking citation information on the local users' articles. Design/methodology/approach: Many…

  11. Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.

    PubMed

    Xiao Yang; Jianjiang Feng; Jie Zhou

    2014-05-01

    Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.

  12. Plils: A Practical Indoor Localization System through Less Expensive Wireless Chips via Subregion Clustering

    PubMed Central

    Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina

    2018-01-01

    Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles. PMID:29329226

  13. Plils: A Practical Indoor Localization System through Less Expensive Wireless Chips via Subregion Clustering.

    PubMed

    Li, Xiaolong; Yang, Yifu; Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina

    2018-01-12

    Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles.

  14. Local structure-based image decomposition for feature extraction with applications to face recognition.

    PubMed

    Qian, Jianjun; Yang, Jian; Xu, Yong

    2013-09-01

    This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.

  15. Image Quality Assessment Based on Local Linear Information and Distortion-Specific Compensation.

    PubMed

    Wang, Hanli; Fu, Jie; Lin, Weisi; Hu, Sudeng; Kuo, C-C Jay; Zuo, Lingxuan

    2016-12-14

    Image Quality Assessment (IQA) is a fundamental yet constantly developing task for computer vision and image processing. Most IQA evaluation mechanisms are based on the pertinence of subjective and objective estimation. Each image distortion type has its own property correlated with human perception. However, this intrinsic property may not be fully exploited by existing IQA methods. In this paper, we make two main contributions to the IQA field. First, a novel IQA method is developed based on a local linear model that examines the distortion between the reference and the distorted images for better alignment with human visual experience. Second, a distortion-specific compensation strategy is proposed to offset the negative effect on IQA modeling caused by different image distortion types. These score offsets are learned from several known distortion types. Furthermore, for an image with an unknown distortion type, a Convolutional Neural Network (CNN) based method is proposed to compute the score offset automatically. Finally, an integrated IQA metric is proposed by combining the aforementioned two ideas. Extensive experiments are performed to verify the proposed IQA metric, which demonstrate that the local linear model is useful in human perception modeling, especially for individual image distortion, and the overall IQA method outperforms several state-of-the-art IQA approaches.

  16. Down syndrome detection from facial photographs using machine learning techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Rosenbaum, Kenneth; Sze, Raymond; Zand, Dina; Summar, Marshall; Linguraru, Marius George

    2013-02-01

    Down syndrome is the most commonly occurring chromosomal condition; one in every 691 babies in United States is born with it. Patients with Down syndrome have an increased risk for heart defects, respiratory and hearing problems and the early detection of the syndrome is fundamental for managing the disease. Clinically, facial appearance is an important indicator in diagnosing Down syndrome and it paves the way for computer-aided diagnosis based on facial image analysis. In this study, we propose a novel method to detect Down syndrome using photography for computer-assisted image-based facial dysmorphology. Geometric features based on facial anatomical landmarks, local texture features based on the Contourlet transform and local binary pattern are investigated to represent facial characteristics. Then a support vector machine classifier is used to discriminate normal and abnormal cases; accuracy, precision and recall are used to evaluate the method. The comparison among the geometric, local texture and combined features was performed using the leave-one-out validation. Our method achieved 97.92% accuracy with high precision and recall for the combined features; the detection results were higher than using only geometric or texture features. The promising results indicate that our method has the potential for automated assessment for Down syndrome from simple, noninvasive imaging data.

  17. Global and Local Features Based Classification for Bleed-Through Removal

    NASA Astrophysics Data System (ADS)

    Hu, Xiangyu; Lin, Hui; Li, Shutao; Sun, Bin

    2016-12-01

    The text on one side of historical documents often seeps through and appears on the other side, so the bleed-through is a common problem in historical document images. It makes the document images hard to read and the text difficult to recognize. To improve the image quality and readability, the bleed-through has to be removed. This paper proposes a global and local features extraction based bleed-through removal method. The Gaussian mixture model is used to get the global features of the images. Local features are extracted by the patch around each pixel. Then, the extreme learning machine classifier is utilized to classify the scanned images into the foreground text and the bleed-through component. Experimental results on real document image datasets show that the proposed method outperforms the state-of-the-art bleed-through removal methods and preserves the text strokes well.

  18. Scene-based nonuniformity correction using local constant statistics.

    PubMed

    Zhang, Chao; Zhao, Wenyi

    2008-06-01

    In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.

  19. Detection of entanglement with few local measurements

    NASA Astrophysics Data System (ADS)

    Gühne, O.; Hyllus, P.; Bruß, D.; Ekert, A.; Lewenstein, M.; Macchiavello, C.; Sanpera, A.

    2002-12-01

    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudomixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements.

  20. A low-complexity geometric bilateration method for localization in Wireless Sensor Networks and its comparison with Least-Squares methods.

    PubMed

    Cota-Ruiz, Juan; Rosiles, Jose-Gerardo; Sifuentes, Ernesto; Rivas-Perea, Pablo

    2012-01-01

    This research presents a distributed and formula-based bilateration algorithm that can be used to provide initial set of locations. In this scheme each node uses distance estimates to anchors to solve a set of circle-circle intersection (CCI) problems, solved through a purely geometric formulation. The resulting CCIs are processed to pick those that cluster together and then take the average to produce an initial node location. The algorithm is compared in terms of accuracy and computational complexity with a Least-Squares localization algorithm, based on the Levenberg-Marquardt methodology. Results in accuracy vs. computational performance show that the bilateration algorithm is competitive compared with well known optimized localization algorithms.

  1. District nursing workforce planning: a review of the methods.

    PubMed

    Reid, Bernie; Kane, Kay; Curran, Carol

    2008-11-01

    District nursing services in Northern Ireland face increasing demands and challenges which may be responded to by effective and efficient workforce planning and development. The aim of this paper is to critically analyse district nursing workforce planning and development methods, in an attempt to find a suitable method for Northern Ireland. A systematic analysis of the literature reveals four methods: professional judgement; population-based health needs; caseload analysis and dependency-acuity. Each method has strengths and weaknesses. Professional judgement offers a 'belt and braces' approach but lacks sensitivity to fluctuating patient numbers. Population-based health needs methods develop staffing algorithms that reflect deprivation and geographical spread, but are poorly understood by district nurses. Caseload analysis promotes equitable workloads but poorly performing district nursing localities may continue if benchmarking processes only consider local data. Dependency-acuity methods provide a means of equalizing and prioritizing workload but are prone to district nurses overstating factors in patient dependency or understating carers' capability. In summary a mixed method approach is advocated to evaluate and adjust the size and mix of district nursing teams using empirically determined patient dependency and activity-based variables based on the population's health needs.

  2. Visual and light scattering spectrometric method for the detection of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi

    2017-02-01

    A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.

  3. Synthesis in land change science: methodological patterns, challenges, and guidelines.

    PubMed

    Magliocca, Nicholas R; Rudel, Thomas K; Verburg, Peter H; McConnell, William J; Mertz, Ole; Gerstner, Katharina; Heinimann, Andreas; Ellis, Erle C

    Global and regional economic and environmental changes are increasingly influencing local land-use, livelihoods, and ecosystems. At the same time, cumulative local land changes are driving global and regional changes in biodiversity and the environment. To understand the causes and consequences of these changes, land change science (LCS) draws on a wide array synthetic and meta-study techniques to generate global and regional knowledge from local case studies of land change. Here, we review the characteristics and applications of synthesis methods in LCS and assess the current state of synthetic research based on a meta-analysis of synthesis studies from 1995 to 2012. Publication of synthesis research is accelerating, with a clear trend toward increasingly sophisticated and quantitative methods, including meta-analysis. Detailed trends in synthesis objectives, methods, and land change phenomena and world regions most commonly studied are presented. Significant challenges to successful synthesis research in LCS are also identified, including issues of interpretability and comparability across case-studies and the limits of and biases in the geographic coverage of case studies. Nevertheless, synthesis methods based on local case studies will remain essential for generating systematic global and regional understanding of local land change for the foreseeable future, and multiple opportunities exist to accelerate and enhance the reliability of synthetic LCS research in the future. Demand for global and regional knowledge generation will continue to grow to support adaptation and mitigation policies consistent with both the local realities and regional and global environmental and economic contexts of land change.

  4. Waves on Thin Plates: A New (Energy Based) Method on Localization

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Lengliné, Olivier; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    Noisy acoustic signal localization is a difficult problem having a wide range of application. We propose a new localization method applicable for thin plates which is based on energy amplitude attenuation and inversed source amplitude comparison. This inversion is tested on synthetic data using a direct model of Lamb wave propagation and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers, 1 - 26 kHz frequency range). We compare the performance of this technique with classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. The experimental setup consist of a glass / plexiglass plate having dimensions of 80 cm x 40 cm x 1 cm equipped with four accelerometers and an acquisition card. Signals are generated using a steel, glass or polyamide ball (having different sizes) quasi perpendicular hit (from a height of 2-3 cm) on the plate. Signals are captured by sensors placed on the plate on different locations. We measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, array geometry, signal to noise ratio and computational time. We show that this new technique, which is very versatile, works better than conventional techniques over a range of sampling rates 8 kHz - 1 MHz. It is possible to have a decent resolution (3cm mean error) using a very cheap equipment set. The numerical simulations allow us to track the contributions of different error sources in different methods. The effect of the reflections is also included in our simulation by using the imaginary sources outside the plate boundaries. This proposed method can easily be extended for applications in three dimensional environments, to monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  5. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    NASA Astrophysics Data System (ADS)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  6. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    DOE PAGES

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; ...

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less

  7. Virtual local target method for avoiding local minimum in potential field based robot navigation.

    PubMed

    Zou, Xi-Yong; Zhu, Jing

    2003-01-01

    A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.

  8. Shaping up the protein folding funnel by local interaction: lesson from a structure prediction study.

    PubMed

    Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji

    2006-02-28

    Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of "chimera proteins." In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape.

  9. Shaping up the protein folding funnel by local interaction: Lesson from a structure prediction study

    PubMed Central

    Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji

    2006-01-01

    Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of “chimera proteins.” In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape. PMID:16488978

  10. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons

    PubMed Central

    Cemgil, Ali Taylan

    2017-01-01

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375

  11. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.

    PubMed

    Daniş, F Serhan; Cemgil, Ali Taylan

    2017-10-29

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.

  12. Superpixel-based graph cuts for accurate stereo matching

    NASA Astrophysics Data System (ADS)

    Feng, Liting; Qin, Kaihuai

    2017-06-01

    Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.

  13. Exploring three faint source detections methods for aperture synthesis radio images

    NASA Astrophysics Data System (ADS)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  14. A Novel Iterative Scheme for the Very Fast and Accurate Solution of Non-LTE Radiative Transfer Problems

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.; Fabiani Bendicho, P.

