Sample records for localized current distribution

  1. A simple molecular orbital treatment of current distributions in quantum transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Jhan, Sin-Mu; Jin, Bih-Yaw

    2017-11-01

    A simple molecular orbital treatment of local current distributions inside single molecular junctions is developed in this paper. Using the first-order perturbation theory and nonequilibrium Green's function techniques in the framework of Hückel theory, we show that the leading contributions to local current distributions are directly proportional to the off-diagonal elements of transition density matrices. Under the orbital approximation, the major contributions to local currents come from a few dominant molecular orbital pairs which are mixed by the interactions between the molecule and electrodes. A few simple molecular junctions consisting of single- and multi-ring conjugated systems are used to demonstrate that local current distributions inside molecular junctions can be decomposed by partial sums of a few leading contributing transition density matrices.

  2. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    NASA Astrophysics Data System (ADS)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  3. Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching

    2010-01-01

    Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.

  4. 26 CFR 1.651(a)-2 - Income required to be distributed currently.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Trusts Which Distribute Current Income Only § 1.651(a)-2 Income required to be distributed currently. (a) The determination of whether trust income is required to be distributed currently depends upon the terms of the trust instrument and the applicable local law...

  5. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  6. Direct mapping of local redox current density on a monolith electrode by laser scanning.

    PubMed

    Lee, Seung-Woo; Lopez, Jeffrey; Saraf, Ravi F

    2013-09-15

    An optical method of mapping local redox reaction over a monolith electrode using simple laser scanning is described. As the optical signal is linearly proportional to the maximum redox current that is measured concomitantly by voltammetry, the optical signal quantitatively maps the local redox current density distribution. The method is demonstrated on two types of reactions: (1) a reversible reaction where the redox moieties are ionic, and (2) an irreversible reaction on two different types of enzymes immobilized on the electrode where the reaction moieties are nonionic. To demonstrate the scanning capability, the local redox behavior on a "V-shaped" electrode is studied where the local length scale and, hence, the local current density, is nonuniform. The ability to measure the current density distribution by this method will pave the way for multianalyte analysis on a monolith electrode using a standard three-electrode configuration. The method is called Scanning Electrometer for Electrical Double-layer (SEED). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Rheinfeld, A.; Rieger, B.; Hoster, H. E.; Jossen, A.

    2016-10-01

    The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 °C to 40 °C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed.

  8. Simulation of Electromigration Based on Resistor Networks

    NASA Astrophysics Data System (ADS)

    Patrinos, Anthony John

    A two dimensional computer simulation of electromigration based on resistor networks was designed and implemented. The model utilizes a realistic grain structure generated by the Monte Carlo method and takes specific account of the local effects through which electromigration damage progresses. The dynamic evolution of the simulated thin film is governed by the local current and temperature distributions. The current distribution is calculated by superimposing a two dimensional electrical network on the lattice whose nodes correspond to the particles in the lattice and the branches to interparticle bonds. Current is assumed to flow from site to site via nearest neighbor bonds. The current distribution problem is solved by applying Kirchhoff's rules on the resulting electrical network. The calculation of the temperature distribution in the lattice proceeds by discretizing the partial differential equation for heat conduction, with appropriate material parameters chosen for the lattice and its defects. SEReNe (for Simulation of Electromigration using Resistor Networks) was tested by applying it to common situations arising in experiments with real films with satisfactory results. Specifically, the model successfully reproduces the expected grain size, line width and bamboo effects, the lognormal failure time distribution and the relationship between current density exponent and current density. It has also been modified to simulate temperature ramp experiments but with mixed, in this case, results.

  9. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mehdi; Sensale-Rodriguez, Berardi, E-mail: berardi.sensale@utah.edu

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almostmore » zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.« less

  10. Phyto-toponyms of Arbutus unedo L. and their distribution in Sardinia (Italy)

    PubMed Central

    Pinna, Claudia; Carta, Luisa; Deiana, Vitale; Camarda, Ignazio

    2017-01-01

    The study shows the results of an inventory of place names connected to Arbutus unedo L., a Mediterranean species, widespread throughout Sardinia. The main aim was to compare the past distribution of place names, referring to the strawberry tree, to the current distribution of the species on the island. In addition, we investigated the meaning and the diversity of these local place names in the various communities. The result was a collection of 432 phyto-toponyms. 248 of them were used for an analysis of their distribution in the habitats, indicated on the Map of the Nature System in Sardinia, defined on the basis of the current vegetation typology. The persistence of the species in the various habitats was either confirmed or negated with in site investigations and interviews. 47.5% of municipalities have place names related to the strawberry tree. Of the 248 phyto-toponyms, 127 fall in the habitats where the species currently persists proving a correspondence between their regional distribution and the current distribution of the species. The remaining 121 phyto-toponyms fall in habitats where the strawberry tree is currently absent. Most of them are found in man-made habitats where man has transformed the forest cover which previously included the strawberry tree. This study also contributes to promoting and conserving the linguistic heritage of local communities. PMID:28704491

  11. Field-emission from parabolic tips: Current distributions, the net current, and effective emission area

    NASA Astrophysics Data System (ADS)

    Biswas, Debabrata

    2018-04-01

    Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.

  12. To predict the niche, model colonization and extinction

    USGS Publications Warehouse

    Yackulic, Charles B.; Nichols, James D.; Reid, Janice; Der, Ricky

    2015-01-01

    Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the species' niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both because of ongoing invasions and because the distribution of suitable environmental conditions is always changing. This mismatch between the equilibrium assumptions inherent in many analyses and the disequilibrium conditions in the real world leads to inaccurate predictions of species' geographic distributions and suggests the need for theory and analytical tools that avoid equilibrium assumptions. Here, we develop a general theory of environmental associations during periods of transient dynamics. We show that time-invariant relationships between environmental conditions and rates of local colonization and extinction can produce substantial temporal variation in occupancy–environment relationships. We then estimate occupancy–environment relationships during three avian invasions. Changes in occupancy–environment relationships over time differ among species but are predicted by dynamic occupancy models. Since estimates of the occupancy–environment relationships themselves are frequently poor predictors of future occupancy patterns, research should increasingly focus on characterizing how rates of local colonization and extinction vary with environmental conditions.

  13. Measurement and dynamics of the spatial distribution of an electron localized at a metal-dielectric interface

    NASA Astrophysics Data System (ADS)

    Bezel, Ilya; Gaffney, Kelly J.; Garrett-Roe, Sean; Liu, Simon H.; Miller, André D.; Szymanski, Paul; Harris, Charles B.

    2004-01-01

    The ability of time- and angle-resolved two-photon photoemission to estimate the size distribution of electron localization in the plane of a metal-adsorbate interface is discussed. It is shown that the width of angular distribution of the photoelectric current is inversely proportional to the electron localization size within the most common approximations in the description of image potential states. The localization of the n=1 image potential state for two monolayers of butyronitrile on Ag(111) is used as an example. For the delocalized n=1 state, the shape of the signal amplitude as a function of momentum parallel to the surface changes rapidly with time, indicating efficient intraband relaxation on a 100 fs time scale. For the localized state, little change was observed. The latter is related to the constant size distribution of electron localization, which is estimated to be a Gaussian with a 15±4 Å full width at half maximum in the plane of the interface. A simple model was used to study the effect of a weak localization potential on the overall width of the angular distribution of the photoemitted electrons, which exhibited little sensitivity to the details of the potential. This substantiates the validity of the localization size estimate.

  14. Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb)2Sr2Ca2Cu3O10 superconductor tapes

    NASA Astrophysics Data System (ADS)

    Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.

    2001-02-01

    It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.

  15. Activation Time of Cardiac Tissue In Response to a Linear Array of Spatial Alternating Bipolar Electrodes

    NASA Astrophysics Data System (ADS)

    Mashburn, David; Wikswo, John

    2007-11-01

    Prevailing theories about the response of the heart to high field shocks predict that local regions of high resistivity distributed throughout the heart create multiple small virtual electrodes that hyperpolarize or depolarize tissue and lead to widespread activation. This resetting of bulk tissue is responsible for the successful functioning of cardiac defibrillators. By activating cardiac tissue with regular linear arrays of spatially alternating bipolar currents, we can simulate these potentials locally. We have studied the activation time due to distributed currents in both a 1D Beeler-Reuter model and on the surface of the whole heart, varying the strength of each source and the separation between them. By comparison with activation time data from actual field shock of a whole heart in a bath, we hope to better understand these transient virtual electrodes. Our work was done on rabbit RV using florescent optical imaging and our Phased Array Stimulator for driving the 16 current sources. Our model shows that for a total absolute current delivered to a region of tissue, the entire region activates faster if above-threshold sources are more distributed.

  16. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGES

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  17. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  18. Distribution and habitat in Mexico of Dactylopius Costa (Hemiptera: Dactylopiidae) and their cacti hosts (Cactaceae: Opuntioideae).

    PubMed

    Chávez-Moreno, C K; Tecante, A; Casas, A; Claps, L E

    2011-01-01

    The distribution pattern of species of the genus Dactylopius Costa in Mexico was analyzed in relation to the distribution of their host plants (subfamily Opuntioideae) to evaluate the specificity of the insect-host association. The distribution of Dactylopius currently recognized is narrower than that of its hosts and probably is not representative. Therefore, a broader distribution of the Dactylopius species in correspondence with those of their hosts was hypothesized. Insects and their hosts were collected and georeferenced in 14 states of Mexico from 2005 to 2007. The distribution areas, maps, and habitat characteristics of Dactylopius, Opuntia sensu stricto, Nopalea and Cylindropuntia were determined on the basis of field collections and examination of museum collections. This information was complemented with information from the exhaustive examination of microscope slides from a local insect collection, plants from local herbaria, and literature reviews. The current distribution of the genus Dactylopius and its hosts included 22 and 25 states of Mexico, respectively, and Dactylopius had a continuous distribution according to its hosts, broader than recognized hitherto. The new georeferenced records of the five Mexican Dactylopius species are reported. Insects with morphological characteristics of D. confusus combined with those of D. salmianus were identified, as well as insects with characteristics of D. opuntiae combined with those of D. salmianus. These records suggest that the number of local Dactylopius species could be higher than previously thought or that possible new processes of hybridization between native and introduced species may be occurring.

  19. User-managed inventory: an approach to forward-deployment of urgently needed medical countermeasures for mass-casualty and terrorism incidents.

    PubMed

    Coleman, C Norman; Hrdina, Chad; Casagrande, Rocco; Cliffer, Kenneth D; Mansoura, Monique K; Nystrom, Scott; Hatchett, Richard; Caro, J Jaime; Knebel, Ann R; Wallace, Katherine S; Adams, Steven A

    2012-12-01

    The user-managed inventory (UMI) is an emerging idea for enhancing the current distribution and maintenance system for emergency medical countermeasures (MCMs). It increases current capabilities for the dispensing and distribution of MCMs and enhances local/regional preparedness and resilience. In the UMI, critical MCMs, especially those in routine medical use ("dual utility") and those that must be administered soon after an incident before outside supplies can arrive, are stored at multiple medical facilities (including medical supply or distribution networks) across the United States. The medical facilities store a sufficient cache to meet part of the surge needs but not so much that the resources expire before they would be used in the normal course of business. In an emergency, these extra supplies can be used locally to treat casualties, including evacuees from incidents in other localities. This system, which is at the interface of local/regional and federal response, provides response capacity before the arrival of supplies from the Strategic National Stockpile (SNS) and thus enhances the local/regional medical responders' ability to provide life-saving MCMs that otherwise would be delayed. The UMI can be more cost-effective than stockpiling by avoiding costs due to drug expiration, disposal of expired stockpiled supplies, and repurchase for replacement.

  20. Indicator 1.07. Number and geographic distribution of forest-associated species at risk of losing genetic variation and locally adapted genotypes

    Treesearch

    C. H. Flather; M. S Knowles; C. H. Sieg

    2011-01-01

    This indicator provides information on the number and distribution of forest-associated species at risk of losing genetic variation across their geographic range. Comparing a species' current geographic distribution with its historic distribution is the basis for identifying those species whose range has contracted significantly. Human activities are accelerating...

  1. Impacts of changing ocean circulation on the distribution of marine microplastic litter.

    PubMed

    Welden, Natalie Ac; Lusher, Amy L

    2017-05-01

    Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC. © 2017 SETAC.

  2. Three-dimensional eddy current solution of a polyphase machine test model (abstract)

    NASA Astrophysics Data System (ADS)

    Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado

    1994-05-01

    This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.

  3. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    PubMed

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Local structure studies of materials using pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph W.

    A collection of pair distribution function studies on various materials is presented in this dissertation. In each case, local structure information of interest pushes the current limits of what these studies can accomplish. The goal is to provide insight into the individual material behaviors as well as to investigate ways to expand the current limits of PDF analysis. Where possible, I provide a framework for how PDF analysis might be applied to a wider set of material phenomena. Throughout the dissertation, I discuss 0 the capabilities of the PDF method to provide information pertaining to a material's structure and properties, ii) current limitations in the conventional approach to PDF analysis, iii) possible solutions to overcome certain limitations in PDF analysis, and iv) suggestions for future work to expand and improve the capabilities PDF analysis.

  5. Locally adaptive, spatially explicit projection of US population for 2030 and 2050.

    PubMed

    McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  6. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less

  7. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    DOE PAGES

    Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat; ...

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less

  8. Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Sekino, Masaki; Ueno, Shoogo

    2002-05-01

    We compared current density distributions in electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) by numerical calculations. The model consisted of an air region and three types of tissues with different conductivities representing the brain, the skull, and the scalp. In the ECT model, electric currents were applied through electrodes with a voltage of 100 V. In the TMS model, a figure-eight coil (6 cm diameter per coil) was placed on the vertex of the head model. An alternating current with a peak intensity of 3.0 kA and a frequency of 4.2 kHz was applied to the coil. The maximum current densities inside the brain in ECT (bilateral electrode position) and TMS were 234 and 322 A/m2, respectively. The results indicate that magnetic stimulators can generate comparable current densities to ECT. While the skull significantly affected current distributions in ECT, TMS efficiently induced eddy currents in the brain. In addition, TMS is more beneficial than ECT because the localized current distribution reduces the risk of adverse side effects.

  9. Audited credential delegation: a usable security solution for the virtual physiological human toolkit.

    PubMed

    Haidar, Ali N; Zasada, Stefan J; Coveney, Peter V; Abdallah, Ali E; Beckles, Bruce; Jones, Mike A S

    2011-06-06

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username-password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale.

  10. Audited credential delegation: a usable security solution for the virtual physiological human toolkit

    PubMed Central

    Haidar, Ali N.; Zasada, Stefan J.; Coveney, Peter V.; Abdallah, Ali E.; Beckles, Bruce; Jones, Mike A. S.

    2011-01-01

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username–password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214

  11. Sources and Losses of Ring Current Ions

    NASA Technical Reports Server (NTRS)

    Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis

    2010-01-01

    During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.

  12. Non-thermal electron distribution functions through 3D magnetic reconnection instabilities in the solar wind

    NASA Astrophysics Data System (ADS)

    Alejandro Munoz Sepulveda, Patricio; Buechner, Joerg

    2017-04-01

    The effects of kinetic instabilities on the solar wind electron velocity distribution functions (eVDFs) are mostly well understood under local homogeneous and stationary conditions. But the solar wind also contains current sheets, which affect the local properties of instabilities, turbulence and thus the observed non-maxwellian features in the eVDFs. Those processes are vastly unexplored. Therefore, we aim to investigate the influence of self-consistently generated turbulence via electron-scale instabilities in reconnecting current sheets on the formation of suprathermal features in the eVDFs. For this sake, we carry out 3D fully-kinetic Particle-in-Cell code numerical simulations of force free current sheets with a guide magnetic field. We find extended tails, anisotropic plateaus and non-gyrotropic features in the eVDFs, correlated with the locations and time where micro-turbulence is enhanced in the current sheet due to current-aligned streaming instabilities. We also discuss the influence of the plasma parameters, such as the ion to electron temperature ratio, on the excitation of current sheet instabilities and their effect on the properties of the eVDFs.

  13. Stress-induced electric current fluctuations in rocks: a superstatistical model

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local equilibrium processes whose variance fluctuates over time. The appearance of q-Gaussian statistics are caused by the fluctuating β parameter, which effectively models the fluctuating energy dissipation rate in the system. This concept is known as superstatistics and is physically relevant for modelling driven non-equilibrium systems where the environmental conditions fluctuate on a large scale. The idea is that the environmental variable, such as temperature or pressure, changes so slowly that a rapidly fluctuating variable within that environment has time to relax back to equilibrium between each change in the environment. The application of superstatistical techniques to our experimental electric current fluctuations show that they can indeed be described, to good approximation, by the superposition of local Gaussian processes with fluctuating variance. We conclude, then, that the measured electric current fluctuates in response to intermittent energy dissipation and is driven to varying temporary local equilibria during deformation by the variations in stress intensity. The advantage of this technique is that, once the model has been established to be a good description of the system in question, the average β parameter (a measure of the average energy dissipation rate) for the system can be obtained simply from the macroscopic q-Gaussian distribution parameters.

  14. Local noise in a diffusive conductor

    PubMed Central

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-01-01

    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes. PMID:27466216

  15. Local noise in a diffusive conductor

    NASA Astrophysics Data System (ADS)

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-07-01

    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.

  16. Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chandra, Nitish

    The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.

  17. 18 CFR 281.207 - Priority 2 classification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... priority of service category in the currently effective curtailment plan which reflect the essential... categories in the currently effective curtailment plan are removed from such priority of service categories... agricultural user may ask each of its local distribution company direct suppliers to request each interstate...

  18. The Real World of Technological Evolution in Broadband Communications.

    ERIC Educational Resources Information Center

    Schlafly, Hubert J.

    The current state (in 1970) of cable television systems is discussed under headings of head end, distribution, home terminals, system performance and standards with close attention paid to the technology involved. In summing up new system planning, the review considers channel expansion, channel reuse, two way cable, local distribution services…

  19. TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vörös, Zoltán; Narita, Yasuhito; Yordanova, Emiliya

    2016-03-01

    Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives.more » During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.« less

  20. In-plane structuring of proton exchange membrane fuel cell cathodes: Effect of ionomer equivalent weight structuring on performance and current density distribution

    NASA Astrophysics Data System (ADS)

    Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus

    2017-07-01

    Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.

  1. Regional Distribution Models with Lack of Proximate Predictors: Africanized Honeybees Expanding North

    NASA Technical Reports Server (NTRS)

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L. A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species-environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  2. Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L.A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species–environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  3. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    NASA Astrophysics Data System (ADS)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  4. Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.

    PubMed

    Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo

    2017-12-20

    In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.

  5. Dose equations for tube current modulation in CT scanning and the interpretation of the associated CTDI{sub vol}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Robert L.; Boone, John M.

    2013-11-15

    Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less

  6. Regional Distribution Shifts Help Explain Local Changes in Wintering Raptor Abundance: Implications for Interpreting Population Trends

    PubMed Central

    Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.

    2014-01-01

    Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as species experience changes in distribution in response to climate change. PMID:24466253

  7. A Fault Location Algorithm for Two-End Series-Compensated Double-Circuit Transmission Lines Using the Distributed Parameter Line Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Ning; Gombos, Gergely; Mousavi, Mirrasoul J.

    A new fault location algorithm for two-end series-compensated double-circuit transmission lines utilizing unsynchronized two-terminal current phasors and local voltage phasors is presented in this paper. The distributed parameter line model is adopted to take into account the shunt capacitance of the lines. The mutual coupling between the parallel lines in the zero-sequence network is also considered. The boundary conditions under different fault types are used to derive the fault location formulation. The developed algorithm directly uses the local voltage phasors on the line side of series compensation (SC) and metal oxide varistor (MOV). However, when potential transformers are not installedmore » on the line side of SC and MOVs for the local terminal, these measurements can be calculated from the local terminal bus voltage and currents by estimating the voltages across the SC and MOVs. MATLAB SimPowerSystems is used to generate cases under diverse fault conditions to evaluating accuracy. The simulation results show that the proposed algorithm is qualified for practical implementation.« less

  8. Study of the zinc-silver oxide battery system

    NASA Technical Reports Server (NTRS)

    Nanis, L.

    1973-01-01

    Theoretical and experimental models for the evaluation of current distribution in flooded, porous electrodes are discussed. An approximation for the local current distribution function was derived for conditions of a linear overpotential, a uniform concentration, and a very conductive matrix. By considering the porous electrode to be an analog of chemical catalyst structures, a dimensionless performance parameter was derived from the approximated current distribution function. In this manner the electrode behavior was characterized in terms of an electrochemical Thiele parameter and an effectiveness factor. It was shown that the electrochemical engineering approach makes possible the organizations of theoretical descriptions and of practical experience in the form of dimensionless parameters, such as the electrochemical Thiele parameters, and hence provides useful information for the design of new electrochemical systems.

  9. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Zhao, De Gang, E-mail: dgzhao@red.semi.ac.cn; Jiang, De Sheng

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may becomemore » significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed.« less

  11. Current distribution in conducting nanowire networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, Giridhar U.

    2017-07-01

    Conducting nanowire networks find diverse applications in solar cells, touch-screens, transparent heaters, sensors, and various related transparent conducting electrode (TCE) devices. The performances of these devices depend on effective resistance, transmittance, and local current distribution in these networks. Although, there have been rigorous studies addressing resistance and transmittance in TCE, not much attention is paid on studying the distribution of current. Present work addresses this compelling issue of understanding current distribution in TCE networks using analytical as well as Monte-Carlo approaches. We quantified the current carrying backbone region against isolated and dangling regions as a function of wire density (ranging from percolation threshold to many multiples of threshold) and compared the wired connectivity with those obtained from template-based methods. Further, the current distribution in the obtained backbone is studied using Kirchhoff's law, which reveals that a significant fraction of the backbone (which is believed to be an active current component) may not be active for end-to-end current transport due to the formation of intervening circular loops. The study shows that conducting wire based networks possess hot spots (extremely high current carrying regions) which can be potential sources of failure. The fraction of these hot spots is found to decrease with increase in wire density, while they are completely absent in template based networks. Thus, the present work discusses unexplored issues related to current distribution in conducting networks, which are necessary to choose the optimum network for best TCE applications.

  12. Dose equations for shift-variant CT acquisition modes using variable pitch, tube current, and aperture, and the meaning of their associated CTDI{sub vol}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Robert L., E-mail: rdixon@wfubmc.edu; Boone, John M.; Kraft, Robert A.

    2014-11-01

    Purpose: With the increasing clinical use of shift-variant CT protocols involving tube current modulation (TCM), variable pitch or pitch modulation (PM), and variable aperture a(t), the interpretation of the scanner-reported CTDI{sub vol} is called into question. This was addressed for TCM in their previous paper published by Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)] and is extended to PM and concurrent TCM/PM as well as variable aperture in this work. Methods: Rigorous convolution equations are derived to describe the accumulated dose distributions for TCM, PM, and concurrent TCM/PM. A comparison with scanner-reported CTDI{sub vol} formulae clearly identifies themore » source of their differences with the traditional CTDI{sub vol}. Dose distribution simulations using the convolution are provided for a variety of TCM and PM scenarios including a helical shuttle used for perfusion studies (as well as constant mA)—all having the same scanner-reported CTDI{sub vol}. These new convolution simulations for TCM are validated by comparison with their previous discrete summations. Results: These equations show that PM is equivalent to TCM if the pitch variation p(z) is proportional to 1/i(z), where i(z) is the local tube current. The simulations show that the local dose at z depends only weakly on the local tube current i(z) or local pitch p(z) due to scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” or “CTDI{sub vol} per slice” do not represent a local dose but rather only a relative i(z) or p(z). The CTDI-paradigm does not apply to shift-variant techniques and the scanner-reported CTDI{sub vol} for the same lacks physical significance and relevance. Conclusions: While the traditional CTDI{sub vol} at constant tube current and pitch conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} for shift-variant techniques (TCM or PM) conveys no useful information about the associated dose distribution it purportedly represents. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust (invariant) with respect to shift-variance, depending only on the total mAs = 〈i〉t{sub 0} accumulated during the total beam-on time t{sub 0} and aperture a, where 〈i〉 is the average current.« less

  13. Optimizing cropland cover for stable food production in Sub-Saharan Africa using simulated yield and Modern Portfolio Theory

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.

    2014-12-01

    Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.

  14. Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.

    PubMed

    Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D

    2017-09-01

    We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.

  15. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    PubMed Central

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-01-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672

  16. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.

    PubMed

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-20

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  17. Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.

    2016-11-15

    An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density,more » and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.« less

  18. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, P.F.

    1979-07-17

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  19. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, Patrick F.

    1981-01-01

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  20. Integrating multiple distribution models to guide conservation efforts of an endangered toad

    USGS Publications Warehouse

    Treglia, Michael L.; Fisher, Robert N.; Fitzgerald, Lee A.

    2015-01-01

    Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.

  1. Electric field distribution and current emission in a miniaturized geometrical diode

    NASA Astrophysics Data System (ADS)

    Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng

    2017-06-01

    We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.

  2. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past.

    PubMed

    Russell, Richard C; Currie, Bart J; Lindsay, Michael D; Mackenzie, John S; Ritchie, Scott A; Whelan, Peter I

    2009-03-02

    Dengue transmission in Australia is currently restricted to Queensland, where the vector mosquito Aedes aegypti is established. Locally acquired infections have been reported only from urban areas in the north-east of the state, where the vector is most abundant. Considerable attention has been drawn to the potential impact of climate change on dengue distribution within Australia, with projections for substantial rises in incidence and distribution associated with increasing temperatures. However, historical data show that much of Australia has previously sustained both the vector mosquito and dengue viruses. Although current vector distribution is restricted to Queensland, the area inhabited by A. aegypti is larger than the disease-transmission areas, and is not restricted by temperature (or vector-control programs); thus, it is unlikely that rising temperatures alone will bring increased vector or virus distribution. Factors likely to be important to dengue and vector distribution in the future include increased dengue activity in Asian and Pacific nations that would raise rates of virus importation by travellers, importation of vectors via international ports to regions without A. aegypti, higher rates of domestic collection and storage of water that would provide habitat in urban areas, and growing human populations in northern Australia. Past and recent successful control initiatives in Australia lend support to the idea that well resourced and functioning surveillance programs, and effective public health intervention capabilities, are essential to counter threats from dengue and other mosquito-borne diseases. Models projecting future activity of dengue (or other vector-borne disease) with climate change should carefully consider the local historical and contemporary data on the ecology and distribution of the vector and local virus transmission.

  3. Non-equilibrium steady states in the Klein-Gordon theory

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.

    2015-03-01

    We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.

  4. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras

    PubMed Central

    Riddell, Michaela A; Rota, Jennifer S; Rota, Paul A

    2005-01-01

    Molecular epidemiological investigation of measles outbreaks can document the interruption of endemic measles transmission and is useful for establishing and clarifying epidemiological links between cases in geographically distinct clusters. To determine the distribution of measles virus genotypes in the prevaccine and postvaccine eras, a literature search of biomedical databases, measles surveillance websites and other electronic sources was conducted for English language reports of measles outbreaks or genetic characterization of measles virus isolates. Genotype assignments based on classification systems other than the currently accepted WHO nomenclature were reassigned using the current criteria. This review gives a comprehensive overview of the distribution of MV genotypes in the prevaccine and postvaccine eras and describes the geographically diverse distribution of some measles virus genotypes and the localized distributions of other genotypes. PMID:16303052

  5. Modeled ground magnetic signatures of flux transfer events

    NASA Technical Reports Server (NTRS)

    Mchenry, Mark A.; Clauer, C. Robert

    1987-01-01

    The magnetic field on the ground due to a small (not greater than 200 km scale size) localized field-aligned current (FAC) system interacting with the ionosphere is calculated in terms of an integral over the ionospheric distribution of FAC. Two different candidate current systems for flux transfer events (FTEs) are considered: (1) a system which has current flowing down the center of a cylindrical flux tube with a return current uniformly distributed along the outside edge; and (2) a system which has upward current on one half of the perimeter of a cylindrical flux tube with downward current on the opposite half. The peak magnetic field on the ground is found to differ by a factor of 2 between the two systems, and the magnetic perturbations are in different directions depending on the observer's position.

  6. Constraints and benefits of changing the distribution process for recreation special use permits in the U.S

    Treesearch

    Jessie Meybin; Robert Burns; Alan Graefe; James D. Absher

    2010-01-01

    A significant policy change governing recreation Special Use Permits on U.S. Federal lands was implemented in October 2008. The changes may have a major impact on current and potential recreation users, members of local communities, and existing outfitter/guide services. This paper presents findings from interviews with permit distribution supervisors about changes in...

  7. Smart Distributed Sensor Fields: Algorithms for Tactical Sensors

    DTIC Science & Technology

    2013-12-23

    ranging from detecting, identifying, localizing/tracking interesting events, discarding irrelevant data, to providing actionable intelligence currently...tracking interesting events, discarding irrelevant data, to providing actionable intelligence currently requires significant human super- vision. Human...view of the overall system. The main idea is to reduce the problem to the relevant data, and then reason intelligently over that data. This process

  8. Understanding the Knowledge and Use of Experiential Learning within Pennsylvania 4-H Clubs

    ERIC Educational Resources Information Center

    Bechtel, Robyn; Ewing, John C.; Threeton, Mark; Mincemoyer, Claudia

    2013-01-01

    Experiential learning is incorporated into the National 4-H curriculum. However, the state 4-H staff in Pennsylvania is unsure of the current knowledge and use of experiential learning within the local 4-H clubs. An online survey was distributed to Extension educators and volunteer leaders within Pennsylvania to assess the current knowledge and…

  9. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  10. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    NASA Astrophysics Data System (ADS)

    Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars

    2013-08-01

    There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.

  11. On the Topological Changes of Local Hurst Exponent in Polar Regions

    NASA Astrophysics Data System (ADS)

    Consolini, G.; De Michelis, P.

    2014-12-01

    Geomagnetic activity during magnetic substorms and storms is related to the dinamical and topological changes of the current systems flowing in the Earth's magnetosphere-ionosphere. This is particularly true in the case of polar regions where the enhancement of auroral electrojet current system is responsible for the observed geomagnetic perturbations. Here, using the DMA-technique we evaluate the local Hurst exponent (H"older exponent) for a set of 46 geomagnetic observatories, widely distributed in the northern hemisphere, during one of the most famous and strong geomagnetic storm, the Bastille event, and reconstruct a sequence of polar maps showing the dinamical changes of the topology of the local Hurst exponent with the geomagnetic activity level. The topological evolution of local Hurst exponent maps is discussed in relation to the dinamical changes of the current systems flowing in the polar ionosphere. G. Consolini has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 313038/STORM for this research.

  12. Localization of Defensive Chemicals in Two Congeneric Butterflies (Euphydryas, Nymphalidae).

    PubMed

    Mason, Peri A; Deane Bowers, M

    2017-05-01

    Many insect species sequester compounds acquired from their host plants for defense against natural enemies. The distribution of these compounds is likely to affect both their efficacy as defenses, and their costs. In this study we examined the distribution of sequestered iridoid glycosides (IGs) in two congeneric species of nymphalid butterfly, Euphydryas anicia and E. phaeton, and found that the pattern of localization of IGs differed between the two species. Although IG concentrations were quite high in the heads of both species, the relative concentrations in wings and abdomens differed substantially. Euphydryas anicia had relatively high IG concentrations in their abdomens and low IG concentrations in their wings, whereas the reverse was true in E. phaeton. We interpret these results in light of two current hypotheses regarding where sequestered chemicals should be localized: that they should be found in wings, which would allow non-lethal sampling by predators; and that their distribution is constrained by the distribution of tissue types to which sequestered compounds bind. We also offer the third hypothesis, that costs of storage may differ among body parts, and that the localization of compounds may reflect a cost-reduction strategy. Results from E. phaeton were consistent with all three of these non-mutually exclusive hypotheses, whereas results from E. anicia were only consistent with the notion that tissue bias among body parts plays a role in IG distribution. The finding that these two congeneric butterflies exhibit different patterns of IG localization suggests that they have been shaped by different selection regimes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuevas, F.A.; Curilef, S., E-mail: scurilef@ucn.cl; Plastino, A.R., E-mail: arplastino@ugr.es

    The spread of a wave-packet (or its deformation) is a very important topic in quantum mechanics. Understanding this phenomenon is relevant in connection with the study of diverse physical systems. In this paper we apply various 'spreading measures' to characterize the evolution of an initially localized wave-packet in a tight-binding lattice, with special emphasis on information-theoretical measures. We investigate the behavior of both the probability distribution associated with the wave packet and the concomitant probability current. Complexity measures based upon Renyi entropies appear to be particularly good descriptors of the details of the delocalization process. - Highlights: > Spread ofmore » highly localized wave-packet in the tight-binding lattice. > Entropic and information-theoretical characterization is used to understand the delocalization. > The behavior of both the probability distribution and the concomitant probability current is investigated. > Renyi entropies appear to be good descriptors of the details of the delocalization process.« less

  14. Imaging of current distributions in superconducting thin film structures

    NASA Astrophysics Data System (ADS)

    Dönitz, Dietmar

    2006-10-01

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tübingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices (SQUIDs) could be developed. It is based on vortex imaging by LTSEM that had been established several years ago. The vortex signals can be used as local detectors for the vortex-free circulating sheet-current distribution J. Compared to previous inversion methods that infer J from the measured magnetic field, this method gives a more direct measurement of the current distribution. The experimental results were in very good agreement with numerical calculations of J. The presented investigations show how versatile and useful Low Temperature Scanning Electron Microscopy can be for studying superconducting thin film structures. Thus one may expect that many more important results can be obtained with this method.

  15. Fast Entanglement Establishment via Local Dynamics for Quantum Repeater Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    Quantum entanglement is a necessity for future quantum communication networks, quantum internet, and long-distance quantum key distribution. The current approaches of entanglement distribution require high-delay entanglement transmission, entanglement swapping to extend the range of entanglement, high-cost entanglement purification, and long-lived quantum memories. We introduce a fundamental protocol for establishing entanglement in quantum communication networks. The proposed scheme does not require entanglement transmission between the nodes, high-cost entanglement swapping, entanglement purification, or long-lived quantum memories. The protocol reliably establishes a maximally entangled system between the remote nodes via dynamics generated by local Hamiltonians. The method eliminates the main drawbacks of current schemes allowing fast entanglement establishment with a minimized delay. Our solution provides a fundamental method for future long-distance quantum key distribution, quantum repeater networks, quantum internet, and quantum-networking protocols. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  16. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States.

    PubMed

    Yu, Xubiao; Ladewig, Samantha; Bao, Shaowu; Toline, Catherine A; Whitmire, Stefanie; Chow, Alex T

    2018-02-01

    To investigate the occurrence and distribution of microplastics in the southeastern coastal region of the United States, we quantified the amount of microplastics in sand samples from multiple coastal sites and developed a predictive model to understand the drift of plastics via ocean currents. Sand samples from eighteen National Park Service (NPS) beaches in the Southeastern Region were collected and microplastics were isolated from each sample. Microplastic counts were compared among sites and local geography was used to make inferences about sources and modes of distribution. Samples were analyzed to identify the composition of particles using Fourier transform infrared spectroscopy (FTIR). To predict the spatiotemporal distribution and movements of particles via coastal currents, a Regional Ocean Modeling System (ROMS) was applied. Microplastics were detected in each of the sampled sites although abundance among sites was highly variable. Approximately half of the samples were dominated by thread-like and fibrous materials as opposed to beads and particles. Results of FTIR suggested that 24% consisted of polyethylene terephthalate (PET), while about 68% of the fibers tested were composed of man-made cellulosic materials such as rayon. Based on published studies examining sources of microplastics, the shape of the particles found here (mostly fibers) and the presence of PET, we infer the source of microplastics in coastal areas is mainly from urban areas, such as wastewater discharge, rather than breakdown of larger marine debris drifting in the ocean. Local geographic features, e.g., the nearness of sites to large rivers and urbanized areas, explain variance in amount of microplastics among sites. Additionally, the distribution of simulated particles is explained by ocean current patterns; computer simulations were correlated with field observations, reinforcing the idea that ocean currents can be a good predictor of the fate and distribution of microplastics at the sites sampled here. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOEpatents

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  18. An Examination of Distributive and Relational Justice in the Issue of Education Fairness for Urban Migrant Workers' Children

    ERIC Educational Resources Information Center

    Yun, Luo; Jingxun, Zhong; Rongguang, Zeng

    2017-01-01

    Current arguments on educational fairness for the children of migrant workers in cities primarily promote the opportunity to enroll in local public schools. Drawing on current research, as well as discussions of fairness and justice from Aristotle in the classical period to Rawls, Dworkin, Walzer, and the contemporary scholar Young, we investigate…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlenker, R.A.