    1995-12-01

    Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.

  15. Novel Hyperspectral Anomaly Detection Methods Based on Unsupervised Nearest Regularized Subspace

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Chen, Y.; Tan, K.; Du, P.

    2018-04-01

    Anomaly detection has been of great interest in hyperspectral imagery analysis. Most conventional anomaly detectors merely take advantage of spectral and spatial information within neighboring pixels. In this paper, two methods of Unsupervised Nearest Regularized Subspace-based with Outlier Removal Anomaly Detector (UNRSORAD) and Local Summation UNRSORAD (LSUNRSORAD) are proposed, which are based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. Using a dual window, an approximation of each testing pixel is a representation of surrounding data via a linear combination. The existence of outliers in the dual window will affect detection accuracy. Proposed detectors remove outlier pixels that are significantly different from majority of pixels. In order to make full use of various local spatial distributions information with the neighboring pixels of the pixels under test, we take the local summation dual-window sliding strategy. The residual image is constituted by subtracting the predicted background from the original hyperspectral imagery, and anomalies can be detected in the residual image. Experimental results show that the proposed methods have greatly improved the detection accuracy compared with other traditional detection method.

  16. Propagation of Gaussian wave packets in complex media and application to fracture characterization

    NASA Astrophysics Data System (ADS)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu

    2017-08-01

    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.

  17. A Laplacian based image filtering using switching noise detector.

    PubMed

    Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar

    2015-01-01

    This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.

  18. Three-dimensional Super Resolution Microscopy of F-actin Filaments by Interferometric PhotoActivated Localization Microscopy (iPALM).

    PubMed

    Wang, Yilin; Kanchanawong, Pakorn

    2016-12-01

    Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.

  19. Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones

    PubMed Central

    Zhou, Yan; Zheng, Xianwei; Chen, Ruizhi; Xiong, Hanjiang; Guo, Sheng

    2018-01-01

    Accurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map constraints and the error accumulates in open areas. In order to achieve reliable localization without map constraints, an improved image-based localization aided pedestrian trajectory estimation method is proposed in this paper. The image-based localization recovers the pose of the camera from the 2D-3D correspondences between the 2D image positions and the 3D points of the scene model, previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine the initial location and eliminate the accumulative error of PDR when an image is successfully registered. However, the image is not always registered since the traditional 2D-to-3D matching rejects more and more correct matches when the scene becomes large. We thus adopt a robust image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search. In the process, the visibility and co-visibility information is adopted to improve the efficiency when searching for the correspondences from both sides. The performance of the proposed method was evaluated through several experiments and the results demonstrate that it can offer highly acceptable pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need for dedicated infrastructures. PMID:29342123

  20. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less

  1. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles

    PubMed Central

    Meng, Xiaoli

    2017-01-01

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization. PMID:28926996

  2. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles.

    PubMed

    Meng, Xiaoli; Wang, Heng; Liu, Bingbing

    2017-09-18

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  3. Mobile robot self-localization system using single webcam distance measurement technology in indoor environments.

    PubMed

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-27

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.

  4. Mobile Robot Self-Localization System Using Single Webcam Distance Measurement Technology in Indoor Environments

    PubMed Central

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-01

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment. PMID:24473282

  5. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    PubMed Central

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.

    2017-01-01

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886

  6. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    NASA Astrophysics Data System (ADS)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less

  8. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  9. Robust feature matching via support-line voting and affine-invariant ratios

    NASA Astrophysics Data System (ADS)

    Li, Jiayuan; Hu, Qingwu; Ai, Mingyao; Zhong, Ruofei

    2017-10-01

    Robust image matching is crucial for many applications of remote sensing and photogrammetry, such as image fusion, image registration, and change detection. In this paper, we propose a robust feature matching method based on support-line voting and affine-invariant ratios. We first use popular feature matching algorithms, such as SIFT, to obtain a set of initial matches. A support-line descriptor based on multiple adaptive binning gradient histograms is subsequently applied in the support-line voting stage to filter outliers. In addition, we use affine-invariant ratios computed by a two-line structure to refine the matching results and estimate the local affine transformation. The local affine model is more robust to distortions caused by elevation differences than the global affine transformation, especially for high-resolution remote sensing images and UAV images. Thus, the proposed method is suitable for both rigid and non-rigid image matching problems. Finally, we extract as many high-precision correspondences as possible based on the local affine extension and build a grid-wise affine model for remote sensing image registration. We compare the proposed method with six state-of-the-art algorithms on several data sets and show that our method significantly outperforms the other methods. The proposed method achieves 94.46% average precision on 15 challenging remote sensing image pairs, while the second-best method, RANSAC, only achieves 70.3%. In addition, the number of detected correct matches of the proposed method is approximately four times the number of initial SIFT matches.

  10. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.

    PubMed

    Ledermüller, Katrin; Schütz, Martin

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  11. Nonparametric method for failures detection and localization in the actuating subsystem of aircraft control system

    NASA Astrophysics Data System (ADS)

    Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.

  12. Intelligent multi-spectral IR image segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert

    2017-05-01

    This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.

  13. Improvement of the analog forecasting method by using local thermodynamic data. Application to autumn precipitation in Catalonia

    NASA Astrophysics Data System (ADS)

    Gibergans-Báguena, J.; Llasat, M. C.

    2007-12-01

    The objective of this paper is to present the improvement of quantitative forecasting of daily rainfall in Catalonia (NE Spain) from an analogues technique, taking into account synoptic and local data. This method is based on an analogues sorting technique: meteorological situations similar to the current one, in terms of 700 and 1000 hPa geopotential fields at 00 UTC, complemented with the inclusion of some thermodynamic parameters extracted from an historical data file. Thermodynamic analysis acts as a highly discriminating feature for situations in which the synoptic situation fails to explain either atmospheric phenomena or rainfall distribution. This is the case in heavy rainfall situations, where the existence of instability and high water vapor content is essential. With the objective of including these vertical thermodynamic features, information provided by the Palma de Mallorca radiosounding (Spain) has been used. Previously, a selection of the most discriminating thermodynamic parameters for the daily rainfall was made, and then the analogues technique applied to them. Finally, three analog forecasting methods were applied for the quantitative daily rainfall forecasting in Catalonia. The first one is based on analogies from geopotential fields to synoptic scale; the second one is exclusively based on the search of similarity from local thermodynamic information and the third method combines the other two methods. The results show that this last method provides a substantial improvement of quantitative rainfall estimation.

  14. GF-3 SAR Image Despeckling Based on the Improved Non-Local Means Using Non-Subsampled Shearlet Transform

    NASA Astrophysics Data System (ADS)

    Shi, R.; Sun, Z.

    2018-04-01

    GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.

  15. Using Variable-Length Aligned Fragment Pairs and an Improved Transition Function for Flexible Protein Structure Alignment.

    PubMed

    Cao, Hu; Lu, Yonggang

    2017-01-01

    With the rapid growth of known protein 3D structures in number, how to efficiently compare protein structures becomes an essential and challenging problem in computational structural biology. At present, many protein structure alignment methods have been developed. Among all these methods, flexible structure alignment methods are shown to be superior to rigid structure alignment methods in identifying structure similarities between proteins, which have gone through conformational changes. It is also found that the methods based on aligned fragment pairs (AFPs) have a special advantage over other approaches in balancing global structure similarities and local structure similarities. Accordingly, we propose a new flexible protein structure alignment method based on variable-length AFPs. Compared with other methods, the proposed method possesses three main advantages. First, it is based on variable-length AFPs. The length of each AFP is separately determined to maximally represent a local similar structure fragment, which reduces the number of AFPs. Second, it uses local coordinate systems, which simplify the computation at each step of the expansion of AFPs during the AFP identification. Third, it decreases the number of twists by rewarding the situation where nonconsecutive AFPs share the same transformation in the alignment, which is realized by dynamic programming with an improved transition function. The experimental data show that compared with FlexProt, FATCAT, and FlexSnap, the proposed method can achieve comparable results by introducing fewer twists. Meanwhile, it can generate results similar to those of the FATCAT method in much less running time due to the reduced number of AFPs.

  16. Matched field localization based on CS-MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng

    2016-04-01

    The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.

  17. Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao

    2018-07-01

    Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.

  18. Multiscale tomography of buried magnetic structures: its use in the localization and characterization of archaeological structures

    NASA Astrophysics Data System (ADS)

    Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie

    2007-10-01

    We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.

  19. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  20. Improving the local wavenumber method by automatic DEXP transformation

    NASA Astrophysics Data System (ADS)

    Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni

    2014-12-01

    In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.

  1. Sustainability in Health care by Allocating Resources Effectively (SHARE) 11: reporting outcomes of an evidence-driven approach to disinvestment in a local healthcare setting.

    PubMed

    Harris, Claire; Allen, Kelly; Ramsey, Wayne; King, Richard; Green, Sally

    2018-05-30

    This is the final paper in a thematic series reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. The SHARE Program was established to explore a systematic, integrated, evidence-based organisation-wide approach to disinvestment in a large Australian health service network. This paper summarises the findings, discusses the contribution of the SHARE Program to the body of knowledge and understanding of disinvestment in the local healthcare setting, and considers implications for policy, practice and research. The SHARE program was conducted in three phases. Phase One was undertaken to understand concepts and practices related to disinvestment and the implications for a local health service and, based on this information, to identify potential settings and methods for decision-making about disinvestment. The aim of Phase Two was to implement and evaluate the proposed methods to determine which were sustainable, effective and appropriate in a local health service. A review of the current literature incorporating the SHARE findings was conducted in Phase Three to contribute to the understanding of systematic approaches to disinvestment in the local healthcare context. SHARE differed from many other published examples of disinvestment in several ways: by seeking to identify and implement disinvestment opportunities within organisational infrastructure rather than as standalone projects; considering disinvestment in the context of all resource allocation decisions rather than in isolation; including allocation of non-monetary resources as well as financial decisions; and focusing on effective use of limited resources to optimise healthcare outcomes. The SHARE findings provide a rich source of new information about local health service decision-making, in a level of detail not previously reported, to inform others in similar situations. Multiple innovations related to disinvestment were found to be acceptable and feasible in the local setting. Factors influencing decision-making, implementation processes and final outcomes were identified; and methods for further exploration, or avoidance, in attempting disinvestment in this context are proposed based on these findings. The settings, frameworks, models, methods and tools arising from the SHARE findings have potential to enhance health care and patient outcomes.

  2. Ultrasound coefficient of nonlinearity imaging.

    PubMed

    van Sloun, Ruud; Demi, Libertario; Shan, Caifeng; Mischi, Massimo

    2015-07-01

    Imaging the acoustical coefficient of nonlinearity, β, is of interest in several healthcare interventional applications. It is an important feature that can be used for discriminating tissues. In this paper, we propose a nonlinearity characterization method with the goal of locally estimating the coefficient of nonlinearity. The proposed method is based on a 1-D solution of the nonlinear lossy Westerfelt equation, thereby deriving a local relation between β and the pressure wave field. Based on several assumptions, a β imaging method is then presented that is based on the ratio between the harmonic and fundamental fields, thereby reducing the effect of spatial amplitude variations of the speckle pattern. By testing the method on simulated ultrasound pressure fields and an in vitro B-mode ultrasound acquisition, we show that the designed algorithm is able to estimate the coefficient of nonlinearity, and that the tissue types of interest are well discriminable. The proposed imaging method provides a new approach to β estimation, not requiring a special measurement setup or transducer, that seems particularly promising for in vivo imaging.

  3. Global positioning method based on polarized light compass system

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong

    2018-05-01

    This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.

  4. Methods of localization of Lamb wave sources on thin plates

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2015-04-01

    Signal localization techniques are ubiquitous in both industry and academic communities. We propose a new localization method on plates which is based on energy amplitude attenuation and inverted source amplitude comparison. This inversion is tested on synthetic data using Lamb wave propagation direct model and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers (1-26 kHz frequency range)). We compare the performance of the technique to the classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. Furthermore, we measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, geometry, Signal to Noise Ratio, and we show that this very versatile technique works better than classical ones over the sampling rates 100kHz - 1MHz. Experimental phase consists of a glass plate having dimensions of 80cmx40cm with a thickness of 1cm. Generated signals due to a wooden hammer hit or a steel ball hit are captured by sensors placed on the plate on different locations with the mentioned sensors. Numerical simulations are done using dispersive far field approximation of plate waves. Signals are generated using a hertzian loading over the plate. Using imaginary sources outside the plate boundaries the effect of reflections is also included. This proposed method, can be modified to be implemented on 3d environments, monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  5. Based on the CSI regional segmentation indoor localization algorithm

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Lin, Wei; Lan, Jingwei

    2017-08-01

    To solve the problem of high cost and low accuracy, the method of Channel State Information (CSI) regional segmentation are proposed in the indoor positioning. Because Channel State Information (CSI) stability, and effective against multipath effect, we used the Channel State Information (CSI) to segment location area. The method Acquisition CSI the influence of different link to pinpoint the location of the area. Then the method can improve the accuracy of positioning, and reduce the cost of the fingerprint localization algorithm.

  6. Generalized Preconditioned Locally Harmonic Residual Eigensolver (GPLHR) v0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VECHARYNSKI, EUGENE; YANG, CHAO

    The software contains a MATLAB implementation of the Generalized Preconditioned Locally Harmonic Residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen- or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework.

  7. Glaucoma detection based on local binary patterns in fundus photographs

    NASA Astrophysics Data System (ADS)

    Alsheh Ali, Maya; Hurtut, Thomas; Faucon, Timothée.; Cheriet, Farida

    2014-03-01

    Glaucoma, a group of diseases that lead to optic neuropathy, is one of the most common reasons for blindness worldwide. Glaucoma rarely causes symptoms until the later stages of the disease. Early detection of glaucoma is very important to prevent visual loss since optic nerve damages cannot be reversed. To detect glaucoma, purely data-driven techniques have advantages, especially when the disease characteristics are complex and when precise image-based measurements are difficult to obtain. In this paper, we present our preliminary study for glaucoma detection using an automatic method based on local texture features extracted from fundus photographs. It implements the completed modeling of Local Binary Patterns to capture representative texture features from the whole image. A local region is represented by three operators: its central pixel (LBPC) and its local differences as two complementary components, the sign (which is the classical LBP) and the magnitude (LBPM). An image texture is finally described by both the distribution of LBP and the joint-distribution of LBPM and LBPC. Our images are then classified using a nearest-neighbor method with a leave-one-out validation strategy. On a sample set of 41 fundus images (13 glaucomatous, 28 non-glaucomatous), our method achieves 95:1% success rate with a specificity of 92:3% and a sensitivity of 96:4%. This study proposes a reproducible glaucoma detection process that could be used in a low-priced medical screening, thus avoiding the inter-experts variability issue.

  8. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  9. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  10. Hybridization of decomposition and local search for multiobjective optimization.

    PubMed

    Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto

    2014-10-01

    Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.

  11. Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory

    PubMed Central

    Zhang, Lichuan; Wang, Tonghao; Xu, Demin

    2017-01-01

    Cooperative localization (CL) is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter, aiming to enhance the global localization accuracy of the follower. In the proposed framework, the follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the leaders acquire the followers’ observations, including both measurements and clutter. Then, the PHD filters are utilized on the leaders and the results are communicated to the followers. The followers then perform weighted summation based on all received messages and obtain a final positioning result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a precise knowledge of its position. PMID:28991191

  12. An efficient and near linear scaling pair natural orbital based local coupled cluster method.

    PubMed

    Riplinger, Christoph; Neese, Frank

    2013-01-21

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 10(5)-10(6) relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation is performed on the basis of the three original thresholds. There are no real-space cutoffs. Single excitations are truncated using singles-specific natural orbitals. Pairs are prescreened according to a multipole expansion of a pair correlation energy estimate based on local orbital specific virtual orbitals (LOSVs). Like its LPNO-CCSD predecessor, the method is completely of black box character and does not require any user adjustments. It is shown here that DLPNO-CCSD is as accurate as LPNO-CCSD while leading to computational savings exceeding one order of magnitude for larger systems. The largest calculations reported here featured >8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

  13. A New Approach of evaluating the damage in simply-supported reinforced concrete beam by Local mean decomposition (LMD)

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei

    2017-08-01

    How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.

  14. Modeling the electrostatic field localization in nanostructures based on DLC films using the tunneling microscopy methods

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.

    2018-04-01

    A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.

  15. Prediction of global and local model quality in CASP8 using the ModFOLD server.

    PubMed

    McGuffin, Liam J

    2009-01-01

    The development of effective methods for predicting the quality of three-dimensional (3D) models is fundamentally important for the success of tertiary structure (TS) prediction strategies. Since CASP7, the Quality Assessment (QA) category has existed to gauge the ability of various model quality assessment programs (MQAPs) at predicting the relative quality of individual 3D models. For the CASP8 experiment, automated predictions were submitted in the QA category using two methods from the ModFOLD server-ModFOLD version 1.1 and ModFOLDclust. ModFOLD version 1.1 is a single-model machine learning based method, which was used for automated predictions of global model quality (QMODE1). ModFOLDclust is a simple clustering based method, which was used for automated predictions of both global and local quality (QMODE2). In addition, manual predictions of model quality were made using ModFOLD version 2.0--an experimental method that combines the scores from ModFOLDclust and ModFOLD v1.1. Predictions from the ModFOLDclust method were the most successful of the three in terms of the global model quality, whilst the ModFOLD v1.1 method was comparable in performance to other single-model based methods. In addition, the ModFOLDclust method performed well at predicting the per-residue, or local, model quality scores. Predictions of the per-residue errors in our own 3D models, selected using the ModFOLD v2.0 method, were also the most accurate compared with those from other methods. All of the MQAPs described are publicly accessible via the ModFOLD server at: http://www.reading.ac.uk/bioinf/ModFOLD/. The methods are also freely available to download from: http://www.reading.ac.uk/bioinf/downloads/. Copyright 2009 Wiley-Liss, Inc.

  16. An MRI denoising method using image data redundancy and local SNR estimation.

    PubMed

    Golshan, Hosein M; Hasanzadeh, Reza P R; Yousefzadeh, Shahrokh C

    2013-09-01

    This paper presents an LMMSE-based method for the three-dimensional (3D) denoising of MR images assuming a Rician noise model. Conventionally, the LMMSE method estimates the noise-less signal values using the observed MR data samples within local neighborhoods. This is not an efficient procedure to deal with this issue while the 3D MR data intrinsically includes many similar samples that can be used to improve the estimation results. To overcome this problem, we model MR data as random fields and establish a principled way which is capable of choosing the samples not only from a local neighborhood but also from a large portion of the given data. To follow the similar samples within the MR data, an effective similarity measure based on the local statistical moments of images is presented. The parameters of the proposed filter are automatically chosen from the estimated local signal-to-noise ratio. To further enhance the denoising performance, a recursive version of the introduced approach is also addressed. The proposed filter is compared with related state-of-the-art filters using both synthetic and real MR datasets. The experimental results demonstrate the superior performance of our proposal in removing the noise and preserving the anatomical structures of MR images. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Time-frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Zhiwen; Miao, Qiang; Zhang, Xin

    2018-03-01

    A time-frequency analysis method based on ensemble local mean decomposition (ELMD) and fast kurtogram (FK) is proposed for rotating machinery fault diagnosis. Local mean decomposition (LMD), as an adaptive non-stationary and nonlinear signal processing method, provides the capability to decompose multicomponent modulation signal into a series of demodulated mono-components. However, the occurring mode mixing is a serious drawback. To alleviate this, ELMD based on noise-assisted method was developed. Still, the existing environmental noise in the raw signal remains in corresponding PF with the component of interest. FK has good performance in impulse detection while strong environmental noise exists. But it is susceptible to non-Gaussian noise. The proposed method combines the merits of ELMD and FK to detect the fault for rotating machinery. Primarily, by applying ELMD the raw signal is decomposed into a set of product functions (PFs). Then, the PF which mostly characterizes fault information is selected according to kurtosis index. Finally, the selected PF signal is further filtered by an optimal band-pass filter based on FK to extract impulse signal. Fault identification can be deduced by the appearance of fault characteristic frequencies in the squared envelope spectrum of the filtered signal. The advantages of ELMD over LMD and EEMD are illustrated in the simulation analyses. Furthermore, the efficiency of the proposed method in fault diagnosis for rotating machinery is demonstrated on gearbox case and rolling bearing case analyses.