    This paper presents aspects of current and recent work on the distribution of radium and plutonium near the surfaces of human bone and applications of the data. Included are sections on methods, surface deposit thickness, radium distribution near the endosteal surface, the use of alpha spectrometry in conjunction with autoradiography, radium distribution in the mastoid, and factors affecting plutonium specific activity. Emphasis is placed on the alpha spectrometry technique because of its usefulness and its recent application to problems of local dosimetry. 19 references, 14 figures, 6 tables.

  20. Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru

    2015-09-01

    We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.

  1. On the emergence of a generalised Gamma distribution. Application to traded volume in financial markets

    NASA Astrophysics Data System (ADS)

    Duarte Queirós, S. M.

    2005-08-01

    This letter reports on a stochastic dynamical scenario whose associated stationary probability density function is exactly a generalised form, with a power law instead of exponencial decay, of the ubiquitous Gamma distribution. This generalisation, also known as F-distribution, was empirically proposed for the first time to adjust for high-frequency stock traded volume distributions in financial markets and verified in experiments with granular material. The dynamical assumption presented herein is based on local temporal fluctuations of the average value of the observable under study. This proposal is related to superstatistics and thus to the current nonextensive statistical mechanics framework. For the specific case of stock traded volume, we connect the local fluctuations in the mean stock traded volume with the typical herding behaviour presented by financial traders. Last of all, NASDAQ 1 and 2 minute stock traded volume sequences and probability density functions are numerically reproduced.

  2. Contact-metal dependent current injection in pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Aoyagi, Y.

    2007-11-01

    Contact-metal dependent current injection in top-contact pentacene thin-film transistors is analyzed, and the local mobility in the contact region was found to follow the Meyer-Neldel rule. An exponential trap distribution, rather than the metal/organic hole injection barrier, is proposed to be the dominant factor of the contact resistance in pentacene thin-film transistors. The variable temperature measurements revealed a much narrower trap distribution in the copper contact compared with the corresponding gold contact, and this is the origin of the smaller contact resistance for copper despite a lower work function.

  3. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  4. Autonomous distributed self-organization for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Tang, Hung-Kai

    2009-01-01

    This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  5. EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1.

    PubMed

    Komssi, S; Huttunen, J; Aronen, H J; Ilmoniemi, R J

    2004-03-01

    Dipole models, which are frequently used in attempts to solve the electromagnetic inverse problem, require explicit a priori assumptions about the cerebral current sources. This is not the case for solutions based on minimum-norm estimates. In the present study, we evaluated the spatial accuracy of the L2 minimum-norm estimate (MNE) in realistic noise conditions by assessing its ability to localize sources of evoked responses at the primary somatosensory cortex (SI). Multichannel somatosensory evoked potentials (SEPs) and magnetic fields (SEFs) were recorded in 5 subjects while stimulating the median and ulnar nerves at the left wrist. A Tikhonov-regularized L2-MNE, constructed on a spherical surface from the SEP signals, was compared with an equivalent current dipole (ECD) solution obtained from the SEFs. Primarily tangential current sources accounted for both SEP and SEF distributions at around 20 ms (N20/N20m) and 70 ms (P70/P70m), which deflections were chosen for comparative analysis. The distances between the locations of the maximum current densities obtained from MNE and the locations of ECDs were on the average 12-13 mm for both deflections and nerves stimulated. In accordance with the somatotopical order of SI, both the MNE and ECD tended to localize median nerve activation more laterally than ulnar nerve activation for the N20/N20m deflection. Simulation experiments further indicated that, with a proper estimate of the source depth and with a good fit of the head model, the MNE can reach a mean accuracy of 5 mm in 0.2-microV root-mean-square noise. When compared with previously reported localizations based on dipole modelling of SEPs, it appears that equally accurate localization of S1 can be obtained with the MNE. MNE can be used to verify parametric source modelling results. Having a relatively good localization accuracy and requiring minimal assumptions, the MNE may be useful for the localization of poorly known activity distributions and for tracking activity changes between brain areas as a function of time.

  6. Estimation of the processes controlling variability in phytoplankton pigment distributions on the southeastern U.S. continental shelf

    NASA Technical Reports Server (NTRS)

    Mcclain, Charles R.; Ishizaka, Joji; Hofmann, Eileen E.

    1990-01-01

    Five coastal-zone-color-scanner images from the southeastern U.S. continental shelf are combined with concurrent moored current meter measurements to assess the processes controlling the variability in chlorophyll concentration and distribution in this region. An equation governing the space and time distribution of a nonconservative quantity such as chlorophyll is used in the calculations. The terms of the equation, estimated from observations, show that advective, diffusive, and local processes contribute to the plankton distributions and vary with time and location. The results from this calculation are compared with similar results obtained using a numerical physical-biological model with circulation fields derived from an optimal interpolation of the current meter observations and it is concluded that the two approaches produce different estimates of the processes controlling phytoplankton variability.

  7. Modeling Trip Duration for Mobile Source Emissions Forecasting

    DOT National Transportation Integrated Search

    2000-08-01

    The distribution of the duration of trips in a metropolitan area is an important input to estimating area-wide running loss emissions, operating mode fractions and vehicle miles of travel (VMT) accumulated on local roads in the region. In the current...

  8. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  9. Study of an Audio Playback Machine Storage, Distribution, and Repair System. Options for Machine Operation. Study II, Part 1, Phase 2, Final Report.

    ERIC Educational Resources Information Center

    ManTech Technical Services Corp., Fairfax, VA.

    This report presents the results of a management study of audio playback equipment operations conducted by the National Library Service, Library of Congress, its associated network of state and local machine lending agencies (MLA), and other parties that play a role in current operations. The objectives were to document current operations,…

  10. Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Lühr, Hermann; Wang, Hui

    2017-11-01

    On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.

  11. Local impact of humidification on degradation in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  12. Small scale endemism in Brazil's Atlantic Forest: 14 new species of Mesabolivar (Araneae, Pholcidae), each known from a single locality.

    PubMed

    Huber, Bernhard A

    2015-04-07

    In an ongoing mega-transect project that aims at analyzing pholcid spider diversity and distribution in the Atlantic Forest of Brazil, many species appear restricted to small geographic ranges. Of the 84 species collected between 2003 and 2011 at 17 sites between Bahia and Santa Catarina, 51 species (61%) were found at only one locality. The present paper focuses on such species in the genus Mesabolivar, and compares diversity and distribution patterns of this genus within and outside the Atlantic Forest. The percentage of species known from single localities is higher in the Atlantic Forest (34 of 52 species; 65%) than outside the Atlantic Forest (10 of 25; 40%). Distribution rages of species in the Atlantic Forest are significantly smaller than of species outside the Atlantic Forest (mean maximum distances between localities: 184 versus 541 km; medians: 10 km versus 220 km). The following species are newly described (arranged from north to south), each currently known from the respective type locality only: M. caipora; M. kathrinae; M. bonita; M. pau (Bahia); M. monteverde; M. perezi (Espírito Santo); M. giupponii; M. goitaca; M. sai (Rio de Janeiro); M. tamoio; M. unicornis; M. gabettae; M. inornatus (São Paulo); M. itapoa (Santa Catarina).

  13. Effect of Localizer Radiography Projection on Organ Dose at Chest CT with Automatic Tube Current Modulation.

    PubMed

    Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem

    2017-03-01

    Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P < .001) owing to the higher attenuation (P < .001) and thus resulted in higher total organ doses for all investigated phantoms and protocols (P < .001). Noise in CT images was lower with PA localizer radiography than with AP localizer radiography (P = .03). The use of an AP projection allowed for total dose reductions of 16%, 15%, and 12% for lungs, breast, and heart, respectively. Differences in organ doses were not related to tube start angles (P = .17). Conclusion The total organ doses are higher when using PA projection localizer radiography owing to higher TCM values, whereas the organ doses from PA localizer radiography alone are lower. Thus, PA localizer radiography should be used in combination with reduced reference tube current at subsequent chest CT. © RSNA, 2016 Online supplemental material is available for this article.

  14. Planning of distributed generation in distribution network based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng

    2018-02-01

    Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.

  15. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzell, Peter; Bryden, Kenneth M.

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  16. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE PAGES

    Finzell, Peter; Bryden, Kenneth M.

    2017-03-06

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  17. Mitochondrial DNA evolution in the Anaxyrus boreas species group

    Treesearch

    Anna M. Goebel; Tom A. Ranker; Paul Stephen Corn; Richard G. Olmstead

    2009-01-01

    The Anaxyrus boreas species group currently comprises four species in western North America including the broadly distributed A. boreas, and three localized species, Anaxyrus nelsoni, Anaxyrus exsul and Anaxyrus canorus. Phylogenetic analyses of the mtDNA 12S rDNA, cytochrome...

  18. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario, whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.

  19. Large developing receptive fields using a distributed and locally reprogrammable address-event receiver.

    PubMed

    Bamford, Simeon A; Murray, Alan F; Willshaw, David J

    2010-02-01

    A distributed and locally reprogrammable address-event receiver has been designed, in which incoming address-events are monitored simultaneously by all synapses, allowing for arbitrarily large axonal fan-out without reducing channel capacity. Synapses can change the address of their presynaptic neuron, allowing the distributed implementation of a biologically realistic learning rule, with both synapse formation and elimination (synaptic rewiring). Probabilistic synapse formation leads to topographic map development, made possible by a cross-chip current-mode calculation of Euclidean distance. As well as synaptic plasticity in rewiring, synapses change weights using a competitive Hebbian learning rule (spike-timing-dependent plasticity). The weight plasticity allows receptive fields to be modified based on spatio-temporal correlations in the inputs, and the rewiring plasticity allows these modifications to become embedded in the network topology.

  20. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  1. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  2. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  3. Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.

    2016-09-01

    The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.

  4. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    PubMed

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  5. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  6. Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models.

    PubMed

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.

  7. Past, Present and Future Distributions of an Iberian Endemic, Lepus granatensis: Ecological and Evolutionary Clues from Species Distribution Models

    PubMed Central

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species’ ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model’s output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change. PMID:23272115

  8. Bringing modeling to the masses: A web based system to predict potential species distributions

    USGS Publications Warehouse

    Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul

    2010-01-01

    Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.

  9. Application of a global magnetospheric-ionospheric current model for dayside and terminator Pi2 pulsations

    NASA Astrophysics Data System (ADS)

    Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.

    2017-12-01

    Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].

  10. Investigation of tunneling current and local contact potential difference on the TiO2(110) surface by AFM/KPFM at 78 K.

    PubMed

    Wen, Huan Fei; Li, Yan Jun; Arima, Eiji; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Xu, Rui; Cheng, Zhi Hai

    2017-03-10

    We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO 2 (110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.

  11. The role of localized junction leakage in the temperature-dependent laser-beam-induced current spectra for HgCdTe infrared focal plane array photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, A. L.; Li, G., E-mail: liguang1971@ahu.edu.cn, E-mail: xschen@mail.sitp.ac.cn; He, G.

    2013-11-07

    We have performed the study on the dependence of laser beam induced current (LBIC) spectra on the temperature for the vacancy-doped molecular beam epitaxy grown Hg{sub 1−x}Cd{sub x}Te (x = 0.31) photodiodes by both experiment and numerical simulations. It is found that the measured LBIC signal has different distributions for different temperature extents. The LBIC profile tends to be more asymmetric with increasing temperature below 170 K. But the LBIC profile becomes more symmetric with increasing temperature above 170 K. Based on a localized leakage model, it is indicated that the localized junction leakage can lead to asymmetric LBIC signal, in good agreement withmore » the experimental data. The reason is that the trap-assisted tunneling current is the dominant leakage current at the cryogenic temperature below 170 K while the diffusion current component becomes dominant above the temperature of 170 K. The results are helpful for us to better clarify the mechanism of the dependence of LBIC spectra on temperature for the applications of HgCdTe infrared photodiodes.« less

  12. Future Roles of Milli-, Micro-, and Nano- Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Nordman, Bruce; Lai, Judy

    Although it has slowed considerably, consumption of electricity continues to grow in developed economies. Further, there are some unknowns which might accelerate this growth, such as electrification of vehicle fleets and geothermal heat pump space and water heating. Most analysts anticipate that distributed energy resources (DER) will provide a large share of the expanded generation capacity required to meet this seemingly inexorably increasing electricity demand. Further, given the urgency of tackling the climate change problem, most of the added assets must be carbonfree renewables or nuclear, end-use efficiency improvements, or highly efficient fossil-fired technologies. In developed economies worldwide, the currentmore » power delivery paradigm has been in place for more than a century, i.e. since the emergence of polyphase AC systems around the turn of the last century. A key feature of this structure is that, in principle, universal service is delivered at a consistent level of power quality and reliability (PQR) throughout large regions. This paper describes a future possible structure for the electricity generation and delivery system that leaves the existing high voltage meshed grid paradigm in place, but involves radical reorganization of parts of the distribution network and customer sites. Managing a much more diverse dispersed system poses major challenges to the current centralized grid paradigm, particularly since many of these assets are small to tiny by macrogrid standards and they may ultimately number in the millions. They are also not ones that centralized control can rely upon to function in traditionally dependable ways, e.g. renewable generation can be highly variable and changes in output of generators are not independent. Although most involved in the industry agree that a paradigm shift is both necessary and desirable to manage the new system, the nature of the future system remains quite unclear. In the possible structure described here, the traditional grid, or macrogrid, remains similar at the high voltage meshed level. Three new entities are added more locally: community grids or milligrids that operate a segment of the existing distribution system, microgrids which are akin to current customer sites but which have automonous control, and nanogrids, such as telecom or Ethernet networks that currently distribute power to many low-power devices. The latter exist currently in the local electrical systems but are not typically considered a part of the traditional electricity supply system. Because all these new entities exhibit some localized control, providing appropriate local heterogeneous PQR becomes a possibility. These new grid concepts enable a more"bottom-up" approach to electricity distribution, in contrast to the historic 'top-down' model. The future will almost certainly include a mix of the two, but the balance among them and the interface (if any) between them is unclear.« less

  13. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    PubMed

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Local adaptation and the evolution of species' ranges under climate change.

    PubMed

    Atkins, K E; Travis, J M J

    2010-10-07

    The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention. 2010 Elsevier Ltd. All rights reserved.

  15. Real time monitoring of water distribution in an operando fuel cell during transient states

    NASA Astrophysics Data System (ADS)

    Martinez, N.; Peng, Z.; Morin, A.; Porcar, L.; Gebel, G.; Lyonnard, S.

    2017-10-01

    The water distribution of an operating proton exchange membrane fuel cell (PEMFC) was monitored in real time by using Small Angle Neutron Scattering (SANS). The formation of liquid water was obtained simultaneously with the evolution of the water content inside the membrane. Measurements were performed when changing current with a time resolution of 10 s, providing insights on the kinetics of water management prior to the stationary phase. We confirmed that water distribution is strongly heterogeneous at the scale at of the whole Membrane Electrode Assembly. As already reported, at the local scale there is no straightforward link between the amounts of water present inside and outside the membrane. However, we show that the temporal evolutions of these two parameters are strongly correlated. In particular, the local membrane water content is nearly instantaneously correlated to the total liquid water content, whether it is located at the anode or cathode side. These results can help in optimizing 3D stationary diphasic models used to predict PEMFC water distribution.

  16. Annotated checklist of millipedes (Myriapoda: Diplopoda) of Sri Lanka.

    PubMed

    Zoysa, H K S De; Nguyen, Anh D; Wickramasinghe, S

    2016-01-11

    This review lists the currently known species of millepedes in Sri Lanka and discusses their current taxonomic status and distribution based on previous studies from 1865 to date. A total of 104 millipede species belonging to 44 genera, 18 families and nine orders have been recorded in Sri Lanka. Of these, 82 are known only from Sri Lanka; additionally, nine genera and one family are known only from Sri Lanka. Most of the millipede species have been recorded from two localities, namely Pundaluoya and Kandy in the central highlands of Sri Lanka. Current knowledge on the taxonomy, evolutionary relationships, distribution and conservation of the millipedes of Sri Lanka is still limited and scattered. Thus we suggest more intensive surveys to acquire comprehensive data on the millipedes of Sri Lanka.

  17. Experimental measurement-device-independent verification of quantum steering

    NASA Astrophysics Data System (ADS)

    Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

    2015-01-01

    Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  18. Experimental measurement-device-independent verification of quantum steering.

    PubMed

    Kocsis, Sacha; Hall, Michael J W; Bennet, Adam J; Saunders, Dylan J; Pryde, Geoff J

    2015-01-07

    Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  19. Thermally Stimulated Currents in Nanocrystalline Titania

    PubMed Central

    Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica

    2018-01-01

    A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976

  20. Thermally Stimulated Currents in Nanocrystalline Titania.

    PubMed

    Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica

    2018-01-05

    A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.

  1. Geographical distribution of Amblyomma cajennense (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of A. cajennense (sensu stricto).

    PubMed

    Martins, Thiago F; Barbieri, Amália R M; Costa, Francisco B; Terassini, Flávio A; Camargo, Luís M A; Peterka, Cássio R L; de C Pacheco, Richard; Dias, Ricardo A; Nunes, Pablo H; Marcili, Arlei; Scofield, Alessandra; Campos, Artur K; Horta, Mauricio C; Guilloux, Aline G A; Benatti, Hector R; Ramirez, Diego G; Barros-Battesti, Darci M; Labruna, Marcelo B

    2016-03-31

    Until recently, Amblyomma cajennense (Fabricius, 1787) was considered to represent a single tick species in the New World. Recent studies have split this taxon into six species. While the A. cajennense species complex or A. cajennense (sensu lato) (s.l.) is currently represented by two species in Brazil, A. cajennense (sensu stricto) (s.s.) and Amblyomma sculptum Berlese, 1888, their geographical distribution is poorly known. The distribution of the A. cajennense (s.l.) in Brazil was determined by morphological examination of all lots of A. cajennense (s.l.) in two large tick collections of Brazil, and by collecting new material during three field expeditions in the possible transition areas between the distribution ranges of A. cajennense (s.s.) and A. sculptum. Phylogenetic analysis inferred from the ITS2 rRNA gene was used to validate morphological results. Morphological description of the nymphal stage of A. cajennense (s.s.) is provided based on laboratory-reared specimens. From the tick collections, a total 12,512 adult ticks were examined and identified as 312 A. cajennense (s.s.), 6,252 A. sculptum and 5,948 A. cajennense (s.l.). A total of 1,746 ticks from 77 localities were collected during field expeditions, and were identified as 249 A. cajennense (s.s.), 443 A. sculptum, and 1,054 A. cajennense (s.l.) [these A. cajennense (s.l.) ticks were considered to be males of either A. cajennense (s.s.) or A. sculptum]. At least 23 localities contained the presence of both A. cajennense (s.s.) and A. sculptum in sympatry. DNA sequences of the ITS2 gene of 50 ticks from 30 localities confirmed the results of the morphological analyses. The nymph of A. cajennense (s.s.) is morphologically very similar to A. sculptum. Our results confirmed that A. cajennense (s.l.) is currently represented in Brazil by only two species, A. cajennense (s.s.) and A. sculptum. While these species have distinct distribution areas in the country, they are found in sympatry in some transition areas. The current distribution of A. cajennense (s.l.) has important implications to public health, since in Brazil A. sculptum is the most important vector of the bacterium Rickettsia rickettsii, the etiological agent of Brazilian spotted fever.

  2. Humpback Dolphins of Western Australia: A Review of Current Knowledge and Recommendations for Future Management.

    PubMed

    Hanf, Daniella M; Hunt, Tim; Parra, Guido J

    2016-01-01

    Among the many cetacean species that occupy Australian coastal waters, Australian humpback dolphins, Sousa sahulensis, are one of the most vulnerable to extirpation due to human activities. This review summarises the existing knowledge, presently occurring and planned research projects, and current conservation measures for humpback dolphins in Western Australia (WA). Rapid and wide-scale coastal development along the northern WA coastline has occurred despite a lack of baseline data for inshore dolphins and, therefore, without a precautionary approach to their conservation. The distribution, abundance, habitat use, and population structure of humpback dolphins remain poorly understood. Less than 1% of their inferred distribution has so far been studied to understand local population demography. The sparse data available suggest that WA humpback dolphins occur as localised populations in low numbers within a range of inshore habitats, including both clear and turbid coastal waters. Marine protected areas cover a third of their inferred distribution in WA, but the efficacy of these reserves in protecting local cetacean populations is unknown. There is a pressing need for coordination and collaboration among scientists, government agencies, industry bodies, Traditional Owners, and local community groups to fill in the gaps of information on humpback dolphins in WA. The recently developed strategies and sampling guidelines developed by state and federal governments should serve as a best practise standard for collection of data aimed at assessing the conservation status of humpback dolphins in WA and Australia. © 2016 Elsevier Ltd. All rights reserved.

  3. An automated model-based aim point distribution system for solar towers

    NASA Astrophysics Data System (ADS)

    Schwarzbözl, Peter; Rong, Amadeus; Macke, Ansgar; Säck, Jan-Peter; Ulmer, Steffen

    2016-05-01

    Distribution of heliostat aim points is a major task during central receiver operation, as the flux distribution produced by the heliostats varies continuously with time. Known methods for aim point distribution are mostly based on simple aim point patterns and focus on control strategies to meet local temperature and flux limits of the receiver. Lowering the peak flux on the receiver to avoid hot spots and maximizing thermal output are obviously competing targets that call for a comprehensive optimization process. This paper presents a model-based method for online aim point optimization that includes the current heliostat field mirror quality derived through an automated deflectometric measurement process.

  4. On the response to ocean surface currents in synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Phillips, O. M.

    1984-01-01

    The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.

  5. Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry

    PubMed Central

    Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki

    2007-01-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581

  6. IP-Based Video Modem Extender Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, L G; Boorman, T M; Howe, R E

    2003-12-16

    Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOEmore » Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.« less

  7. Reconstruction of thin fluorophore-filled capillaries in thick scattering medium using fluorescence diffuse optical tomography within the diffusion approximation

    NASA Astrophysics Data System (ADS)

    Desrochers, Johanne; Vermette, Patrick; Fontaine, Réjean; Bérubé-Lauzière, Yves

    2009-02-01

    Current efforts in tissue engineering target the growth of 3D volumes of tissue cultures in bioreactor conditions. Fluorescence optical tomography has the potential to monitor cells viability and tissue growth non-destructively directly within the bioreactor via bio-molecular fluorescent labelling strategies. We currently work on developing the imaging instrumentation for tissue cultures in bioreactor conditions. Previously, we localized in 3D thin fluorescent-labelled capillaries in a cylindrically shaped bioreactor phantom containing a diffusive medium with our time-of-flight localization technique. Here, we present our first reconstruction results of the spatial distribution of fluorophore concentrations for labelled capillaries embedded in a bioreactor phantom.

  8. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    NASA Astrophysics Data System (ADS)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  9. An approach to constrained aerodynamic design with application to airfoils

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.

    1992-01-01

    An approach was developed for incorporating flow and geometric constraints into the Direct Iterative Surface Curvature (DISC) design method. In this approach, an initial target pressure distribution is developed using a set of control points. The chordwise locations and pressure levels of these points are initially estimated either from empirical relationships and observed characteristics of pressure distributions for a given class of airfoils or by fitting the points to an existing pressure distribution. These values are then automatically adjusted during the design process to satisfy the flow and geometric constraints. The flow constraints currently available are lift, wave drag, pitching moment, pressure gradient, and local pressure levels. The geometric constraint options include maximum thickness, local thickness, leading-edge radius, and a 'glove' constraint involving inner and outer bounding surfaces. This design method was also extended to include the successive constraint release (SCR) approach to constrained minimization.

  10. Distribution of L-type calcium channels in rat thalamic neurones.

    PubMed

    Budde, T; Munsch, T; Pape, H C

    1998-02-01

    One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.

  11. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  12. The Role of Ocean Currents in the Temperature Selection of Plankton: Insights from an Individual-Based Model

    PubMed Central

    Hellweger, Ferdi L.; van Sebille, Erik; Calfee, Benjamin C.; Chandler, Jeremy W.; Zinser, Erik R.; Swan, Brandon K.; Fredrick, Neil D.

    2016-01-01

    Biogeography studies that correlate the observed distribution of organisms to environmental variables are typically based on local conditions. However, in cases with substantial translocation, like planktonic organisms carried by ocean currents, selection may happen upstream and local environmental factors may not be representative of those that shaped the local population. Here we use an individual-based model of microbes in the global surface ocean to explore this effect for temperature. We simulate up to 25 million individual cells belonging to up to 50 species with different temperature optima. Microbes are moved around the globe based on a hydrodynamic model, and grow and die based on local temperature. We quantify the role of currents using the “advective temperature differential” metric, which is the optimum temperature of the most abundant species from the model with advection minus that from the model without advection. This differential depends on the location and can be up to 4°C. Poleward-flowing currents, like the Gulf Stream, generally experience cooling and the differential is positive. We apply our results to three global datasets. For observations of optimum growth temperature of phytoplankton, accounting for the effect of currents leads to a slightly better agreement with observations, but there is large variability and the improvement is not statistically significant. For observed Prochlorococcus ecotype ratios and metagenome nucleotide divergence, accounting for advection improves the correlation significantly, especially in areas with relatively strong poleward or equatorward currents. PMID:27907181

  13. Trinity Bay Study: Dye tracing experiments

    NASA Technical Reports Server (NTRS)

    Ward, G. H., Jr.

    1972-01-01

    An analysis of the heat balance and temperature distribution within Trinity Bay near Galveston, Texas is presented. The effects of tidal currents, wind driven circulations, and large volume inflows are examined. Emphasis is placed on the effects of turbulent diffusion and local shears in currents. The technique of dye tracing to determine the parameters characterizing dispersion is described. Aerial photographs and maps are provided to show the flow conditions existing at different times and seasons.

  14. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    PubMed

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  15. [Ecological affinity and current distribution of primates (Cebidae) in Campeche, Mexico].

    PubMed

    Navarro Fernández, Eloísa; Pozo de la Tijera, Carmen; Escobedo Cabrera, Enrique

    2003-06-01

    We carried out surveys realized field work from March to September 2000 to get the current distribution of Cebids in the state of Campeche, Mexico. Based on interviews and direct observations. We defined the distribution of Ateles geoffroyi yucatanensis and Alouatta pigra and we documented the first time localities where Allouata palliata is found in the state. We made distributional maps of each species using vegetation overlays from Inventario Nacional Forestal (Inv For) and each point documented during fieldwork. We presented the distribution of species according to confiability of the verified or expected data. Using the attributes table of Inv For, we calculated the areas of distribution which were 22,735 km2 for Alouatta sp. and 18,501 km2 for A. g. yucatanensis. We also presented the area occupied by each species according to vegetation types and the relative proportion of these vegetation types in the state. We confirmed the ability of Alouatta sp. to survive in disturbed environments produced by habitat fragmentation, and the affinity of A. g. yucatanesis to well preserved habitats.

  16. (Mis)perceptions of inequality.

    PubMed

    Hauser, Oliver P; Norton, Michael I

    2017-12-01

    Laypeople's beliefs about the current distribution of outcomes such as income and wealth in their country influence their attitudes toward issues ranging from taxation to healthcare - but how accurate are these beliefs? We review the burgeoning literature on (mis)perceptions of inequality. First, we show that people on average misperceive current levels of inequality, typically underestimating the extent of inequality in their country. Second, we delineate potential causes of these misperceptions, including people's overreliance on cues from their local environment, leading to their erroneous beliefs about both the overall distributions of wealth and income and their place in those distributions. Third, we document that these (mis)perceptions of inequality - but not actual levels of inequality - drive behavior and preferences for redistribution. More promisingly, we review research suggesting that correcting misperceptions influences preferences and policy outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Red spruce/hardwood ecotones in the central Appalachians

    Treesearch

    Harold S. Adams; Steven L. Stephenson; David M. Lawrence; Mary Beth Adams; John D. Eisenback

    1995-01-01

    We are currently investigating patterns of species composition and distribution, ecologically important population processes, and microenvironmental gradients along ten permanent transects (each consisting of a series of. contiguous 10 x 10 m quadrats) established across the typically abrupt and narrow spruce/hardwood ecotone at seven localities in the mountains of...

  18. Radial and local time structure of the Saturnian ring current, revealed by Cassini

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Jackman, C. M.; Thomsen, M. F.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Dougherty, M. K.; Krupp, N.; Wilson, R. J.

    2017-02-01

    We analyze particle and magnetic field data obtained between July 2004 and December 2013 in the equatorial magnetosphere of Saturn, by the Cassini spacecraft. The radial and local time distribution of the total (thermal and suprathermal) particle pressure and total plasma beta (ratio of particle to magnetic pressure) over radial distances from 5 to 16 Saturn radii (RS = 60,258 km) is presented. The average azimuthal current density Jϕ and its separate components (inertial, pressure gradient, and anisotropy) are computed as a function of radial distance and local time and presented as equatorial maps. We explore the relative contribution of different physical mechanisms that drive the ring current at Saturn. Results show that (a) the particle pressure is controlled by thermal plasma inside of 8 RS and by the hot ions beyond 12 RS, exhibiting strong local time asymmetry with higher pressures measured at the dusk and night sectors; (b) the plasma beta increases with radial distance and remains >1 beyond 8-10 RS for all local times; (c) the ring current is asymmetric in local time and forms a maximum region between 7 and 13 RS, with values up to 100-115 pA/m2; and (d) the ring current is inertial everywhere inside of 7 RS, exhibits a mixed nature between 7 and 11 RS and is pressure gradient driven beyond 11 RS, with the exception of the noon sector where the mixed nature persists. In the dawn sector, it appears strongly pressure gradient driven for a wider range of radial distance, consistent with fast return flow of hot, tenuous magnetospheric plasma following tail reconnection.

  19. A model for characterizing residential ground current and magnetic field fluctuations.

    PubMed

    Mader, D L; Peralta, S B; Sherar, M D

    1994-01-01

    The current through the residential grounding circuit is an important source for magnetic fields; field variations near the grounding circuit accurately track fluctuations in this ground current. In this paper, a model is presented which permits calculation of the range of these fluctuations. A discrete network model is used to simulate a local distribution system for a single street, and a statistical model to simulate unbalanced currents in the system. Simulations of three-house and ten-house networks show that random appliance operation leads to ground current fluctuations which can be quite large, on the order of 600%. This is consistent with measured fluctuations in an actual house.

  20. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  1. Myocardial Drug Distribution Generated from Local Epicardial Application: Potential Impact of Cardiac Capillary Perfusion in a Swine Model Using Epinephrine

    PubMed Central

    Maslov, Mikhail Y.; Edelman, Elazer R.; Pezone, Matthew J.; Wei, Abraham E.; Wakim, Matthew G.; Murray, Michael R.; Tsukada, Hisashi; Gerogiannis, Iraklis S.; Groothuis, Adam; Lovich, Mark A.

    2014-01-01

    Prior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals. Epicardial (EC) drug releasing systems were used to apply epinephrine to the anterior surface of the left heart of swine in either point-sourced or distributed configurations. Following local application or intravenous (IV) infusion at the same dose rates, hemodynamic responses, epinephrine levels in the coronary sinus and systemic circulation, and drug deposition across the ventricular wall, around the circumference and down the axis, were measured. EC delivery via point-source release generated transmural epinephrine gradients directly beneath the site of application extending into the middle third of the myocardial thickness. Gradients in drug deposition were also observed down the length of the heart and around the circumference toward the lateral wall, but not the interventricular septum. These gradients extended further than might be predicted from simple diffusion. The circumferential distribution following local epinephrine delivery from a distributed source to the entire anterior wall drove drug toward the inferior wall, further than with point-source release, but again, not to the septum. This augmented drug distribution away from the release source, down the axis of the left ventricle, and selectively towards the left heart follows the direction of capillary perfusion away from the anterior descending and circumflex arteries, suggesting a role for the coronary circulation in determining local drug deposition and clearance. The dominant role of the coronary vasculature is further suggested by the elevated drug levels in the coronary sinus effluent. Indeed, plasma levels, hemodynamic responses, and myocardial deposition remote from the point of release were similar following local EC or IV delivery. Therefore, the coronary vasculature shapes the pharmacokinetics of local myocardial delivery of small catecholamine drugs in large animal models. Optimal design of epicardial drug delivery systems must consider the underlying bulk capillary perfusion currents within the tissue to deliver drug to tissue targets and may favor therapeutic molecules with better potential retention in myocardial tissue. PMID:25234821

  2. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.

  3. Do entrepreneurial food systems innovations impact rural economies and health? Evidence and gaps

    PubMed Central

    Sitaker, Marilyn; Kolodinsky, Jane; Jilcott Pitts, Stephanie B.; Seguin, Rebecca A.

    2015-01-01

    A potential solution for weakened rural economies is the development of local food systems, which include affordable foods sources for consumers and economically feasible structures for producers. Local food systems are purported to promote sustainability, improve local economies, increase access to healthy foods, and improve the local diets. Four entrepreneurial food systems innovations that support local economies include farmers’ markets, community supported agriculture, farm to institution programs and food hubs. We review current literature to determine whether innovations for aggregation, processing, distribution and marketing in local food systems: 1) enable producers to make a living; 2) improve local economies; 3) provide local residents with greater access to affordable, healthy food; and 4) contribute to greater consumption of healthy food among residents. While there is some evidence for each, more transdisciplinary research is needed to determine whether entrepreneurial food systems innovations provide economic and public health benefits. PMID:26613066

  4. Do entrepreneurial food systems innovations impact rural economies and health? Evidence and gaps.

    PubMed

    Sitaker, Marilyn; Kolodinsky, Jane; Jilcott Pitts, Stephanie B; Seguin, Rebecca A

    A potential solution for weakened rural economies is the development of local food systems, which include affordable foods sources for consumers and economically feasible structures for producers. Local food systems are purported to promote sustainability, improve local economies, increase access to healthy foods, and improve the local diets. Four entrepreneurial food systems innovations that support local economies include farmers' markets, community supported agriculture, farm to institution programs and food hubs. We review current literature to determine whether innovations for aggregation, processing, distribution and marketing in local food systems: 1) enable producers to make a living; 2) improve local economies; 3) provide local residents with greater access to affordable, healthy food; and 4) contribute to greater consumption of healthy food among residents. While there is some evidence for each, more transdisciplinary research is needed to determine whether entrepreneurial food systems innovations provide economic and public health benefits.

  5. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe.

    PubMed

    Lazo, Pranvera; Steinnes, Eiliv; Qarri, Flora; Allajbeu, Shaniko; Kane, Sonila; Stafilov, Trajce; Frontasyeva, Marina V; Harmens, Harry

    2018-01-01

    This study presents the spatial distribution of 37 elements in 48 moss samples collected over the whole territory of Albania and provides information on sources and factors controlling the concentrations of elements in the moss. High variations of trace metals indicate that the concentrations of elements are affected by different factors. Relations between the elements in moss, geochemical interpretation of the data, and secondary effects such as redox conditions generated from local soil and/or long distance atmospheric transport of the pollutants are discussed. Zr normalized data, and the ratios of different elements are calculated to assess the origin of elements present in the current moss samples with respect to different geogenic and anthropogenic inputs. Factor analysis (FA) is used to identify the most probable sources of the elements. Four dominant factors are identified, i.e. natural contamination; dust emission from local mining operations; atmospheric transport of contaminants from local and long distance sources; and contributions from air borne marine salts. Mineral particle dust from local emission sources is classified as the most important factor affecting the atmospheric deposition of elements accumulated in the current moss samples. The open slag dumps of mining operation in Albania is probably the main factor contributing to high contents of Cr, Ni, Fe, Ti and Al in the moss. Enrichment factors (EF) were calculated to clarify whether the elements in the present moss samples mainly originate from atmospheric deposition and/or local substrate materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Volume of interest CBCT and tube current modulation for image guidance using dynamic kV collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca

    2016-04-15

    Purpose: The focus of this work is the development of a novel blade collimation system enabling volume of interest (VOI) CBCT with tube current modulation using the kV image guidance source on a linear accelerator. Advantages of the system are assessed, particularly with regard to reduction and localization of dose and improvement of image quality. Methods: A four blade dynamic kV collimator was developed to track a VOI during a CBCT acquisition. The current prototype is capable of tracking an arbitrary volume defined by the treatment planner for subsequent CBCT guidance. During gantry rotation, the collimator tracks the VOI withmore » adjustment of position and dimension. CBCT image quality was investigated as a function of collimator dimension, while maintaining the same dose to the VOI, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Dose distributions were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field CBCT distributions to quantify dose reduction and localization to the target volume. A novel method of optimizing x-ray tube current during CBCT acquisition was developed and assessed with regard to contrast-to-noise ratio (CNR) and imaging dose. Results: Measurements show that the VOI CBCT method using the dynamic blade system yields an increase in contrast-to-noise ratio by a factor of approximately 2.2. Depending upon the anatomical site, dose was reduced to 15%–80% of the full-field CBCT value along the central axis plane and down to less than 1% out of plane. The use of tube current modulation allowed for specification of a desired SNR within projection data. For approximately the same dose to the VOI, CNR was further increased by a factor of 1.2 for modulated VOI CBCT, giving a combined improvement of 2.6 compared to full-field CBCT. Conclusions: The present dynamic blade system provides significant improvements in CNR for the same imaging dose and localization of imaging dose to a predefined volume of interest. The approach is compatible with tube current modulation, allowing optimization of the imaging protocol.« less

  7. Current status of brown bears in the Manasalu Conservation Area, Nepal

    USGS Publications Warehouse

    Aryal, Achyut; Sathyakumar, S.; Schwartz, Charles C.