  18. Automatic segmentation of solitary pulmonary nodules based on local intensity structure analysis and 3D neighborhood features in 3D chest CT images

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a solitary pulmonary nodule (SPN) segmentation method based on local intensity structure analysis and neighborhood feature analysis in chest CT images. Automated segmentation of SPNs is desirable for a chest computer-aided detection/diagnosis (CAS) system since a SPN may indicate early stage of lung cancer. Due to the similar intensities of SPNs and other chest structures such as blood vessels, many false positives (FPs) are generated by nodule detection methods. To reduce such FPs, we introduce two features that analyze the relation between each segmented nodule candidate and it neighborhood region. The proposed method utilizes a blob-like structure enhancement (BSE) filter based on Hessian analysis to augment the blob-like structures as initial nodule candidates. Then a fine segmentation is performed to segment much more accurate region of each nodule candidate. FP reduction is mainly addressed by investigating two neighborhood features based on volume ratio and eigenvector of Hessian that are calculates from the neighborhood region of each nodule candidate. We evaluated the proposed method by using 40 chest CT images, include 20 standard-dose CT images that we randomly chosen from a local database and 20 low-dose CT images that were randomly chosen from a public database: LIDC. The experimental results revealed that the average TP rate of proposed method was 93.6% with 12.3 FPs/case.

  19. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    PubMed

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  20. Enhanced Methods for Local Ancestry Assignment in Sequenced Admixed Individuals

    PubMed Central

    Brown, Robert; Pasaniuc, Bogdan

    2014-01-01

    Inferring the ancestry at each locus in the genome of recently admixed individuals (e.g., Latino Americans) plays a major role in medical and population genetic inferences, ranging from finding disease-risk loci, to inferring recombination rates, to mapping missing contigs in the human genome. Although many methods for local ancestry inference have been proposed, most are designed for use with genotyping arrays and fail to make use of the full spectrum of data available from sequencing. In addition, current haplotype-based approaches are very computationally demanding, requiring large computational time for moderately large sample sizes. Here we present new methods for local ancestry inference that leverage continent-specific variants (CSVs) to attain increased performance over existing approaches in sequenced admixed genomes. A key feature of our approach is that it incorporates the admixed genomes themselves jointly with public datasets, such as 1000 Genomes, to improve the accuracy of CSV calling. We use simulations to show that our approach attains accuracy similar to widely used computationally intensive haplotype-based approaches with large decreases in runtime. Most importantly, we show that our method recovers comparable local ancestries, as the 1000 Genomes consensus local ancestry calls in the real admixed individuals from the 1000 Genomes Project. We extend our approach to account for low-coverage sequencing and show that accurate local ancestry inference can be attained at low sequencing coverage. Finally, we generalize CSVs to sub-continental population-specific variants (sCSVs) and show that in some cases it is possible to determine the sub-continental ancestry for short chromosomal segments on the basis of sCSVs. PMID:24743331

  1. Robust digital image watermarking using distortion-compensated dither modulation

    NASA Astrophysics Data System (ADS)

    Li, Mianjie; Yuan, Xiaochen

    2018-04-01

    In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.

  2. Local Higher-Order Graph Clustering

    PubMed Central

    Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.

    2018-01-01

    Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258

  3. Comparison of estimation methods for creating small area rates of acute myocardial infarction among Medicare beneficiaries in California.

    PubMed

    Yasaitis, Laura C; Arcaya, Mariana C; Subramanian, S V

    2015-09-01

    Creating local population health measures from administrative data would be useful for health policy and public health monitoring purposes. While a wide range of options--from simple spatial smoothers to model-based methods--for estimating such rates exists, there are relatively few side-by-side comparisons, especially not with real-world data. In this paper, we compare methods for creating local estimates of acute myocardial infarction rates from Medicare claims data. A Bayesian Monte Carlo Markov Chain estimator that incorporated spatial and local random effects performed best, followed by a method-of-moments spatial Empirical Bayes estimator. As the former is more complicated and time-consuming, spatial linear Empirical Bayes methods may represent a good alternative for non-specialist investigators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. BridgeRank: A novel fast centrality measure based on local structure of the network

    NASA Astrophysics Data System (ADS)

    Salavati, Chiman; Abdollahpouri, Alireza; Manbari, Zhaleh

    2018-04-01

    Ranking nodes in complex networks have become an important task in many application domains. In a complex network, influential nodes are those that have the most spreading ability. Thus, identifying influential nodes based on their spreading ability is a fundamental task in different applications such as viral marketing. One of the most important centrality measures to ranking nodes is closeness centrality which is efficient but suffers from high computational complexity O(n3) . This paper tries to improve closeness centrality by utilizing the local structure of nodes and presents a new ranking algorithm, called BridgeRank centrality. The proposed method computes local centrality value for each node. For this purpose, at first, communities are detected and the relationship between communities is completely ignored. Then, by applying a centrality in each community, only one best critical node from each community is extracted. Finally, the nodes are ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. We have also modified the proposed method by weighting the original BridgeRank and selecting several nodes from each community based on the density of that community. Our method can find the best nodes with high spread ability and low time complexity, which make it applicable to large-scale networks. To evaluate the performance of the proposed method, we use the SIR diffusion model. Finally, experiments on real and artificial networks show that our method is able to identify influential nodes so efficiently, and achieves better performance compared to other recent methods.

  5. Hunting for Hydrothermal Vents at the Local-Scale Using AUV's and Machine-Learning Classification in the Earth's Oceans

    NASA Astrophysics Data System (ADS)

    White, S. M.

    2018-05-01

    New AUV-based mapping technology coupled with machine-learning methods for detecting individual vents and vent fields at the local-scale raise the possibility of understanding the geologic controls on hydrothermal venting.

  6. Surgical Removal of Neglected Soft Tissue Foreign Bodies by Needle-Guided Technique

    PubMed Central

    Ebrahimi, Ali; Radmanesh, Mohammad; Rabiei, Sohrab; kavoussi, Hossein

    2013-01-01

    Introduction: The phenomenon of neglected foreign bodies is a significant cause of morbidity in soft tissue injuries and may present to dermatologists as delayed wound healing, localized cellulitis and inflammation, abscess formation, or foreign body sensation. Localization and removal of neglected soft tissue foreign bodies (STFBs) is complex due to possible inflammation, indurations, granulated tissue, and fibrotic scar. This paper describes a simple method for the quick localization and (surgical) removal of neglected STFBs using two 23-gauge needles without ultrasonographic or fluoroscopic guidance. Materials and Methods: A technique based on the use of two 23-gauge needles was used in 41 neglected STFBs in order to achieve proper localization and fixation of foreign bodies during surgery. Results: Surgical removal was successful in 38 of 41 neglected STFBs (ranging from 2–13mm in diameter). Conclusion: The cross-needle-guided technique is an office-based procedure that allows the successful surgical removal of STFBs using minimal soft tissue exploration and dissection via proper localization, fixation, and propulsion of the foreign body toward the surface of the skin. PMID:24303416

  7. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  8. A Method of Relating General Circulation Model Simulated Climate to the Observed Local Climate. Part I: Seasonal Statistics.

    NASA Astrophysics Data System (ADS)

    Karl, Thomas R.; Wang, Wei-Chyung; Schlesinger, Michael E.; Knight, Richard W.; Portman, David

    1990-10-01

    Important surface observations such as the daily maximum and minimum temperature, daily precipitation, and cloud ceilings often have localized characteristics that are difficult to reproduce with the current resolution and the physical parameterizations in state-of-the-art General Circulation climate Models (GCMs). Many of the difficulties can be partially attributed to mismatches in scale, local topography. regional geography and boundary conditions between models and surface-based observations. Here, we present a method, called climatological projection by model statistics (CPMS), to relate GCM grid-point flee-atmosphere statistics, the predictors, to these important local surface observations. The method can be viewed as a generalization of the model output statistics (MOS) and perfect prog (PP) procedures used in numerical weather prediction (NWP) models. It consists of the application of three statistical methods: 1) principle component analysis (FICA), 2) canonical correlation, and 3) inflated regression analysis. The PCA reduces the redundancy of the predictors The canonical correlation is used to develop simultaneous relationships between linear combinations of the predictors, the canonical variables, and the surface-based observations. Finally, inflated regression is used to relate the important canonical variables to each of the surface-based observed variables.We demonstrate that even an early version of the Oregon State University two-level atmospheric GCM (with prescribed sea surface temperature) produces free-atmosphere statistics than can, when standardized using the model's internal means and variances (the MOS-like version of CPMS), closely approximate the observed local climate. When the model data are standardized by the observed free-atmosphere means and variances (the PP version of CPMS), however, the model does not reproduce the observed surface climate as well. Our results indicate that in the MOS-like version of CPMS the differences between the output of a ten-year GCM control run and the surface-based observations are often smaller than the differences between the observations of two ten-year periods. Such positive results suggest that GCMs may already contain important climatological information that can be used to infer the local climate.

  9. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    PubMed

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.

  10. Moving Sound Source Localization Based on Sequential Subspace Estimation in Actual Room Environments

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Suyama, Kenji

    This paper presents a novel method for moving sound source localization and its performance evaluation in actual room environments. The method is based on the MUSIC (MUltiple SIgnal Classification) which is one of the most high resolution localization methods. When using the MUSIC, a computation of eigenvectors of correlation matrix is required for the estimation. It needs often a high computational costs. Especially, in the situation of moving source, it becomes a crucial drawback because the estimation must be conducted at every the observation time. Moreover, since the correlation matrix varies its characteristics due to the spatial-temporal non-stationarity, the matrix have to be estimated using only a few observed samples. It makes the estimation accuracy degraded. In this paper, the PAST (Projection Approximation Subspace Tracking) is applied for sequentially estimating the eigenvectors spanning the subspace. In the PAST, the eigen-decomposition is not required, and therefore it is possible to reduce the computational costs. Several experimental results in the actual room environments are shown to present the superior performance of the proposed method.

  11. Ensemble Sparse Classification of Alzheimer’s Disease

    PubMed Central

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2012-01-01

    The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352

  12. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  13. Age as a Determinant to Select an Anesthesia Method for Tympanostomy Tube Insertion in a Pediatric Population

    PubMed Central

    Jung, Kihwan; Kim, Hojong

    2015-01-01

    Background and Objectives To evaluate the relationship between age and anesthesia method used for tympanostomy tube insertion (TTI) and to provide evidence to guide the selection of an appropriate anesthesia method in children. Subjects and Methods We performed a retrospective review of children under 15 years of age who underwent tympanostomy tube insertion (n=159) or myringotomy alone (n=175) under local or general anesthesia by a single surgeon at a university-based, secondary care referral hospital. Epidermiologic data between local and general anesthesia groups as well as between TTI and myringotomy were analyzed. Medical costs were compared between local and general anesthesia groups. Results Children who received local anesthesia were significantly older than those who received general anesthesia. Unilateral tympanostomy tube insertion was performed more frequently under local anesthesia than bilateral. Logistic regression modeling showed that local anesthesia was more frequently applied in older children (odds ratio=1.041) and for unilateral tympanostomy tube insertion (odds ratio=8.990). The cut-off value of age for local anesthesia was roughly 5 years. Conclusions In a pediatric population at a single medical center, age and whether unilateral or bilateral procedures were required were important factors in selecting an anesthesia method for tympanostomy tube insertion. Our findings suggest that local anesthesia can be preferentially considered for children 5 years of age or older, especially in those with unilateral otitis media with effusion. PMID:26185791

  14. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  15. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  16. An off-lattice, self-learning kinetic Monte Carlo method using local environments.