    2010-01-01

    Although brown bears (Ursus arctos) are rare in the Himalayan region, populations have been documented in alpine habitats of Pakistan and India. Brown bears were once known to exist in both Nepal and Bhutan, but current information on their numbers and distributions was lacking. We document the presence of brown bears in the Manasalu Conservation Area (MCA) in Nepal using field surveys and interviews with local people. We were able to confirm the existence of a remnant population based on finding bear scat and locations where bears excavated for Himalayan marmots (Marmota himalayana). Based on interviews with local people, it appeared that the presence of brown bears in the area is relatively recent and likely a result of immigration of bears from the Tibetan Autonomous Region. Interviews with local herders also indicated that livestock losses from brown bear predation amounted to approximately 318,000 Nepali rupees (US $4,240) from February 2006 through July 2008.

  8. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  9. PhysDoc: A Distributed Network of Physics Institutions: Collecting, Indexing, and Searching High Quality Documents by Using Harvest; The Dublin Core Metadata Initiative: Mission, Current Activities, and Future Directions; Information Services for Higher Education: A New Competitive Space; Intellectual Property Conservancies.

    ERIC Educational Resources Information Center

    Severiens, Thomas; Hohlfeld, Michael; Zimmermann, Kerstin; Hilf, Eberhard R.; von Ossietzky, Carl; Weibel, Stuart L.; Koch, Traugott; Hughes, Carol Ann; Bearman, David

    2000-01-01

    Includes four articles that discuss a variety to topics, including a distributed network of physics institutions documents called PhysDocs which harvests information from the local Web-servers of professional physics institutions; the Dublin Core metadata initiative; information services for higher education in a competitive environment; and…

  10. Fiber-optic technology for transport aircraft

    NASA Astrophysics Data System (ADS)

    1993-07-01

    A development status evaluation is presented for fiber-optic devices that are advantageously applicable to commercial aircraft. Current developmental efforts at a major U.S. military and commercial aircraft manufacturer encompass installation techniques and data distribution practices, as well as the definition and refinement of an optical propulsion management interface system, environmental sensing systems, and component-qualification criteria. Data distribution is the most near-term implementable of fiber-optic technologies aboard commercial aircraft in the form of onboard local-area networks for intercomputer connections and passenger entertainment.

  11. Progress in American Superconductor's HTS wire and optimization for fault current limiting systems

    NASA Astrophysics Data System (ADS)

    Malozemoff, Alexis P.

    2016-11-01

    American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25-50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires' critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and decreasing its critical J. This conflicts with other desirable wire characteristics. Optimization of these conflicting requirements is discussed.

  12. The role of Hurst exponent on cold field electron emission from conducting materials: from electric field distribution to Fowler-Nordheim plots

    PubMed Central

    de Assis, T. A.

    2015-01-01

    This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density () and the characteristic kernel current density (), , with an H-dependent exponent , has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot. PMID:26035290

  13. Climatic-Induced Shifts in the Distribution of Teak ( Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning

    NASA Astrophysics Data System (ADS)

    Deb, Jiban Chandra; Phinn, Stuart; Butt, Nathalie; McAlpine, Clive A.

    2017-09-01

    Modelling the future suitable climate space for tree species has become a widely used tool for forest management planning under global climate change. Teak ( Tectona grandis) is one of the most valuable tropical hardwood species in the international timber market, and natural teak forests are distributed from India through Myanmar, Laos and Thailand. The extents of teak forests are shrinking due to deforestation and the local impacts of global climate change. However, the direct impacts of climate changes on the continental-scale distributions of native and non-native teak have not been examined. In this study, we developed a species distribution model for teak across its entire native distribution in tropical Asia, and its non-native distribution in Bangladesh. We used presence-only records of trees and twelve environmental variables that were most representative for current teak distributions in South and Southeast Asia. MaxEnt (maximum entropy) models were used to model the distributions of teak under current and future climate scenarios. We found that land use/land cover change and elevation were the two most important variables explaining the current and future distributions of native and non-native teak in tropical Asia. Changes in annual precipitation, precipitation seasonality and annual mean actual evapotranspiration may result in shifts in the distributions of teak across tropical Asia. We discuss the implications for the conservation of critical teak habitats, forest management planning, and risks of biological invasion that may occur due to its cultivation in non-native ranges.

  14. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2007-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L>5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L<5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.

  15. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus)

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin

    2017-01-01

    Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.

  16. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  17. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    PubMed Central

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-01-01

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559

  18. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    PubMed

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  19. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  20. Introduced American Bullfrog distribution and diets in Grand Teton National Park

    USGS Publications Warehouse

    Flynn, Lauren M; Kreofsky, Tess Marie; Sepulveda, Adam

    2017-01-01

    Introduced American Bullfrogs (Lithobates catesbeianus) have been present in Grand Teton National Park since approximately the 1950s, but little is known about their distribution and potential impacts. In this study, we surveyed the current bullfrog distribution and spatial overlap with sympatric native amphibians in the park, and characterized post-metamorphic bullfrog diets from July – September 2015. Despite surveys in multiple large rivers and floodplain habitats, we only documented bullfrogs in a geothermal pond and 5 km of stream channel immediately downstream of this pond. In these waters, bullfrogs overlapped with native amphibians at the downstream end of their distribution, and we did not document native amphibians in bullfrog stomach contents. Larger bullfrogs (SVL ≥ 96 mm) primarily consumed native rodents (especially meadow voles, Microtus pennsylvanicus), while smaller bullfrogs frequently consumed native invertebrates and less frequently consumed non-native invertebrates and fish. Taken together, these data indicate that the distribution and implications of the bullfrog invasion in Grand Teton National Park are currently localized to a small area, so these bullfrogs should therefore be vulnerable to eradication.

  1. User-Defined Data Distributions in High-Level Programming Languages

    NASA Technical Reports Server (NTRS)

    Diaconescu, Roxana E.; Zima, Hans P.

    2006-01-01

    One of the characteristic features of today s high performance computing systems is a physically distributed memory. Efficient management of locality is essential for meeting key performance requirements for these architectures. The standard technique for dealing with this issue has involved the extension of traditional sequential programming languages with explicit message passing, in the context of a processor-centric view of parallel computation. This has resulted in complex and error-prone assembly-style codes in which algorithms and communication are inextricably interwoven. This paper presents a high-level approach to the design and implementation of data distributions. Our work is motivated by the need to improve the current parallel programming methodology by introducing a paradigm supporting the development of efficient and reusable parallel code. This approach is currently being implemented in the context of a new programming language called Chapel, which is designed in the HPCS project Cascade.

  2. Heating the sun's lower transition region with fine-scale electric currents

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  3. Effects of repeated bending load at room temperature for composite Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune

    2003-09-01

    In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.

  4. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    NASA Astrophysics Data System (ADS)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  5. Assessment of rarity of the blackmouth shiner Notropis melanostomus (Cyprinidae) based on museum and recent survey data

    USGS Publications Warehouse

    O'Connell, M. T.; Uzee O'Connell, A.M.; Williams, J.D.

    2005-01-01

    Accurate knowledge of an organism's distribution is necessary for conserving species with small or isolated populations. A perceived rarity may only reflect inadequate sampling effort and suggest the need for more research. We used a recently developed method to evaluate the distribution of a rare fish species, the blackmouth shiner Notropis melanostomus Bortone 1989 (Cyprinidae), which occurs in disjunct populations in Mississippi and Florida. Until 1995, N. melanostomus had been collected from only three localities in Mississippi, but in 1995, eight new localities were discovered. We analyzed museum records of fish collections from Mississippi, Florida, and Alabama to compare sampling effort before and after 1995. Results supported our predictions that 1) pre-1995 data would indicate inadequate sampling effort in Mississippi, 2) additional post-1995 sampling improved confidence in the currently known Mississippi distribution, and 3) there has not been enough sampling to accurately represent the actual distribution of N. melanostomus in Florida and across its entire known range. This last prediction was confirmed with the recent (2003) discovery of the first N. melanostomus in Alabama.

  6. Updated checklist of the ice-crawlers (Insecta: Grylloblattodea: Grylloblattidae) of North America, with notes on their natural history, biogeography and conservation.

    PubMed

    Schoville, Sean D; Graening, G O

    2013-11-21

    We provide an updated checklist and comprehensive distributional record of Grylloblatta (Grylloblattodea: Grylloblattidae) in North America. These distribution records are based upon a thorough review of the literature, as well as unpublished data of the authors and colleagues. Thirteen species of Grylloblatta are currently described, with up to 16 additional taxa awaiting formal description. Distributional data shows that endemism of Grylloblatta is high and geographic range size is typically small: the median geographical area of 13 species and six putative species is 179 km2. It is clear that there is a general lack of knowledge of species range limits and local population sizes; for example, three Grylloblatta species are known from just a single locality and less than 15 specimens each. Conservation status ranks are suggested in order to update the IUCN Red List and national Natural Heritage Network Database. Finally, we describe the natural history and seasonality of Grylloblatta, discuss their unique biogeography, and provide recommendations for future surveys of grylloblattid species by highlighting known distributional gaps.

  7. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs.

    PubMed

    Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E

    1991-08-01

    Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

  8. Genetic relationships among some subspecies of the Peregrine Falcon (Falco peregrinus L.), inferred from mitochondrial DNA control-region sequences

    USGS Publications Warehouse

    White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.

    2013-01-01

    The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.

  9. SU-F-I-37: How Fat Distribution and Table Height Affect Estimates of Patient Size in CT Scanning: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M; Marsh, R

    Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and hence CTDIvol and SSDE. Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). This study sought to determine if patient size estimates made from localizer scans is affected by variations in fat distribution, specifically when the widest part of the patient is not at the geometric center of the patient. Methods: Lipid gel bolus material was wrapped around an anthropomorphic phantommore » to simulate two different body mass distributions. The first represented a patient with fairly rigid fat and had a generally oval shape. The second was bell-shaped, representing corpulent patients more susceptible to gravity’s lustful tug. Each phantom configuration was imaged using an AP localizer and then a PA localizer. This was repeated at various scanner table heights. The width of the phantom was measured from the localizer and diagnostic images using in-house software. Results: 1) The projected phantom width varied up to 39% as table height changed.2) At some table heights, the width of the phantom, designed to represent larger patients, exceeded the localizer field of view, resulting in an underestimation of the phantom width.3) The oval-shaped phantom approached a normalized phantom width of 1 at a table height several centimeters lower (AP localizer) or higher (PA localizer) than did the bell-shaped phantom. Conclusion: Accurate estimation of patient size from localizer scans is dependent on patient positioning with respect to scanner isocenter and is limited in large patients. Further, patient size is more accurately measured on projection images if the widest part of the patient, rather than the geometric center of the patient, is positioned at scanner isocenter.« less

  10. Prevailing Negative Soil Biota Effect and No Evidence for Local Adaptation in a Widespread Eurasian Grass

    PubMed Central

    Wagner, Viktoria; Antunes, Pedro M.; Ristow, Michael; Lechner, Ute; Hensen, Isabell

    2011-01-01

    Background Soil biota effects are increasingly accepted as an important driver of the abundance and distribution of plants. While biogeographical studies on alien invasive plant species have indicated coevolution with soil biota in their native distribution range, it is unknown whether adaptation to soil biota varies among populations within the native distribution range. The question of local adaptation between plants and their soil biota has important implications for conservation of biodiversity and may justify the use of seed material from local provenances in restoration campaigns. Methodology/Principal Findings We studied soil biota effects in ten populations of the steppe grass Stipa capillata from two distinct regions, Europe and Asia. We tested for local adaptation at two different scales, both within (ca. 10–80 km) and between (ca. 3300 km) regions, using a reciprocal inoculation experiment in the greenhouse for nine months. Generally, negative soil biota effects were consistent. However, we did not find evidence for local adaptation: both within and between regions, growth of plants in their ‘home soil’ was not significantly larger relative to that in soil from other, more distant, populations. Conclusions/Significance Our study suggests that negative soil biota effects can prevail in different parts of a plant species' range. Absence of local adaptation points to the possibility of similar rhizosphere biota composition across populations and regions, sufficient gene flow to prevent coevolution, selection in favor of plasticity, or functional redundancy among different soil biota. From the point of view of plant - soil biota interactions, our findings indicate that the current practice of using seeds exclusively from local provenances in ecosystem restoration campaigns may not be justified. PMID:21479262

  11. States of Cybersecurity: Electricity Distribution System Discussions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Ingram, Michael; Martin, Maurice

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE),more » Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.« less

  12. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS

    NASA Astrophysics Data System (ADS)

    Faria, Paula; Hallett, Mark; Cavaleiro Miranda, Pedro

    2011-12-01

    We investigated the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in transcranial direct current stimulation (tDCS). For this purpose, we used the finite element method to compute the distribution of the current density in a four-layered spherical head model using various electrode montages, corresponding to a range of electrode sizes and inter-electrode distances. We found that smaller electrodes required slightly less current to achieve a constant value of the current density at a reference point on the brain surface located directly under the electrode center. Under these conditions, smaller electrodes also produced a more focal current density distribution in the brain, i.e. the magnitude of the current density fell more rapidly with distance from the reference point. The combination of two electrodes with different areas produced an asymmetric current distribution that could lead to more effective and localized neural modulation under the smaller electrode than under the larger one. Focality improved rapidly with decreasing electrode size when the larger electrode sizes were considered but the improvement was less marked for the smaller electrode sizes. Also, focality was not affected significantly by inter-electrode distance unless two large electrodes were placed close together. Increasing the inter-electrode distance resulted in decreased shunting of the current through the scalp and the cerebrospinal fluid, and decreasing electrode area resulted in increased current density on the scalp under the edges of the electrode. Our calculations suggest that when working with conventional electrodes (25-35 cm2), one of the electrodes should be placed just 'behind' the target relative to the other electrode, for maximum current density on the target. Also electrodes with areas in the range 3.5-12 cm2 may provide a better compromise between focality and current density in the scalp than the traditional electrodes. Finally, the use of multiple small return electrodes may be more efficient than the use of a single large return electrode.

  13. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  14. Improving regional health care in West Africa using current space systems and technology

    NASA Technical Reports Server (NTRS)

    Jemison, Mae C.; Thomas, J. Segun

    1992-01-01

    This paper discusses the issues involved with establishing an integrated satellite health network in West Africa based on currently available technology. The system proposed makes use of a central national facility capable of transmitting and receiving voice/data and video signals from the entire country. Regional, field and local facilities provide timely epidemiologic information, sharing of medical expertise through telemedical consultations, enhance optimized resource distribution and build a framework for telecommunications for the entire country.

  15. Improving regional health care in West Africa using current space systems and technology

    NASA Technical Reports Server (NTRS)

    Jemison, Mae C.; Thomas, J. S.

    1992-01-01

    This paper discusses the issues involved with establishing an integrated satellite health network in West Africa based on currently available technology. The system proposed makes use of a central national facility capable of transmitting and receiving voice/data and video signals from the entire country. Regional, field and local facilities provides timely epidemiologic information, sharing of medical expertise through telemedical consultations, enhances optimized resource distribution and builds a framework for telecommunications for the entire country.

  16. [Tularaemia - an overview of the current knowledge].

    PubMed

    Lukásová, Eva; Cermák, Pavel; Smelá, Gabriela; Jedlicková, Anna

    2010-02-01

    Francisella tularensis belongs to the family Francisellaceae. It is the aetiological agent of a zoonosis called tularaemia, spread throughout the northern hemisphere. Currently, several subspecies of F. tularensis may be distinguished with various pathogenicity and geographical distribution. In human medicine, only sporadic infections or local epidemics are reported. Given the fact that F. tularensis is highly pathogenic for humans and is easily spread by aerosol, water or food, it may be exploited as a biological weapon. It belongs to fastidious strains requiring specially prepared culture media.

  17. Electrostatic instability of ring current protons beyond the plasmapause during injection events

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Fredricks, R. W.; White, R.

    1972-01-01

    The stability of ring current protons with an injection spectrum modeled by an m = 2 mirror distribution function was examined for typical ring current parameters. It was found that the high frequency loss cone mode can be excited at wave numbers K lambda sub Di about = to 0.1 to 0.5, at frequencies omega about = to (0.2 to 0.6) omega sub pi and with growth rates up to gamma/omega about = to 0.03. These waves interact with the main body of the proton distribution and propagate nearly perpendicular to the local magnetic field. Cold particle partial densities tend to reduce the growth rate so that the waves are quenched at or near to the plasmapause boundary. Wave e-folding lengths are comparable to 0.1 R sub e, compared to the value of about 4 R sub e found for ion cyclotron waves at the same plasma conditions.

  18. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging.

    PubMed

    Januszko, Piotr; Niemcewicz, Szymon; Gajda, Tomasz; Wołyńczyk-Gmaj, Dorota; Piotrowska, Anna Justyna; Gmaj, Bartłomiej; Piotrowski, Tadeusz; Szelenberger, Waldemar

    2016-01-01

    To investigate local arousal fluctuations in adults who received ICSD-2 diagnosis of somnambulism. EEG neuroimaging (eLORETA) was utilized to compare current density distribution for 4s epochs immediately preceding sleepwalking episode (from -4.0 s to 0 s) to the distribution during earlier 4s epochs (from -8.0 s to -4.0 s) in 20 EEG segments from 15 patients. Comparisons between eLORETA images revealed significant (t>4.52; p<0.05) brain activations before onset of sleepwalking, with greater current density within beta 3 frequency range (24-30 Hz) in Brodmann areas 33 and 24. Sleepwalking motor events are associated with arousal-related activation of cingulate motor area. These results support the notion of blurred boundaries between wakefulness and NREM sleep in sleepwalking. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. White whale ( Delphinapterus leucas) distribution in Onega Bay of the White Sea in the summer

    NASA Astrophysics Data System (ADS)

    Andrianov, V. V.; Bel'Kovich, V. M.; Lukin, L. R.

    2009-02-01

    Data on the white whale distribution in Onega Bay of the White Sea obtained during route and stationary observations in the summer of 2003-2006 are given. The presence of three regions of summer habitation of local “nonmigratory” white whale reproductive schools is confirmed. The minimum abundance of the “zhizhginskoe” (northeastern) school is 60 individuals, and the minimum abundance of the “myagostrovskoe” (western) is 50 individuals. The abundance of the best studied “southern” school is close to 120-130 individuals. One more region of white whale concentration (with an abundance of up to 40 individuals) (the eastern one; Cape Letniy Orlov-Cape Chesmenskiy) was found. The localization of single reproductive schools (RS) is due to a number of factors: the morphometry of the shores and bottom, the hydrological regime, and the character of the coastal tidal currents. The white whale distribution in the southern part of Onega Bay in the summer (June-July) is of discontinuous character with concentrations near cape Glubokiy and some other adjacent parts. The coefficient of the white whale attendance in the Cape Glubokiy area varied from 42.5 to 67.4% during the years of the studies (2003-2006). The character of the distribution, the direction of the relocations, and the animals’ behavior peculiarities indicate that the white whales of the southern part of Onega Bay of the White Sea form a rather stable school community of a few (5-6) locally distributed small family groups during the summer.

  20. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui

    2016-07-21

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less

  1. Implementing a bioterrorism response plan in your pharmacy.

    PubMed

    Teeter, David; Terriff, Colleen

    2002-01-01

    Pharmacies and other types of health care facilities need emergency response plans. Pharmacists need to stay current on biologic and other agents that can be used as agents of mass destruction and their clinical management. Local plans should incorporate federal resources that can be used in emergencies, but the time required for these resources to be organized, delivered, and distributed needs to be considered. Pharmacists are urged to assist with inventories of available health care facilities, supplies, and medications. Planning needs to be coordinated with local emergency preparedness officials.

  2. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon

    2017-08-01

    Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.

  3. Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Lamaka, S.V.; Taryba, M.

    2011-01-01

    This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less

  4. Low-cost wireless voltage & current grid monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, Jacqueline

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less

  5. Distribution, abundance and traditional management of Agave potatorum in the Tehuacán Valley, Mexico: bases for sustainable use of non-timber forest products.

    PubMed

    Delgado-Lemus, América; Casas, Alejandro; Téllez, Oswaldo

    2014-09-03

    Agave species have been used for thousands of years in the Tehuacán Valley, but the current mescal production has great impact on populations of the most used species. Harvesting of A. potatorum takes place before sexual reproduction and the over-extraction put local populations at high risk. In the community of San Luis Atolotilán (SLA), mescal has been produced for one century but the growing mescal trade is leading to intensified agave extraction. Our study evaluated distribution and abundance of A. potatorum, extraction rates, management practices and economic importance for SLA households. The unbalanced relation between availability and extraction rates would be an indicator of risk requiring sustainable management strategies. Our case study aspires contributing to analyze general patterns for sustainable use for this and other forest products highly extracted. We used bioclimatic modeling to project a map of potential distribution of the species, and ecological sampling to estimate the total availability of harvestable agaves within the territory of SLA. We used participant observation, surveys and semi-structured interviews with producers and households of SLA to document agave uses, technological and socio-economic aspects of mescal production, and to estimate extraction rates of agaves. Mescal production, medicine and fodder are the most important uses of A. potatorum. Its distribution area is nearly 608 ha where annually occur on average 7,296 harvestable plants, nearly 54 to 87% of them being harvested. Mescal production currently is a non-sustainable activity, requiring great changes in patterns of extraction and management adopting sustainable criteria. Local people started management planning to ensure the future availability of agaves, and the ecological information of this study has been helpful in constructing their decisions. Technical support for improving local experiences for managing populations' recovering is a priority. Interaction of scholars and local people for solving this problem is already taking place and strengthening this process may be determinant for successful results. Strategies for protecting particular populations, temporal substitution of agave species for mescal production, implementation of restoration and organization for fear commerce are needed for improving sustainable use of A. potatorum.

  6. Current-induced nonuniform enhancement of sheet resistance in A r+ -irradiated SrTi O3

    NASA Astrophysics Data System (ADS)

    Roy, Debangsu; Frenkel, Yiftach; Davidovitch, Sagi; Persky, Eylon; Haham, Noam; Gabay, Marc; Kalisky, Beena; Klein, Lior

    2017-06-01

    The sheet resistance Rs of A r+ irradiated SrTi O3 in patterns with a length scale of several microns increases significantly below ˜40 K in connection with driving currents exceeding a certain threshold. The initial lower Rs is recovered upon warming with accelerated recovery around 70 and 160 K. Scanning superconducting quantum interference device microscopy shows local irreversible changes in the spatial distribution of the current with a length scale of several microns. We attribute the observed nonuniform enhancement of Rs to the attraction of the charged single-oxygen and dioxygen vacancies by the crystallographic domain boundaries in SrTi O3 . The boundaries, which are nearly ferroelectric below 40 K, are polarized by the local electrical field associated with the driven current and the clustered vacancies which suppress conductivity in their vicinity and yield a noticeable enhancement in the device resistance when the current path width is on the order of the boundary extension. The temperatures of accelerated conductivity recovery are associated with the energy barriers for the diffusion of the two types of vacancies.

  7. Enhancing superconducting critical current by randomness

    DOE PAGES

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; ...

    2016-01-11

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, wheremore » the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.« less

  8. SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less

  9. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  10. Genetically informed ecological niche models improve climate change predictions.

    PubMed

    Ikeda, Dana H; Max, Tamara L; Allan, Gerard J; Lau, Matthew K; Shuster, Stephen M; Whitham, Thomas G

    2017-01-01

    We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species' ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species' niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change. © 2016 John Wiley & Sons Ltd.

  11. Dead wood all around us: think regionally to manage locally.

    Treesearch

    Sally Duncan

    2002-01-01

    Dead wood is a crucial component of healthy, biologically diverse forests. Yet basic information about the distribution and characteristics of snags and down trees in forest of the Pacific Northwest is lacking. Such information is needed to assess wildlife habitat, carbon stores, fuel conditions, and site productivity. Current guidelines for dead wood management are...

  12. A Needs Assessment and Aptitude Study for Long-Range Planning--Arizona College of Technology.

    ERIC Educational Resources Information Center

    Schultz, Raymond E.; And Others

    This needs assessment study obtained data from several groups of Pinal County residents to aid the Board and administrators of the Arizona College of Technology (ACT) in meeting the educational needs of county residents. Survey instruments were designed and distributed among high school students, current and former ACT students, local residents…

  13. Diverse in- and output polarities and high complexity of local synaptic and nonsynaptic signalling within a chemically defined class of peptidergic Drosophila neurons

    USDA-ARS?s Scientific Manuscript database

    Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or even via volume transmission. Moreover, and especially in insects, the polarity of peptidergic interneurons in terms of in- and o...

  14. Local or distributed activation? The view from biology

    NASA Astrophysics Data System (ADS)

    Reimers, Mark

    2011-06-01

    There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.

  15. CP violation in multibody B decays from QCD factorization

    NASA Astrophysics Data System (ADS)

    Klein, Rebecca; Mannel, Thomas; Virto, Javier; Vos, K. Keri

    2017-10-01

    We test a data-driven approach based on QCD factorization for charmless three-body B-decays by confronting it to measurements of CP violation in B - → π - π + π -. While some of the needed non-perturbative objects can be directly extracted from data, some others can, so far, only be modelled. Although this approach is currently model dependent, we comment on the perspectives to reduce this model dependence. While our model naturally accommodates the gross features of the Dalitz distribution, it cannot quantitatively explain the details seen in the current experimental data on local CP asymmetries. We comment on possible refinements of our simple model and conclude by briefly discussing a possible extension of the model to large invariant masses, where large local CP asymmetries have been measured.

  16. Turning Noise into Signal: Utilizing Impressed Pipeline Currents for EM Exploration

    NASA Astrophysics Data System (ADS)

    Lindau, Tobias; Becken, Michael

    2017-04-01

    Impressed Current Cathodic Protection (ICCP) systems are extensively used for the protection of central Europe's dense network of oil-, gas- and water pipelines against destruction by electrochemical corrosion. While ICCP systems usually provide protection by injecting a DC current into the pipeline, mandatory pipeline integrity surveys demand a periodical switching of the current. Consequently, the resulting time varying pipe currents induce secondary electric- and magnetic fields in the surrounding earth. While these fields are usually considered to be unwanted cultural noise in electromagnetic exploration, this work aims at utilizing the fields generated by the ICCP system for determining the electrical resistivity of the subsurface. The fundamental period of the switching cycles typically amounts to 15 seconds in Germany and thereby roughly corresponds to periods used in controlled source EM applications (CSEM). For detailed studies we chose an approximately 30km long pipeline segment near Herford, Germany as a test site. The segment is located close to the southern margin of the Lower Saxony Basin (LSB) and part of a larger gas pipeline composed of multiple segments. The current injected into the pipeline segment originates in a rectified 50Hz AC signal which is periodically switched on and off. In contrast to the usual dipole sources used in CSEM surveys, the current distribution along the pipeline is unknown and expected to be non-uniform due to coating defects that cause current to leak into the surrounding soil. However, an accurate current distribution is needed to model the fields generated by the pipeline source. We measured the magnetic fields at several locations above the pipeline and used Biot-Savarts-Law to estimate the currents decay function. The resulting frequency dependent current distribution shows a current decay away from the injection point as well as a frequency dependent phase shift which is increasing with distance from the injection point. Electric field data were recorded at 45 stations located in an area of about 60 square kilometers in the vicinity to the pipeline. Additionally, the injected source current was recorded directly at the injection point. Transfer functions between the local electric fields and the injected source current are estimated for frequencies ranging from 0.03Hz to 15Hz using robust time series processing techniques. The resulting transfer functions are inverted for a 3D conductivity model of the subsurface using an elaborate pipeline model. We interpret the model with regards to the local geologic setting, demonstrating the methods capabilities to image the subsurface.

  17. Characteristics of ionospheric convection and field-aligned current in the dayside cusp region

    NASA Technical Reports Server (NTRS)

    Lu, G.; Lyons, L. R.; Reiff, P. H.; Denig, W. F.; Beaujardiere, O. De LA; Kroehl, H. W.; Newell, P. T.; Rich, F. J.; Opgenoorth, H.; Persson, M. A. L.

    1995-01-01

    The assimilative mapping of ionospheric electrodynamics (AMIE) technique has been used to estimate global distributions of high-latitude ionospheric convection and field-aligned current by combining data obtained nearly simultaneously both from ground and from space. Therefore, unlike the statistical patterns, the 'snapshot' distributions derived by AMIE allow us to examine in more detail the distinctions between field-aligned current systems associated with separate magnetospheric processes, especially in the dayside cusp region. By comparing the field-aligned current and ionospheric convection patterns with the corresponding spectrograms of precipitating particles, the following signatures have been identified: (1) For the three cases studied, which all had an IMF with negative y and z components, the cusp precipitation was encountered by the DMSP satellites in the postnoon sector in the northern hemisphere and in the prenoon sector in the southern hemisphere. The equatorward part of the cusp in both hemispheres is in the sunward flow region and marks the beginning of the flow rotation from sunward to antisunward. (2) The pair of field-aligned currents near local noon, i.e., the cusp/mantle currents, are coincident with the cusp or mantle particle precipitation. In distinction, the field-aligned currents on the dawnside and duskside, i.e., the normal region 1 currents, are usually associated with the plasma sheet particle precipitation. Thus the cusp/mantle currents are generated on open field lines and the region 1 currents mainly on closed field lines. (3) Topologically, the cusp/mantle currents appear as an expansion of the region 1 currents from the dawnside and duskside and they overlap near local noon. When B(sub y) is negative, in the northern hemisphere the downward field-aligned current is located poleward of the upward current; whereas in the southern hemisphere the upward current is located poleward of the downward current. (4) Under the assumption of quasi-steady state reconnection, the location of the separatrix in the ionosphere is estimated and the reconnection velocity is calculated to be between 400 and 550 m/s. The dayside separatrix lies equatorward of the dayside convection throat in the two cases examined.

  18. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    NASA Astrophysics Data System (ADS)

    Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.

    2017-05-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.

  19. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization

    NASA Astrophysics Data System (ADS)

    Pérez, J. B.; Arce, J. C.

    2018-06-01

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ˜1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  20. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization.

    PubMed

    Pérez, J B; Arce, J C

    2018-06-07

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ∼1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  1. Local laser-strengthening: Customizing the forming behavior of car body steel sheets

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Jahn, A.; Beyer, E.; Balzani, D.

    2018-05-01

    Future trends in designing lightweight components especially for automotive applications increasingly require complex and delicate structures with highest possible level of capacity [1]. The manufacturing of metallic car body components is primarily realized by deep or stretch drawing. The forming process of especially cold rolled and large-sized components is typically characterized by inhomogeneous stress and strain distributions. As a result, the avoidance of undesirable deep drawing effects like earing and local necking is among the greatest challenges in forming complex car body structures [2]. Hence, a novel local laser-treatment approach with the objective of customizing the forming behavior of car body steel sheets is currently explored.

  2. Probing the Properties of AGN Clustering in the Local Universe with Swift-BAT

    NASA Astrophysics Data System (ADS)

    Powell, M.; Cappelluti, N.; Urry, M.; Koss, M.; Allevato, V.; Ajello, M.

    2017-10-01

    I present the benchmark measurement of AGN clustering in the local universe with the all-sky Swift-BAT survey. The hard X-ray selection (14-195 keV) allows for the detection of some of the most obscured AGN, providing the largest, most unbiased sample of local AGN to date. We derive for the first time the halo occupation distribution (HOD) of the sample in various bins of black hole mass, accretion rate, and obscuration. In doing so, we characterize the cosmic environment of growing supermassive black holes with unprecedented precision, and determine which black hole parameters depend on environment. We then compare our results to the current evolutionary models of AGN.

  3. Task allocation among multiple intelligent robots

    NASA Technical Reports Server (NTRS)

    Gasser, L.; Bekey, G.

    1987-01-01

    Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.

  4. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  5. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Wei, Xuefeng F.; Grill, Warren M.

    2005-12-01

    Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.

  6. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot

    PubMed Central

    Robinson, Todd P.; Wardell-Johnson, Grant W.; Yates, Colin J.; Van Niel, Kimberly P.; Byrne, Margaret; Schut, Antonius G. T.

    2017-01-01

    Background and Aims Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We investigate whether the Porongurups (altitude 655 m) in the SWAFR will provide a refugium for the endemic Ornduffia calthifolia and O. marchantii under forecast climate change. Methods We used species distribution modelling based on WorldClim climatic data, 30-m elevation data and a 2-m-resolution LiDAR-derived digital elevation model (DEM) to predict current and future distributions of the Ornduffia species at local and regional scales based on 605 field-based abundance estimates. Future distributions were forecast using RCP2.6 and RCP4.5 projections. To determine whether local edaphic and biotic factors impact these forecasts, we tested whether soil depth and vegetation height were significant predictors of abundance using generalized additive models (GAMs). Key Results Species distribution modelling revealed the importance of elevation and topographic variables at the local scale for determining distributions of both species, which also preferred shadier locations and higher slopes. However, O. calthifolia occurred at higher (cooler) elevations with rugged, concave topography, while O. marchantii occurred in disturbed sites at lower locations with less rugged, convex topography. Under future climates both species are likely to severely contract under the milder RCP2.6 projection (approx. 2 °C of global warming), but are unlikely to persist if warming is more severe (RCP4.5). GAMs showed that soil depth and vegetation height are important predictors of O. calthifolia and O. marchantii distributions, respectively. Conclusions The Porongurups constitute an important refugium for O. calthifolia and O. marchantii, but limits to this capacity may be reached if global warming exceeds 2 °C. This capacity is moderated at local scales by biotic and edaphic factors. PMID:27634576

  7. FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio

    2013-03-19

    Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclicmore » loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.« less

  8. Seafloor environments in Cape Cod Bay, a large coastal embayment

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; List, J.H.; Signell, R.P.

    1996-01-01

    Cape Cod Bay is a glacial, semi-enclosed embayment that has a patchy distribution of modern seafloor sedimentary environments of erosion or nondeposition, deposition, and sediment reworking. Sidescan-sonar records and supplemental bathymetric, sedimentary, subbottom, and physical- oceanographic data indicate that the characteristics and distribution of these three categories of bottom environments are controlled by a combination of geologic and oceanographic processes that range from episodic to long-term and from regional to local. (1) Environments of erosion or nondeposition comprise exposares of bedrock, glacial drift, and coarse lag deposits that contain sediments (where present) ranging from boulder fields to gravelly coarse-to-medium sands. These environments are dominant on the shallow margins of the bay (water depths <30 m) where they reflect sediment resuspension, winnowing, and transport during modern northerly storms. (2) Environments of deposition are blanketed by fine-grained sediments ranging from muds to muddy fine sands. These environments are dominant across the floor of the central basin (water depths= 30-60 m) where fine- grained sediments (derived from regional and local sources and emplaced primarily during episodic wind- and density-driven flow) settle through the water column and accumulate under weak bottom currents during nonstorm conditions. (3) Environments of sediment reworking contain patches with diverse textures ranging from gravelly sands to muds. These environments occupy much of the transitional slopes between the margins and the basin floor and reflect a combination of erosion and deposition. The patchy distribution of sedimentary environments within the bay reflects not only regional changes in processes between the margins and the basin but local changes within each part of the bay as well. Small-scale patchiness is caused by local changes in the strengths of wave- and wind-driven currents and (on the margins) by local variations in the supply of fine-grained sediments. This study indicates areas within Cape Cod Bay where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.

  9. Seafloor environments in Cape Cod Bay, a large coastal embayment

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; List, J.H.; Signell, Richard P.