    PubMed

    Konwar, Dhrubajit; Bhute, Vijesh J; Chatterjee, Abhijit

    2011-11-07

    We present a method called local environment kinetic Monte Carlo (LE-KMC) method for efficiently performing off-lattice, self-learning kinetic Monte Carlo (KMC) simulations of activated processes in material systems. Like other off-lattice KMC schemes, new atomic processes can be found on-the-fly in LE-KMC. However, a unique feature of LE-KMC is that as long as the assumption that all processes and rates depend only on the local environment is satisfied, LE-KMC provides a general algorithm for (i) unambiguously describing a process in terms of its local atomic environments, (ii) storing new processes and environments in a catalog for later use with standard KMC, and (iii) updating the system based on the local information once a process has been selected for a KMC move. Search, classification, storage and retrieval steps needed while employing local environments and processes in the LE-KMC method are discussed. The advantages and computational cost of LE-KMC are discussed. We assess the performance of the LE-KMC algorithm by considering test systems involving diffusion in a submonolayer Ag and Ag-Cu alloy films on Ag(001) surface.

  17. General rigid motion correction for computed tomography imaging based on locally linear embedding

    NASA Astrophysics Data System (ADS)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  18. Comparison of Methods for Estimating Prevalence of Chronic Diseases and Health Behaviors for Small Geographic Areas: Boston Validation Study, 2013

    PubMed Central

    Holt, James B.; Zhang, Xingyou; Lu, Hua; Shah, Snehal N.; Dooley, Daniel P.; Matthews, Kevin A.; Croft, Janet B.

    2017-01-01

    Introduction Local health authorities need small-area estimates for prevalence of chronic diseases and health behaviors for multiple purposes. We generated city-level and census-tract–level prevalence estimates of 27 measures for the 500 largest US cities. Methods To validate the methodology, we constructed multilevel logistic regressions to predict 10 selected health indicators among adults aged 18 years or older by using 2013 Behavioral Risk Factor Surveillance System (BRFSS) data; we applied their predicted probabilities to census population data to generate city-level, neighborhood-level, and zip-code–level estimates for the city of Boston, Massachusetts. Results By comparing the predicted estimates with their corresponding direct estimates from a locally administered survey (Boston BRFSS 2010 and 2013), we found that our model-based estimates for most of the selected health indicators at the city level were close to the direct estimates from the local survey. We also found strong correlation between the model-based estimates and direct survey estimates at neighborhood and zip code levels for most indicators. Conclusion Findings suggest that our model-based estimates are reliable and valid at the city level for certain health outcomes. Local health authorities can use the neighborhood-level estimates if high quality local health survey data are not otherwise available. PMID:29049020

  19. A coverage and slicing dependencies analysis for seeking software security defects.

    PubMed

    He, Hui; Zhang, Dongyan; Liu, Min; Zhang, Weizhe; Gao, Dongmin

    2014-01-01

    Software security defects have a serious impact on the software quality and reliability. It is a major hidden danger for the operation of a system that a software system has some security flaws. When the scale of the software increases, its vulnerability has becoming much more difficult to find out. Once these vulnerabilities are exploited, it may lead to great loss. In this situation, the concept of Software Assurance is carried out by some experts. And the automated fault localization technique is a part of the research of Software Assurance. Currently, automated fault localization method includes coverage based fault localization (CBFL) and program slicing. Both of the methods have their own location advantages and defects. In this paper, we have put forward a new method, named Reverse Data Dependence Analysis Model, which integrates the two methods by analyzing the program structure. On this basis, we finally proposed a new automated fault localization method. This method not only is automation lossless but also changes the basic location unit into single sentence, which makes the location effect more accurate. Through several experiments, we proved that our method is more effective. Furthermore, we analyzed the effectiveness among these existing methods and different faults.

  20. The influence of local policy on contraceptive provision and use in three locales in the Philippines.

    PubMed

    Lee, Romeo B; Nacionales, Lourdes P; Pedroso, Luis

    2009-11-01

    The Philippines has a family planning programme, but modern contraceptive prevalence has been moderate. Among low-income women, fewer are using modern methods, resulting in a fertility rate among them of 5.9. This limited use is due to lack of consistent national and local government support for modern methods because of religious opposition. Following devolution of responsibility for health services to local government in 1991, three local leaders - in Laguna Province and the cities of Manila and Puerto Princesa - passed anti-modern contraceptive policies. This paper analyses the status and impact of these policies, using information from interviews with local government officials and family planning officers, published data and studies, and accounts in national newspapers. In Laguna Province and Puerto Princesa, the policies were ineffectually implemented or short-lived. The strictly-enforced Manila law, however, has severely disrupted the city's provision of free contraception to and method use by low-income women. The great majority of Filipinos (89%) approve of modern contraceptives. There is an urgent need to improve low-income women's access to modern contraceptives through itinerant and community-based distribution, especially in poor neighbourhoods in Manila, but also throughout the country. Strategies for increasing local government support for and provision of modern methods are also needed.

  1. 3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications

    PubMed Central

    Yim, Sehyuk; Sitti, Metin

    2014-01-01

    In this paper, we present a 3-D localization method for a magnetically actuated soft capsule endoscope (MASCE). The proposed localization scheme consists of three steps. First, MASCE is oriented to be coaxially aligned with an external permanent magnet (EPM). Second, MASCE is axially contracted by the enhanced magnetic attraction of the approaching EPM. Third, MASCE recovers its initial shape by the retracting EPM as the magnetic attraction weakens. The combination of the estimated direction in the coaxial alignment step and the estimated distance in the shape deformation (recovery) step provides the position of MASCE in 3-D. It is experimentally shown that the proposed localization method could provide 2.0–3.7 mm of distance error in 3-D. This study also introduces two new applications of the proposed localization method. First, based on the trace of contact points between the MASCE and the surface of the stomach, the 3-D geometrical model of a synthetic stomach was reconstructed. Next, the relative tissue compliance at each local contact point in the stomach was characterized by measuring the local tissue deformation at each point due to the preloading force. Finally, the characterized relative tissue compliance parameter was mapped onto the geometrical model of the stomach toward future use in disease diagnosis. PMID:25383064

  2. Context-Aware Local Binary Feature Learning for Face Recognition.

    PubMed

    Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie

    2018-05-01

    In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.

  3. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques

    NASA Astrophysics Data System (ADS)

    Izmaylov, Artur F.; Staroverov, Viktor N.; Scuseria, Gustavo E.; Davidson, Ernest R.; Stoltz, Gabriel; Cancès, Eric

    2007-02-01

    We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.

  4. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model

    PubMed Central

    Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.

    2017-01-01

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors. PMID:28287120

  5. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model.

    PubMed

    Ware, Matthew J; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A; Corr, Stuart J

    2017-03-13

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.

  6. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.

    2017-03-01

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.

  7. Application of a Subspace-Based Fault Detection Method to Industrial Structures

    NASA Astrophysics Data System (ADS)

    Mevel, L.; Hermans, L.; van der Auweraer, H.

    1999-11-01

    Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.

  8. Feasibility study using a Ni-Ti stent and electronic portal imaging to localize the prostate during radiotherapy.

    PubMed

    Carl, Jesper; Lund, Bente; Larsen, Erik Hoejkjaer; Nielsen, Jane

    2006-02-01

    A new method for localization of the prostate during external beam radiotherapy is presented. The method is based on insertion of a thermo-expandable Ni-Ti stent. The stent is originally developed for treatment of bladder outlet obstruction caused by benign hyperplasia. The radiological properties of the stent are used for precise prostate localization during treatment using electronic portal images. Patients referred for intended curative radiotherapy and having a length of their prostatic urethra in the range from 25 to 65 mm were included. Pairs of isocentric orthogonal portal images were used to determine the 3D position at eight different treatment sessions for each patient. Fourteen patients were enrolled in the study. The data obtained demonstrated that the stent position was representative of the prostate location. The stent may also improve delineation of the prostate GTV, and prevent obstruction of bladder outlet during treatment. Precision in localization of the stent was less than 1 mm. Random errors in stent position were left-right 1.6 mm, cranial-caudal 2.2 mm and anterior-posterior 3.2 mm. In four of 14 patients a dislocation of the stent to the bladder occurred. Dislocation only occurred in patients with length of prostatic urethra less than 40 mm. A new method for radiological high precision localization of the prostate during radiotherapy is presented. The method is based on insertion of a standard Ni-Ti thermo-expandable stent, designed for treatment of benign prostate hyperplasia.

  9. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  10. A novel multi-segment path analysis based on a heterogeneous velocity model for the localization of acoustic emission sources in complex propagation media.

    PubMed

    Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas

    2017-02-01

    In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study of motion of optimal bodies in the soil of grid method

    NASA Astrophysics Data System (ADS)

    Kotov, V. L.; Linnik, E. Yu

    2016-11-01

    The paper presents a method of calculating the optimum forms in axisymmetric numerical method based on the Godunov and models elastoplastic soil vedium Grigoryan. Solved two problems in a certain definition of generetrix rotation of the body of a given length and radius of the base, having a minimum impedance and maximum penetration depth. Numerical calculations are carried out by a modified method of local variations, which allows to significantly reduce the number of operations at different representations of generetrix. Significantly simplify the process of searching for optimal body allows the use of a quadratic model of local interaction for preliminary assessments. It is noted the qualitative similarity of the process of convergence of numerical calculations for solving the optimization problem based on local interaction model and within the of continuum mechanics. A comparison of the optimal bodies with absolutely optimal bodies possessing the minimum resistance of penetration below which is impossible to achieve under given constraints on the geometry. It is shown that the conical striker with a variable vertex angle, which equal to the angle of the solution is absolutely optimal body of minimum resistance of penetration for each value of the velocity of implementation will have a final depth of penetration is only 12% more than the traditional body absolutely optimal maximum depth penetration.

  12. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    PubMed

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  13. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections

    PubMed Central

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761

  14. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  15. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  16. Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context

    NASA Astrophysics Data System (ADS)

    Sahoo, Madhumita; Sahoo, Satiprasad; Dhar, Anirban; Pradhan, Biswajeet

    2016-10-01

    Groundwater vulnerability assessment has been an accepted practice to identify the zones with relatively increased potential for groundwater contamination. DRASTIC is the most popular secondary information-based vulnerability assessment approach. Original DRASTIC approach considers relative importance of features/sub-features based on subjective weighting/rating values. However variability of features at a smaller scale is not reflected in this subjective vulnerability assessment process. In contrast to the subjective approach, the objective weighting-based methods provide flexibility in weight assignment depending on the variation of the local system. However experts' opinion is not directly considered in the objective weighting-based methods. Thus effectiveness of both subjective and objective weighting-based approaches needs to be evaluated. In the present study, three methods - Entropy information method (E-DRASTIC), Fuzzy pattern recognition method (F-DRASTIC) and Single parameter sensitivity analysis (SA-DRASTIC), were used to modify the weights of the original DRASTIC features to include local variability. Moreover, a grey incidence analysis was used to evaluate the relative performance of subjective (DRASTIC and SA-DRASTIC) and objective (E-DRASTIC and F-DRASTIC) weighting-based methods. The performance of the developed methodology was tested in an urban area of Kanpur City, India. Relative performance of the subjective and objective methods varies with the choice of water quality parameters. This methodology can be applied without/with suitable modification. These evaluations establish the potential applicability of the methodology for general vulnerability assessment in urban context.

  17. Capsule endoscope localization based on computer vision technique.

    PubMed

    Liu, Li; Hu, Chao; Cai, Wentao; Meng, Max Q H

    2009-01-01

    To build a new type of wireless capsule endoscope with interactive gastrointestinal tract examination, a localization and orientation system is needed for tracking 3D location and 3D orientation of the capsule movement. The magnetic localization and orientation method produces only 5 DOF, but misses the information of rotation angle along capsule's main axis. In this paper, we presented a complementary orientation approach for the capsule endoscope, and the 3D rotation can be determined by applying computer vision technique on the captured endoscopic images. The experimental results show that the complementary orientation method has good accuracy and high feasibility.

  18. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  19. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less

  20. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.

    PubMed

    Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.

  1. Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform

    NASA Astrophysics Data System (ADS)

    Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.

    2017-12-01

    In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.

  2. Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Zhang, Ru; Yan, Yuting; Dong, Xiaoqiang; Li, Jun Ming

    2017-05-01

    Hazardous gas leaks in the atmosphere can cause significant economic losses in addition to environmental hazards, such as fires and explosions. A three-stage hazardous gas leak source localization method was developed that uses movable and stationary gas concentration sensors. The method calculates a preliminary source inversion with a modified genetic algorithm (MGA) and has the potential to crossover with eliminated individuals from the population, following the selection of the best candidate. The method then determines a search zone using Markov Chain Monte Carlo (MCMC) sampling, utilizing a partial evaluation strategy. The leak source is then accurately localized using a modified guaranteed convergence particle swarm optimization algorithm with several bad-performing individuals, following selection of the most successful individual with dynamic updates. The first two stages are based on data collected by motionless sensors, and the last stage is based on data from movable robots with sensors. The measurement error adaptability and the effect of the leak source location were analyzed. The test results showed that this three-stage localization process can localize a leak source within 1.0 m of the source for different leak source locations, with measurement error standard deviation smaller than 2.0.

  3. Using Hybrid Angle/Distance Information for Distributed Topology Control in Vehicular Sensor Networks

    PubMed Central

    Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu

    2014-01-01

    In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506

  4. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition

    PubMed Central

    Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie

    2017-01-01

    Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved. PMID:28489065

  5. Modular method of detection, localization, and counting of multiple-taxon pollen apertures using bag-of-words

    NASA Astrophysics Data System (ADS)

    Lozano-Vega, Gildardo; Benezeth, Yannick; Marzani, Franck; Boochs, Frank

    2014-09-01

    Accurate recognition of airborne pollen taxa is crucial for understanding and treating allergic diseases which affect an important proportion of the world population. Modern computer vision techniques enable the detection of discriminant characteristics. Apertures are among the important characteristics which have not been adequately explored until now. A flexible method of detection, localization, and counting of apertures of different pollen taxa with varying appearances is proposed. Aperture description is based on primitive images following the bag-of-words strategy. A confidence map is estimated based on the classification of sampled regions. The method is designed to be extended modularly to new aperture types employing the same algorithm by building individual classifiers. The method was evaluated on the top five allergenic pollen taxa in Germany, and its robustness to unseen particles was verified.

  6. APOLLO: a quality assessment service for single and multiple protein models.

    PubMed

    Wang, Zheng; Eickholt, Jesse; Cheng, Jianlin

    2011-06-15

    We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 Å with the actual distances to native structure. http://sysbio.rnet.missouri.edu/apollo/. Single and pair-wise global quality assessment software is also available at the site.

  7. Calculation of skin-stiffener interface stresses in stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Cohen, David; Hyer, Michael W.

    1987-01-01

    A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.

  8. Localization of source with unknown amplitude using IPMC sensor arrays

    NASA Astrophysics Data System (ADS)

    Abdulsadda, Ahmad T.; Zhang, Feitian; Tan, Xiaobo

    2011-04-01

    The lateral line system, consisting of arrays of neuromasts functioning as flow sensors, is an important sensory organ for fish that enables them to detect predators, locate preys, perform rheotaxis, and coordinate schooling. Creating artificial lateral line systems is of significant interest since it will provide a new sensing mechanism for control and coordination of underwater robots and vehicles. In this paper we propose recursive algorithms for localizing a vibrating sphere, also known as a dipole source, based on measurements from an array of flow sensors. A dipole source is frequently used in the study of biological lateral lines, as a surrogate for underwater motion sources such as a flapping fish fin. We first formulate a nonlinear estimation problem based on an analytical model for the dipole-generated flow field. Two algorithms are presented to estimate both the source location and the vibration amplitude, one based on the least squares method and the other based on the Newton-Raphson method. Simulation results show that both methods deliver comparable performance in source localization. A prototype of artificial lateral line system comprising four ionic polymer-metal composite (IPMC) sensors is built, and experimental results are further presented to demonstrate the effectiveness of IPMC lateral line systems and the proposed estimation algorithms.

  9. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  10. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal

    2018-06-01

    Among different reference evapotranspiration (ETo) modeling approaches, mass transfer-based methods have been less studied. These approaches utilize temperature and wind speed records. On the other hand, the empirical equations proposed in this context generally produce weak simulations, except when a local calibration is used for improving their performance. This might be a crucial drawback for those equations in case of local data scarcity for calibration procedure. So, application of heuristic methods can be considered as a substitute for improving the performance accuracy of the mass transfer-based approaches. However, given that the wind speed records have usually higher variation magnitudes than the other meteorological parameters, application of a wavelet transform for coupling with heuristic models would be necessary. In the present paper, a coupled wavelet-random forest (WRF) methodology was proposed for the first time to improve the performance accuracy of the mass transfer-based ETo estimation approaches using cross-validation data management scenarios in both local and cross-station scales. The obtained results revealed that the new coupled WRF model (with the minimum scatter index values of 0.150 and 0.192 for local and external applications, respectively) improved the performance accuracy of the single RF models as well as the empirical equations to great extent.

  11. Localized-atlas-based segmentation of breast MRI in a decision-making framework.

    PubMed

    Fooladivanda, Aida; Shokouhi, Shahriar B; Ahmadinejad, Nasrin

    2017-03-01

    Breast-region segmentation is an important step for density estimation and Computer-Aided Diagnosis (CAD) systems in Magnetic Resonance Imaging (MRI). Detection of breast-chest wall boundary is often a difficult task due to similarity between gray-level values of fibroglandular tissue and pectoral muscle. This paper proposes a robust breast-region segmentation method which is applicable for both complex cases with fibroglandular tissue connected to the pectoral muscle, and simple cases with high contrast boundaries. We present a decision-making framework based on geometric features and support vector machine (SVM) to classify breasts in two main groups, complex and simple. For complex cases, breast segmentation is done using a combination of intensity-based and atlas-based techniques; however, only intensity-based operation is employed for simple cases. A novel atlas-based method, that is called localized-atlas, accomplishes the processes of atlas construction and registration based on the region of interest (ROI). Atlas-based segmentation is performed by relying on the chest wall template. Our approach is validated using a dataset of 210 cases. Based on similarity between automatic and manual segmentation results, the proposed method achieves Dice similarity coefficient, Jaccard coefficient, total overlap, false negative, and false positive values of 96.3, 92.9, 97.4, 2.61 and 4.77%, respectively. The localization error of the breast-chest wall boundary is 1.97 mm, in terms of averaged deviation distance. The achieved results prove that the suggested framework performs the breast segmentation with negligible errors and efficient computational time for different breasts from the viewpoints of size, shape, and density pattern.

  12. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE PAGES

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    2017-02-22

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  13. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  14. An efficient linear-scaling CCSD(T) method based on local natural orbitals.

    PubMed

    Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István; Ladóczki, Bence; Kállay, Mihály

    2013-09-07

    An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.

  15. One-electron oxidation of individual DNA bases and DNA base stacks.

    PubMed

    Close, David M

    2010-02-04

    In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.

  16. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors

    PubMed Central

    Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng

    2017-01-01

    A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912

  17. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    NASA Astrophysics Data System (ADS)

    Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar

    2017-02-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.

  18. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors.

    PubMed

    Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng

    2017-07-19

    A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.

  19. Automated acoustic localization and call association for vocalizing humpback whales on the Navy's Pacific Missile Range Facility.

    PubMed

    Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W

    2015-01-01

    Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.

  20. A new experimental method for determining local airloads on rotor blades in forward flight

    NASA Astrophysics Data System (ADS)

    Berton, E.; Maresca, C.; Favier, D.

    This paper presents a new approach for determining local airloads on helicopter rotor blade sections in forward flight. The method is based on the momentum equation in which all the terms are expressed by means of the velocity field measured by a laser Doppler velocimeter. The relative magnitude of the different terms involved in the momentum and Bernoulli equations is estimated and the results are encouraging.

  1. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  2. Tactile objects based on an amplitude disturbed diffraction pattern method

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Nikolovski, Jean-Pierre; Mechbal, Nazih; Hafez, Moustapha; Vergé, Michel

    2009-12-01

    Tactile sensing is becoming widely used in human-computer interfaces. Recent advances in acoustic approaches demonstrated the possibilities to transform ordinary solid objects into interactive interfaces. This letter proposes a static finger contact localization process using an amplitude disturbed diffraction pattern method. The localization method is based on the following physical phenomenon: a finger contact modifies the energy distribution of acoustic wave in a solid; these variations depend on the wave frequency and the contact position. The presented method first consists of exciting the object with an acoustic signal with plural frequency components. In a second step, a measured acoustic signal is compared with prerecorded values to deduce the contact position. This position is then used for human-machine interaction (e.g., finger tracking on computer screen). The selection of excitation signals is discussed and a frequency choice criterion based on contrast value is proposed. Tests on a sandwich plate (liquid crystal display screen) prove the simplicity and easiness to apply the process in various solids.