    1996-01-01

    Cape Cod Bay is a glacial, semi-enclosed embayment that has a patchy distribution of modern seafloor sedimentary environments of erosion or nondeposition, deposition, and sediment reworking. Sidescan-sonar records and supplemental bathymetric, sedimentary, subbottom, and physical-oceanographic data indicate that the characteristics and distribution of these three categories of bottom environments are controlled by a combination of geologic and oceanographic processes that range from episodic to long-term and from regional to local. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, and coarse lag deposits that contain sediments (where present) ranging from boulder fields to gravelly coarse-to-medium sands. These environments are dominant on the shallow margins of the bay (water depths < 30 m) where they reflect sediment resuspension, winnowing, and transport during modern northerly storms. (2) Environments of deposition are blanketed by fine-grained sediments ranging from muds to muddy fine sands. These environments are dominant across the floor of the central basin (water depths = 30–60 m) where fine-grained sediments (derived from regional and local sources and emplaced primarily during episodic wind- and density-driven flow) settle through the water column and accumulate under weak bottom currents during nonstorm conditions. (3) Environments of sediment reworking contain patches with diverse textures ranging from gravelly sands to muds. These environments occupy much of the transitional slopes between the margins and the basin floor and reflect a combination of erosion and deposition.The patchy distribution of sedimentary environments within the bay reflects not only regional changes in processes between the margins and the basin but local changes within each part of the bay as well. Small-scale patchiness is caused by local changes in the strengths of wave- and wind-driven currents and (on the margins) by local variations in the supply of fine-grained sediments.This study indicates areas within Cape Cod Bay where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.

  10. Identification and Large-Scale Mapping of Riverbed Facies along the Hanford Reach of the Columbia River for Hyporheic Zone Studies

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Hou, Z.; Murray, C. J.; Perkins, W. A.; Arntzen, E.; Richmond, M. C.; Mackley, R.; Johnson, T. C.

    2016-12-01

    The hyporheic zone (HZ) is the sediment layer underlying a river channel within which river water and groundwater may interact, and plays a significant role in controlling energy and nutrient fluxes and biogeochemical reactions in hydrologic systems. The area of this study is the HZ along the Hanford Reach of the Columbia River in southeastern Washington State, where daily and seasonal river stage changes, hydromorphology, and heterogeneous sediment texture drive groundwater-river water exchange and associated biogeochemical processes. The recent alluvial sediments immediately underlying the river are geologically distinct from the surrounding aquifer sediments, and serve as the primary locale of mixing and reaction. In order to effectively characterize the HZ, a novel approach was used to define and map recent alluvial (riverine) facies using river bathymetric attributes (e.g., slope, aspect, and local variability) and simulated hydrodynamic attributes (e.g., shear stress, flow velocity, river depth). The riverine facies were compared with riverbed substrate texture data for confirmation and quantification of textural relationships. Multiple flow regimes representing current (managed) and historical (unmanaged) flow hydrographs were considered to evaluate hydrodynamic controls on the current riverbed grain size distributions. Hydraulic properties were then mapped at reach and local scales by linking textural information to hydraulic property measurements from piezometers. The spatial distribution and thickness of riverine facies is being further constrained by integrating 3D time-lapse electrical resistivity tomography. The mapped distributions of riverine facies and the corresponding flow, transport and biogeochemical properties are supporting the parameterization of multiscale models of hyporheic exchange between groundwater and river water and associated biogeochemical transformations.

  11. Ring Current Dynamics in Moderate and Strong Storms: Comparative Analysis of TWINS and IMAGE/HENA Data with the Comprehensive Ring Current Model

    NASA Technical Reports Server (NTRS)

    Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.

    2010-01-01

    We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.

  12. Influence of driven current on resistive tearing mode in Tokamaks

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Wang, Sheng; Zhang, Wei

    2016-10-01

    Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.

  13. Localization properties of transmission lines with generalized Thue-Morse distribution of inductances

    NASA Astrophysics Data System (ADS)

    Lazo, Edmundo; Saavedra, Eduardo; Humire, Fernando; Castro, Cristobal; Cortés-Cortés, Francisco

    2015-09-01

    We study the localization properties of direct transmission lines when we distribute two values of inductances LA and LB according to a generalized Thue-Morse aperiodic sequence generated by the inflation rule: A → ABm-1, B → BAm-1, m ≥ 2 and integer. We regain the usual Thue-Morse sequence for m = 2. We numerically study the changes produced in the localization properties of the I (ω) electric current function with increasing m values. We demonstrate that the m = 2 case does not belong to the family m ≥ 3, because when m changes from m = 2 to m = 3, the number of extended states decreases significantly. However, for m ≫ 3, the localization properties become similar to the m = 2 case. Also, the frequency averaged transmission coefficient shows a strong dependence from the N system size and from the m value which characterize each m-tupling sequence. In addition, for all m value studied, using the scaling behavior of the ξ (ω) normalized participation number, the Rq (ω) Rényi entropies and the μq (ω) moments, we have demonstrated the existence of extended states for certain specific frequencies.

  14. Localized population divergence of vervet monkeys (Chlorocebus spp.) in South Africa: evidence from mtDNA

    PubMed Central

    Turner, Trudy R.; Coetzer, Willem G.; Schmitt, Christopher A.; Lorenz, Joseph G.; Freimer, Nelson B.; Grobler, J. Paul

    2015-01-01

    Objectives Vervet monkeys are common in most tree-rich areas of South Africa, but their absence from grassland and semi-desert areas of the country suggest potentially restricted and mosaic local population patterns that may have relevance to local phenotype patterns and selection. A portion of the mtDNA control region was sequenced to study patterns of genetic differentiation. Materials and Methods DNA was extracted and mtDNA sequences were obtained from 101 vervet monkeys at 15 localities which represent both an extensive (widely across the distribution range) and intensive (more than one troop at most of the localities) sampling strategy. Analyses utilized Arlequin 3.1, MEGA 6, BEAST v1.5.2 and Network V3.6.1 Results The dataset contained 26 distinct haplotypes, with six populations fixed for single haplotypes. Pairwise P-distance among population pairs showed significant differentiation among most population pairs, but with non-significant differences among populations within some regions. Populations were grouped into three broad clusters in a maximum likelihood phylogenetic tree and a haplotype network. These clusters correspond to (i) north-western, northern and north-eastern parts of the distribution range as well as the northern coastal belt; (ii) central areas of the country; and (iii) southern part of the Indian Ocean coastal belt, and adjacent inland areas. Discussion Apparent patterns of genetic structure correspond to current and past distribution of suitable habitat, geographic barriers to gene flow, geographic distance and female philopatry. However, further work on nuclear markers and other genomic data is necessary to confirm these results. PMID:26265297

  15. Modelling of gas-metal arc welding taking into account metal vapour

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Fuessel, U.; Hertel, M.; Haessler, M.; Spille-Kohoff, A.; Murphy, A. B.

    2010-11-01

    The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielińska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.

  16. Two-Photon Scanning Photochemical Microscopy: Mapping Ligand-Gated Ion Channel Distributions

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    1994-07-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine.

  17. Shipping and natural environmental conditions determine the distribution of the invasive non-indigenous round goby Neogobius melanostomus in a regional sea

    NASA Astrophysics Data System (ADS)

    Kotta, Jonne; Nurkse, Kristiina; Puntila, Riikka; Ojaveer, Henn

    2016-02-01

    Introductions of non-indigenous species (NIS) are considered a major threat to aquatic ecosystems worldwide. While it is valuable to know the distributions and ranges of NIS, predictive spatial models along different environmental gradients are more useful for management of these species. In this study we modelled how external drivers and local environmental conditions contribute to the spatial distribution of an invasive species using the distribution of the round goby Neogobius melanostomus in the Baltic Sea as an example. Using the collected distribution data, an updated map on the species distribution and its invasion progress in the Baltic Sea was produced. The current range of the round goby observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent observations appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia and the Gulf of Finland) and on the eastern and western coasts of southern Sweden. Modelling results show that the distribution of the round goby is primarily related to local abiotic hydrological conditions (wave exposure). Furthermore, the probability of round goby occurrence was very high in areas in close proximity to large cargo ports. This links patterns of the round goby distribution in the Baltic Sea to shipping traffic and suggests that human factors together with natural environmental conditions are responsible for the spread of NIS at a regional sea scale.

  18. Electrical study of DSA shrink process and CD rectification effect at sub-60nm using EUV test vehicle

    NASA Astrophysics Data System (ADS)

    Chi, Cheng; Liu, Chi-Chun; Meli, Luciana; Guo, Jing; Parnell, Doni; Mignot, Yann; Schmidt, Kristin; Sanchez, Martha; Farrell, Richard; Singh, Lovejeet; Furukawa, Tsuyoshi; Lai, Kafai; Xu, Yongan; Sanders, Daniel; Hetzer, David; Metz, Andrew; Burns, Sean; Felix, Nelson; Arnold, John; Corliss, Daniel

    2017-03-01

    In this study, the integrity and the benefits of the DSA shrink process were verified through a via-chain test structure, which was fabricated by either DSA or baseline litho/etch process for via layer formation while metal layer processes remain the same. The nearest distance between the vias in this test structure is below 60nm, therefore, the following process components were included: 1) lamella-forming BCP for forming self-aligned via (SAV), 2) EUV printed guiding pattern, and 3) PS-philic sidewall. The local CDU (LCDU) of minor axis was improved by 30% after DSA shrink process. We compared two DSA Via shrink processes and a DSA_Control process, in which guiding patterns (GP) were directly transferred to the bottom OPL without DSA shrink. The DSA_Control apparently resulted in larger CD, thus, showed much higher open current and shorted the dense via chains. The non-optimized DSA shrink process showed much broader current distribution than the improved DSA shrink process, which we attributed to distortion and dislocation of the vias and ineffective SAV. Furthermore, preliminary defectivity study of our latest DSA process showed that the primary defect mode is likely to be etch-related. The challenges, strategies applied to improve local CD uniformity and electrical current distribution, and potential adjustments were also discussed.

  19. The Financing of Community and Public Access Channels on Cable Television Networks in Member Countries of the Council of Europe.

    ERIC Educational Resources Information Center

    International Inst. of Communications, London (England).

    This survey of the current situation in 12 European countries, where cable television has moved from only passive distribution of broadcast signals to the active mode of local origination, includes both official and unofficial discussion about future cable possibilities. The study begins by clarifying the different contexts in which local…

  20. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  1. The Old Deluder, Educational Salvation, and the Limits of Distributive Justice

    ERIC Educational Resources Information Center

    Stillwaggon, James

    2012-01-01

    The first piece of educational legislation in the American colonies divides neatly into two parts: a local school funding policy that is familiar as the basis of current public school funding in the United States; and a preamble that identifies Satan as the enemy of the community and the justification for common schools. In this article, the…

  2. Inventory of Health and Physical Fitness Promotion Materials, Research and Articles from Periodicals of General Interest. Final Report. Report No. 7.

    ERIC Educational Resources Information Center

    Bozzo, Robert; And Others

    This document reports on an effort to identify, collect, and catalog: (1) various fitness- and health-related promotion materials available to the general public by federal, state, and local agencies; and (2) informational items distributed by the private sector. Printed materials are categorized as: (1) currently available brochures and pamphlets…

  3. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2008-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.

  4. Field-aligned electrostatic potential differences on the Martian night side

    NASA Astrophysics Data System (ADS)

    Lillis, Rob; Collinson, Glyn; Mitchell, David

    2017-04-01

    Field-aligned electrostatic potential differences on the Martian night side above 170 km can be inferred with the aid of a kinetic electron transport model and in a statistical sense, by energy-dependent angular shifts in electron loss cones measured in Mars orbit. Potentials between 170 km and 400 km derived from pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/ Electron Reflectometer experiment (MAG/ER) at 2 a.m. local time are typically small (-10 V to 10 V) but can reach magnitudes of >100 V. Geographically, the strongest negative potential differences (with mean values up to -50 V) are preferentially observed at the boundaries between open and closed strong magnetic field regions, while positive potential differences are preferentially observed further from open field lines. These characteristics may reflect current systems closing at high altitude through cross-tail currents and at low altitude in the conducting night side ionosphere. We will present a synthesis of potentials derived from pitch angle distributions measured by both MGS MAG/ER as mentioned above, and by the MAVEN Solar Wind Electron Analyzer (SWEA) collected at a range of local times and altitudes.

  5. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  6. Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions

    NASA Astrophysics Data System (ADS)

    Boglietti, Aldo; Bottauscio, Oriano; Chiampi, Mario; Lazzari, Mario

    2003-01-01

    The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed.

  7. A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA

    DOE PAGES

    Marcicki, James; Zhu, Min; Bartlett, Alexander; ...

    2017-02-04

    The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less

  8. Modelling larval dispersal of the king scallop ( Pecten maximus) in the English Channel: examples from the bay of Saint-Brieuc and the bay of Seine

    NASA Astrophysics Data System (ADS)

    Nicolle, Amandine; Dumas, Franck; Foveau, Aurélie; Foucher, Eric; Thiébaut, Eric

    2013-06-01

    The king scallop ( Pecten maximus) is one of the most important benthic species of the English Channel as it constitutes the first fishery in terms of landings in this area. To support strategies of spatial fishery management, we develop a high-resolution biophysical model to study scallop dispersal in two bays along the French coasts of the English Channel (i.e. the bay of Saint-Brieuc and the bay of Seine) and to quantify the relative roles of local hydrodynamic processes, temperature-dependent planktonic larval duration (PLD) and active swimming behaviour (SB). The two bays are chosen for three reasons: (1) the distribution of the scallop stocks in these areas is well known from annual scallop stock surveys, (2) these two bays harbour important fisheries and (3) scallops in these two areas present some differences in terms of reproductive cycle and spawning duration. The English Channel currents and temperature are simulated for 10 years (2000-2010) with the MARS-3D code and then used by the Lagrangian module of MARS-3D to model the transport. Results were analysed in terms of larval distribution at settlement and connectivity rates. While larval transport in the two bays depended both on the tidal residual circulation and the wind-induced currents, the relative role of these two hydrodynamic processes varied among bays. In the bay of Saint-Brieuc, the main patterns of larval dispersal were due to tides, the wind being only a source of variability in the extent of larval patch and the local retention rate. Conversely, in the bay of Seine, wind-induced currents altered both the direction and the extent of larval transport. The main effect of a variable PLD in relation to the thermal history of each larva was to reduce the spread of dispersal and consequently increase the local retention by about 10 % on average. Although swimming behaviour could influence larval dispersal during the first days of the PLD when larvae are mainly located in surface waters, it has a minor role on larval distribution at settlement and retention rates. The analysis of the connectivity between subpopulations within each bay allows identifying the main sources of larvae which depend on both the characteristics of local hydrodynamics and the spatial heterogeneity in the reproductive outputs.

  9. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.

    PubMed

    Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R

    2016-04-01

    Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas. © 2015 John Wiley & Sons Ltd.

  10. Strangers in Paradise: The biogeographic range expansion of the foraminifera Amphistegina in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Langer, M. R.; Weinmann, A. E.; Rödder, D.; Lötters, S.

    2012-04-01

    Species distribution models (SDMs) have become important tools in biogeography and biodiversity research over the last decades. They are mainly based on the fundamental niche concept and allow the correlative prediction of species' potential distributional ranges by combining occurrence records with information on environmental (e.g. climatic) conditions. The generated environmental envelope of a species is projected into geographic space, thus defining areas of adequate habitat suitability. Here we apply a species distribution model (SDM) to assess potential range expansions of Amphistegina spp. in the Mediterranean Sea under current und future climate conditions. The model uses an environmental envelope of information from localities where amphisteginids are currently known to occur. Amphisteginid foraminifers are a group of circumtropically distributed, larger symbiont-bearing, calcareous foraminifera that have a well-documented record as detectors of historical climate change. They are currently expanding their biogeographic range in the Mediterranean Sea and rapidly progressing northwestward, closely approaching the Adriatic and the Tyrrhenian Sea. The shift in range locally leads to profound ecological changes where amphisteginids have become the dominant species along entire stretches of coastline. Mass deposits of amphisteginids reflect an increased carbonate production and reduced assemblage diversity, and these are likely to trigger major changes in ecosystem functioning. It is anticipated that the ongoing warming trend will convey the northwestward migration of amphisteginid foraminifers. Our model indicates that further warming is likely to cause a northwestward range extension and predicts dispersal through the straits of Sicily, Messina and Otranto into the Tyrrhenian and Adriatic Sea. Rapid proliferation and the extreme abundances of amphisteginid foraminifera affect the dynamic equilibrium of established foraminiferal biotas. In the eastern Mediterranean, diverse assemblages of shallow-water foraminifera are being replaced by monocultures of rapidly spreading amphisteginids. Climate change, through long-term temperature increase, will continue to promote the homogenization of foraminiferal fauna, ultimately leading to a meridionalization of the Mediterranean Sea.

  11. Potential Impacts of Climate Change on Native Plant Distributions in the Falkland Islands

    PubMed Central

    Upson, Rebecca; Williams, Jennifer J.; Wilkinson, Tim P.; Maclean, Ilya M. D.; McAdam, Jim H.; Moat, Justin F.

    2016-01-01

    The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020–2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements. PMID:27880846

  12. Potential Impacts of Climate Change on Native Plant Distributions in the Falkland Islands.

    PubMed

    Upson, Rebecca; Williams, Jennifer J; Wilkinson, Tim P; Clubbe, Colin P; Maclean, Ilya M D; McAdam, Jim H; Moat, Justin F

    2016-01-01

    The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020-2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements.

  13. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A GIS model predicting potential distributions of a lineage: a test case on hermit spiders (Nephilidae: Nephilengys).

    PubMed

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change.

  15. A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    PubMed Central

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Background Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. Methodology/Principal Findings We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Conclusions Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change. PMID:22238692

  16. Probabilistic Projections of Future Sea-Level Change and Their Implications for Flood Risk Management: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Delgado, M.; Horton, R. M.; Houser, T.; Little, C. M.; Muir-Wood, R.; Oppenheimer, M.; Rasmussen, D. M., Jr.; Strauss, B.; Tebaldi, C.

    2014-12-01

    Global mean sea level (GMSL) rise projections are insufficient for adaptation planning; local decisions require local projections that characterize risk over a range of timeframes and tolerances. We present a global set of local sea level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We present complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling [1]. We illustrate the application of this framework by estimating the joint distribution of future sea-level change and coastal flooding, and associated economic costs [1,2]. In much of the world in the current century, differences in median LSL projections are due primarily to varying levels of non-climatic uplift or subsidence. In the 22nd century and in the high-end tails, larger ice sheet contributions, particularly from the Antarctic ice sheet (AIS), contribute significantly to site-to-site differences. Uncertainty in GMSL and most LSL projections is dominated by the uncertain AIS component. Sea-level rise dramatically reshapes flood risk. For example, at the New York City (Battery) tide gauge, our projections indicate a likely (67% probability) 21st century LSL rise under RCP 8.5 of 65--129 cm (1-in-20 chance of exceeding 154 cm). Convolving the distribution of projected sea-level rise with the extreme value distribution of flood return periods indicates that this rise will cause the current 1.80 m `1-in-100 year' flood event to occur an expected nine times over the 21st century -- equivalent to the expected number of `1-in-11 year' floods in the absence of sea-level change. Projected sea-level rise for 2100 under RCP 8.5 would likely place 80-160 billion of current property in New York below the high tide line, with a 1-in-20 chance of losses >190 billion. Even without accounting for potential changes in storms themselves, it would likely increase average annual storm damage by 2.6-5.2 billion (1-in-20 chance of >7 billion). Projected increases in tropical cyclone intensity would further increase damages [2]. References: [1] R. E. Kopp et al. (2014), Earth's Future, doi:10.1002/2014EF000239. [2] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  17. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part II locally re-suspended sediment dynamics

    NASA Astrophysics Data System (ADS)

    Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang

    2017-11-01

    Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.

  18. Diverging conductance at the contact between random and pure quantum XX spin chains

    NASA Astrophysics Data System (ADS)

    Chatelain, Christophe

    2017-11-01

    A model consisting of two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current J is induced between the two chains by coupling them together by their edges and imposing different chemical potentials μ to the two baths. While a regime of linear characteristics J versus Δμ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.

  19. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  20. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Fuessel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2011-06-01

    Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

  1. Interplanetary magnetic field control of mantle precipitation and associated field-aligned currents

    NASA Technical Reports Server (NTRS)

    Xu, Dingan; Kivelson, Margaret G.; Walker, Ray J.; Newell, Patrick T.; Meng, C.-I.

    1995-01-01

    Dayside reconnection, which is particularly effective for a southward interplanetary magnetic field (IMF), allows magnetosheath particles to enter the magnetosphere where they form the plasma mantle. The motions of the reconnected flux tube produce convective flows in the ionosphere. It is known that the convection patterns in the polar cap are skewed to the dawnside for a positive IMF B(sub y) (or duskside for a negative IMF B(sub y)) in the northern polar cap. Correspondingly, one would expect to find asymmetric distributions of mantle particle precipitation, but previous results have been unclear. In this paper the correlation between B(sub y) and the distribution of mantle particle precipitation is studied for steady IMF conditions with southward IMF. Ion and electron data from the Defense Meteorological Satellite Program (DMSP) F6 and F7 satellites are used to identify the mantle region and IMP 8 is used as a solar wind monitor to characterize the IMF. We study the local time extension of mantle precipitation in the prenoon and postnoon regions. We find that, in accordance with theoretical expectations for a positive (negative) IMF B(sub y), mantle particle precipitation mainly appears in the prenoon region of the northern (southern) hemisphere. The mantle particle precipitation can extend to as early as 0600 magnetic local time (MLT) in the prenoon region but extends over a smaller local time region in the postnoon sector (we did not find mantle plasma beyond 1600 MLT in our data set although coverage is scant in this area). Magnetometer data from F7 are used to determine whether part of the region 1 current flows on open field lines. We find that at times part of the region 1 sense current extends into the region of mantle particle precipitation, and is therefore on open field lines. In other cases, region 1 currents are absent on open field lines. Most of the observed features can be readily interpreted in terms of the open magnetosphere model.

  2. Reef-coral refugia in a rapidly changing ocean.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2015-06-01

    This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status. © 2015 John Wiley & Sons Ltd.

  3. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  4. A Motion-Based Feature for Event-Based Pattern Recognition

    PubMed Central

    Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.

    2017-01-01

    This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001

  5. Simulation of a pulsed light propagation in the prostate phantom

    NASA Astrophysics Data System (ADS)

    Guo, Jian; Li, Zhifang; Xie, Wenming; Chen, Haiyu; Weng, Guo-Xing; Li, Hui

    2014-09-01

    In recent years, more and more Americans are diagnosed with prostate cancer, and the current detection methods still have some disadvantages. Photoacoustic imaging, as a new non-invasive imaging technique, has the capable of imaging complex tissue and owns the ability of early tumor imaging. And the photoacoustic signal of the tumor is bound up with its light energy distribution. In this paper, Monte Carlo method was used to simulate the light propagation in the prostate phantom. The pictures of light energy distribution by the irradiation of a pulsed laser were obtained. With the pulsed laser, according to the absorption coefficient of tumor, the local energy temporal changes in prostate can be illustrated. As we known, the local photoacoustic signal has a relationship with the change of light energy. Then we can see the influence of photoacoustic signal under the changes of the absorption coefficient of tumor.

  6. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less

  7. Solution of Linearized Drift Kinetic Equations in Neoclassical Transport Theory by the Method of Matched Asymptotic Expansions

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.; Hinton, F. L.

    2001-10-01

    The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.

  8. Results and Error Estimates from GRACE Forward Modeling over Greenland, Canada, and Alaska

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2012-12-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Greenland and Antarctica. However, the accuracy of the forward model technique has not been determined, nor is it known how the distribution of the local basins affects the results. We use a "truth" model composed of hydrology and ice-melt slopes as an example case, to estimate the uncertainties of this forward modeling method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We then apply these optimal parameters in a forward model estimate created from RL05 GRACE data. We compare the resulting mass slopes with the expected systematic errors from the simulation, as well as GIA and basic trend-fitting uncertainties. We also consider whether specific regions (such as Ellesmere Island and Baffin Island) can be estimated reliably using our optimal basin layout.

  9. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

    PubMed

    Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah; Pasaniuc, Bogdan

    2017-11-02

    Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Optimal designs based on the maximum quasi-likelihood estimator

    PubMed Central

    Shen, Gang; Hyun, Seung Won; Wong, Weng Kee

    2016-01-01

    We use optimal design theory and construct locally optimal designs based on the maximum quasi-likelihood estimator (MqLE), which is derived under less stringent conditions than those required for the MLE method. We show that the proposed locally optimal designs are asymptotically as efficient as those based on the MLE when the error distribution is from an exponential family, and they perform just as well or better than optimal designs based on any other asymptotically linear unbiased estimators such as the least square estimator (LSE). In addition, we show current algorithms for finding optimal designs can be directly used to find optimal designs based on the MqLE. As an illustrative application, we construct a variety of locally optimal designs based on the MqLE for the 4-parameter logistic (4PL) model and study their robustness properties to misspecifications in the model using asymptotic relative efficiency. The results suggest that optimal designs based on the MqLE can be easily generated and they are quite robust to mis-specification in the probability distribution of the responses. PMID:28163359

  11. Sources and distribution of aromatic hydrocarbons in a tropical marine protected area estuary under influence of sugarcane cultivation.

    PubMed

    Arruda-Santos, Roxanny Helen de; Schettini, Carlos Augusto França; Yogui, Gilvan Takeshi; Maciel, Daniele Claudino; Zanardi-Lamardo, Eliete

    2018-05-15

    Goiana estuary is a well preserved marine protected area (MPA) located on the northeastern coast of Brazil. Despite its current state, human activities in the watershed represent a potential threat to long term local preservation. Dissolved/dispersed aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were investigated in water and sediments across the estuarine salt gradient. Concentration of aromatic hydrocarbons was low in all samples. According to results, aromatic hydrocarbons are associated to suspended particulate matter (SPM) carried to the estuary by river waters. An estuarine turbidity maximum (ETM) was identified in the upper estuary, indicating that both sediments and contaminants are trapped prior to an occasional export to the adjacent sea. PAHs distribution in sediments were associated with organic matter and mud content. Diagnostic ratios indicated pyrolytic processes as the main local source of PAHs that are probably associated with sugarcane burning and combustion engines. Low PAH concentrations probably do not cause adverse biological effects to the local biota although their presence indicate anthropogenic contamination and pressure on the Goiana estuary MPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    M, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  13. Intracellular distribution of Photofrin in malignant and normal endothelial cell lines.

    PubMed

    Saczko, J; Mazurkiewicz, M; Chwiłkowska, A; Kulbacka, J; Kramer, G; Ługowski, M; Snietura, M; Banaś, T

    2007-01-01

    Compared to current treatments including surgery, radiation therapy, and chemotherapy, PDT offers the advantage of an effective and selective method of destroying diseased tissues without damaging surrounding healthy tissues. One of the aspects of antitumour effectiveness of PDT is related to the distribution of photosensitizing drugs. The localization of photosensitizers in cytoplasmic organelles during PDT plays a major role in the cell destruction; therefore, intracellular localization of Ph in malignant and normal cells was investigated. The cell lines used throughout the study were: human malignant A549, MCF-7, Me45 and normal endothelial cell line HUV-EC-C. After incubation with Ph cells were examined using fluorescence and confocal microscopy to visualize the photosensitizer accumulation. For cytoplasm and mitochondria identification, cells were stained with CellTracker Green and MitoTracker Green, respectively. Distribution of Ph was different in malignant and normal cells and dependent on the incubation time. The maximal concentration of Ph in two malignant cell lines (A549 and MCF-7) was observed after 4 hours of incubation, and the most intensive signal was observed around the nuclear envelope. Intracellular distribution of Ph in the Me45 cell line showed that the fluorescence emitted by Ph overlaid that from MitoTracker. This indicates preferential accumulation of the sensitizer in mitochondria. Our results based on the mitochondrial localization support the idea that PDT can contribute to elimination of malignant cells by inducing apoptosis, which is of physiological significance.

  14. Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula

    USGS Publications Warehouse

    Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.

    2008-01-01

    Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.

  15. Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels

    NASA Astrophysics Data System (ADS)

    Monsalve Sepulveda, A.; Yager, E.

    2013-12-01

    Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each patch class, and then added the bedload fluxes for each patch to calculate the reach-averaged sediment transport rate. Sediment mobility in patches was highly dependent on the patch's class and location relative to the thalweg and large roughness elements. Compared to deterministic formulations, the use of distributions of shear stress improved predictions of bedload transport in steep mountain channels.

  16. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment

    PubMed Central

    Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.

    2013-01-01

    Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495

  17. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment.

    PubMed

    Irimia, Andrei; Goh, S-Y Matthew; Torgerson, Carinna M; Stein, Nathan R; Chambers, Micah C; Vespa, Paul M; Van Horn, John D

    2013-10-01

    To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. Published by Elsevier B.V.

  18. Inferences from the Historical Distribution of Wild and Domesticated Maize Provide Ecological and Evolutionary Insight

    PubMed Central

    Hufford, Matthew B.; Martínez-Meyer, Enrique; Gaut, Brandon S.; Eguiarte, Luis E.; Tenaillon, Maud I.

    2012-01-01

    Background The species Zea mays includes both domesticated maize (ssp. mays) and its closest wild relatives known as the teosintes. While genetic and archaeological studies have provided a well-established history of Z. mays evolution, there is currently minimal description of its current and past distribution. Here, we implemented species distribution modeling using paleoclimatic models of the last interglacial (LI; ∼135,000 BP) and the last glacial maximum (LGM; ∼21,000 BP) to hindcast the distribution of Zea mays subspecies over time and to revisit current knowledge of its phylogeography and evolutionary history. Methodology/Principal Findings Using a large occurrence data set and the distribution modeling MaxEnt algorithm, we obtained robust present and past species distributions of the two widely distributed teosinte subspecies (ssps. parviglumis and mexicana) revealing almost perfect complementarity, stable through time, of their occupied distributions. We also investigated the present distributions of primitive maize landraces, which overlapped but were broader than those of the teosintes. Our data reinforced the idea that little historical gene flow has occurred between teosinte subspecies, but maize has served as a genetic bridge between them. We observed an expansion of teosinte habitat from the LI, consistent with population genetic data. Finally, we identified locations potentially serving as refugia for the teosintes throughout epochs of climate change and sites that should be targeted in future collections. Conclusion/Significance The restricted and highly contrasting ecological niches of the wild teosintes differ substantially from domesticated maize. Variables determining the distributions of these taxa can inform future considerations of local adaptation and the impacts of climate change. Our assessment of the changing distributions of Zea mays taxa over time offers a unique glimpse into the history of maize, highlighting a strategy for the study of domestication that may prove useful for other species. PMID:23155371

  19. [Dilemmas of health financing].

    PubMed

    Herrera Zárate, M; González Torres, R

    1989-01-01

    The economic crisis had had a profound effect on the finances of health services in Mexico. The expenditure on health has decreased, both in absolute terms and in relation to the national gross product. Funding problems have been aggravated by inequities in budget distribution: social security institutions have been favored; geographical distribution of resources is concentrated in the central areas of the country and in the more developed states, and curative health care has prevailed over preventive medicine. Administrative inefficiency hinders even more the appropriate utilization of resources. Diversification of funding sources has been proposed, through external debt, local funding, and specific health taxing. But these proposals are questionable. The high cost of the debt service has reduced international credits as a source of financing. Resource concentration at the federal level, and the different compromises related to the economic solidarity pact have also diminished the potentiality of local state financing. On the other hand, a special health tax is not viable within the current fiscal framework. The alternatives are a better budget planning, a change in the institutional and regional distribution of resources, and improvement in the administrative mechanisms of funding.

  20. Current status and recent dynamics of the Black Brant Branta bernicla breeding population

    USGS Publications Warehouse

    Sedinger, James S.; Lensink, Calvin J.; Ward, David H.; Anthony, Michael W.; Wege, Michael L.; Byrd, G. Vernon

    1993-01-01

    We summarize current knowledge about the distribution of Pacific Black Brant and recent dynamics of colonies, particularly on the Yukon-Kuskokwim (Y-K) Delta, Alaska. About 20,000 nests are required to produce the number of young in the autumn flight using estimates of clutch size, hatching success and gosling survival based on colonies on the Y-K Delta. More than 80% of the nests in the population can be accounted for currently on the Y-K Delta. Most moulting individuals that did not breed, or were unsuccessful, are unaccounted for in late summer. Numbers of Black Brant nesting in major colonies on the Y-K Delta declined >60% in the early 1980s, most likely as a result of local subsistence harvest combined with predation by arctic foxes. Effective management of this population requires a better understanding of the distribution of breeding and moulting birds, the importance of breeding habitat to colony dynamics and the role of both sport and subsistence harvest in population dynamics.

  1. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Dong, Ze Hua, E-mail: zehua.dong@gmail.com; Kong, De Jie

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part inmore » cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps.« less

  2. First-Principles Calculations of Current-Induced Spin-Transfer Torques in Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Xu, Zhijun; Yang, Zejin

    2013-05-01

    Current-induced spin-transfer torques (STTs) have been studied in Fe, Co and Ni domain walls (DWs) by the method based on the first-principles noncollinear calculations of scattering wavefunctions expanded in the tight-binding linearized muffin-tin orbital (TB-LMTO) basis. The results show that the out-of-plane component of nonadiabatic STT in Fe DW has localized form, which is in contrast to the typical nonlocal oscillating nonadiabatic torques obtained in Co and Ni DWs. Meanwhile, the degree of nonadiabaticity in STT is also much greater for Fe DW. Further, our results demonstrate that compared to the well-known first-order nonadiabatic STT, the torque in the third-order spatial derivative of local spin can better describe the distribution of localized nonadiabatic STT in Fe DW. The dynamics of local spin driven by this third-order torques in Fe DW have been investigated by the Landau-Lifshitz-Gilbert (LLG) equation. The calculated results show that with the same amplitude of STTs the DW velocity induced by this third-order term is about half of the wall speed for the case of the first-order nonadiabatic STT.

  3. Computer simulations of local anesthetic mechanisms: Quantum chemical investigation of procaine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeremy C; Bondar, A.N.; Suhai, Sandor

    2007-02-01

    A description at the atomic level of detail of the interaction between local anesthetics, lipid membranes and membrane proteins, is essential for understanding the mechanism of local anesthesia. The importance of performing computer simulations to decipher the mechanism of local anesthesia is discussed here in the context of the current status of understanding of the local anesthetics action. As a first step towards accurate simulations of the interaction between local anesthetics, proteins, lipid and water molecules, here we use quantum mechanical methods to assess the charge distribution and structural properties of procaine in the presence and in the absence ofmore » water molecules. The calculations indicate that, in the absence of hydrogen-bonding water molecules, protonated procaine strongly prefers a compact structure enabled by intramolecular hydrogen bonding. In the presence of water molecules the torsional energy pro?le of procaine is modified, and hydrogen bonding to water molecules is favored relative to intra-molecular hydrogen bonding.« less

  4. Genetic Divergence among Regions Containing the Vulnerable Great Desert Skink (Liopholis kintorei) in the Australian Arid Zone

    PubMed Central

    Dennison, Siobhan; McAlpin, Steve; Chapple, David G.; Stow, Adam J.

    2015-01-01

    Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F′ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken. PMID:26061141

  5. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  6. ARO PECASE: Information Assurance for Energy-Constrained Wireless Sensor Networks

    DTIC Science & Technology

    2011-12-21

    Distribution, 18th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), September 2007. 2. 2010 IEEE...received the following awards: Student Best Paper Award at the IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC...Localization in Wireless Ad Hoc Networks – Many current and future appli- cations of mobile ad hoc networks, including disaster response and event

  7. Paleobathymetric grids of the Cenozoic Southern Ocean - Opening the door towards improved reconstructions of the Southern Ocean's past

    NASA Astrophysics Data System (ADS)

    Hochmuth, K.; Gohl, K.; Leitchenkov, G. L.; Sauermilch, I.; Whittaker, J. M.; De Santis, L.; Olivo, E.; Uenzelmann-Neben, G.; Davy, B. W.

    2017-12-01

    Although the Southern Ocean plays a fundamental role in the global climate and ocean current system, paleo-ocean circulation models of the Southern Ocean suffer from missing boundary conditions. A more accurate representation of the geometry of the seafloor and their dynamics over long time-scales are key for enabling more precise reconstructions of the development of the paleo-currents, the paleo-environment and the Antarctic ice sheets. The accurate parameterisation of these models controls the meaning and implications of regional and global paleo-climate models. The dynamics of ocean currents in proximity of the continental margins is also controlled by the development of the regional seafloor morphology of the conjugate continental shelves, slopes and rises. The reassessment of all available reflection seismic and borehole data from Antarctica as well as its conjugate margins of Australia, New Zealand, South Africa and South America, allows us to create paleobathymetric grids for various time slices during the Cenozoic. Those grids inform us about sediment distribution and volume as well a local sedimentation rates. The earliest targeted time slice of the Eocene/Oligocene Boundary marks a significant turning point towards an icehouse climate. From latest Eocene to earliest Oligocene the Southern Ocean changes fundamentally from a post greenhouse to an icehouse environment with the establishment of a vast continental ice sheet on the Antarctic continent. With the calculated sediment distribution maps, we can evaluate the dynamics of the sedimentary cover as well as the development of structural obstacles such as oceanic plateaus and ridges. The ultimate aim of this project is - as a community based effort - to create paleobathymetric grids at various time slices such as the Mid-Miocene Climatic Optimum and the Pliocene/Pleistocene, and eventually mimic the time steps used within the modelling community. The observation of sediment distribution and local sediment volumes open the door towards more sophisticated paleo-topograpy studies of the Antarctic continent and more detailed studies of the paleo-circulation. Local paleo - water depths at the oceanic gateways or the position of paleo-shelf edges highly influence the regional circulation patterns supporting more elaborated climate models.

  8. Connectivity of the South Florida Coral Reef Ecosystem to Upstream Waters of the Western Caribbean and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.

    2008-05-01

    The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale circulation patterns and the smaller scale biological processes is a key research objective for understanding the observed regional population connections.

  9. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  10. Distribution, abundance and traditional management of Agave potatorum in the Tehuacán Valley, Mexico: bases for sustainable use of non-timber forest products

    PubMed Central

    2014-01-01

    Background Agave species have been used for thousands of years in the Tehuacán Valley, but the current mescal production has great impact on populations of the most used species. Harvesting of A. potatorum takes place before sexual reproduction and the over-extraction put local populations at high risk. In the community of San Luis Atolotilán (SLA), mescal has been produced for one century but the growing mescal trade is leading to intensified agave extraction. Our study evaluated distribution and abundance of A. potatorum, extraction rates, management practices and economic importance for SLA households. The unbalanced relation between availability and extraction rates would be an indicator of risk requiring sustainable management strategies. Our case study aspires contributing to analyze general patterns for sustainable use for this and other forest products highly extracted. Methods We used bioclimatic modeling to project a map of potential distribution of the species, and ecological sampling to estimate the total availability of harvestable agaves within the territory of SLA. We used participant observation, surveys and semi-structured interviews with producers and households of SLA to document agave uses, technological and socio-economic aspects of mescal production, and to estimate extraction rates of agaves. Results Mescal production, medicine and fodder are the most important uses of A. potatorum. Its distribution area is nearly 608 ha where annually occur on average 7,296 harvestable plants, nearly 54 to 87% of them being harvested. Mescal production currently is a non-sustainable activity, requiring great changes in patterns of extraction and management adopting sustainable criteria. Local people started management planning to ensure the future availability of agaves, and the ecological information of this study has been helpful in constructing their decisions. Technical support for improving local experiences for managing populations’ recovering is a priority. Interaction of scholars and local people for solving this problem is already taking place and strengthening this process may be determinant for successful results. Conclusions Strategies for protecting particular populations, temporal substitution of agave species for mescal production, implementation of restoration and organization for fear commerce are needed for improving sustainable use of A. potatorum. PMID:25185769

  11. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGES

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  12. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  13. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Chang, C. S.

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  14. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  15. An integrative appraisal of the diagnosis and distribution of Allobates sumtuosus (Morales, 2002) (Anura, Aromobatidae).

    PubMed

    Simões, Pedro Ivo; Kaefer, Igor Luis; Farias, Izeni Pires; Lima, Albertina Pimentel

    2013-12-12

    We describe the advertisement calls and color in life of Allobates sumtuosus (Morales 2002) based on specimens recorded and collected at its type locality in Reserva Biológica do Rio Trombetas, Brazilian Amazonia. We also improve the species diagnosis by adding information on states of characters frequently used in current Allobates taxonomy. Finally, we analyze genetic distances and the evolutionary relationships between typical A. sumtuosus and other Allobates species distributed in Brazil and along the Guiana Shield region using a fragment of the 16S rDNA mitochondrial gene. Based on this integrative analysis, we propose the synonym of Allobates spumaponens Kok & Ernst 2007 with A. sumtuosus and provide an updated geographic distribution of the species.

  16. Net current control device. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, D.; Cooper, J.H.

    1998-11-01

    Net currents generally result in elevated magnetic fields because the alternate paths are distant from the circuit conductors. Investigations have shown that one of the primary sources of power frequency magnetic fields in residential buildings is currents that return to their source via paths other than the neutral conductors. As part of EPRI`s Magnetic Field Shielding Project, ferromagnetic devices, called net current control (NCC) devices, were developed and tested for use in reducing net currents on electric power cables and the resulting magnetic fields. Applied to a residential service drop, an NCC device reduces net current by forcing current offmore » local non-utility ground paths, and back onto the neutral conductor. Circuit models and basic design equations for the NCC concept were developed, and proof-of-principles tests were carried out on an actual residence with cooperation from the local utility. After proving the basic concepts, three prototype NCC devices were built and tested on a simulated neighborhood power system. Additional prototypes were built for testing by interested EPRI utility members. Results have shown that the NCC prototypes installed on residential service drops reduce net currents to milliampere levels with compromising the safety of the ground system. Although the focus was on application to residential service cables, the NCC concept is applicable to single-phase and three-phase distribution systems as well.« less

  17. Integrated RF-shim coil allowing two degrees of freedom shim current.

    PubMed

    Jiazheng Zhou; Ying-Hua Chu; Yi-Cheng Hsu; Pu-Yeh Wu; Stockmann, Jason P; Fa-Hsuan Lin

    2016-08-01

    High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming. Such coils share the same conductor for RF signal reception and shim field generation. Here we propose a new design of the integrated RF-shim coil at 3-tesla, where two independent shim current paths are allowed in each coil. This coil permits a higher degree of freedom in shim current distribution design. We use both phantom experiments and simulations to demonstrate the feasibility of this new design.

  18. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  19. Anomalous current from the covariant Wigner function

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  20. The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Yue, C.; Bortnik, J.; Thorne, R. M.; Ma, Q.; An, X.; Chappell, C. R.; Gerrard, A. J.; Lanzerotti, L. J.; Shi, Q.

    2017-12-01

    Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze 1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L (L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.

  1. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    DOE PAGES

    Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.; ...

    2016-12-30

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less

  2. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less

  3. Field enhancement of electronic conductance at ferroelectric domain walls

    DOE PAGES

    Vasudevan, Rama K.; Cao, Ye; Laanait, Nouamane; ...

    2017-11-06

    Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO 3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of themore » atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.« less

  4. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  5. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot.

    PubMed

    Keppel, Gunnar; Robinson, Todd P; Wardell-Johnson, Grant W; Yates, Colin J; Van Niel, Kimberly P; Byrne, Margaret; Schut, Antonius G T

    2017-01-01

    Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We investigate whether the Porongurups (altitude 655 m) in the SWAFR will provide a refugium for the endemic Ornduffia calthifolia and O. marchantii under forecast climate change. We used species distribution modelling based on WorldClim climatic data, 30-m elevation data and a 2-m-resolution LiDAR-derived digital elevation model (DEM) to predict current and future distributions of the Ornduffia species at local and regional scales based on 605 field-based abundance estimates. Future distributions were forecast using RCP2.6 and RCP4.5 projections. To determine whether local edaphic and biotic factors impact these forecasts, we tested whether soil depth and vegetation height were significant predictors of abundance using generalized additive models (GAMs). Species distribution modelling revealed the importance of elevation and topographic variables at the local scale for determining distributions of both species, which also preferred shadier locations and higher slopes. However, O. calthifolia occurred at higher (cooler) elevations with rugged, concave topography, while O. marchantii occurred in disturbed sites at lower locations with less rugged, convex topography. Under future climates both species are likely to severely contract under the milder RCP2.6 projection (approx. 2 °C of global warming), but are unlikely to persist if warming is more severe (RCP4.5). GAMs showed that soil depth and vegetation height are important predictors of O. calthifolia and O. marchantii distributions, respectively. The Porongurups constitute an important refugium for O. calthifolia and O. marchantii, but limits to this capacity may be reached if global warming exceeds 2 °C. This capacity is moderated at local scales by biotic and edaphic factors. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    PubMed

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  7. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India

    NASA Astrophysics Data System (ADS)

    Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2014-01-01

    Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.

  8. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India.

    PubMed

    Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2014-01-15

    Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.

  9. Elasticity reconstruction: Beyond the assumption of local homogeneity

    NASA Astrophysics Data System (ADS)

    Sinkus, Ralph; Daire, Jean-Luc; Van Beers, Bernard E.; Vilgrain, Valerie

    2010-07-01

    Elasticity imaging is a novel domain which is currently gaining significant interest in the medical field. Most inversion techniques are based on the homogeneity assumption, i.e. the local spatial derivatives of the complex-shear modulus are ignored. This analysis presents an analytic approach in order to overcome this limitation, i.e. first order spatial derivatives of the real-part of the complex-shear modulus are taken into account. Resulting distributions in a gauged breast lesion phantom agree very well with the theoretical expectations. An in-vivo example of a cholangiocarcinoma demonstrates that the new approach provides maps of the viscoelastic properties which agree much better with expectations from anatomy.

  10. An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.

    1972-01-01

    The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.

  11. Relativistic fluid dynamics with spin

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  12. Characterization of focused seepage through an earthfill dam using geoelectrical methods.

    PubMed

    Ikard, S J; Revil, A; Schmutz, M; Karaoulis, M; Jardani, A; Mooney, M

    2014-01-01

    Resistivity and self-potential tomography can be used to investigate anomalous seepage inside heterogeneous earthen dams. The self-potential (SP) signals provide a unique signature to groundwater flow because the source current density responsible for the SP signals is proportional to the Darcy velocity. The distribution of the SP signals is also influenced by the distribution of the resistivity; therefore, resistivity and SP need to be used in concert to elucidate groundwater flow pathways. In this study, a survey is conducted at a small earthen dam in Colorado where anomalous seepage is observed on the downstream face at the dam toe. The data reveal SP and direct current resistivity anomalies that are used to delineate three anomalous seepage zones within the dam and to estimate the source of the localized seepage discharge. The SP data are inverted in two dimensions using the resistivity distribution to determine the distribution of the Darcy velocity responsible for the observed seepage. The inverted Darcy velocity agrees with an estimation of the Darcy velocity from the hydraulic conductivity obtained from a slug test and the observed head gradient. © 2013, National Ground Water Association.

  13. Monitoring multiple species: Estimating state variables and exploring the efficacy of a monitoring program

    USGS Publications Warehouse

    Mattfeldt, S.D.; Bailey, L.L.; Grant, E.H.C.

    2009-01-01

    Monitoring programs have the potential to identify population declines and differentiate among the possible cause(s) of these declines. Recent criticisms regarding the design of monitoring programs have highlighted a failure to clearly state objectives and to address detectability and spatial sampling issues. Here, we incorporate these criticisms to design an efficient monitoring program whose goals are to determine environmental factors which influence the current distribution and measure change in distributions over time for a suite of amphibians. In designing the study we (1) specified a priori factors that may relate to occupancy, extinction, and colonization probabilities and (2) used the data collected (incorporating detectability) to address our scientific questions and adjust our sampling protocols. Our results highlight the role of wetland hydroperiod and other local covariates in the probability of amphibian occupancy. There was a change in overall occupancy probabilities for most species over the first three years of monitoring. Most colonization and extinction estimates were constant over time (years) and space (among wetlands), with one notable exception: local extinction probabilities for Rana clamitans were lower for wetlands with longer hydroperiods. We used information from the target system to generate scenarios of population change and gauge the ability of the current sampling to meet monitoring goals. Our results highlight the limitations of the current sampling design, emphasizing the need for long-term efforts, with periodic re-evaluation of the program in a framework that can inform management decisions.

  14. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  15. Ion Electrodiffusion Governs Silk Electrogelation.

    PubMed

    Kojic, Nikola; Panzer, Matthew J; Leisk, Gary G; Raja, Waseem K; Kojic, Milos; Kaplan, David L

    2012-07-14

    Silk electrogelation involves the transition of an aqueous silk fibroin solution to a gel state (E-gel) in the presence of an electric current. The process is based on local pH changes as a result of water electrolysis - generating H(+) and OH(-) ions at the (+) and (-) electrodes, respectively. Silk fibroin has a pI=4.2 and when local pH

  16. Unidata LDM-7: a Hybrid Multicast/unicast System for Highly Efficient and Reliable Real-Time Data Distribution

    NASA Astrophysics Data System (ADS)

    Emmerson, S. R.; Veeraraghavan, M.; Chen, S.; Ji, X.

    2015-12-01

    Results of a pilot deployment of a major new version of the Unidata Local Data Manager (LDM-7) are presented. The Unidata LDM was developed by the University Corporation for Atmospheric Research (UCAR) and comprises a suite of software for the distribution and local processing of data in near real-time. It is widely used in the geoscience community to distribute observational data and model output, most notably as the foundation of the Unidata Internet Data Distribution (IDD) system run by UCAR, but also in private networks operated by NOAA, NASA, USGS, etc. The current version, LDM-6, uses at least one unicast TCP connection per receiving host. With over 900 connections, the bit-rate of total outgoing IDD traffic from UCAR averages approximately 3.0 GHz, with peak data rates exceeding 6.6 GHz. Expected increases in data volume suggest that a more efficient distribution mechanism will be required in the near future. LDM-7 greatly reduces the outgoing bandwidth requirement by incorporating a recently-developed "semi-reliable" IP multicast protocol while retaining the unicast TCP mechanism for reliability. During the summer of 2015, UCAR and the University of Virginia conducted a pilot deployment of the Unidata LDM-7 among U.S. university participants with access to the Internet2 network. Results of this pilot program, along with comparisons to the existing Unidata LDM-6 system, are presented.

  17. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    NASA Astrophysics Data System (ADS)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  18. Local storage federation through XRootD architecture for interactive distributed analysis

    NASA Astrophysics Data System (ADS)

    Colamaria, F.; Colella, D.; Donvito, G.; Elia, D.; Franco, A.; Luparello, G.; Maggi, G.; Miniello, G.; Vallero, S.; Vino, G.

    2015-12-01

    A cloud-based Virtual Analysis Facility (VAF) for the ALICE experiment at the LHC has been deployed in Bari. Similar facilities are currently running in other Italian sites with the aim to create a federation of interoperating farms able to provide their computing resources for interactive distributed analysis. The use of cloud technology, along with elastic provisioning of computing resources as an alternative to the grid for running data intensive analyses, is the main challenge of these facilities. One of the crucial aspects of the user-driven analysis execution is the data access. A local storage facility has the disadvantage that the stored data can be accessed only locally, i.e. from within the single VAF. To overcome such a limitation a federated infrastructure, which provides full access to all the data belonging to the federation independently from the site where they are stored, has been set up. The federation architecture exploits both cloud computing and XRootD technologies, in order to provide a dynamic, easy-to-use and well performing solution for data handling. It should allow the users to store the files and efficiently retrieve the data, since it implements a dynamic distributed cache among many datacenters in Italy connected to one another through the high-bandwidth national network. Details on the preliminary architecture implementation and performance studies are discussed.

  19. Distribution of vesicular glutamate transporters in the human brain

    PubMed Central

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

  20. Distribution of vesicular glutamate transporters in the human brain.

    PubMed

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  1. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    PubMed Central

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  2. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    PubMed

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  3. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function

    PubMed Central

    Feng, Suihan; Harayama, Takeshi; Montessuit, Sylvie; David, Fabrice PA; Winssinger, Nicolas; Martinou, Jean-Claude

    2018-01-01

    Photoactivation ('uncaging’) is a powerful approach for releasing bioactive small-molecules in living cells. Current uncaging methods are limited by the random distribution of caged molecules within cells. We have developed a mitochondria-specific photoactivation method, which permitted us to release free sphingosine inside mitochondria and thereafter monitor local sphingosine metabolism by lipidomics. Our results indicate that sphingosine was quickly phosphorylated into sphingosine 1-phosphate (S1P) driven by sphingosine kinases. In time-course studies, the mitochondria-specific uncaged sphingosine demonstrated distinct metabolic patterns compared to globally-released sphingosine, and did not induce calcium spikes. Our data provide direct evidence that sphingolipid metabolism and signaling are highly dependent on the subcellular location and opens up new possibilities to study the effects of lipid localization on signaling and metabolic fate. PMID:29376826

  4. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less

  5. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  6. The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm

    NASA Astrophysics Data System (ADS)

    Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.

  7. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  8. Bird distributional patterns support biogeographical histories and are associated with bioclimatic units in the Atlantic Forest, Brazil.

    PubMed

    Carvalho, Cristiano DE Santana; Nascimento, Nayla Fábia Ferreira DO; Araujo, Helder F P DE

    2017-10-17

    Rivers as barriers to dispersal and past forest refugia are two of the hypotheses proposed to explain the patterns of biodiversity in the Atlantic Forest. It has recently been shown that possible past refugia correspond to bioclimatically different regions, so we tested whether patterns of shared distribution of bird taxa in the Atlantic Forest are 1) limited by the Doce and São Francisco rivers or 2) associated with the bioclimatically different southern and northeastern regions. We catalogued lists of forest birds from 45 locations, 36 in the Atlantic forest and nine in Amazon, and used parsimony analysis of endemicity to identify groups of shared taxa. We also compared differences between these groups by permutational multivariate analysis of variance and identified the species that best supported the resulting groups. The results showed that the distribution of forest birds is divided into two main regions in the Atlantic Forest, the first with more southern localities and the second with northeastern localities. This distributional pattern is not delimited by riverbanks, but it may be associated with bioclimatic units, surrogated by altitude, that maintain current environmental differences between two main regions on Atlantic Forest and may be related to phylogenetic histories of taxa supporting the two groups.

  9. Enhancing superconducting critical current by randomness

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J. E.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2016-01-01

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nanopatterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local density of pinning sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.

  10. Hawaii Energy and Environmental Technologies (HEET) Initiative

    DTIC Science & Technology

    2009-05-01

    current density measured in a PEM fuel cell ( PEMFC ) represents the average of the local reaction rates. Depending on cell design and operating...loss mechanisms determine the spatial and overall performance of a PEMFC : activation, concentration, ohmic, and mass transfer losses. Activation losses...distribution of these various losses in a PEMFC using a six-channel serpentine flow-field. Voltage losses were attributed to each of the mechanisms at each

  11. Policy Options Analysis of Assistance to Firefighters Grant Program

    DTIC Science & Technology

    2014-03-01

    services in the grant process. The funding level, however, has been insufficient to address the unmet needs of fire services across the nation. The policy...capability, increasing regional capabilities and retaining local support for the AFG. The current approach to grant distribution was determined to provide the...The Assistance to Firefighters Grant Program (AFG) is a direct federal grant program, administered by the Department of Homeland Security, for fire

  12. Subharmonic Imaging and Pressure Estimation for Monitoring Neoadjuvant Chemotherapy

    DTIC Science & Technology

    2014-09-01

    and therapy response [10]. However, the level of IFP has been shown to predict disease free survival for cervix cancer (34% disease free survival...p. 1951-1961. 11. Milosevic M, et al., Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical...12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Neoadjuvant chemotherapy is currently the standard of care for locally advanced breast cancer

  13. Distributed Kernelized Locality-Sensitive Hashing for Faster Image Based Navigation

    DTIC Science & Technology

    2015-03-26

    Facebook, Google, and Yahoo !. Current methods for image retrieval become problematic when implemented on image datasets that can easily reach billions of...correlations. Tech industry leaders like Facebook, Google, and Yahoo ! sort and index even larger volumes of “big data” daily. When attempting to process...open source implementation of Google’s MapReduce programming paradigm [13] which has been used for many different things. Using Apache Hadoop, Yahoo

  14. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    DTIC Science & Technology

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  15. Status of the Electroforming Shield Design (ESD) project

    NASA Technical Reports Server (NTRS)

    Fletcher, R. E.

    1977-01-01

    The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport.

  16. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    NASA Astrophysics Data System (ADS)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  17. The Role of Grain Boundary Energy on Grain Boundary Complexion Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojarski, Stephanie A.; Rohrer, Gregory S.

    Grain boundary complexions are distinct equilibrium structures and compositions of a grain boundary and complexion transformations are transition from a metastable to an equilibrium complexion at a specific thermodynamic and geometric conditions. Previous work indicates that, in the case of doped alumina, a complexion transition that increased the mobility of transformed boundaries and resulted in abnormal grain growth also caused a decrease in the mean relative grain boundary energy as well as an increase in the anisotropy of the grain boundary character distribution (GBCD). The current work will investigate the hypothesis that the rates of complexion transitions that result inmore » abnormal grain growth (AGG) depend on grain boundary character and energy. Furthermore, the current work expands upon this understanding and tests the hypothesis that it is possible to control when and where a complexion transition occurs by controlling the local grain boundary energy distribution.« less

  18. Anthropogenic range contractions bias species climate change forecasts

    NASA Astrophysics Data System (ADS)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  19. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE PAGES

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...

    2016-05-01

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  20. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  1. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis.

    PubMed

    Bencsik, Martin; Bowtell, Richard; Bowley, Roger

    2007-05-07

    The spatial distributions of the electric fields induced in the human body by switched magnetic field gradients in MRI have been calculated numerically using the commercial software package, MAFIA, and the three-dimensional, HUGO body model that comprises 31 different tissue types. The variation of |J|, |E| and |B| resulting from exposure of the body model to magnetic fields generated by typical whole-body x-, y- and z-gradient coils has been analysed for three different body positions (head-, heart- and hips-centred). The magnetic field varied at 1 kHz, so as to produce a rate of change of gradient of 100 T m(-1) s(-1) at the centre of each coil. A highly heterogeneous pattern of induced electric field and current density was found to result from the smoothly varying magnetic field in all cases, with the largest induced electric fields resulting from application of the y-gradient, in agreement with previous studies. By applying simple statistical analysis to electromagnetic quantities within axial planes of the body model, it is shown that the induced electric field is strongly correlated to the local value of resistivity, and the induced current density exhibits even stronger correlation with the local conductivity. The local values of the switched magnetic field are however shown to bear little relation to the local values of the induced electric field or current density.

  2. Electric fish as natural models for technical sensor systems

    NASA Astrophysics Data System (ADS)

    von der Emde, Gerhard; Bousack, Herbert; Huck, Christina; Mayekar, Kavita; Pabst, Michael; Zhang, Yi

    2009-05-01

    Instead of vision, many animals use alternative senses for object detection. Weakly electric fish employ "active electrolocation", during which they discharge an electric organ emitting electrical current pulses (electric organ discharges, EOD). Local EODs are sensed by electroreceptors in the fish's skin, which respond to changes of the signal caused by nearby objects. Fish can gain information about attributes of an object, such as size, shape, distance, and complex impedance. When close to the fish, each object projects an 'electric image' onto the fish's skin. In order to get information about an object, the fish has to analyze the object's electric image by sampling its voltage distribution with the electroreceptors. We now know a great deal about the mechanisms the fish use to gain information about objects in their environment. Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects with their electric sense, we are designing technical sensor systems that can solve similar sensing problems. We applied the principles of active electrolocation to devices that produce electrical current pulses in water and simultaneously sense local current densities. Depending on the specific task, sensors can be designed which detect an object, localize it in space, determine its distance, and measure certain object properties such as material properties, thickness, or material faults. We present first experiments and FEM simulations on the optimal sensor arrangement regarding the sensor requirements e. g. localization of objects or distance measurements. Different methods of the sensor read-out and signal processing are compared.

  3. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  4. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.

    PubMed

    Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua

    2015-01-01

    Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.

  5. Out of sight, out of mind: threats to the marine biodiversity of the Canary Islands (NE Atlantic Ocean).

    PubMed

    Riera, Rodrigo; Becerro, Mikel A; Stuart-Smith, Rick D; Delgado, Juan D; Edgar, Graham J

    2014-09-15

    Lack of knowledge of the marine realm may bias our perception of the current status and threats to marine biodiversity. Less than 10% of all ecological literature is related to the ocean, and the information we have on marine species that are threatened or on the verge of extinction is scarce. This lack of information is particularly critical for isolated areas such as oceanic archipelagos. Here we review published and grey literature on the current status of marine organisms in the Canary Islands as a case description of the consequences that current out-of-sight out-of-mind attitudes may have on this unique environment. Global change, as represented by coastal development, pollution, exotic species and climate change, are currently affecting the distribution and abundance of Canarian marine organisms, and pose multiple threats to local species and communities. Environmental risks are significant at community and species levels, particularly for threatened species. Failure to address these trends will result in shifts in local biodiversity with important ecological, social, and economic consequences. Scientists, policy makers, educators, and relevant societal groups need to collaborate to reverse deleterious coastal biodiversity trends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Consequences of Saturn’s Rotating Asymmetric Ring Current

    NASA Astrophysics Data System (ADS)

    Southwood, D. J.; Kivelson, M. G.

    2009-12-01

    The plasma and field behavior in the dipolar region of the Saturnian magnetosphere is described, based primarily on interpretation of the magnetic field behavior measured by the Cassini spacecraft. Previous authors, such as Provan and Khurana, have pointed out that the regular pulses in field strength at around 10.8 hrs period detected in this region imply the existence not only of a symmetric ring current but also of a partial ring current. Once spacecraft motion in local time has been allowed for, one finds a close to sinusoidal variation with azimuth and time of the magnetic signal. Hence the partial ring current appears to quasi-rigidly rotate about the planetary axis at the same 10.8 hr period as the pulsing of the Saturn kilometric radiation. We point out that, independent of whether the excess current is due to asymmetry in flux tube population or in plasma beta (pressure normalized to field pressure), such a current gives rise to a rotating circulation system. The compressional field pattern is consistent with an m = 1 pattern of circulation. The fairly uniform inner magnetosphere cam magnetic signature predicted on the basis of inner magnetosphere transverse field components in our past work is modified in a systematic way by the partial ring current effects. The circulation due to the partial ring current has its own set of distributed field aligned currents (FACs). The rotating transverse perturbation field components are twisted by the FACs so that the radial field is reduced at low L-shells and increased at larger L. Overall the cam field is depressed at low L and enhanced as one approaches the boundary of the cam region at L = 10-12. In practice the system must also respond to some local time effects. Loss of plasma is easier on the night-side and flanks than on the day-side and so a day-night asymmetry is imposed tending to increase the perturbation field amplitudes by night. The FACs driven by the asymmetric ring current should be broadly distributed throughout the cam region and correspondingly are associated with smaller current densities than those associated with the more narrowly confined cam current system on the outer edge of the cam. Accordingly the intense fluxes of electrons that give rise to the SKR signals are associated with the upward elements of the latter current system.

  7. Mycorrhizal specificity does not limit the distribution of an endangered orchid species.

    PubMed

    Waud, Michael; Brys, Rein; Van Landuyt, Wouter; Lievens, Bart; Jacquemyn, Hans

    2017-03-01

    What factors determine the distribution of a species is a central question in ecology and conservation biology. In general, the distribution of plant species is assumed to be controlled by dispersal or environmentally controlled recruitment. For plant species which are critically dependent on mycorrhizal symbionts for germination and seedling establishment, specificity in mycorrhizal associations and availability of suitable mycorrhizal fungi can be expected to have a major impact on successful colonization and establishment and thus ultimately on a species distribution. We combined seed germination experiments with soil analyses and fungal assessments using 454 amplicon pyrosequencing to test the relative importance of dispersal limitation, mycorrhizal availability and local growth conditions on the distribution of the orchid species Liparis loeselii, which, despite being widely distributed, is rare and endangered in Europe. We compared local soil conditions, seed germination and mycorrhizal availability in the soil between locations in northern Belgium and France where L. loeselii occurs naturally and locations where conditions appear suitable, but where adults of the species are absent. Our results indicated that mycorrhizal communities associating with L. loeselii varied among sites and plant life cycle stages, but the observed variations did not affect seed germination, which occurred regardless of current L. loeselii presence and was significantly affected by soil moisture content. These results indicate that L. loeselii is a mycorrhizal generalist capable of opportunistically associating with a variety of fungal partners to induce seed germination. They also indicate that availability of fungal associates is not necessarily the determining factor driving the distribution of mycorrhizal plant species. © 2017 John Wiley & Sons Ltd.

  8. Large-scale Observations of a Subauroral Polarization Stream by Midlatitude SuperDARN Radars: Instantaneous Longitudinal Velocity Variations

    NASA Technical Reports Server (NTRS)

    Clausen, L. B. N.; Baker, J. B. H.; Sazykin, S.; Ruohoniemi, J. M.; Greenwald, R. A.; Thomas, E. J.; Shepherd, S. G.; Talaat, E. R.; Bristow, W. A.; Zheng, Y.; hide

    2012-01-01

    We present simultaneous measurements of flow velocities inside a subauroral polarization stream (SAPS) made by six midlatitude high-frequency SuperDARN radars. The instantaneous observations cover three hours of universal time and six hours of magnetic local time (MLT). From velocity variations across the field-of-view of the radars we infer the local 2D flow direction at three different longitudes. We find that the local flow direction inside the SAPS channel is remarkably constant over the course of the event. The flow speed, however, shows significant temporal and spatial variations. After correcting for the radar look direction we are able to accurately determine the dependence of the SAPS velocity on magnetic local time. We find that the SAPS velocity variation with magnetic local time is best described by an exponential function. The average velocity at 00 MLT was 1.2 km/s and it decreased with a spatial e-folding scale of two hours of MLT toward the dawn sector. We speculate that the longitudinal distribution of pressure gradients in the ring current is responsible for this dependence and find these observations in good agreement with results from ring current models. Using TEC measurements we find that the high westward velocities of the SAPS are - as expected - located in a region of low TEC values, indicating low ionospheric conductivities.

  9. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi.

    PubMed

    Pärtel, Meelis; Öpik, Maarja; Moora, Mari; Tedersoo, Leho; Szava-Kovats, Robert; Rosendahl, Søren; Rillig, Matthias C; Lekberg, Ylva; Kreft, Holger; Helgason, Thorunn; Eriksson, Ove; Davison, John; de Bello, Francesco; Caruso, Tancredi; Zobel, Martin

    2017-10-01

    The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies' niche differentiation and relative risks under scenarios of climate change.

    PubMed

    Meynard, Christine N; Gay, Pierre-Emmanuel; Lecoq, Michel; Foucart, Antoine; Piou, Cyril; Chapuis, Marie-Pierre

    2017-11-01

    The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely. © 2017 John Wiley & Sons Ltd.

  11. Inflationary tensor fossils in large-scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Jeong, Donghui

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to bemore » satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.« less

  12. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  13. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optimized velocity distributions for direct dark matter detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Alejandro; Rappelt, Andreas, E-mail: ibarra@tum.de, E-mail: andreas.rappelt@tum.de

    We present a method to calculate, without making assumptions about the local dark matter velocity distribution, the maximal and minimal number of signal events in a direct detection experiment given a set of constraints from other direct detection experiments and/or neutrino telescopes. The method also allows to determine the velocity distribution that optimizes the signal rates. We illustrate our method with three concrete applications: i) to derive a halo-independent upper limit on the cross section from a set of null results, ii) to confront in a halo-independent way a detection claim to a set of null results and iii) tomore » assess, in a halo-independent manner, the prospects for detection in a future experiment given a set of current null results.« less

  15. Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014

    NASA Astrophysics Data System (ADS)

    Xu, M.; Cao, C. X.; Guo, H. F.

    2017-09-01

    Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.

  16. Modelling the current distribution and predicted spread of the flea species Ctenocephalides felis infesting outdoor dogs in Spain.

    PubMed

    Gálvez, Rosa; Musella, Vicenzo; Descalzo, Miguel A; Montoya, Ana; Checa, Rocío; Marino, Valentina; Martín, Oihane; Cringoli, Giuseppe; Rinaldi, Laura; Miró, Guadalupe

    2017-09-19

    The cat flea, Ctenocephalides felis, is the most prevalent flea species detected on dogs and cats in Europe and other world regions. The status of flea infestation today is an evident public health concern because of their cosmopolitan distribution and the flea-borne diseases transmission. This study determines the spatial distribution of the cat flea C. felis infesting dogs in Spain. Using geospatial tools, models were constructed based on entomological data collected from dogs during the period 2013-2015. Bioclimatic zones, covering broad climate and vegetation ranges, were surveyed in relation to their size. The models builded were obtained by negative binomial regression of several environmental variables to show impacts on C. felis infestation prevalence: land cover, bioclimatic zone, mean summer and autumn temperature, mean summer rainfall, distance to urban settlement and normalized difference vegetation index. In the face of climate change, we also simulated the future distributions of C. felis for the global climate model (GCM) "GFDL-CM3" and for the representative concentration pathway RCP45, which predicts their spread in the country. Predictive models for current climate conditions indicated the widespread distribution of C. felis throughout Spain, mainly across the central northernmost zone of the mainland. Under predicted conditions of climate change, the risk of spread was slightly greater, especially in the north and central peninsula, than for the current situation. The data provided will be useful for local veterinarians to design effective strategies against flea infestation and the pathogens transmitted by these arthropods.

  17. Ferroelectrics under the Synchrotron Light: A Review.

    PubMed

    Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis

    2015-12-30

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  18. Jade: using on-demand cloud analysis to give scientists back their flow

    NASA Astrophysics Data System (ADS)

    Robinson, N.; Tomlinson, J.; Hilson, A. J.; Arribas, A.; Powell, T.

    2017-12-01

    The UK's Met Office generates 400 TB weather and climate data every day by running physical models on its Top 20 supercomputer. As data volumes explode, there is a danger that analysis workflows become dominated by watching progress bars, and not thinking about science. We have been researching how we can use distributed computing to allow analysts to process these large volumes of high velocity data in a way that's easy, effective and cheap.Our prototype analysis stack, Jade, tries to encapsulate this. Functionality includes: An under-the-hood Dask engine which parallelises and distributes computations, without the need to retrain analysts Hybrid compute clusters (AWS, Alibaba, and local compute) comprising many thousands of cores Clusters which autoscale up/down in response to calculation load using Kubernetes, and balances the cluster across providers based on the current price of compute Lazy data access from cloud storage via containerised OpenDAP This technology stack allows us to perform calculations many orders of magnitude faster than is possible on local workstations. It is also possible to outperform dedicated local compute clusters, as cloud compute can, in principle, scale to much larger scales. The use of ephemeral compute resources also makes this implementation cost efficient.

  19. Distributed digital signal processors for multi-body flexible structures

    NASA Technical Reports Server (NTRS)

    Lee, Gordon K. F.

    1992-01-01

    Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.

  20. Diffusion MRI noise mapping using random matrix theory

    PubMed Central

    Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S.

    2016-01-01

    Purpose To estimate the spatially varying noise map using a redundant magnitude MR series. Methods We exploit redundancy in non-Gaussian multi-directional diffusion MRI data by identifying its noise-only principal components, based on the theory of noisy covariance matrices. The bulk of PCA eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur distribution, parameterized by the noise level. This allows us to estimate noise level in a local neighborhood based on the singular value decomposition of a matrix combining neighborhood voxels and diffusion directions. Results We present a model-independent local noise mapping method capable of estimating noise level down to about 1% error. In contrast to current state-of-the art techniques, the resultant noise maps do not show artifactual anatomical features that often reflect physiological noise, the presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR signal. Conclusions Simulations and experiments show that typical diffusion MRI data exhibit sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level by interpreting the PCA eigenspectrum in terms of the Marchenko-Pastur distribution. PMID:26599599

  1. Mountaintops phylogeography: A case study using small mammals from the Andes and the coast of central Chile

    PubMed Central

    González, Juan F.; Boric-Bargetto, Dusan; Torres-Pérez, Fernando

    2017-01-01

    We evaluated if two sigmodontine rodent taxa (Abrothrix olivacea and Phyllotis darwini) from the Andes and Coastal mountaintops of central Chile, experienced distributional shifts due to altitudinal movements of habitat and climate change during and after the Last Glacial Maximum (LGM). We tested the hypothesis that during LGM populations of both species experienced altitudinal shifts from the Andes to the lowlands and the coastal Cordillera, and then range retractions during interglacial towards higher elevations in the Andes. These distributional shifts may have left remnants populations on the mountaintops. We evaluated the occurrence of intraspecific lineages for each species, to construct distribution models at LGM and at present, as extreme climatic conditions for each lineage. Differences in distribution between extreme climatic conditions were interpreted as post-glacial distributional shifts. Abrothrix olivacea displayed a lineage with shared sequences between both mountain systems, whereas a second lineage was restricted to the Andes. A similar scenario of panmictic unit in the past was recovered for A. olivacea in the Andes, along with an additional unit that included localities from the rest of its distribution. For P. darwini, both lineages recovered were distributed in coastal and Andean mountain ranges at present as well, and structuring analyses for this species recovered coastal and Andean localities as panmictic units in the past. Niche modeling depicted differential postglacial expansions in the recovered lineages. Results suggest that historical events such as LGM triggered the descending of populations to Andean refuge areas (one of the A. olivacea’s lineages), to the lowlands, and to the coastal Cordillera. Backward movements of populations after glacial retreats may have left isolates on mountaintops of the coastal Cordillera, suggesting that current species distribution would be the outcome of climate change and habitat reconfiguration after LGM. PMID:28672032

  2. Model-based synthesis of locally contingent responses to global market signals

    NASA Astrophysics Data System (ADS)

    Magliocca, N. R.