  3. Automatic abdominal lymph node detection method based on local intensity structure analysis from 3D x-ray CT images

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku

    2013-03-01

    This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.

  4. A digital image-based method for determining of total acidity in red wines using acid-base titration without indicator.

    PubMed

    Tôrres, Adamastor Rodrigues; Lyra, Wellington da Silva; de Andrade, Stéfani Iury Evangelista; Andrade, Renato Allan Navarro; da Silva, Edvan Cirino; Araújo, Mário César Ugulino; Gaião, Edvaldo da Nóbrega

    2011-05-15

    This work proposes the use of digital image-based method for determination of total acidity in red wines by means of acid-base titration without using an external indicator or any pre-treatment of the sample. Digital images present the colour of the emergent radiation which is complementary to the radiation absorbed by anthocyanines present in wines. Anthocyanines change colour depending on the pH of the medium, and from the variation of colour in the images obtained during titration, the end point can be localized with accuracy and precision. RGB-based values were employed to build titration curves, and end points were localized by second derivative curves. The official method recommends potentiometric titration with a NaOH standard solution, and sample dilution until the pH reaches 8.2-8.4. In order to illustrate the feasibility of the proposed method, titrations of ten red wines were carried out. Results were compared with the reference method, and no statistically significant difference was observed between the results by applying the paired t-test at the 95% confidence level. The proposed method yielded more precise results than the official method. This is due to the trivariate nature of the measurements (RGB), associated with digital images. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Infrared and visible image fusion method based on saliency detection in sparse domain

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Qi, Y.; Ding, W. R.

    2017-06-01

    Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.

  6. Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.

    PubMed

    Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong

    2012-01-01

    This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.

  7. Lightweight filter architecture for energy efficient mobile vehicle localization based on a distributed acoustic sensor network.

    PubMed

    Kim, Keonwook

    2013-08-23

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.

  8. Improving mobile robot localization: grid-based approach

    NASA Astrophysics Data System (ADS)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  9. Quantum Bell inequalities from macroscopic locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tzyh Haur; Sheridan, Lana; Navascues, Miguel

    2011-02-15

    We propose a method to generate analytical quantum Bell inequalities based on the principle of macroscopic locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  10. Implementation of Markerless Augmented Reality Technology Based on Android to Introduction Lontara in Marine Society

    NASA Astrophysics Data System (ADS)

    Jumarlis, Mila; Mirfan, Mirfan

    2018-05-01

    Local language learning had been leaving by people especially young people had affected technology advances so that involved lack of interest to learn culture especially local language. So required interactive and interest learning media for introduction Lontara. This research aims to design and implement augmented reality on introduction Lontara on mobile device especially android. Application of introduction Lontara based on Android was designed by Vuforia and Unity. Data collection method were observation, interview, and literature review. That data was analysed for being information. The system was designed by Unified Modeling Language (UML). The method used is a marker. The test result found that application of Augmented Reality on introduction Lontara based on Android could improve public interest for introducing local language particularly young people in learning about Lontara because of using technology. Application of introduction of Lontara based on Android used augmented reality occurred sound and how to write Lontara with animation. This application could be running without an internet connection, so that its used more efficient and could maximize from user.

  11. A Piecewise Local Partial Least Squares (PLS) Method for the Quantitative Analysis of Plutonium Nitrate Solutions

    DOE PAGES

    Lascola, Robert; O'Rourke, Patrick E.; Kyser, Edward A.

    2017-10-05

    Here, we have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relativemore » parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.« less

  12. A Piecewise Local Partial Least Squares (PLS) Method for the Quantitative Analysis of Plutonium Nitrate Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lascola, Robert; O'Rourke, Patrick E.; Kyser, Edward A.

    Here, we have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relativemore » parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.« less

  13. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform

    PubMed Central

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-01

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σB=1.63×10−4 (°), σL=1.35×10−4 (°), σH=15.8 (m), σsum=27.6 (m), where σB represents the longitude error, σL represents the latitude error, σH represents the altitude error, and σsum represents the error radius. PMID:28067814

  14. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform.

    PubMed

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-06

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 - 4 ( ° ) , σ L = 1.35 × 10 - 4 ( ° ) , σ H = 15.8 ( m ) , σ s u m = 27.6 ( m ) , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.

  15. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  16. Geometric k-nearest neighbor estimation of entropy and mutual information

    NASA Astrophysics Data System (ADS)

    Lord, Warren M.; Sun, Jie; Bollt, Erik M.

    2018-03-01

    Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical system attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-Stögbauer-Grassberger estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but the data size is limited.

  17. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  18. Nonconforming mortar element methods: Application to spectral discretizations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Mavriplis, Cathy; Patera, Anthony

    1988-01-01

    Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.

  19. A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes.

    PubMed

    Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando

    2018-05-01

    Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

  20. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    PubMed Central

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-01-01

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843

  1. Optimization-based limiters for the spectral element method

    NASA Astrophysics Data System (ADS)

    Guba, Oksana; Taylor, Mark; St-Cyr, Amik

    2014-06-01

    We introduce a new family of optimization based limiters for the h-p spectral element method. The native spectral element advection operator is oscillatory, but due to its mimetic properties it is locally conservative and has a monotone property with respect to element averages. We exploit this property to construct locally conservative quasimonotone and sign-preserving limiters. The quasimonotone limiter prevents all overshoots and undershoots at the element level, but is not strictly non-oscillatory. It also maintains quasimonotonicity even with the addition of a dissipation term such as viscosity or hyperviscosity. The limiters are based on a least-squares formulation with equality and inequality constraints and are local to each element. We evaluate the new limiters using a deformational flow test case for advection on the surface of the sphere. We focus on mesh refinement for moderate (p=3) and high order (p=6) elements. As expected, the spectral element method obtains its formal order of accuracy for smooth problems without limiters. For advection of fields with cusps and discontinuities, the high order convergence is lost, but in all cases, p=6 outperforms p=3 for the same degrees of freedom.

  2. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    PubMed

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  3. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  4. Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2017-02-01

    Medical image registration establishes a correspondence between images of biological structures and it is at the core of many applications. Commonly used deformable image registration methods are dependent on a good preregistration initialization. The initialization can be performed by localizing homologous landmarks and calculating a point-based transformation between the images. The selection of landmarks is however important. In this work, we present a learning-based method to automatically find a set of robust landmarks in 3D MR image volumes of the head to initialize non-rigid transformations. To validate our method, these selected landmarks are localized in unknown image volumes and they are used to compute a smoothing thin-plate splines transformation that registers the atlas to the volumes. The transformed atlas image is then used as the preregistration initialization of an intensity-based non-rigid registration algorithm. We show that the registration accuracy of this algorithm is statistically significantly improved when using the presented registration initialization over a standard intensity-based affine registration.

  5. A unified tensor level set for image segmentation.

    PubMed

    Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2010-06-01

    This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

  6. Spiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor

    PubMed Central

    Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei

    2016-01-01

    Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation. PMID:27649190

  7. Spiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor.

    PubMed

    Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei

    2016-09-15

    Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation.

  8. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    PubMed Central

    Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi

    2014-01-01

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876

  9. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework

    PubMed Central

    2014-01-01

    Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119

  10. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.

    PubMed

    Simha, Ramanuja; Shatkay, Hagit

    2014-03-19

    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.

  11. Ultrasound-contrast-agent dispersion and velocity imaging for prostate cancer localization.

    PubMed

    van Sloun, Ruud Jg; Demi, Libertario; Postema, Arnoud W; de la Rosette, Jean Jmch; Wijkstra, Hessel; Mischi, Massimo

    2017-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer death in men; however, reliable tools for detection and localization are still lacking. Dynamic Contrast Enhanced UltraSound (DCE-US) is a diagnostic tool that is suitable for analysis of vascularization, by imaging an intravenously injected microbubble bolus. The localization of angiogenic vascularization associated with the development of tumors is of particular interest. Recently, methods for the analysis of the bolus convective dispersion process have shown promise to localize angiogenesis. However, independent estimation of dispersion was not possible due to the ambiguity between convection and dispersion. Therefore, in this study we propose a new method that considers the vascular network as a dynamic linear system, whose impulse response can be locally identified. To this end, model-based parameter estimation is employed, that permits extraction of the apparent dispersion coefficient (D), velocity (v), and Péclet number (Pe) of the system. Clinical evaluation using data recorded from 25 patients shows that the proposed method can be applied effectively to DCE-US, and is able to locally characterize the hemodynamics, yielding promising results (receiver-operating-characteristic curve area of 0.84) for prostate cancer localization. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  13. Design of a base station for MEMS CCR localization in an optical sensor network.

    PubMed

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-05-08

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.

  14. Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Than, Trung Duc, E-mail: dtt581@uowmail.edu.au; Alici, Gursel, E-mail: gursel@uow.edu.au; Zhou, Hao, E-mail: hz467@uowmail.edu.au

    2014-07-15

    Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule. Methods: Three spherical {sup 22}Na markers with diameters of less than 1 mm are embeddedmore » in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method. Results: The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°. Conclusions: The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.« less

  15. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors

    PubMed Central

    Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel’s global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point’s plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel. PMID:28141829

  16. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    PubMed

    Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  17. Robust finger vein ROI localization based on flexible segmentation.

    PubMed

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-10-24

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

  18. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    PubMed Central

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-01-01

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769

  19. Estimating 3D positions and velocities of projectiles from monocular views.

    PubMed

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P

    2009-05-01

    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  20. Link prediction based on local community properties

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao

    2016-09-01

    The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.

  1. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  2. A hybrid localization technique for patient tracking.

    PubMed

    Rodionov, Denis; Kolev, George; Bushminkin, Kirill

    2013-01-01

    Nowadays numerous technologies are employed for tracking patients and assets in hospitals or nursing homes. Each of them has advantages and drawbacks. For example, WiFi localization has relatively good accuracy but cannot be used in case of power outage or in the areas with poor WiFi coverage. Magnetometer positioning or cellular network does not have such problems but they are not as accurate as localization with WiFi. This paper describes technique that simultaneously employs different localization technologies for enhancing stability and average accuracy of localization. The proposed algorithm is based on fingerprinting method paired with data fusion and prediction algorithms for estimating the object location. The core idea of the algorithm is technology fusion using error estimation methods. For testing accuracy and performance of the algorithm testing simulation environment has been implemented. Significant accuracy improvement was showed in practical scenarios.