    2015-12-01

    Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.

  3. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  4. Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko

    The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.

  5. Log-Normality and Multifractal Analysis of Flame Surface Statistics

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2013-11-01

    The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.

  6. Distribution of calmodulin in corn seedlings - Immunocytochemical localization in coleoptiles and root apices

    NASA Technical Reports Server (NTRS)

    Dauwalder, M.; Roux, S. J.

    1986-01-01

    Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.

  7. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  8. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  9. Production of black holes and their angular momentum distribution in models with split fermions

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-05-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  10. Single-Molecule Tracking Photoactivated Localization Microscopy to Map Nano-Scale Structure and Dynamics in Living Spines

    PubMed Central

    MacGillavry, Harold D.; Blanpied, Thomas A.

    2013-01-01

    Super-resolution microscopy has rapidly become an indispensable tool in cell biology and neuroscience by enabling measurement in live cells of structures smaller than the classical limit imposed by diffraction. The most widely applied super-resolution method currently is localization microscopy, which takes advantage of the ability to determine the position of individual fluorescent molecules with nanometer accuracy even in cells. By iteratively measuring sparse subsets of photoactivatable fluorescent proteins, protein distribution in macromolecular structures can be accurately reconstructed. Moreover, the motion trajectories of individual molecules within cells can be measured, providing unique ability to measure transport kinetics, exchange rates, and binding affinities of even small subsets of molecules with high temporal resolution and great spatial specificity. This unit describes protocols to measure and quantify the distribution of scaffold proteins within single synapses of cultured hippocampal neurons, and to track and measure the diffusion of intracellular constituents of the neuronal plasma membrane. PMID:25429311

  11. Addressing potential local adaptation in species distribution models: implications for conservation under climate change

    USGS Publications Warehouse

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.

    2016-01-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  12. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron.

    PubMed

    Singh, Sudhir P; Vogel-Mikuš, Katarina; Arčon, Iztok; Vavpetič, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

    2013-08-01

    Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.

  13. Expansion moments for the local field distribution that involve the three-particle distribution function

    NASA Astrophysics Data System (ADS)

    Attard, Phil

    The second moment of the Lennard-Jones local field distribution in a hard-sphere fluid is evaluated using the PY3 three-particle distribution function. An approximation due to Lado that avoids the explicit calculation of the latter is shown to be accurate. Partial results are also given for certain cavity-hard-sphere radial distribution functions that occur in a closest particle expansion for the local field.

  14. Stellar kinematics and dark matter in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Battaglia, Giuseppina

    2015-08-01

    In this review I will tour through the most recent findings on the internal kinematic properties of Local Group dwarf galaxies, as determined from extensive spectroscopic surveys of their stellar component.I will also discuss the current status on determinations of the dark matter content and distribution in these objects, with particular focus on the Milky Way dwarf spheroidals, for which the available data-sets allow the application of sophisticated mass modeling techniques.

  15. AVIATION SECURITY: FAA’s Actions to Study Responsibilities and Funding for Airport Security and to Certify Screening Companies

    DTIC Science & Technology

    1999-02-01

    Actions to Study Responsibilities and Funding for Airport Security and to Certify Screening Companies DISTRIBUTION STATEMENT A Approved for...local law enforcement support relating to air carrier and airport security measures. The funding of the security operations is divided among FAA, the...generally agreed with the current division of airport security responsibilities. These officials stated that the continuity of screening would be

  16. Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure.

    PubMed

    Karro, J E; Peifer, M; Hardison, R C; Kollmann, M; von Grünberg, H H

    2008-02-01

    The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.

  17. Polar localization of plasma membrane Ca2+/Mg2+ ATPase correlates with the pattern of steady ionic currents in eggs ofLymnaea stagnalis andBithynia tentaculata (Mollusca).

    PubMed

    Zivkovic, Danica; Créton, Robbert; Zwaan, Gideon; de Bruijn, Willem C; Dohmen, M René

    1990-11-01

    During extrusion of the first polar body in eggs ofLymnaea stagnalis andBithynia tentaculata a localized Ca 2+ /Mg 2+ ATPase activity was detected, using Ando's enzyme-cytochemical method for electron microscopy [Ando et al. (1981) Acta Histochem Cytochem 14:705-726]. The enzyme activity was distributed in a polar fashion, along the cytoplasmic face of the plasma membrane. In the eggs ofLymnaea it was found only in the vegetal hemisphere, whereas inBithynia eggs it was localized both in the vegetal hemisphere and at the animal pole. This pattern of enzyme activity corresponds to the polar pattern of transcellular ionic currents measured with the vibrating probe, which we showed to be partially carried or regulated by calcium [Zivkovic and Dohmen (1989) Biol Bull (Woods Hole) 176 (Suppl):103-109]. The characteristics of the ATPase were studied using a variety of approaches such as ion and substrate depletions and substitutions, addition of specific inhibitors of ATPase activity, treatment with EDTA/EGTA and electron energy-loss spectrometry. The results indicate that, inLymnaea, there are at least two enzymatic entities. The first one is a Ca 2+ /Mg 2+ ATPase localized along the membrane and in the cortex of the vegetal hemisphere. The second one is a Ca 2+ -stimulated ATPase (calcium pump of the plasma membrane) localized in a small region of the membrane at the vegetal pole. We speculate that in the eggs ofLymnaea andBithynia a functional relationship exists between the plasma-membrane-associated ATPase activity and the transcellular ionic currents measured in the same region.

  18. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  19. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae)?

    PubMed

    Heyer, W Ronald; Reid, Yana R

    2003-03-01

    The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  20. The Characteristic Pitch Angle Distributions of 1 eV to 600 keV Protons Near the Equator Based On Van Allen Probes Observations

    DOE PAGES

    Yue, Chao; Bortnik, Jacob; Thorne, Richard M.; ...

    2017-08-31

    Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: a pancake distribution of the plasmaspheric H+ at low L shells except for dawn sector; a bidirectional field-aligned distribution of themore » warm plasma cloak; pancake or isotropic distributions of ring current H+; radiation belt particles show pancake, butterfly, and isotropic distributions depending on their energy, MLT, and L shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as shell increases, which is primarily caused by adiabatic transport. Furthermore, energetic H+ (>10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L ( L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. In conclusion, the different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.« less

  1. The Characteristic Pitch Angle Distributions of 1 eV to 600 keV Protons Near the Equator Based On Van Allen Probes Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Chao; Bortnik, Jacob; Thorne, Richard M.

    Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: a pancake distribution of the plasmaspheric H+ at low L shells except for dawn sector; a bidirectional field-aligned distribution of themore » warm plasma cloak; pancake or isotropic distributions of ring current H+; radiation belt particles show pancake, butterfly, and isotropic distributions depending on their energy, MLT, and L shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as shell increases, which is primarily caused by adiabatic transport. Furthermore, energetic H+ (>10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L ( L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. In conclusion, the different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.« less

  2. Current distribution, habitat, and status of Category 2 candidate plant species on and near the U.S. Department of Energy's Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomquist, Kevin W.; Lindemann, Tim A.; Lyon, Glen E.

    1995-12-31

    Results of surveys conducted between 1991 and 1995 were used to document the distribution and habitat of 11 Category 2 candidate plant species known to occur on or near the Nevada Test Site (NTS). Approximately 200 areas encompassing about 13,000 ha were surveyed. Distributions of all species except Frasera-pahutensis and Phaceliaparishii were increased, and the ranges of Camissonia megalantha, Galium hilendiae ssp. kingstonense, Penstemon albomarginatus, and Penstemon pahutensis were expanded. The status of each species was assessed based on current distribution population trends, and potential threats. Recommendations were made to reclassi& the following five species to Category 3C: Arctomecon merriamii,more » F. pahutensis, P. pahutensis, Phacelia beatleyae, and Phaceliaparishii. Two species, C. megalantha and Cymopterus ripIeyi var. saniculoides, were recommended for reclassification to Category 3B status. No recommendation was made to reclassify Astragalus funereus, G. hilendiae ssp. kingstonense, P. albomarginatus, or Penstemon fruticiformis var. amargosae from their current Category 2 status. Populations of these four species are not threatened on NTS, but the NTS populations represent only a.small portion of each species’ range and the potential threats of mining or grazing activities off NTS on these species was notassessed. Conservation measures recommended included the development of an NTS ecosystem conservation plan, continued conduct of preactivity and plant surveys on NTS, and protection of plant type localities on NTS.« less

  3. Climate change, fisheries management and fishing aptitude affecting spatial and temporal distributions of the Barents Sea cod fishery.

    PubMed

    Eide, Arne

    2017-12-01

    Climate change is expected to influence spatial and temporal distributions of fish stocks. The aim of this paper is to compare climate change impact on a fishery with other factors impacting the performance of fishing fleets. The fishery in question is the Northeast Arctic cod fishery, a well-documented fishery where data on spatial and temporal distributions are available. A cellular automata model is developed for the purpose of mimicking possible distributional patterns and different management alternatives are studied under varying assumptions on the fleets' fishing aptitude. Fisheries management and fishing aptitude, also including technological development and local knowledge, turn out to have the greatest impact on the spatial distribution of the fishing effort, when comparing the IPCC's SRES A1B scenario with repeated sequences of the current environmental situation over a period of 45 years. In both cases, the highest profits in the simulation period of 45 years are obtained at low exploitation levels and moderate fishing aptitude.

  4. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    PubMed

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. HIV Epidemic Appraisals for Assisting in the Design of Effective Prevention Programmes: Shifting the Paradigm Back to Basics

    PubMed Central

    Mishra, Sharmistha; Sgaier, Sema K.; Thompson, Laura H.; Moses, Stephen; Ramesh, B. M.; Alary, Michel; Wilson, David; Blanchard, James F.

    2012-01-01

    Background To design HIV prevention programmes, it is critical to understand the temporal and geographic aspects of the local epidemic and to address the key behaviours that drive HIV transmission. Two methods have been developed to appraise HIV epidemics and guide prevention strategies. The numerical proxy method classifies epidemics based on current HIV prevalence thresholds. The Modes of Transmission (MOT) model estimates the distribution of incidence over one year among risk-groups. Both methods focus on the current state of an epidemic and provide short-term metrics which may not capture the epidemiologic drivers. Through a detailed analysis of country and sub-national data, we explore the limitations of the two traditional methods and propose an alternative approach. Methods and Findings We compared outputs of the traditional methods in five countries for which results were published, and applied the numeric and MOT model to India and six districts within India. We discovered three limitations of the current methods for epidemic appraisal: (1) their results failed to identify the key behaviours that drive the epidemic; (2) they were difficult to apply to local epidemics with heterogeneity across district-level administrative units; and (3) the MOT model was highly sensitive to input parameters, many of which required extraction from non-regional sources. We developed an alternative decision-tree framework for HIV epidemic appraisals, based on a qualitative understanding of epidemiologic drivers, and demonstrated its applicability in India. The alternative framework offered a logical algorithm to characterize epidemics; it required minimal but key data. Conclusions Traditional appraisals that utilize the distribution of prevalent and incident HIV infections in the short-term could misguide prevention priorities and potentially impede efforts to halt the trajectory of the HIV epidemic. An approach that characterizes local transmission dynamics provides a potentially more effective tool with which policy makers can design intervention programmes. PMID:22396756

  6. Stage-specific distribution models can predict eel (Anguilla anguilla) occurrence during settlement in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Leone, C.; Zucchetta, M.; Capoccioni, F.; Gravina, M. F.; Franzoi, P.; Ciccotti, E.

    2016-03-01

    Eel (Anguilla anguilla) is a catadromous fish species typical of Mediterranean coastal lagoons, that currently suffers from several anthropogenic and natural impacts. These are thought to be the cause of a stock-wide decline that this panmictic species is facing, in inland and coastal waters of Europe and North Africa. The decline affects both adult phases and recruitment, i.e. glass eel arrival to coastal waters and their ascent to inland waters. Quantitative features of eel recruitment reflect a transoceanic global scale, but also depend on local environmental conditions, the latter also affecting settlement dynamics in transitional waters. There is only little information on the dynamics of these two processes in coastal lagoons, notwithstanding the paramount importance of both in sustaining local stocks abundance and their demographic structure for this typical but also economically important inhabitant of Mediterranean lagoons, habitats that constitute an important share of the eel distribution area. The present study aims, therefore, to clarify space and time dynamics of local scale recruitment and of settlement in a coastal lagoon in the Mediterranean area, also by setting up a specific methodological approach. For this purpose, data from field surveys in combination with Species Distribution Models (SDMs) have been used in order to relate distribution of eel juvenile stages to the environmental conditions within the lagoon. Specifically, models were calibrated to quantify the relationship between presence of juvenile eel and the main environmental drivers, with the aim of identifying potential habitats for eel settlement within the lagoon. Results gained by modelling suggest certain spatial and temporal colonization patterns for the juvenile eel in the Fogliano lagoon, a typical Mediterranean coastal lake. The modelling approach has therefore proved to be a useful tool for predicting habitats for eel recruitment at the local scale and settlement, because adequate to catch the spatio-temporal dimensions of the processes under study, in coastal lagoon habitats.

  7. Interoperability Outlook in the Big Data Future

    NASA Astrophysics Data System (ADS)

    Kuo, K. S.; Ramachandran, R.

    2015-12-01

    The establishment of distributed active archive centers (DAACs) as data warehouses and the standardization of file format by NASA's Earth Observing System Data Information System (EOSDIS) had doubtlessly propelled interoperability of NASA Earth science data to unprecedented heights in the 1990s. However, we obviously still feel wanting two decades later. We believe the inadequate interoperability we experience is a result of the the current practice that data are first packaged into files before distribution and only the metadata of these files are cataloged into databases and become searchable. Data therefore cannot be efficiently filtered. Any extensive study thus requires downloading large volumes of data files to a local system for processing and analysis.The need to download data not only creates duplication and inefficiency but also further impedes interoperability, because the analysis has to be performed locally by individual researchers in individual institutions. Each institution or researcher often has its/his/her own preference in the choice of data management practice as well as programming languages. Analysis results (derived data) so produced are thus subject to the differences of these practices, which later form formidable barriers to interoperability. A number of Big Data technologies are currently being examined and tested to address Big Earth Data issues. These technologies share one common characteristics: exploiting compute and storage affinity to more efficiently analyze large volumes and great varieties of data. Distributed active "archive" centers are likely to evolve into distributed active "analysis" centers, which not only archive data but also provide analysis service right where the data reside. "Analysis" will become the more visible function of these centers. It is thus reasonable to expect interoperability to improve because analysis, in addition to data, becomes more centralized. Within a "distributed active analysis center" interoperability is almost guaranteed because data, analysis, and results all can be readily shared and reused. Effectively, with the establishment of "distributed active analysis centers", interoperation turns from a many-to-many problem into a less complicated few-to-few problem and becomes easier to solve.

  8. Appraising forensic anthropology in the Philippines: Current status and future directions.

    PubMed

    Go, Matthew C

    2018-07-01

    The increasing significance of forensic anthropology in the 21st century, yet unequitable worldwide distribution of expertise, necessitates a stocktaking of the discipline on a local scale. The purpose of this work is to appraise the current state of forensic anthropology in the Philippines and provide the rationale for its further development within the country. Recent efforts in research, education, and legislation that seek to boost Philippine forensic anthropology specifically and forensic sciences generally are highlighted. Furthermore, this work hopes to serve as a springboard for future students, scholars, and practitioners seeking to advance the field in the Philippines. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less

  10. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  11. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change

    PubMed Central

    Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of ‘wasted’ seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of “wasted” seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities. PMID:28727747

  12. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    PubMed

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  13. Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects

    PubMed Central

    Sánchez-Guillén, Rosa Ana; Muñoz, Jesús; Rodríguez-Tapia, Gerardo; Feria Arroyo, T. Patricia; Córdoba-Aguilar, Alex

    2013-01-01

    Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful. PMID:24260411

  14. A benders decomposition approach to multiarea stochastic distributed utility planning

    NASA Astrophysics Data System (ADS)

    McCusker, Susan Ann

    Until recently, small, modular generation and storage options---distributed resources (DRs)---have been installed principally in areas too remote for economic power grid connection and sensitive applications requiring backup capacity. Recent regulatory changes and DR advances, however, have lead utilities to reconsider the role of DRs. To a utility facing distribution capacity bottlenecks or uncertain load growth, DRs can be particularly valuable since they can be dispersed throughout the system and constructed relatively quickly. DR value is determined by comparing its costs to avoided central generation expenses (i.e., marginal costs) and distribution investments. This requires a comprehensive central and local planning and production model, since central system marginal costs result from system interactions over space and time. This dissertation develops and applies an iterative generalized Benders decomposition approach to coordinate models for optimal DR evaluation. Three coordinated models exchange investment, net power demand, and avoided cost information to minimize overall expansion costs. Local investment and production decisions are made by a local mixed integer linear program. Central system investment decisions are made by a LP, and production costs are estimated by a stochastic multi-area production costing model with Kirchhoff's Voltage and Current Law constraints. The nested decomposition is a new and unique method for distributed utility planning that partitions the variables twice to separate local and central investment and production variables, and provides upper and lower bounds on expected expansion costs. Kirchhoff's Voltage Law imposes nonlinear, nonconvex constraints that preclude use of LP if transmission capacity is available in a looped transmission system. This dissertation develops KVL constraint approximations that permit the nested decomposition to consider new transmission resources, while maintaining linearity in the three individual models. These constraints are presented as a heuristic for the given examples; future research will investigate conditions for convergence. A ten-year multi-area example demonstrates the decomposition approach and suggests the ability of DRs and new transmission to modify capacity additions and production costs by changing demand and power flows. Results demonstrate that DR and new transmission options may lead to greater capacity additions, but resulting production cost savings more than offset extra capacity costs.

  15. Past climate change drives current genetic structure of an endangered freshwater mussel species.

    PubMed

    Inoue, Kentaro; Lang, Brian K; Berg, David J

    2015-04-01

    Historical-to-recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid-to-late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations. © 2015 John Wiley & Sons Ltd.

  16. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  17. On the relationship between satellite-retrieved surface temperature fronts and chlorophyll a in the western South Atlantic

    NASA Astrophysics Data System (ADS)

    Saraceno, Martin; Provost, Christine; Piola, Alberto R.

    2005-11-01

    The time-space distribution of chlorophyll a in the southwestern Atlantic is examined using 6 years (1998-2003) of sea surface color images from Sea-viewing Wide Field of View Sensor (SeaWiFS). Chlorophyll a (chl a) distribution is confronted with sea surface temperature (SST) fronts retrieved from satellite imagery. Histogram analysis of the color, SST, and SST gradient data sets provides a simple procedure for pixel classification from which eight biophysical regions in the SWA are identified, including three new regions with regard to Longhurst (1998) work: Patagonian Shelf Break (PSB), Brazil Current Overshoot, and Zapiola Rise region. In the PSB region, coastal-trapped waves are suggested as a possible mechanism leading to the intraseasonal frequencies observed in SST and chl a. Mesoscale activity associated with the Brazil Current Front and, in particular, eddies drifting southward is probably responsible for the high chl a values observed throughout the Brazil Current Overshoot region. The Zapiola Rise is characterized by a local minimum in SST gradient magnitudes and shows chl a maximum values in February, 3 months later than the austral spring bloom of the surroundings. Significant interannual variability is present in the color imagery. In the PSB, springs and summers with high chl a concentrations seem associated with stronger local northerly wind speed, and possible mechanisms are discussed. Finally, the Brazil-Malvinas front is detected using both SST gradient and SeaWiFS images. The time-averaged position of the front at 54.2°W is estimated at 38.9°S and its alongshore migration of about 300 km.

  18. Bottom currents and sediment transport in Long Island Sound: A modeling study

    USGS Publications Warehouse

    Signell, R.P.; List, J.H.; Farris, A.S.

    2000-01-01

    A high resolution (300-400 m grid spacing), process oriented modeling study was undertaken to elucidate the physical processes affecting the characteristics and distribution of sea-floor sedimentary environments in Long Island Sound. Simulations using idealized forcing and high-resolution bathymetry were performed using a three-dimensional circulation model ECOM (Blumberg and Mellor, 1987) and a stationary shallow water wave model HISWA (Holthuijsen et al., 1989). The relative contributions of tide-, density-, wind- and wave-driven bottom currents are assessed and related to observed characteristics of the sea-floor environments, and simple bedload sediment transport simulations are performed. The fine grid spacing allows features with scales of several kilometers to be resolved. The simulations clearly show physical processes that affect the observed sea-floor characteristics at both regional and local scales. Simulations of near-bottom tidal currents reveal a strong gradient in the funnel-shaped eastern part of the Sound, which parallels an observed gradient in sedimentary environments from erosion or nondeposition, through bedload transport and sediment sorting, to fine-grained deposition. A simulation of estuarine flow driven by the along-axis gradient in salinity shows generally westward bottom currents of 2-4 cm/s that are locally enhanced to 6-8 cm/s along the axial depression of the Sound. Bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. These bottom flows (in opposition to the wind) are strongest in the axial depression and add to the estuarine flow when winds are from the west. The combination of enhanced bottom currents due to both estuarine circulation and the prevailing westerly winds provide an explanation for the relatively coarse sediments found along parts of the axial depression. Climatological simulations of wave-driven bottom currents show that frequent high-energy events occur along the shallow margins of the Sound, explaining the occurrence of relatively coarse sediments in these regions. Bedload sediment transport calculations show that the estuarine circulation coupled with the oscillatory tidal currents result in a net westward transport of sand in much of the eastern Sound. Local departures from this regional westward trend occur around topographic and shoreline irregularities, and there is strong predicted convergence of bedload transport over most of the large, linear sand ridges in the eastern Sound, providing a mechanism which prevents their decay. The strong correlation between the near-bottom current intensity based on the model results and the sediment response, as indicated by the distribution of sedimentary environments, provides a framework for predicting the long-term effects of anthropogenic activities.

  19. Kees: a Practical Ict Solution for Rural Areas

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoye; Tabirca, Sabin; Lenihan, Eamon

    This paper introduces a practical e-learning system, identified as Knowledge Exchange E-learning System (abbr. KEES), for knowledge distribution in rural areas. Particularly, this paper is about providing a virtual teaching and learning environment for small holders in agriculture in those rural areas. E-learning is increasingly influencing the agricultural education (information and knowledge learning) in all forms and the current e-learning in agricultural education appears in informal and formal methods in many developed countries and some developing areas such as Asian Pacific regions. KEES is a solution to provide education services including other services of information distribution and knowledge sharing to local farmers, local institutes or local collection of farmers. The design of KEES is made to meet the needs of knowledge capacity building, experience sharing, skill upgrading, and information exchanging in agriculture for different conditions in rural areas. The system allows the online lecture/training materials to be distributed simultaneously with all multimedia resources through different file formats across different platforms. The teaching/training content can be contextless and broad, allowing for greater participation by more small holders, commercial farmers, extension workers, agriculturists, educators, and other agriculture-related experts. The relative inconsistency in content gives farmers more localised and useful knowledge. The framework of KEES has been designed to be a three-tier architecture logic workflow, which can configure the progressive approach for KEES to pass on and respond to different requests/communications between the client side and the server.

  20. Fossils of reionization in the local group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y.; /Fermilab /KICP, Chicago /Chicago U., EFI; Kravtsov, Andrey V.

    We use a combination of high-resolution gas dynamics simulations of high-redshift dwarf galaxies and dissipationless simulations of a Milky Way sized halo to estimate the expected abundance and spatial distribution of the dwarf satellite galaxies that formed most of their stars around z {approx} 8 and evolved only little since then. Such galaxies can be considered as fossils of the reionization era, and studying their properties could provide a direct window into the early, pre-reionization stages of galaxy formation. We show that 5-15% of the objects existing at z {approx} 8 do indeed survive until the present in the MWmore » like environment without significant evolution. This implies that it is plausible that the fossil dwarf galaxies do exist in the Local Group. Because such galaxies form their stellar systems early during the period of active merging and accretion, they should have spheroidal morphology regardless of their current distance from the host galaxy. We show that both the expected luminosity function and spatial distribution of dark matter halos which are likely to host fossil galaxies agree reasonably well with the observed distributions of the luminous (L{sub V} > 10{sup 6} Lsun) Local Group fossil candidates near the host galaxy (d<200 kpc). However, the predicted abundance is substantially larger (by a factor of 2-3) for fainter galaxies (L{sub V} < 10{sup 6} Lsun) at larger distances (d>300 kpc). We discuss several possible explanations for this discrepancy.« less

  1. Critical Values for Yen’s Q3: Identification of Local Dependence in the Rasch Model Using Residual Correlations

    PubMed Central

    Christensen, Karl Bang; Makransky, Guido; Horton, Mike

    2016-01-01

    The assumption of local independence is central to all item response theory (IRT) models. Violations can lead to inflated estimates of reliability and problems with construct validity. For the most widely used fit statistic Q3, there are currently no well-documented suggestions of the critical values which should be used to indicate local dependence (LD), and for this reason, a variety of arbitrary rules of thumb are used. In this study, an empirical data example and Monte Carlo simulation were used to investigate the different factors that can influence the null distribution of residual correlations, with the objective of proposing guidelines that researchers and practitioners can follow when making decisions about LD during scale development and validation. A parametric bootstrapping procedure should be implemented in each separate situation to obtain the critical value of LD applicable to the data set, and provide example critical values for a number of data structure situations. The results show that for the Q3 fit statistic, no single critical value is appropriate for all situations, as the percentiles in the empirical null distribution are influenced by the number of items, the sample size, and the number of response categories. Furthermore, the results show that LD should be considered relative to the average observed residual correlation, rather than to a uniform value, as this results in more stable percentiles for the null distribution of an adjusted fit statistic. PMID:29881087

  2. On the properties of energy transfer in solar wind turbulence.

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  3. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    PubMed

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  4. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    NASA Astrophysics Data System (ADS)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  5. Selective control of cortical axonal spikes by a slowly inactivating K+ current

    PubMed Central

    Shu, Yousheng; Yu, Yuguo; Yang, Jing; McCormick, David A.

    2007-01-01

    Neurons are flexible electrophysiological entities in which the distribution and properties of ionic channels control their behaviors. Through simultaneous somatic and axonal whole-cell recording of layer 5 pyramidal cells, we demonstrate a remarkable differential expression of slowly inactivating K+ currents. Depolarizing the axon, but not the soma, rapidly activated a low-threshold, slowly inactivating, outward current that was potently blocked by low doses of 4-aminopyridine, α-dendrotoxin, and rTityustoxin-Kα. Block of this slowly inactivating current caused a large increase in spike duration in the axon but only a small increase in the soma and could result in distal axons generating repetitive discharge in response to local current injection. Importantly, this current was also responsible for slow changes in the axonal spike duration that are observed after somatic membrane potential change. These data indicate that low-threshold, slowly inactivating K+ currents, containing Kv1.2 α subunits, play a key role in the flexible properties of intracortical axons and may contribute significantly to intracortical processing. PMID:17581873

  6. Magnetic shielding of large high-power-satellite solar arrays using internal currents

    NASA Technical Reports Server (NTRS)

    Parker, L. W.; Oran, W. A.

    1979-01-01

    Present concepts for solar power satellites involve dimensions up to tens of kilometers and operating internal currents up to hundreds of kiloamperes. A question addressed is whether the local magnetic fields generated by these strong currents during normal operation can shield the array against impacts by plasma ions and electrons (and from thruster plasmas) which can cause possible losses such as power leakage and surface erosion. One of several prototype concepts was modeled by a long narrow rectangular panel 2 km wide and 20 km long. The currents flow in a parallel across the narrow dimension (sheet current) and along the edge (wire currents). The wire currents accumulate from zero to 100 kiloamp and are the dominant sources. The magnetic field is approximated analytically. The equations of motion for charged particles in this magnetic field are analyzed. The ion and electron fluxes at points on the surface are represented analytically for monoenergetic distributions and are evaluated.

  7. MODIS imagery improves pest risk assessment: A case study of wheat stem sawfly (Cephus cinctus, Hymenoptera: Cephidae) in Colorado, USA

    USGS Publications Warehouse

    Lestina, Jordan; Cook, Maxwell; Kumar, Sunil; Morisette, Jeffrey T.; Ode, Paul J.; Peirs, Frank

    2016-01-01

    Wheat stem sawfly (Cephus cinctus Norton, Hymenoptera: Cephidae) has long been a significant insect pest of spring, and more recently, winter wheat in the northern Great Plains. Wheat stem sawfly was first observed infesting winter wheat in Colorado in 2010 and, subsequently, has spread rapidly throughout wheat production regions of the state. Here, we used maximum entropy modeling (MaxEnt) to generate habitat suitability maps in order to predict the risk of crop damage as this species spreads throughout the winter wheat-growing regions of Colorado. We identified environmental variables that influence the current distribution of wheat stem sawfly in the state and evaluated whether remotely sensed variables improved model performance. We used presence localities of C. cinctus and climatic, topographic, soils, and normalized difference vegetation index and enhanced vegetation index data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery as environmental variables. All models had high performance in that they were successful in predicting suitable habitat for C. cinctus in its current distribution in eastern Colorado. The enhanced vegetation index for the month of April improved model performance and was identified as a top contributor to MaxEnt model. Soil clay percent at 0–5 cm, temperature seasonality, and precipitation seasonality were also associated with C. cinctus distribution in Colorado. The improved model performance resulting from integrating vegetation indices in our study demonstrates the ability of remote sensing technologies to enhance species distribution modeling. These risk maps generated can assist managers in planning control measures for current infestations and assess the future risk of C. cinctus establishment in currently uninfested regions.

  8. Bottom currents and sediment waves on a shallow carbonate shelf, Northern Carnarvon Basin, Australia

    NASA Astrophysics Data System (ADS)

    Belde, Johannes; Reuning, Lars; Back, Stefan

    2017-04-01

    The modern seafloor of the Australian Northwest Shelf between Exmouth and Dampier was analyzed for large scale sedimentary bedforms on 3D seismic reflection data. The Carnarvon MegaSurvey of Petroleum Geo-Services (PGS), a merged dataset of multiple industrial 3D seismic reflection surveys with a total size of 49,717 km2, offers an extensive view of the continental shelf, slope and rise of the Northern Carnarvon Basin. Over the shelf two fields of large scale sediment waves were observed in water depths between 55-130 m, where the seafloor may be influenced by different processes including internal waves, tides and storms. Based on the dimensions and orientations of the sediment waves the dominant direction and approximate strength of local bottom currents could be estimated. Information on local sediment grain-size distribution was provided by the auSEABED database allowing a classification of the observed sediment waves into sand- or mudwaves. The first sediment wave field is positioned northwest of the Montebello Islands where the shelf is comparatively narrow and local sediment is mainly sand-sized. It most likely formed by increased bottom currents induced by the diversion of tidal flows around the islands. The second sediment wave field is located north of the Serrurier and Bessieres Islands within a local seafloor depression. Local sediments are poorly sorted, containing significant amounts of mud and gravel in addition to the mainly sand-sized grains. The coarser sediment fraction could have been reworked to sandwaves by cyclone-induced bottom currents. Alternatively, the finer sediment fraction could form mudwaves shaped by less energetic along-slope oriented currents in the topographic depression. The sediment waves consist partially of carbonate grains such as ooids and peloids that formed in shallow water during initial stages of the post glacial sea-level rise. These stranded carbonate grains thus formed in a different environment than the sediment waves in which they were redeposited. In fossil examples of similar high-energy ramp systems this possible out-of-equilibrium relationship between grains and bedforms has to be taken into account for the interpretation of the depositional environment.

  9. Human migration, railways and the geographic distribution of leprosy in Rio Grande do Norte State – Brazil

    PubMed Central

    Nobre, Mauricio Lisboa; Dupnik, Kathryn Margaret; Nobre, Paulo José Lisboa; De Souza, Márcia Célia Freitas; Dűppre, Nádia Cristina; Sarno, Euzenir Nunes; Jerŏnimo, Selma Maria Bezerra

    2016-01-01

    Summary Introduction Leprosy is a public health problem in Brazil where 31,044 new cases were detected in 2013. Rio Grande do Norte is a small Brazilian state with a rate of leprosy lower than other areas in the same region, for unknown reasons. Objectives We present here a review based on the analysis of a database of registered leprosy cases in Rio Grande do Norte state, comparing leprosy's geographic distribution among municipalities with local socio-economic and public health indicators and with historical documents about human migration in this Brazilian region. Results The current distribution of leprosy in Rio Grande do Norte did not show correlation with socio-economic or public health indicators at the municipal level, but it appears related to economically emerging municipalities 100 years ago, with spread facilitated by railroads and train stations. Drought-related migratory movements which occurred from this state to leprosy endemic areas within the same period may be involved in the introduction of leprosy and with its present distribution within Rio Grande do Norte. Conclusions Leprosy may disseminate slowly, over many decades in certain circumstances, such as in small cities with few cases. This is a very unusual situation currently and a unique opportunity for epidemiologic studies of leprosy as an emerging disease. PMID:26964429

  10. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change

    PubMed Central

    Telesca, Luca; Belluscio, Andrea; Criscoli, Alessandro; Ardizzone, Giandomenico; Apostolaki, Eugenia T.; Fraschetti, Simonetta; Gristina, Michele; Knittweis, Leyla; Martin, Corinne S.; Pergent, Gérard; Alagna, Adriana; Badalamenti, Fabio; Garofalo, Germana; Gerakaris, Vasilis; Louise Pace, Marie; Pergent-Martini, Christine; Salomidi, Maria

    2015-01-01

    Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented. PMID:26216526

  11. Forecasting weed distributions using climate data: a GIS early warning tool

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Barnett, David T.; Stohlgren, Thomas J.; Kartesz, John T.

    2010-01-01

    The number of invasive exotic plant species establishing in the United States is continuing to rise. When prevention of exotic species from entering into a country fails at the national level and the species establishes, reproduces, spreads, and becomes invasive, the most successful action at a local level is early detection followed eradication. We have developed a simple geographic information system (GIS) analysis for developing watch lists for early detection of invasive exotic plants that relies upon currently available species distribution data coupled with environmental data to aid in describing coarse-scale potential distributions. This GIS analysis tool develops environmental envelopes for species based upon the known distribution of a species thought to be invasive and represents the first approximation of its potential habitat while the necessary data are collected to perform more in­-depth analyses. To validate this method we looked at a time series of species distributions for 66 species in Pacific Northwest, and northern Rocky Mountain counties. The time series analysis presented here did select counties that the invasive exotic weeds invaded in subsequent years, showing that this technique could be useful in developing watch lists for the spread of particular exotic species. We applied this same habitat-matching model based upon bioclimaric envelopes to 100 invasive exotics with various levels of known distributions within continental U.S. counties. For species with climatically limited distributions, county watch lists describe county-specific vulnerability to invasion. Species with matching habitats in a county would be added to that county's list. These watch lists can influence management decisions for early warning, control prioritization, and targeted research to determine specific locations within vulnerable counties. This tool provides useful information for rapid assessment of the potential distribution based upon climate envelopes of current distributions for new invasive exotic species.

  12. Biogeography and evolutionary diversification in one of the most widely distributed and species rich genera of the Pacific

    PubMed Central

    Cantley, Jason T.; Markey, Adrienne S.; Swenson, Nathan G.; Keeley, Sterling C.

    2016-01-01

    The historical biogeography of many lineages—of both terrestrial and marine ocean habitats—remains poorly investigated even though remote ocean habitat covers approximately 66% of the Earth’s surface. One such lineage with poorly understood biogeographic affinities across vast ocean habitat is the genus Coprosma (Rubiaceae) with numerous species, and a widespread and disjunct distribution among the far-flung insular localities of multiple Pacific Islands. Here, the first taxonomically robust phylogeny for Coprosma s.s. was dated using molecular clock techniques and indicated Coprosma s.s. diverged from its sister genus Nertera likely during or shortly after the Oligocene Marine Transgression of New Zealand. Diversification of the five major clades identified occurred in New Zealand during the Miocene, which was then followed by multiple independent dispersals from New Zealand to various localities in many directions. The pattern of Coprosma’s distribution in the Pacific appears stochastic both temporally and spatially, but evolution of an orange to red fruit colour prior to nearly all inferred dispersals hints at endozoochory by birds. The number of inferred long-distance dispersals of Coprosma s.s. (>30), and number of repeated dispersals to the same insular locality from unrelated Coprosma s.s. sublineages (>8) is perhaps the most currently known for a remote Pacific-centred genus investigated to date. A New Zealand origin for a Pacific-wide dispersal of taxa is not novel, but the manner in which the temporal and spatial distribution for Coprosma s.s. was achieved contributes to a novel understanding of the historical biogeography of widespread Pacific genera that have origins in the Southern Hemisphere. PMID:27339053

  13. Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects.

    PubMed

    Pala, M G; Baltazar, S; Martins, F; Hackens, B; Sellier, H; Ouisse, T; Bayot, V; Huant, S

    2009-07-01

    We study scanning gate microscopy (SGM) in open quantum rings obtained from buried semiconductor InGaAs/InAlAs heterostructures. By performing a theoretical analysis based on the Keldysh-Green function approach we interpret the radial fringes observed in experiments as the effect of randomly distributed charged defects. We associate SGM conductance images with the local density of states (LDOS) of the system. We show that such an association cannot be made with the current density distribution. By varying an external magnetic field we are able to reproduce recursive quasi-classical orbits in LDOS and conductance images, which bear the same periodicity as the Aharonov-Bohm effect.

  14. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  15. Io's Sodium Corona and Spatially Extended Cloud: A Consistent Flux Speed Distribution

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.

    1997-01-01

    For Io neutral cloud calculations, an SO2 source strength of approximately 4x10(exp 27) molecules/sec was determined by successfully matching the SO2(+) density profile near the satellite deduced from magnetometer data acquired by the Galileo spacecraft during its close flyby on December 7, 1995. The incomplete collision source velocity distribution for SO2 is the same as recently determined for the trace species atomic sodium by Smyth and Combi (1997). Estimates for the total energy loss rate (i.e. power) of O and S atoms escaping Io were also determined and imply a significant pickup current and a significant reduction in the local planetary magnetic field near Io.

  16. The influence of climatic changes on distribution pattern of six typical Kobresia species in Tibetan Plateau based on MaxEnt model and geographic information system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Guo, Ke; Jin, Shulan; Pan, Huahua

    2018-01-01

    The issue that climatic change has great influence on species distribution is currently of great interest in field of biogeography. Six typical Kobresia species are selected from alpine grassland of Tibetan Plateau (TP) as research objects which are the high-quality forage for local husbandry, and their distribution changes are modeled in four periods by using MaxEnt model and GIS technology. The modeling results have shown that the distribution of these six typical Kobresia species in TP was strongly affected by two factors of "the annual precipitation" and "the precipitation in the wettest and driest quarters of the year". The modeling results have also shown that the most suitable habitats of K. pygmeae were located in the area around Qinghai Lake, the Hengduan-Himalayan mountain area, and the hinterland of TP. The most suitable habitats of K. humilis were mainly located in the area around Qinghai Lake and the hinterland of TP during the Last Interglacial period, and gradually merged into a bigger area; K. robusta and K. tibetica were located in the area around Qinghai Lake and the hinterland of TP, but they did not integrate into one area all the time, and K. capillifolia were located in the area around Qinghai Lake and extended to the southwest of the original distributing area, whereas K. macrantha were mainly distributed along the area of the Himalayan mountain chain, which had the smallest distribution area among them, and all these six Kobresia species can be divided into four types of "retreat/expansion" styles according to the changes of suitable habitat areas during the four periods; all these change styles are the result of long-term adaptations of the different species to the local climate changes in regions of TP and show the complexity of relationships between different species and climate. The research results have positive reference value to the protection of species diversity and sustainable development of the local husbandry in TP.

  17. Decentralized Online Social Networks

    NASA Astrophysics Data System (ADS)

    Datta, Anwitaman; Buchegger, Sonja; Vu, Le-Hung; Strufe, Thorsten; Rzadca, Krzysztof

    Current Online social networks (OSN) are web services run on logically centralized infrastructure. Large OSN sites use content distribution networks and thus distribute some of the load by caching for performance reasons, nevertheless there is a central repository for user and application data. This centralized nature of OSNs has several drawbacks including scalability, privacy, dependence on a provider, need for being online for every transaction, and a lack of locality. There have thus been several efforts toward decentralizing OSNs while retaining the functionalities offered by centralized OSNs. A decentralized online social network (DOSN) is a distributed system for social networking with no or limited dependency on any dedicated central infrastructure. In this chapter we explore the various motivations of a decentralized approach to online social networking, discuss several concrete proposals and types of DOSN as well as challenges and opportunities associated with decentralization.

  18. What Can We Learn From Historical Trends and Distributions of Malaria? Historical Case Studies From the US, Italy, and Sri Lanka

    NASA Astrophysics Data System (ADS)

    Matthews, E.

    2008-12-01

    Malaria is currently prevalent in many countries and has been for centuries. Primary controllers of the distribution and incidence of malaria in the past have been economic, social, military, political etc. with a modest contribution from local climate variations. Studies of potential impacts of climate change on the epidemiology of diseases such as malaria have focused on the impact of changing environmental conditions on vector physiology but little attention has been paid to factors that explain historical variations in spatial and temporal distributions of the disease. This talk reports results of three historical case studies from the US, Italy and Sri Lanka that bring together a breadth of information from varied sources in order to illustrate the value of including such information in studies of disease-climate connections.

  19. Non extensive statistical physics applied in fracture-induced electric signals during triaxial deformation of Carrara marble

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    We have conducted room-temperature, triaxial compression experiments on samples of Carrara marble, recording concurrently acoustic and electric current signals emitted during the deformation process as well as mechanical loading information and ultrasonic wave velocities. Our results reveal that in a dry non-piezoelectric rock under simulated crustal pressure conditions, a measurable electric current (nA) is generated within the stressed sample. The current is detected only in the region beyond (quasi-)linear elastic deformation; i.e. in the region of permanent deformation beyond the yield point of the material and in the presence of microcracking. Our results extend to shallow crustal conditions previous observations of electric current signals in quartz-free rocks undergoing uniaxial deformation and support the idea of a universal electrification mechanism related to deformation. Confining pressure conditions of our slow strain rate (10-6 s-1) experiments range from the purely brittle regime (10 MPa) to the semi-brittle transition (30-100MPa) where cataclastic flow is the dominant deformation mechanism. Electric current is generated under all confining pressures,implying the existence of a current-producing mechanism during both microfracture and frictional sliding. Some differences are seen in the current evolution between these two regimes, possibly related to crack localisation. In all cases, the measured electric current exhibits episodes of strong fluctuations over short timescales; calm periods punctuated by bursts of strong activity. For the analysis, we adopt an entropy-based statistical physics approach (Tsallis, 1988), particularly suited to the study of fracture related phenomena. We find that the probability distribution of normalised electric current fluctuations over short time intervals (0.5 s) can be well described by a q-Gaussian distribution of a form similar to that which describes turbulent flows. This approach yields different entropic indices (q-values) for electric current fluctuations in the brittle and semi-brittle regimes (c. 1.5 and 1.8 respectively), implying an increase in interactions between microcracks in the semi-brittle regime. We interpret this non-Gaussian behaviour as a 'superstatistical' superposition of local Gaussian fluctuations that combine to produce a higher-order overall distribution; i.e. the measured electric current is driven to varying, temporary, local equilibria during deformation. This behaviour is analogous to the self-organising avalanche-like behaviour of fracture events, suggesting that the observed behaviour of measured electric current is a direct response to the microcracking events themselves and supporting the idea of a fracture-generated electrification mechanism in the crust. Our results have implications for the earthquake preparation process and the application of Tsallis statistical physics to the analysis of electric earthquake precursors. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme.

  20. Continuous cost movement models

    NASA Technical Reports Server (NTRS)

    Limp, W. Fredrick

    1991-01-01

    Use of current space imaging systems and airborne platforms has direct use in survey design and site location when used in concert with a comprehensive GIS environment. Local conditions and site physical and chemical properties are key factors in successful applications. Conjoining of environmental constraints and site properties are present for the later prehistoric occupations in the Arkansas and Mississippi River areas. Direct linkages between comprehensive site databases and satellite images can be used to evaluate site distributions for research and management.

  1. Local Design Methodologies for a Hierarchic Control Architecture

    DTIC Science & Technology

    1990-04-12

    regional (in the sense of knowledge and influence) controllers which are distributed throughout the structure [9,39,54,56,65,68]. Many decentralized...occurs, it is necessary that - gpk = gk > 0 (3.74) I which is true provided Hk > 0 and gt 0 0. These conditions will be met near a strong minimum, but...Astronautics, 19763 Semester spent at Leningrad State University, 1975 PROFESSIONAL SUMMARY Current major area of teaching and research is in the design and

  2. Understanding natural systems; a perspective for land-use planning in Appalachian Kentucky

    USGS Publications Warehouse

    Newell, Wayne L.

    1978-01-01

    An eight-county area at the headwaters of the Kentucky River has been designated the Kentucky River Area Development District (KRADD) by the Appalachian Regional Commission. The objective of the project described in this report has been to provide materials to KRADD planners in a format and containing terminology usable by local people untrained in earth science. Experimental maps (not included in this report) have been prepared largely from preexisting data. Time and cost limitations required a regional analysis as well as somewhat more detailed examples of selected localities. Most of the maps produced to meet these needs show the abundance and distribution of naturally occurring materials and the areas affected by various geomorphic processes. Three types of maps, showing current land use, slope, and flood-prone areas, present both basic and derived data directly applicable to specific land-use decisions. Basic map information on quality and quantity of surface and ground water, bedrock and surficial geology, and mineral fuels can be interpreted for a wide variety of current and potential uses. Texts accompanying the maps explain bedrock control of geomorphic processes, distribution and significance of surficial deposits, and hydrologic characteristics of the intricately dissected eastern Kentucky terrain. Within this conceptual framework, geomorphic processes and the landscape may be evaluated in humanly significant terms of low to high potential risk, thereby indicating both opportunities and limitations for land use.

  3. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M. H.; Kroposki, B. D.; Basso, T.

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizesmore » current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art grid-enabled distribution systems where renewables power contributions at certain conditions or times may need to be curtailed.« less

  4. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics.

    PubMed

    Lefèvre, Franck; Forget, François

    2009-08-06

    The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.

  5. A novel crystallization method for visualizing the membrane localization of potassium channels.

    PubMed Central

    Lopatin, A N; Makhina, E N; Nichols, C G

    1998-01-01

    The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel. PMID:9591643

  6. A novel crystallization method for visualizing the membrane localization of potassium channels.

    PubMed

    Lopatin, A N; Makhina, E N; Nichols, C G

    1998-05-01

    The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.

  7. Local adaptation at the range peripheries of Sitka spruce.

    PubMed

    Mimura, M; Aitken, S N

    2010-02-01

    High-dispersal rates in heterogeneous environments and historical rapid range expansion can hamper local adaptation; however, we often see clinal variation in high-dispersal tree species. To understand the mechanisms of the species' distribution, we investigated local adaptation and adaptive plasticity in a range-wide context in Sitka spruce, a wind-pollinated tree species that has recently expanded its range after glaciations. Phenotypic traits were observed using growth chamber experiments that mimicked temperature and photoperiodic regimes from the limits of the species realized niche. Bud phenology exhibited parallel reaction norms among populations; however, putatively adaptive plasticity and strong divergent selection were seen in bud burst and bud set timing respectively. Natural selection appears to have favoured genotypes that maximize growth rate during available frost-free periods in each environment. We conclude that Sitka spruce has developed local adaptation and adaptive plasticity throughout its range in response to current climatic conditions despite generally high pollen flow and recent range expansion.

  8. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  9. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India

    PubMed Central

    Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2014-01-01

    Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/−20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region. PMID:24424295

  10. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    PubMed Central

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  11. Wood Residue Distribution Simulator (WORDS)

    Treesearch

    Douglas A. Eza; James W. McMinn; Peter E. Dress

    1984-01-01

    Successful development of woody biomass for energy will depend on the distribution of local supply and demand within subregions, rather than on the total inventory of residues. The Wood Residue Distribution Simulator (WORDS) attempts to find a least-cost allocation of residues from local sources of supply to local sources of demand, given the cost of the materials,...

  12. Drude weight fluctuations in many-body localized systems

    NASA Astrophysics Data System (ADS)

    Filippone, Michele; Brouwer, Piet W.; Eisert, Jens; von Oppen, Felix

    2016-11-01

    We numerically investigate the distribution of Drude weights D of many-body states in disordered one-dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-theory prediction P (D ) ∝(γ2+D2) -3 /2 , although the distribution width γ strongly fluctuates between disorder realizations. A crossover is observed towards a distribution with different large-D asymptotics deep in the many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show that the average distribution width <γ >, rescaled by L Δ ,Δ being the average level spacing in the middle of the spectrum and L the systems size, is an efficient probe of the many-body localization transition, as it increases (vanishes) exponentially in the delocalized (localized) phase.

  13. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    PubMed Central

    Williams, Alex H; O'Donnell, Cian; Sejnowski, Terrence J; O'Leary, Timothy

    2016-01-01

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’ (Doyle and Kiebler, 2011). Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimates of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. These findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons. DOI: http://dx.doi.org/10.7554/eLife.20556.001 PMID:28034367

  14. Effort Optimization in Minimizing Food Related Greenhouse Gas Emissions, a look at "Organic" and "Local"

    NASA Astrophysics Data System (ADS)

    Bowen, E.; Martin, P. A.; Eshel, G.

    2008-12-01

    The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a database that amounts to a general blueprint for rigorous comparative evaluation of any competing diets.

  15. Sawtooth control in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA

    2005-12-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.

  16. Was it worthwhile? Where have the benefits of rooftop solar photovoltaic generation exceeded the cost?

    NASA Astrophysics Data System (ADS)

    Vaishnav, Parth; Horner, Nathaniel; Azevedo, Inês L.

    2017-09-01

    We estimate the lifetime magnitude and distribution of the private and public benefits and costs of currently installed distributed solar PV systems in the United States. Using data for recently-installed systems, we estimate the balance of benefits and costs associated with installing a non-utility solar PV system today. We also study the geographical distribution of the various subsidies that are made available to owners of rooftop solar PV systems, and compare it to distributions of population and income. We find that, after accounting for federal subsidies and local rebates and assuming a discount rate of 7%, the private benefits of new installations will exceed private costs only in seven of the 19 states for which we have data and only if customers can sell excess power to the electric grid at the retail price. These states are characterized by abundant sunshine (California, Texas and Nevada) or by high electricity prices (New York). Public benefits from reduced air pollution and climate change impact exceed the costs of the various subsidies offered system owners for less than 10% of the systems installed, even assuming a 2% discount rate. Subsidies flowed disproportionately to counties with higher median incomes in 2006. In 2014, the distribution of subsidies was closer to that of population income, but subsidies still flowed disproportionately to the better-off. The total, upfront, subsidy per kilowatt of installed capacity has fallen from 5200 in 2006 to 1400 in 2014, but the absolute magnitude of subsidy has soared as installed capacity has grown explosively. We see considerable differences in the balance of costs and benefits even within states, indicating that local factors such as system price and solar resource are important, and that policies (e.g. net metering) could be made more efficient by taking local conditions into account.

  17. Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: New insights from Nd-Sr isotopic composition and size distribution

    NASA Astrophysics Data System (ADS)

    Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Li, Yang; Wang, Xuejia; Ren, Jiawen; Li, Xiaofei; Yang, Jiao; Qin, Xiang

    2016-06-01

    This study presents the Nd-Sr isotopic compositions and size distributions of cryoconite deposited on the glaciers at different locations on the Tibetan Plateau, in order to trace its source areas and the provenance of long-range transported (LRT) Asian dust on the Tibetan Plateau. The result of scanning electron microscope-energy dispersive X-ray spectrometer analysis indicated that mineral dust particles were dominant in the cryoconite. Most of the cryoconite samples from the Tibetan Plateau indicated different Sr and Nd isotopic composition compared with sand from large deserts (e.g., the Taklimakan and Qaidam deserts). Some cryoconite samples showed very similar Nd-Sr isotopic ratios compared with those of nearby glacier basins (e.g., at Laohugou Glacier No.12, Dongkemadi Glacier, and Shiyi Glacier), indicating the potential input of local crustal dust to cryoconite. The volume-size distribution for the cryoconite particles also indicated bimodal distribution graphs with volume median diameters ranging from 0.57 to 20 µm and from 20 to 100 µm, demonstrating the contribution of both LRT Asian dust and local dust inputs to cryoconite. Based on the particle size distribution, we calculated a mean number ratio of local dust contribution to cryoconite ranging from 0.7% (Baishui Glacier No.1) to 17.6% (Shiyi Glacier) on the Tibetan Plateau. In general, the marked difference in the Nd-Sr isotopic ratios of cryoconite compared with those of large deserts probably indicates that materials from the western deserts have not been easily transported to the hinterland of Tibetan Plateau by the Westerlies under the current climatic conditions, and the arid deserts on the Tibetan Plateau are the most likely sources for cryoconite deposition. The resistance of the Tibetan Plateau to the Westerlies may have caused such phenomena, especially for LRT eolian dust transported over the Tibetan Plateau. Thus, this work is of great importance in understanding the large-scale eolian dust transport and climate over the Tibetan Plateau.

  18. Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: new insights from Nd-Sr isotopic composition and size distribution

    NASA Astrophysics Data System (ADS)

    Dong, Z.

    2016-12-01

    This study presents the Nd-Sr isotopic compositions and size distributions of cryoconite deposited on the glaciers at different locations on the Tibetan Plateau, in order to trace its source areas and the provenance of long-range transported (LRT) Asian dust on the Tibetan Plateau. The result of SEM-EDS analysis indicated that mineral dust particles were dominant in the cryoconite. Most of the cryoconite samples from the Tibetan Plateau indicated different Sr and Nd isotopic composition compared with sand from large deserts (e.g., the Taklimakan and Qaidam deserts). Some cryoconite samples showed very similar Nd-Sr isotopic ratios compared with those of nearby glacier basins (e.g., at Laohugou Glacier No.12, Dongkemadi Glacier and Shiyi Glacier), indicating the potential input of local crustal dust to cryoconite. The volume-size distribution for the cryoconite particles also indicated bi-modal distribution graphs with volume median diameters ranging from 0.57 to 20 μm and from 20 to 100 μm, demonstrating the contribution of both LRT Asian dust and local dust inputs to cryoconite. Based on the particle size distribution, we calculated a mean number ratio of local dust contribution to cryoconite ranging from 0.7% (Baishui Glacier No.1) to 17.6% (Shiyi Glacier) on the Tibetan Plateau. In general, the marked difference in the Nd-Sr isotopic ratios of cryoconite compared with those of large deserts probably indicates that, materials from the western deserts have not been easily transported to the hinterland of Tibetan Plateau by the Westerlies under the current climatic conditions, and the arid deserts on the Tibetan Plateau are the most likely sources for cryoconite deposition. The resistance of the Tibetan Plateau to the Westerlies may have caused such phenomena, especially for LRT eolian dust transported over the Tibetan Plateau. Thus, this work is of great importance in understanding the large scale eolian dust transport and climate over the Tibetan Plateau.

  19. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  20. Integrated methodology for assessing the HCH groundwater pollution at the multi-source contaminated mega-site Bitterfeld/Wolfen.

    PubMed

    Wycisk, Peter; Stollberg, Reiner; Neumann, Christian; Gossel, Wolfgang; Weiss, Holger; Weber, Roland

    2013-04-01

    A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.

  1. Environmental risk assessment of white phosphorus from the use of munitions - a probabilistic approach.

    PubMed

    Voie, Øyvind Albert; Johnsen, Arnt; Strømseng, Arnljot; Longva, Kjetil Sager

    2010-03-15

    White phosphorus (P(4)) is a highly toxic compound used in various pyrotechnic products. Ammunitions containing P(4) are widely used in military training areas where the unburned products of P(4) contaminate soil and local ponds. Traditional risk assessment methods presuppose a homogeneous spatial distribution of pollutants. The distribution of P(4) in military training areas is heterogeneous, which reduces the probability of potential receptors being exposed to the P(4) by ingestion, for example. The current approach to assess the environmental risk from the use of P(4) suggests a Bayesian network (Bn) as a risk assessment tool. The probabilistic reasoning supported by a Bn allows us to take into account the heterogeneous distribution of P(4). Furthermore, one can combine empirical data and expert knowledge, which allows the inclusion of all kinds of data that are relevant to the problem. The current work includes an example of the use of the Bn as a risk assessment tool where the risk for P(4) poisoning in humans and grazing animals at a military shooting range in Northern Norway was calculated. P(4) was detected in several craters on the range at concentrations up to 5.7g/kg. The risk to human health was considered acceptable under the current land use. The risk for grazing animals such as sheep, however, was higher, suggesting that precautionary measures may be advisable.

  2. Quantitative magneto-optical analysis of the role of finite temperatures on the critical state in YBCO thin films

    NASA Astrophysics Data System (ADS)

    Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen

    2016-11-01

    We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.

  3. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji

    2014-01-30

    Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Priority Areas for Large Mammal Conservation in Equatorial Guinea

    PubMed Central

    Murai, Mizuki; Ruffler, Heidi; Berlemont, Antoine; Campbell, Genevieve; Esono, Fidel; Agbor, Anthony; Mbomio, Domingo; Ebana, Agustín; Nze, Antonio; Kühl, Hjalmar S.

    2013-01-01

    Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1) the relative importance of local vs. commercial hunting; 2) wildlife density of protected vs. non-protected areas; and 3) the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437–1,789) elephants and 11,097 (8,719–13,592) chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal and Río Campo Ma’an conservation landscapes, where the highest densities and diversity of large mammals remain. PMID:24086426

  5. Regional myocardial flow and capillary permeability-surface area products are nearly proportional.

    PubMed

    Caldwell, J H; Martin, G V; Raymond, G M; Bassingthwaighte, J B

    1994-08-01

    Analyses of data on the transcapillary exchange and cellular uptake in the normal heart have generally been based on the assumption that local membrane conductances and volumes of distribution are everywhere the same. The question is whether such an assumption is justified in view of the marked (sixfold) heterogeneity of local blood flows per gram tissue. The method was to estimate both flow and capillary membrane permeability-surface area products (PS) locally in the heart. For each of five dogs running on a sloped treadmill, the deposition of tracer microspheres and of [131I]iodophenylpentadecanoic acid (IPPA), after left atrial injection, was determined in 256 pieces of left ventricular myocardium by killing the animals at approximately 100 s after radiotracer injection. A hydraulic occluder stopped the flow to a portion of the myocardium supplied by the left circumflex coronary artery 30 s before tracer injection. Regional flows ranged from 0.1 to 7.0 ml.g-1.min-1. IPPA extractions ranged from 20 to 49%. Using the known flows, we assumed the applicability of an axially distributed blood-tissue exchange model to estimate the PS for the capillary (PSc) and the parenchymal cell. It was impossible to explain the data if the PSc values for membrane transport were uniform throughout the organ. Rather, the only reasonable descriptors of the data required that local PSc values increase with local flow, almost in proportion. Current methods of analysis using data based on deposition methods need to be revised to take into account the near proportionality of PS to flow for at least some substrates.

  6. Tree range expansion may be enhanced by escape from negative plant-soil feedbacks.

    PubMed

    McCarthy-Neumann, Sarah; Ibáñez, Inés

    2012-12-01

    Many plant species are expected to shift their distributional ranges in response to global warming. As they arrive at new sites, migrant plant species may be released from their natural soil pathogens and/or deprived of key symbiotic organisms. Under such scenarios plant-soil feedbacks (PSF) will likely have an impact on plant species' ability to establish in new areas. In this study we evaluated the role that PSF may play on the migratory potential of dominant temperate tree species at the northern limit of their distributional range in the Great Lakes region of North America. To test their ability to expand their current range, we assessed seedling establishment, i.e., survival, of local and potential migrant tree species in a field transplant experiment. To test for the presence and strength of PSF, we also assessed seedling survival during establishment in a greenhouse experiment, where the potential migrant species were grown in soils collected within and beyond their distributional ranges. The combination of experiments provided us with a comprehensive understanding of the role of PSF in seedling establishment in new areas. In the field, we found that survival for most migrant species was similar to those of the local community, ensuring that these species could establish in areas beyond their current range. In the greenhouse, we found that the majority of species experienced strong negative conspecific feedbacks mediated by soil biota, but these responses occurred for most species only in low light conditions. Lastly, our combined results indicate that migrant tree species can colonize and may even have enhanced short-term recruitment beyond their ranges due to a lack of conspecific adults (and the resulting negative PSF from these adults).

  7. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    PubMed Central

    Chen, Qihong; Long, Rong; Quan, Shuhai

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206

  8. Modeling the Economic Feasibility of Large-Scale Net-Zero Water Management: A Case Study.

    PubMed

    Guo, Tianjiao; Englehardt, James D; Fallon, Howard J

      While municipal direct potable water reuse (DPR) has been recommended for consideration by the U.S. National Research Council, it is unclear how to size new closed-loop DPR plants, termed "net-zero water (NZW) plants", to minimize cost and energy demand assuming upgradient water distribution. Based on a recent model optimizing the economics of plant scale for generalized conditions, the authors evaluated the feasibility and optimal scale of NZW plants for treatment capacity expansion in Miami-Dade County, Florida. Local data on population distribution and topography were input to compare projected costs for NZW vs the current plan. Total cost was minimized at a scale of 49 NZW plants for the service population of 671,823. Total unit cost for NZW systems, which mineralize chemical oxygen demand to below normal detection limits, is projected at ~$10.83 / 1000 gal, approximately 13% above the current plan and less than rates reported for several significant U.S. cities.

  9. Standardized Percentile Curves of Body Mass Index of Northeast Iranian Children Aged 25 to 60 Months

    PubMed Central

    Emdadi, Maryam; Safarian, Mohammad; Doosti, Hassan

    2011-01-01

    Objective Growth charts are widely used to assess children's growth status and can provide a trajectory of growth during early important months of life. Racial differences necessitate using local growth charts. This study aimed to provide standardized growth curves of body mass index (BMI) for children living in northeast Iran. Methods A total of 23730 apparently healthy boys and girls aged 25 to 60 months recruited for 20 days from those attending community clinics for routine health checks. Anthropometric measurements were done by trained health staff using WHO methodology. The LMSP method with maximum penalized likelihood, the Generalized Additive Models, the Box-Cox power exponential distribution distribution, Akaike Information Criteria and Generalized Akaike Criteria with penalty equal to 3 [GAIC(3)], and Worm plot and Q-tests as goodness of fit tests were used to construct the centile reference charts. Findings The BMI centile curves for boys and girls aged 25 to 60 months were drawn utilizing a population of children living in northeast Iran. Conclusion The results of the current study demonstrate the possibility of preparation of local growth charts and their importance in evaluating children's growth. Also their differences, relative to those prepared by global references, reflect the necessity of preparing local charts in future studies using longitudinal data. PMID:23056770

  10. Arabian Plate Deformation: The role of inherited structures in the localization of strain in the Red Sea extensional system

    NASA Astrophysics Data System (ADS)

    Aldaajani, T.; Furlong, K.; Malservisi, R.

    2017-12-01

    The Red Sea rift structural architecture changes dramatically along strike from narrow localized spreading (with creation of new oceanic crust) in the south to asymmetrical diffuse extension north of 21 ° latitude. The region of diffuse extension falls within a triangle that is bounded to the east by the Sarhan graben, (a Cenozoic failed rift), to the west by the northern Red Sea Rift, and to the south by the Makkah-Madinah-Nafud (MMN) volcanic line. Geological observations appear to show that tectonic stresses acting on inherited structures within the NW Arabian margin are associated with the region of diffuse extension. In contrast, in the southern Red Sea, a single strong block within the SW Arabian margin led to localize the extension there. Using current velocities from more than 30 GNSS stations distributed within the Arabian plate, we are able to map its rigidity and the distribution of strain along the plate margin. The data show that the transition between the two styles of extension within the Red Sea (crustal accretion vs crustal extension) corresponds with a transition between rigid behavior and diffuse extension within the Arabian Plate. This suggests that the preexisting structures within the Arabian plate play a significant role in the style of extension along the Red Sea margin.

  11. Ferroelectrics under the Synchrotron Light: A Review

    PubMed Central

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  12. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  13. Unavoidable electric current caused by inhomogeneities and its influence on measured material parameters of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Song, K.; Song, H. P.; Gao, C. F.

    2018-03-01

    It is well known that the key factor determining the performance of thermoelectric materials is the figure of merit, which depends on the thermal conductivity (TC), electrical conductivity, and Seebeck coefficient (SC). The electric current must be zero when measuring the TC and SC to avoid the occurrence of measurement errors. In this study, the complex-variable method is used to analyze the thermoelectric field near an elliptic inhomogeneity in an open circuit, and the field distributions are obtained in closed form. Our analysis shows that an electric current inevitably exists in both the matrix and the inhomogeneity even though the circuit is open. This unexpected electric current seriously affects the accuracy with which the TC and SC are measured. These measurement errors, both overall and local, are analyzed in detail. In addition, an error correction method is proposed based on the analytical results.

  14. Assessing the Importance of Domestic Vaccine Manufacturing Centers: An Overview of Immunization Programs, Vaccine Manufacture, and Distribution.

    PubMed

    Rey-Jurado, Emma; Tapia, Felipe; Muñoz-Durango, Natalia; Lay, Margarita K; Carreño, Leandro J; Riedel, Claudia A; Bueno, Susan M; Genzel, Yvonne; Kalergis, Alexis M

    2018-01-01

    Vaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply. However, current vaccine manufacturers worldwide might not be able to guarantee sufficient vaccine supplies for all nations when epidemics or pandemics events could take place. Currently, different countries produce their own vaccine supplies under Good Manufacturing Practices, which include the USA, Canada, China, India, some nations in Europe and South America, such as Germany, the Netherlands, Italy, France, Argentina, and Brazil, respectively. Here, we discuss some of the vaccine programs and manufacturing capacities, comparing the current models of vaccine management between industrialized and developing countries. Because local vaccine production undoubtedly provides significant benefits for the respective population, the manufacture capacity of these prophylactic products should be included in every country as a matter of national safety.

  15. Assessing the Importance of Domestic Vaccine Manufacturing Centers: An Overview of Immunization Programs, Vaccine Manufacture, and Distribution

    PubMed Central

    Rey-Jurado, Emma; Tapia, Felipe; Muñoz-Durango, Natalia; Lay, Margarita K.; Carreño, Leandro J.; Riedel, Claudia A.; Bueno, Susan M.; Genzel, Yvonne; Kalergis, Alexis M.

    2018-01-01

    Vaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply. However, current vaccine manufacturers worldwide might not be able to guarantee sufficient vaccine supplies for all nations when epidemics or pandemics events could take place. Currently, different countries produce their own vaccine supplies under Good Manufacturing Practices, which include the USA, Canada, China, India, some nations in Europe and South America, such as Germany, the Netherlands, Italy, France, Argentina, and Brazil, respectively. Here, we discuss some of the vaccine programs and manufacturing capacities, comparing the current models of vaccine management between industrialized and developing countries. Because local vaccine production undoubtedly provides significant benefits for the respective population, the manufacture capacity of these prophylactic products should be included in every country as a matter of national safety. PMID:29403503

  16. Active subthreshold dendritic conductances shape the local field potential

    PubMed Central

    Ness, Torbjørn V.; Remme, Michiel W. H.

    2016-01-01

    Key points The local field potential (LFP), the low‐frequency part of extracellular potentials recorded in neural tissue, is often used for probing neural circuit activity. Interpreting the LFP signal is difficult, however.While the cortical LFP is thought mainly to reflect synaptic inputs onto pyramidal neurons, little is known about the role of the various subthreshold active conductances in shaping the LFP.By means of biophysical modelling we obtain a comprehensive qualitative understanding of how the LFP generated by a single pyramidal neuron depends on the type and spatial distribution of active subthreshold currents.For pyramidal neurons, the h‐type channels probably play a key role and can cause a distinct resonance in the LFP power spectrum.Our results show that the LFP signal can give information about the active properties of neurons and imply that preferred frequencies in the LFP can result from those cellular properties instead of, for example, network dynamics. Abstract The main contribution to the local field potential (LFP) is thought to stem from synaptic input to neurons and the ensuing subthreshold dendritic processing. The role of active dendritic conductances in shaping the LFP has received little attention, even though such ion channels are known to affect the subthreshold neuron dynamics. Here we used a modelling approach to investigate the effects of subthreshold dendritic conductances on the LFP. Using a biophysically detailed, experimentally constrained model of a cortical pyramidal neuron, we identified conditions under which subthreshold active conductances are a major factor in shaping the LFP. We found that, in particular, the hyperpolarization‐activated inward current, I h, can have a sizable effect and cause a resonance in the LFP power spectral density. To get a general, qualitative understanding of how any subthreshold active dendritic conductance and its cellular distribution can affect the LFP, we next performed a systematic study with a simplified model. We found that the effect on the LFP is most pronounced when (1) the synaptic drive to the cell is asymmetrically distributed (i.e. either basal or apical), (2) the active conductances are distributed non‐uniformly with the highest channel densities near the synaptic input and (3) when the LFP is measured at the opposite pole of the cell relative to the synaptic input. In summary, we show that subthreshold active conductances can be strongly reflected in LFP signals, opening up the possibility that the LFP can be used to characterize the properties and cellular distributions of active conductances. PMID:27079755

  17. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas

    NASA Astrophysics Data System (ADS)

    Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi

    2015-10-01

    Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.

  18. Cenozoic seismic stratigraphy of the SW Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountain, G.S.; Driscoll, N.W.; Miller, K.G.

    1985-01-01

    The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough tomore » erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.« less

  19. Metric anisotropies and emergent anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dash, Ashutosh; Jaiswal, Amaresh

    2018-05-01

    Expansion of a locally equilibrated fluid is considered in an anisotropic space-time given by the Bianchi type-I metric. Starting from the isotropic equilibrium phase-space distribution function in the local rest frame, we obtain expressions for components of the energy-momentum tensor and conserved current, such as number density, energy density, and pressure components. In the case of an axissymmetric Bianchi type-I metric, we show that they are identical to those obtained within the setup of anisotropic hydrodynamics. We further consider the case in which the Bianchi type-I metric is a vacuum solution of the Einstein equation: the Kasner metric. For the axissymmetric Kasner metric, we discuss the implications of our results in the context of anisotropic hydrodynamics.

  20. The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair

    PubMed Central

    Galloway, Marc T.; Lalley, Andrea L.; Shearn, Jason T.

    2013-01-01

    ➤ Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. ➤ The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. ➤ Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. ➤ Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. ➤ Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair. PMID:24005204

  1. Measurement realities of current collection in dynamic space plasma environments

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1990-01-01

    Theories which describe currents collected by conducting and non-conducting bodies immersed in plasmas have many of their concepts based upon the fundamentals of sheath-potential distributions and charged-particle behavior in superimposed electric and magnetic fields. Those current-collecting bodies (or electrodes) may be Langmuir probes, electric field detectors, aperture plates on ion mass spectrometers and retarding potential analyzers, or spacecraft and their rigid and tethered appendages. Often the models are incomplete in representing the conditions under which the current-voltage characteristics of the electrode and its system are to be measured. In such cases, the experimenter must carefully take into account magnetic field effects and particle anisotropies, perturbations caused by the current collection process itself and contamination on electrode surfaces, the complexities of non-Maxwellian plasma distributions, and the temporal variability of the local plasma density, temperature, composition and fields. This set of variables is by no means all-inclusive, but it represents a collection of circumstances guaranteed to accompany experiments involving energetic particle beams, plasma discharges, chemical releases, wave injection and various events of controlled and uncontrolled spacecraft charging. Here, an attempt is made to synopsize these diagnostic challenges and frame them within a perspective that focuses on the physics under investigation and the requirements on the parameters to be measured. Examples include laboratory and spaceborne applications, with specific interest in dynamic and unstable plasma environments.

  2. A Summary of Proposed Changes to the Current ICARTT Format Standards and their Implications to Future Airborne Studies

    NASA Technical Reports Server (NTRS)

    Northup, Emily; Benson Early, Amanda; Beach, Aubrey; Wang, Dali; Kusterer, John; Quam, Brandi; Chen, Gao

    2015-01-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the ingest, archive, and distribution of NASA Earth Science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. The ASDC specializes in atmospheric data that is important to understanding the causes and processes of global climate change and the consequences of human activities on the climate. The ASDC currently supports more than 44 projects and has over 1,700 archived data sets, which increase daily. ASDC customers include scientists, researchers, federal, state, and local governments, academia, industry, and application users, the remote sensing community, and the general public.