  3. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  4. Iterative refinement of implicit boundary models for improved geological feature reproduction

    NASA Astrophysics Data System (ADS)

    Martin, Ryan; Boisvert, Jeff B.

    2017-12-01

    Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.

  5. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    PubMed

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  6. Improving performances of suboptimal greedy iterative biclustering heuristics via localization.

    PubMed

    Erten, Cesim; Sözdinler, Melih

    2010-10-15

    Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm, we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore, we propose a simple biclustering algorithm, Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix, eliminates those with low similarity scores, and provides the rest as correlated structures representing biclusters. We compare the proposed localization pre-processing with another pre-processing alternative, non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. Supplementary material including code implementations in LEDA C++ library, experimental data, and the results are available at http://code.google.com/p/biclustering/ cesim@khas.edu.tr; melihsozdinler@boun.edu.tr Supplementary data are available at Bioinformatics online.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qishi; Berry, M. L..; Grieme, M.

    We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.

  8. iROLL: does 3-D radioguided occult lesion localization improve surgical management in early-stage breast cancer?

    PubMed

    Bluemel, Christina; Cramer, Andreas; Grossmann, Christoph; Kajdi, Georg W; Malzahn, Uwe; Lamp, Nora; Langen, Heinz-Jakob; Schmid, Jan; Buck, Andreas K; Grimminger, Hanns-Jörg; Herrmann, Ken

    2015-10-01

    To prospectively evaluate the feasibility of 3-D radioguided occult lesion localization (iROLL) and to compare iROLL with wire-guided localization (WGL) in patients with early-stage breast cancer undergoing breast-conserving surgery and sentinel lymph node biopsy (SLNB). WGL (standard procedure) and iROLL in combination with SLNB were performed in 31 women (mean age 65.1 ± 11.2 years) with early-stage breast cancer and clinically negative axillae. Patient comfort in respect of both methods was assessed using a ten point scale. SLNB and iROLL were guided by freehand SPECT (fhSPECT). The results of the novel 3-D image-based method were compared with those of WGL, ultrasound-based lesion localization, and histopathology. iROLL successfully detected the malignant primary and at least one sentinel lymph node in 97% of patients. In a single patient (3%), only iROLL, and not WGL, enabled lesion localization. The variability between fhSPECT and ultrasound-based depth localization of breast lesions was low (1.2 ± 1.4 mm). Clear margins were achieved in 81% of the patients; however, precise prediction of clear histopathological surgical margins was not feasible using iROLL. Patients rated iROLL as less painful than WGL with a pain score 0.8 ± 1.2 points (p < 0.01) lower than the score for iROLL. iROLL is a well-tolerated and feasible technique for localizing early-stage breast cancer in the course of breast-conserving surgery, and is a suitable replacement for WGL. As a single image-based procedure for localization of breast lesions and sentinel nodes, iROLL may improve the entire surgical procedure. However, no advantages of the image-guided procedure were found with regard to prediction of complete tumour resection.

  9. Shear wave elastography using Wigner-Ville distribution: a simulated multilayer media study.

    PubMed

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2016-08-01

    Shear Wave Elastography (SWE) is a quantitative ultrasound-based imaging modality for distinguishing normal and abnormal tissue types by estimating the local viscoelastic properties of the tissue. These properties have been estimated in many studies by propagating ultrasound shear wave within the tissue and estimating parameters such as speed of wave. Vast majority of the proposed techniques are based on the cross-correlation of consecutive ultrasound images. In this study, we propose a new method of wave detection based on time-frequency (TF) analysis of the ultrasound signal. The proposed method is a modified version of the Wigner-Ville Distribution (WVD) technique. The TF components of the wave are detected in a propagating ultrasound wave within a simulated multilayer tissue and the local properties are estimated based on the detected waves. Image processing techniques such as Alternative Sequential Filters (ASF) and Circular Hough Transform (CHT) have been utilized to improve the estimation of TF components. This method has been applied to a simulated data from Wave3000™ software (CyberLogic Inc., New York, NY). This data simulates the propagation of an acoustic radiation force impulse within a two-layer tissue with slightly different viscoelastic properties between the layers. By analyzing the local TF components of the wave, we estimate the longitudinal and shear elasticities and viscosities of the media. This work shows that our proposed method is capable of distinguishing between different layers of a tissue.

  10. Iterative raw measurements restoration method with penalized weighted least squares approach for low-dose CT

    NASA Astrophysics Data System (ADS)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu

    2014-03-01

    Statistical iterative reconstruction and post-log data restoration algorithms for CT noise reduction have been widely studied and these techniques have enabled us to reduce irradiation doses while maintaining image qualities. In low dose scanning, electronic noise becomes obvious and it results in some non-positive signals in raw measurements. The nonpositive signal should be converted to positive signal so that it can be log-transformed. Since conventional conversion methods do not consider local variance on the sinogram, they have difficulty of controlling the strength of the filtering. Thus, in this work, we propose a method to convert the non-positive signal to the positive signal by mainly controlling the local variance. The method is implemented in two separate steps. First, an iterative restoration algorithm based on penalized weighted least squares is used to mitigate the effect of electronic noise. The algorithm preserves the local mean and reduces the local variance induced by the electronic noise. Second, smoothed raw measurements by the iterative algorithm are converted to the positive signal according to a function which replaces the non-positive signal with its local mean. In phantom studies, we confirm that the proposed method properly preserves the local mean and reduce the variance induced by the electronic noise. Our technique results in dramatically reduced shading artifacts and can also successfully cooperate with the post-log data filter to reduce streak artifacts.

  11. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors.

    PubMed

    Ghanim, Murad; Brumin, Marina; Popovski, Smadar

    2009-08-01

    A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost.

  12. Geometry of quantum Hall states: Gravitational anomaly and transport coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Can, Tankut, E-mail: tcan@scgp.stonybrook.edu; Laskin, Michael; Wiegmann, Paul B.

    2015-11-15

    We show that universal transport coefficients of the fractional quantum Hall effect (FQHE) can be understood as a response to variations of spatial geometry. Some transport properties are essentially governed by the gravitational anomaly. We develop a general method to compute correlation functions of FQH states in a curved space, where local transformation properties of these states are examined through local geometric variations. We introduce the notion of a generating functional and relate it to geometric invariant functionals recently studied in geometry. We develop two complementary methods to study the geometry of the FQHE. One method is based on iteratingmore » a Ward identity, while the other is based on a field theoretical formulation of the FQHE through a path integral formalism.« less

  13. System and method for object localization

    NASA Technical Reports Server (NTRS)

    Kelly, Alonzo J. (Inventor); Zhong, Yu (Inventor)

    2005-01-01

    A computer-assisted method for localizing a rack, including sensing an image of the rack, detecting line segments in the sensed image, recognizing a candidate arrangement of line segments in the sensed image indicative of a predetermined feature of the rack, generating a matrix of correspondence between the candidate arrangement of line segments and an expected position and orientation of the predetermined feature of the rack, and estimating a position and orientation of the rack based on the matrix of correspondence.

  14. Invasive Electrical Impedance Tomography for Blood Vessel Detection

    PubMed Central

    Martinsen, Ørjan G.; Kalvøy, Håvard; Grimnes, Sverre; Nordbotten, Bernt; Hol, Per Kristian; Fosse, Erik; Myklebust, Helge; Becker, Lance B

    2010-01-01

    We present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology. PMID:21611140

  15. Employment Service. Improved Leadership Needed for Better Performance. Report to the Chairman, Subcommittee on Employment Opportunities, Committee on Education and Labor, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    A study examined local U.S. Employment Service (ES) office placement performance and the role of the U.S. Department of Labor (DOL) in guiding and monitoring state and local ES program performance. Regression and other statistical methods were used to analyze state and local program performance based on the following: placement data for…

  16. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PM2.5 violations”) must be based on quantitative analysis using the applicable air quality models... either: (i) Quantitative methods that represent reasonable and common professional practice; or (ii) A...) The hot-spot demonstration required by § 93.116 must be based on quantitative analysis methods for the...

  17. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  18. Plant species classification using flower images—A comparative study of local feature representations

    PubMed Central

    Seeland, Marco; Rzanny, Michael; Alaqraa, Nedal; Wäldchen, Jana; Mäder, Patrick

    2017-01-01

    Steady improvements of image description methods induced a growing interest in image-based plant species classification, a task vital to the study of biodiversity and ecological sensitivity. Various techniques have been proposed for general object classification over the past years and several of them have already been studied for plant species classification. However, results of these studies are selective in the evaluated steps of a classification pipeline, in the utilized datasets for evaluation, and in the compared baseline methods. No study is available that evaluates the main competing methods for building an image representation on the same datasets allowing for generalized findings regarding flower-based plant species classification. The aim of this paper is to comparatively evaluate methods, method combinations, and their parameters towards classification accuracy. The investigated methods span from detection, extraction, fusion, pooling, to encoding of local features for quantifying shape and color information of flower images. We selected the flower image datasets Oxford Flower 17 and Oxford Flower 102 as well as our own Jena Flower 30 dataset for our experiments. Findings show large differences among the various studied techniques and that their wisely chosen orchestration allows for high accuracies in species classification. We further found that true local feature detectors in combination with advanced encoding methods yield higher classification results at lower computational costs compared to commonly used dense sampling and spatial pooling methods. Color was found to be an indispensable feature for high classification results, especially while preserving spatial correspondence to gray-level features. In result, our study provides a comprehensive overview of competing techniques and the implications of their main parameters for flower-based plant species classification. PMID:28234999

  19. Local and nonlocal parallel heat transport in general magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  20. Incremental online learning in high dimensions.

    PubMed

    Vijayakumar, Sethu; D'Souza, Aaron; Schaal, Stefan

    2005-12-01

    Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high-dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally efficient and numerically robust, each local model performs the regression analysis with a small number of univariate regressions in selected directions in input space in the spirit of partial least squares regression. We discuss when and how local learning techniques can successfully work in high-dimensional spaces and review the various techniques for local dimensionality reduction before finally deriving the LWPR algorithm. The properties of LWPR are that it (1) learns rapidly with second-order learning methods based on incremental training, (2) uses statistically sound stochastic leave-one-out cross validation for learning without the need to memorize training data, (3) adjusts its weighting kernels based on only local information in order to minimize the danger of negative interference of incremental learning, (4) has a computational complexity that is linear in the number of inputs, and (5) can deal with a large number of-possibly redundant-inputs, as shown in various empirical evaluations with up to 90 dimensional data sets. For a probabilistic interpretation, predictive variance and confidence intervals are derived. To our knowledge, LWPR is the first truly incremental spatially localized learning method that can successfully and efficiently operate in very high-dimensional spaces.

Top