  3. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  4. Go Long! Identifying Distant Brown Dwarfs in HST/WFC3 Parallel Field

    NASA Astrophysics Data System (ADS)

    Aganze, Christian; Burgasser, Adam J.; Malkan, Matthew Arnold; Masters, Daniel C.; Mercado, Gretel; Suarez, Adrian; Tamiya, Tomoki

    2016-01-01

    The spatial distribution of brown dwarfs beyond the local Solar Neighborhood is crucial for understanding their Galactic formation, dynamical and evolutionary history. Wide-field red optical and infrared surveys (e.g., 2MASS, SDSS, WISE) have enabled measures of the local density of brown dwarfs, but probe a relatively shallow (˜100 parsecs) volume; few constraints exist for the scale height or radial distributions of these low mass and low luminosity objects. We have searched ~1400 square arcminutes of WFC3 Infrared Spectroscopic Parallel Survey (WISPS) data to identify distant brown dwarfs (d > 300 pc) with near-infrared grism spectra from the the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Using spectral indices to identify candidates, measure spectral types and estimate distances, and comparing the WFC3 spectra to spectral templates in the SpeX Prism Library, we report our first results from this work, the discovery of ~50 late-M, L and T dwarfs with distances of 30 - 1000+ pc. We compare the distance and spectral type distribution to population simulations, and discuss current selection biases.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshetenko, T. V.; Bender, G.; Bethune, K.

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less

  6. Matching of renewable source of energy generation graphs and electrical load in local energy system

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro; Komar, Vyacheslav; Sobchuk, Dmytro; Kravchuk, Sergiy; Kacejko, Piotr; Zavidsky, Vladislav

    2017-08-01

    The paper contains the method of matching generation graph of photovoltaic electric stations and consumers. Characteristic feature of this method is the application of morphometric analysis for assessment of non-uniformity of the integrated graph of energy supply, optimal coefficients of current distribution, that enables by mean of refining the powers, transferring in accordance with the graph , to provide the decrease of electric energy losses in the grid and transport task, as the optimization tool.

  7. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  8. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    PubMed

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  9. Two types of expansion onsets in the Earth's two hemispheres

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Mishin, V.; Mishin, V. M.; Kurikalova, M.; Karavaev, Y.; Lunyushkin, S.

    2016-12-01

    On the maps of distribution of field - aligned currents (FAC) of 15 investigated substorms we have found two main types of M-I feedback instability: 1) "summer" (type 1), and 2) "winter" (type 2). In equinox both types were observed, different in the two hemispheres. Each type of instability creates two simultaneous local expansion onsets, EOs: Type 1 - non-linear amplification of the downward FAC in one hemisphere and Type 2 - non-linear amplification of the upward FAC in the other hemisphere.

  10. Category representations in the brain are both discretely localized and widely distributed.

    PubMed

    Shehzad, Zarrar; McCarthy, Gregory

    2018-06-01

    Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.

  11. Modelling the Species Distribution of Flat-Headed Cats (Prionailurus planiceps), an Endangered South-East Asian Small Felid

    PubMed Central

    Hearn, Andrew J.; Hesse, Deike; Mohamed, Azlan; Traeholdt, Carl; Cheyne, Susan M.; Sunarto, Sunarto; Jayasilan, Mohd-Azlan; Ross, Joanna; Shapiro, Aurélie C.; Sebastian, Anthony; Dech, Stefan; Breitenmoser, Christine; Sanderson, Jim; Duckworth, J. W.; Hofer, Heribert

    2010-01-01

    Background The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. Methodology/Principal Findings In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. Conclusion/Significance Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region. PMID:20305809

  12. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid.

    PubMed

    Wilting, Andreas; Cord, Anna; Hearn, Andrew J; Hesse, Deike; Mohamed, Azlan; Traeholdt, Carl; Cheyne, Susan M; Sunarto, Sunarto; Jayasilan, Mohd-Azlan; Ross, Joanna; Shapiro, Aurélie C; Sebastian, Anthony; Dech, Stefan; Breitenmoser, Christine; Sanderson, Jim; Duckworth, J W; Hofer, Heribert

    2010-03-17

    The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region.

  13. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from local sources, which in the troposphere, where there are aerosols transported over long distances by the phenomena of atmospheric circulation. The purpose of the LOCAL AIR project is the development of a methodology for using synergistic data at different resolutions (ground measurements, remote sensing from ground and satellite) as an effective tool for the characterization of tropospheric aerosols on a local scale. The backbone of the project is the long-term ground-based measurements collected at CIAO (CNR-IMAA Atmospheric Observatory) plus the CALIPSO observations.. The location of the plethora of instruments and measurements of atmospheric interest available at CNR-IMAA makes it a sample site not only for the realization of the methodology, but also allows a feasibility study of this method in the absence of some by analysis of the measures considered in the scaling down of the algorithm developed. It will be evaluated the applicability and reliability of the algorithm implemented for the characterization of the aerosol content to the ground in other places of special interest. Acknowledgments: LOCAL AIR is supported by PO FSE Basilicata 2007-2013 Azione n. 45/AP/05/2013/REG - CUP: G53G13000300009.

  14. Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America.

    PubMed

    Bellinger, M Renee; Banks, Michael A; Bates, Sarah J; Crandall, Eric D; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W

    2015-01-01

    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory distributions of fish.

  15. Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America

    PubMed Central

    Bellinger, M. Renee; Banks, Michael A.; Bates, Sarah J.; Crandall, Eric D.; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W.

    2015-01-01

    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory distributions of fish. PMID:26200779

  16. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.

    PubMed

    Su, Hongsheng

    2017-12-18

    Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.

  17. Three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  18. A three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1994-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  19. Map of Life - A Dashboard for Monitoring Planetary Species Distributions

    NASA Astrophysics Data System (ADS)

    Jetz, W.

    2016-12-01

    Geographic information about biodiversity is vital for understanding the many services nature provides and their potential changes, yet remains unreliable and often insufficient. By integrating a wide range of knowledge about species distributions and their dynamics over time, Map of Life supports global biodiversity education, monitoring, research and decision-making. Built on a scalable web platform geared for large biodiversity and environmental data, Map of Life endeavors provides species range information globally and species lists for any area. With data and technology provided by NASA and Google Earth Engine, tools under development use remote sensing-based environmental layers to enable on-the-fly predictions of species distributions, range changes, and early warning signals for threatened species. The ultimate vision is a globally connected, collaborative knowledge- and tool-base for regional and local biodiversity decision-making, education, monitoring, and projection. For currently available tools, more information and to follow progress, go to MOL.org.

  20. Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System

    NASA Astrophysics Data System (ADS)

    Bhende, C. N.; Kalam, A.; Malla, S. G.

    2016-04-01

    Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.

  1. Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery

    PubMed Central

    Petersen, Latrisha K; Huntimer, Lucas; Walz, Katharine; Ramer-Tait, Amanda; Wannemuehler, Michael J; Narasimhan, Balaji

    2013-01-01

    Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. Our observations indicated that the route of administration differentially affected tissue residence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were administered intranasally, they persisted within lung tissue. These results provide insights into the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride nanoparticle-based vaccine adjuvants. PMID:23818778

  2. Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery.

    PubMed

    Petersen, Latrisha K; Huntimer, Lucas; Walz, Katharine; Ramer-Tait, Amanda; Wannemuehler, Michael J; Narasimhan, Balaji

    2013-01-01

    Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. Our observations indicated that the route of administration differentially affected tissue residence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were administered intranasally, they persisted within lung tissue. These results provide insights into the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride nanoparticle-based vaccine adjuvants.

  3. Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations.

    PubMed

    MacHordom, A; Suárez, J; Almodóvar, A; Bautista, J M

    2000-09-01

    The biogeographical distribution of brown trout mitochondrial DNA haplotypes throughout the Iberian Peninsula was established by polymerase chain reaction-restriction fragment polymorphism analysis. The study of 507 specimens from 58 localities representing eight widely separated Atlantic-slope (north and west Iberian coasts) and six Mediterranean drainage systems served to identify five main groups of mitochondrial haplotypes: (i) haplotypes corresponding to non-native, hatchery-reared brown trout that were widely distributed but also found in wild populations of northern Spain (Cantabrian slope); (ii) a widespread Atlantic haplotype group; (iii) a haplotype restricted to the Duero Basin; (iv) a haplotype shown by southern Iberian populations; and (v) a Mediterranean haplotype. The Iberian distribution of these haplotypes reflects both the current fishery management policy of introducing non-native brown trout, and Messinian palaeobiogeography. Our findings complement and extend previous allozyme studies on Iberian brown trout and improve present knowledge of glacial refugia and postglacial movement of brown trout lineages.

  4. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.

    PubMed

    Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-10-01

    This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.

  5. Resilient distributed control in the presence of misbehaving agents in networked control systems.

    PubMed

    Zeng, Wente; Chow, Mo-Yuen

    2014-11-01

    In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.

  6. Occurrence and distribution of Indian primates

    USGS Publications Warehouse

    Karanth, K.K.; Nichols, J.D.; Hines, J.E.

    2010-01-01

    Global and regional species conservation efforts are hindered by poor distribution data and range maps. Many Indian primates face extinction, but assessments of population status are hindered by lack of reliable distribution data. We estimated the current occurrence and distribution of 15 Indian primates by applying occupancy models to field data from a country-wide survey of local experts. We modeled species occurrence in relation to ecological and social covariates (protected areas, landscape characteristics, and human influences), which we believe are critical to determining species occurrence in India. We found evidence that protected areas positively influence occurrence of seven species and for some species are their only refuge. We found evergreen forests to be more critical for some primates along with temperate and deciduous forests. Elevation negatively influenced occurrence of three species. Lower human population density was positively associated with occurrence of five species, and higher cultural tolerance was positively associated with occurrence of three species. We find that 11 primates occupy less than 15% of the total land area of India. Vulnerable primates with restricted ranges are Golden langur, Arunachal macaque, Pig-tailed macaque, stump-tailed macaque, Phayre's leaf monkey, Nilgiri langur and Lion-tailed macaque. Only Hanuman langur and rhesus macaque are widely distributed. We find occupancy modeling to be useful in determining species ranges, and in agreement with current species ranking and IUCN status. In landscapes where monitoring efforts require optimizing cost, effort and time, we used ecological and social covariates to reliably estimate species occurrence and focus species conservation efforts. ?? Elsevier Ltd.

  7. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Green, Anne M.

    2017-08-01

    The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.

  8. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  9. Munroa argentina, a Grass of the South American Transition Zone, Survived the Andean Uplift, Aridification and Glaciations of the Quaternary.

    PubMed

    Amarilla, Leonardo D; Anton, Ana M; Chiapella, Jorge O; Manifesto, María M; Angulo, Diego F; Sosa, Victoria

    2015-01-01

    The South American Transition Zone (SATZ) is a biogeographic area in which not only orogeny (Andes uplift) and climate events (aridification) since the mid-Miocene, but also Quaternary glaciation cycles had an important impact on the evolutionary history of the local flora. To study this effect, we selected Munroa argentina, an annual grass distributed in the biogeographic provinces of Puna, Prepuna and Monte. We collected 152 individuals from 20 localities throughout the species' range, ran genetic and demographic analyses, and applied ecological niche modeling. Phylogenetic and population genetic analyses based on cpDNA and AFLP data identified three phylogroups that correspond to the previously identified subregions within the SATZ. Molecular dating suggests that M. argentina has inhabited the SATZ since approximately 3.4 (4.2-1.2) Ma and paleomodels predict suitable climate in these areas during the Interglacial period and the Last Glacial Maximum. We conclude that the current distribution of M. argentina resulted from the fragmentation of its once continuous range and that climate oscillations promoted ecological differences that favored isolation by creating habitat discontinuity.

  10. Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels.

    PubMed

    Lay, Chee Leng; Koh, Charlynn Sher Lin; Wang, Jing; Lee, Yih Hong; Jiang, Ruibin; Yang, Yijie; Yang, Zhe; Phang, In Yee; Ling, Xing Yi

    2018-01-03

    The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically fabricate structurally uniform Al nanostructures which enable homogeneous adsorption of various probe molecules. Individual Al nanostructures exhibit strong local electromagnetic field enhancements, in turn leading to intense SERS activity. The average SERS enhancement factor (EF) for individual nanostructures exceeds 10 4 for non-resonant probe molecules in the visible spectrum. These Al nanostructures also retain more than 70% of their original SERS intensities after one-month storage, displaying superb stability under ambient conditions. We further achieve tunable polarization-dependent SERS responses using anisotropic Al nanostructures, facilitating the design of sophisticated SERS-based security labels. Our micron-sized security label comprises two-tier security features, including a machine-readable hybrid quick-response (QR) code overlaid with a set of ciphertexts. Our work demonstrates the versatility of Al-based structures in low-cost modern chemical nano-analytics and forgery protection.

  11. Mapping Distribution and Forecasting Invasion of Prosopis juliflora in Ethiopia's Afar Region

    NASA Astrophysics Data System (ADS)

    West, A. M.; Wakie, T.; Luizza, M.; Evangelista, P.

    2014-12-01

    Invasion of non-native species is among the most critical threats to natural ecosystems and economies world-wide. Mesquite (which includes some 45 species) is an invasive deciduous tree which is known to have an array of negative impacts on ecosystems and rural livelihoods in arid and semi-arid regions around the world, dominating millions of hectares of land in Asia, Africa, Australia and the Americas. In Ethiopia, Prosopis juliflora (the only reported mesquite) is the most pervasive plant invader, threatening local livelihoods and the country's unique biodiversity. Due to its rapid spread and persistence, P. juliflora has been ranked as one of the leading threats to traditional land use, exceeded only by drought and conflict. This project utilized NASA's Earth Observing System (EOS) data and species distribution modeling to map current infestations of P. juliflora in the Afar region of northeastern Ethiopia, and forecast its suitable habitat across the entire country. This project provided a time and cost-effective strategy for conducting risk assessments of invasive mesquite and subsequent monitoring and mitigation efforts by land managers and local communities.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, H. P.; Basso, T. S.; Kroposki, B.

    The Department of Energy (DOE) Distributed Power Program (DPP) is conducting work to complete, validate in the field, and support the development of a national interconnection standard for distributed energy resources (DER), and to address the institutional and regulatory barriers slowing the commercial adoption of DER systems. This work includes support for the IEEE standards, including P1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, P1589 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems, and the P1608 Application Guide. Work is also in progress on system integration research and development (R&D) on themore » interface and control of DER with local energy systems. Additional efforts are supporting high-reliability power for industry, evaluating innovative concepts for DER applications, and exploring plug-and-play interface and control technologies for intelligent autonomous interconnection systems. This paper summarizes (1) the current status of the IEEE interconnection standards and application guides in support of DER, and (2) the R&D in progress at the National Renewable Energy Laboratory (NREL) for interconnection and system integration and application of distributed energy resources.« less

  13. Algorithms for Discovery of Multiple Markov Boundaries

    PubMed Central

    Statnikov, Alexander; Lytkin, Nikita I.; Lemeire, Jan; Aliferis, Constantin F.

    2013-01-01

    Algorithms for Markov boundary discovery from data constitute an important recent development in machine learning, primarily because they offer a principled solution to the variable/feature selection problem and give insight on local causal structure. Over the last decade many sound algorithms have been proposed to identify a single Markov boundary of the response variable. Even though faithful distributions and, more broadly, distributions that satisfy the intersection property always have a single Markov boundary, other distributions/data sets may have multiple Markov boundaries of the response variable. The latter distributions/data sets are common in practical data-analytic applications, and there are several reasons why it is important to induce multiple Markov boundaries from such data. However, there are currently no sound and efficient algorithms that can accomplish this task. This paper describes a family of algorithms TIE* that can discover all Markov boundaries in a distribution. The broad applicability as well as efficiency of the new algorithmic family is demonstrated in an extensive benchmarking study that involved comparison with 26 state-of-the-art algorithms/variants in 15 data sets from a diversity of application domains. PMID:25285052

  14. Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil.

    PubMed

    de Souza, Érica Martinha Silva; Gross, Maria Claudia; Silva, Carlos Eduardo Faresin E; Sotero-Caio, Cibele Gomes; Feldberg, Eliana

    2017-01-01

    Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus.

  15. Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil

    PubMed Central

    de Souza, Érica Martinha Silva; Gross, Maria Claudia; Silva, Carlos Eduardo Faresin e; Sotero-Caio, Cibele Gomes; Feldberg, Eliana

    2017-01-01

    Abstract Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus. PMID:29114357

  16. Lusitania revisited: a phylogeographic analysis of the natterjack toad Bufo calamita across its entire biogeographical range.

    PubMed

    Rowe, Graham; Harris, D James; Beebee, Trevor J C

    2006-05-01

    Attempts to understand the current distributions of plants and animals require both historical and ecological information. Phylogeography has proved highly effective in elucidating historical events such as postglacial colonisations in north temperate zones. However, interesting questions still await resolution. Lusitanian distributions of fauna and flora in western Europe, for example, have puzzled biogeographers for more than 150 years. Lusitanian species have highly disjunct distributions in Ireland and in Iberia, often with few or no other populations inbetween. Despite much debate, no agreed explanation for Lusitanian distributions has yet emerged. We investigated the phylogeographic structure of one Lusitanian species, the natterjack toad Bufo calamita, using mitochondrial DNA control region sequences and allelic variation at eight microsatellite loci. Our results show that this amphibian must have survived in north European refugia, as well as in Iberia, during and since the last (Weichselian) glacial maximum around 20,000 years before present (BP). Subsequent local recolonisation after the Younger Dryas cooling around 11,000 years BP best explains the Lusitanian aspect of natterjack toad distribution.

  17. Improving Distributed Diagnosis Through Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew John; Roychoudhury, Indranil; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2011-01-01

    Complex engineering systems require efficient fault diagnosis methodologies, but centralized approaches do not scale well, and this motivates the development of distributed solutions. This work presents an event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, by using the structural model decomposition capabilities provided by Possible Conflicts. We develop a distributed diagnosis algorithm that uses residuals computed by extending Possible Conflicts to build local event-based diagnosers based on global diagnosability analysis. The proposed approach is applied to a multitank system, and results demonstrate an improvement in the design of local diagnosers. Since local diagnosers use only a subset of the residuals, and use subsystem models to compute residuals (instead of the global system model), the local diagnosers are more efficient than previously developed distributed approaches.

  18. Many shades of green: the dynamic tropical forest–savannah transition zones

    PubMed Central

    Oliveras, Immaculada; Malhi, Yadvinder

    2016-01-01

    The forest–savannah transition is the most widespread ecotone in tropical areas, separating two of the most productive terrestrial ecosystems. Here, we review current understanding of the factors that shape this transition, and how it may change under various drivers of local or global change. At broadest scales, the location of the transition is shaped by water availability, mediated strongly at local scales by fire regimes, herbivory pressure and spatial variation in soil properties. The frequently dynamic nature of this transition suggests that forest and savannah can exist as alternative stable states, maintained and separated by fire–grass feedbacks and tree shade–fire suppression feedback. However, this theory is still contested and the relative contributions of the main biotic and abiotic drivers and their interactions are yet not fully understood. These drivers interplay with a wide range of ecological processes and attributes at the global, continental, regional and local scales. The evolutionary history of the biotic and abiotic drivers and processes plays an important role in the current distributions of these transitions as well as in their species composition and ecosystem functioning. This ecotone can be sensitive to shifts in climate and other driving factors, but is also potentially stabilized by negative feedback processes. There is abundant evidence that these transitions are shifting under contemporary global and local changes, but the direction of shift varies according to region. However, it still remains uncertain how these transitions will respond to rapid and multi-faceted ongoing current changes, and how increasing human influence will interact with these shifts. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502373

  19. Saturn's Magnetosphere and Properties of Upstream Flow at Titan: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Lipatov, A.; Bertucci, C.; Coates, A. J.; Arridge, C.; Szego, K.; Shappirio, M.; Simipson, D. G.; hide

    2009-01-01

    Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements, we present the ion fluid properties and its ion composition of the upstream flow for Titan's interaction with Saturn's magnetosphere. A 3D ion moments algorithm is used which is essentially model independent with only requirement is that ion flow is within the CAPS IMS 2(pi) steradian field-of-view (FOV) and that the ion 'velocity distribution function (VDF) be gyrotropic. These results cover the period from TA flyby (2004 day 300) to T22 flyby (2006 363). Cassini's in situ measurements of Saturn's magnetic field show it is stretched out into a magnetodisc configuration for Saturn Local Times (SLT) centered about midnight local time. Under those circumstances the field is confined near the equatorial plane with Titan either above or below the magnetosphere current sheet. Similar to Jupiter's outer magnetosphere where a magnetodisc configuration applies, one expects the heavy ions within Saturn's outer magnetosphere to be confined within a few degrees of the current sheet while at higher magnetic latitudes protons should dominate. We show that when Cassini is between dusk-midnight-dawn local time and spacecraft is not within the current sheet that light ions (H, 142) tend to dominate the ion composition for the upstream flow. If true, one may expect the interaction between Saturn's magnetosphere, locally devoid of heavy ions and Titan's upper atmosphere and exosphere to be significantly different from that for Voyager 1, TA and TB when heavy ions were present in the upstream flow. We also present observational evidence for Saturn's magnetosphere interaction with Titan's extended H and H2 corona which can extend approx. 1 Rs from Titan.

  20. Local Geomorphology as a Determinant of Macrofaunal Production in a Mountain Stream.

    PubMed

    Huryn, Alexander D; Wallace, J Bruce

    1987-12-01

    By comparing distributions of functional group production among different habitats in an Appalachian mountain stream, the influence of site-specific geomorphology upon the overall functional group composition of the animal community was demonstrated. By replicated monthly sampling, substrate particle size distributions, current velocity, standing crops of benthic organic matter, and production of macrofauna were measured in each of three principal habitats: bedrock-outcrop, riffle, and pool. Samples were taken at randomly assigned locations and the relative number of samples taken from each habitat was assumed to be proportional to the area of the habitat within the stream. These proportions were used to weight production measured in each habitat and the resulting values were summed to obtain production per unit area of average stream bed. The bedrock-outcrop habitat was characterized by high material entertainment and export as indicated by significantly higher current velocities and lower standing crops of detritus compared to the riffle and pool habitats. Pools were sites of low entertainment and high retention of organic matter as demonstrated by significantly lower current velocities and higher accumulations of detritus than other habitats. The riffle habitat was intermediate to the bedrock-outcrop and pool habitats in all parameters measured. Annual production of collector-filterers was highest in the bedrock-outcrop (ash-free dry mass 1920 mg/m 2 ), followed by riffle (278 mg/m 2 ) and pool (32 mg/m 2 ). Although constituting only 19% of the stream area, the bedrock-outcrop habitat contributed 68% of the habitat-weighted collector-filterer production. Annual production of shredders was highest in pools (2616 mg/m 2 ), followed by riffles (1657 mg/m 2 ) and bedrock-outcrop (579 mg/m 2 ). The pool habitat, constituting 23% of stream area, contributed 36% of shredder production. Annual production of scrapers was highest in the riffle habitat (905 mg/m 2 ), followed by bedrock-outcrop (517-mg/m 2 ) and pool (238 mg/m 2 ). Riffles constituted 58% of total stream area and were the source of 77% of the habitat-weighted scraper production. Annual production of engulfing predators was greatest in the pool habitat (2313 mg/m 2 ), followed by riffles (1765 mg/m 2 ) and bedrock-outcrop (687 mg/m 2 ). The relatively lower production of engulfing predators in the bedrock-outcrop habitat reflects a functional shift in mode of resource acquisition by predators, with predaceous collector-filterers (Arcto-psychinae: Trichoptera) predominating in the bedrock-outcrop. Collector-gatherer production was more evenly distributed, with the bedrock-outcrop, riffle, and pool habitats each contributing 14, 54, and 33% to the habitat-weighted production, respectively. Unlike all other functional groups, this distribution was not significantly different from the distribution of stream area among habitats and reflected lack of dependence on specific physical attributes of the local environment for access to food by members of this functional group. Local geomorphology determined the diversity and spatial distribution of bedrock-outcrops, riffles, and pools in the study stream. In turn, the functional structure of the macrofauna, when viewed holistically, was the result of the integration of the relative contributions of each habitat type of total stream area. Total habitat-weighted annual production in the study stream was estimated at 5093 and 1921 mg/m 2 for primary and secondary consumers, respectively. The distribution of habitat-weighted production among functional groups was: collector-gatherers (39%), followed by shredders (225), engulfing predators (22%), scrapers (13%), and collector-filterers (8%). This functional structure agrees favorably with current conceptual models of head water streams draining forested catchments. © 1987 by the Ecological Society of America.

  1. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  2. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  3. Aluminum and Manganese Distributions in the Solomon Sea: Results from the 2012 PANDORA Cruise

    NASA Astrophysics Data System (ADS)

    Michael, S. M.; Resing, J. A.; Jeandel, C.; Lacan, F.

    2016-02-01

    Much is still unknown about the sources of trace nutrients to the Equatorial Undercurrent (EUC), which ultimately contribute to high-nutrient regions in the Eastern Tropical Pacific. One region that is possibly a source of trace nutrients to the EUC is the Solomon Sea, located east of Papua New Guinea. A study during the summer of 2012, PANDORA, was conducted on board the R/V l'Atalante to determine currents and the geochemical makeup within the basin. Water samples were analyzed for aluminum and manganese using Flow Injection Analysis (FIA). At many stations, aluminum distributions exhibit a sub-surface minimum, located at approximately the same depth as a salinity maximum. Additionally, aluminum is enriched along coastal areas, particularly in the outflow of the Vitiaz Strait, which is concurrent with the findings of Slemons et al. 2010. These regions of high aluminum are also likely regions of iron enrichment. Manganese distributions in the Solomon Sea are similar to data collected north of the region by Slemons et al. 2010, and show a scavenged distribution with local inputs in the surface and concentrations decreasing at depth. This region has strong western boundary currents, and input from coastal margins, two large rivers, island mining sites, and hydrothermal activity, making it an important study-site to determine how trace nutrients are transported to the open ocean.

  4. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    NASA Astrophysics Data System (ADS)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  5. A High-resolution Model of Field-aligned Currents Through Empirical Orthogonal Functions Analysis (MFACE)

    NASA Technical Reports Server (NTRS)

    He, Maosheng; Vogt, Joachim; Luehr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang

    2012-01-01

    Ten years of CHAMP magnetic field measurements are integrated into MFACE, a model of field-aligned currents (FACs) using empirical orthogonal functions (EOFs). EOF1 gives the basic Region-1/Region-2 pattern varying mainly with the interplanetary magnetic field Bz component. EOF2 captures separately the cusp current signature and By-related variability. Compared to existing models, MFACE yields significantly better spatial resolution, reproduces typically observed FAC thickness and intensity, improves on the magnetic local time (MLT) distribution, and gives the seasonal dependence of FAC latitudes and the NBZ current signature. MFACE further reveals systematic dependences on By, including 1) Region-1/Region-2 topology modifications around noon; 2) imbalance between upward and downward maximum current density; 3) MLT location of the Harang discontinuity. Furthermore, our procedure allows quantifying response times of FACs to solar wind driving at the bow shock nose: we obtain 20 minutes and 35-40 minutes lags for the FAC density and latitude, respectively.

  6. Non-local currents and the structure of eigenstates in planar discrete systems with local symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Röntgen, M., E-mail: mroentge@physnet.uni-hamburg.de; Morfonios, C.V., E-mail: christian.morfonios@physnet.uni-hamburg.de; Diakonos, F.K., E-mail: fdiakono@phys.uoa.gr

    Local symmetries are spatial symmetries present in a subdomain of a complex system. By using and extending a framework of so-called non-local currents that has been established recently, we show that one can gain knowledge about the structure of eigenstates in locally symmetric setups through a Kirchhoff-type law for the non-local currents. The framework is applicable to all discrete planar Schrödinger setups, including those with non-uniform connectivity. Conditions for spatially constant non-local currents are derived and we explore two types of locally symmetric subsystems in detail, closed-loops and one-dimensional open ended chains. We find these systems to support locally similarmore » or even locally symmetric eigenstates. - Highlights: • We extend the framework of non-local currents to discrete planar systems. • Structural information about the eigenstates is gained. • Conditions for the constancy of non-local currents are derived. • We use the framework to design two types of example systems featuring locally symmetric eigenstates.« less

  7. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    This study characterizes the habitats and megafaunal community of the Congo distal lobe complex driven by turbidity currents through the use of remotely operated vehicle (ROV) still imagery transects covering distances in the order of kilometers. In this sedimentary, abyssal area about 5000 m deep and 750 km offshore from western Africa, large quantities of deposited organic material supplied by the Congo River canyon and channel support aggregations of large sized foraminifers (Bathysiphon sp.) and vesicomyid clams (Christineconcha regab, Abyssogena southwardae) often associated with methane cold seeps, as well as opportunistic deep-sea scavengers. Additionally, bacterial mats, assumed to be formed by large sulfur-oxidizing filamentous bacteria (Beggiatoa type), and black patches of presumably reduced sediment were seen which are, together with sulfur-oxidizing symbiont- bearing vesicomyids, indicators of sulfide-rich sediments. Habitat and faunal distribution were analyzed in relation to the microtopography obtained with the ROV multibeam echosounder, at three sites from the entrance of the lobe complex where the channel is still deep, to the main, flatter area of turbidite deposition. Specific characteristics of the system influence animal distributions: both the forams and the vesicomyid clams tended to avoid the channels characterized by high-speed currents, and are therefore preferentially located along channel flanks affected by sliding, and on levees formed by channel overspill. Foram fields are found in flat areas and form large fields, whereas the vesicomyids have a patchy distribution and appear to show a preference for regions of local topographical relief such as slide scars or collapsed blocks of sediments, which likely facilitate sulfide exhumation. The colonization of sulfide rich sediments by vesicomyids is limited, but nonetheless was seen to occur in the main deposition area where they have to cope with very high sedimentation rates (up to 20 cm/yr) and frequent turbidity currents. Other biological adaptations to the local conditions likely determine the presence and survival of animals in the system: large agglutinated forams are known to be adept at quickly colonizing disturbed sediment and capitalizing on abundant but irregular food sources, and vesicomyid clams have a mobile lifestyle that enables them to maintain their population in the ever changing landscape of sulfide-rich sediment outcrops. Turbiditic systems appear to be intermediate between other energy rich habitats sustaining chemosynthesis in the deep sea, being locally less stable in terms of energy supply than cold seeps, limiting the number of cold-seep specialists able to colonize, but constituting a longer lived habitat than food falls. Turbidite fans therefore represent distinct deep sea habitats that contribute to sustaining populations of both chemosynthesis-based and opportunistic taxa in the deep-sea.

  8. Magnetic storm of September 4, 1984 - A synthesis of ring current spectra and energy densities measured with AMPTE/CCE

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Mcentire, R. W.; Potemra, T. A.; Gloeckler, G.; Scarf, F. L.; Shelley, E. G.

    1985-01-01

    Compositional studies of the equatorial distributions of ring current ions during the September 4, 1984 magnetic storm have been made possible by comprehensive energy, charge state, and mass coverage data from the Charge Composition Explorer satellite. An examination of ion spectra at an L value of about 4 on September 5, in the local evening sector, shows that energy density was dominated by protons, with O ions contributing about 27 percent at the peak of about 150 keV, while He ions contributed less than about 2 percent. September 6 ion spectra, taken during the recovery phase of the storm, indicate that ion densities at more than 20 keV had decreased markedly, and that the ring current energy density was primarily provided by protons.

  9. Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures

    NASA Astrophysics Data System (ADS)

    Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.

  10. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified formore » this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.« less

  11. Generation of spin currents by surface plasmon resonance

    PubMed Central

    Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.

    2015-01-01

    Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821

  12. An observationally-driven kinetic approach to coronal heating

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Toutountzi, A.; Isliker, H.; Georgoulis, M.; Vlahos, L.; Chintzoglou, G.

    2016-11-01

    Aims: Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Recent hydrodynamical models attempt an investigation by placing swarms of "nanoflares" at random sites and times in modeled one-dimensional coronal loops. We investigate the problem in three dimensions, using extrapolated coronal magnetic fields of observed solar active regions. Methods: We applied a nonlinear force-free field extrapolation above an observed photospheric magnetogram of NOAA active region (AR) 11 158. We then determined the locations, energy contents, and volumes of "unstable" areas, namely areas prone to releasing magnetic energy due to locally accumulated electric current density. Statistical distributions of these volumes and their fractal dimension are inferred, investigating also their dependence on spatial resolution. Further adopting a simple resistivity model, we inferred the properties of the fractally distributed electric fields in these volumes. Next, we monitored the evolution of 105 particles (electrons and ions) obeying an initial Maxwellian distribution with a temperature of 10 eV, by following their trajectories and energization when subjected to the resulting electric fields. For computational convenience, the length element of the magnetic-field extrapolation is 1 arcsec, or 725 km, much coarser than the particles' collisional mean free path in the low corona (0.1-1 km). Results: The presence of collisions traps the bulk of the plasma around the unstable volumes, or current sheets (UCS), with only a tail of the distribution gaining substantial energy. Assuming that the distance between UCS is similar to the collisional mean free path we find that the low active-region corona is heated to 100-200 eV, corresponding to temperatures exceeding 2 MK, within tens of seconds for electrons and thousands of seconds for ions. Conclusions: Fractally distributed, nanoflare-triggening fragmented UCS in the active-region corona can heat electrons and ions with minor enhancements of the local resistivity. This statistical result is independent from the nature of the extrapolation and the spatial resolution of the modeled active-region corona. This finding should be coupled with a complete plasma treatment to determine whether a quasi-steady temperature similar to that of the ambient corona can be maintained, either via a kinetic or via a hybrid, kinetic and fluid, plasma treatment. The finding can also be extended to the quiet solar corona, provided that the currently undetected nanoflares are frequent enough to account for the lower (compared to active regions) energy losses in this case.

  13. Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model

    PubMed Central

    Gurev, V.; Constantino, J.; Rice, J.J.; Trayanova, N.A.

    2010-01-01

    In the intact heart, the distribution of electromechanical delay (EMD), the time interval between local depolarization and myocyte shortening onset, depends on the loading conditions. The distribution of EMD throughout the heart remains, however, unknown because current experimental techniques are unable to evaluate three-dimensional cardiac electromechanical behavior. The goal of this study was to determine the three-dimensional EMD distributions in the intact ventricles for sinus rhythm (SR) and epicardial pacing (EP) by using a new, to our knowledge, electromechanical model of the rabbit ventricles that incorporates a biophysical representation of myofilament dynamics. Furthermore, we aimed to ascertain the mechanisms that underlie the specific three-dimensional EMD distributions. The results revealed that under both conditions, the three-dimensional EMD distribution is nonuniform. During SR, EMD is longer at the epicardium than at the endocardium, and is greater near the base than at the apex. After EP, the three-dimensional EMD distribution is markedly different; it also changes with the pacing rate. For both SR and EP, late-depolarized regions were characterized with significant myofiber prestretch caused by the contraction of the early-depolarized regions. This prestretch delays myofiber-shortening onset, and results in a longer EMD, giving rise to heterogeneous three-dimensional EMD distributions. PMID:20682251

  14. Piloting a nationally disseminated, interactive human subjects protection program for community partners: unexpected lessons learned from the field.

    PubMed

    Solomon, Stephanie; Bullock, Sherita; Calhoun, Karen; Crosby, Lori; Eakin, Brenda; Franco, Zeno; Hardwick, Emily; Holland, Samuel; Leinberger-Jabari, Andrea; Newton, Gail; Odell, Jere; Paberzs, Adam; Spellecy, Ryan

    2014-04-01

    Funders, institutions, and research organizations are increasingly recognizing the need for human subjects protections training programs for those engaged in academic research. Current programs tend to be online and directed toward an audience of academic researchers. Research teams now include many nonacademic members, such as community partners, who are less likely to respond to either the method or the content of current online trainings. A team at the CTSA-supported Michigan Institute for Clinical and Health Research at the University of Michigan developed a pilot human subjects protection training program for community partners that is both locally implemented and adaptable to local contexts, yet nationally consistent and deliverable from a central administrative source. Here, the developers of the program and the collaborators who participated in the pilot across the United States describe 10 important lessons learned that align with four major themes: The distribution of the program, the implementation of the program, the involvement of community engagement in the program, and finally lessons regarding the content of the program. These lessons are relevant to anyone who anticipates developing or improving a training program that is developed in a central location and intended for local implementation. © 2014 Wiley Periodicals, Inc.

  15. Piloting a Nationally Disseminated, Interactive Human Subjects Protection Program for Community Partners: Unexpected Lessons Learned from the Field

    PubMed Central

    Bullock, Sherita; Calhoun, Karen; Crosby, Lori; Eakin, Brenda; Franco, Zeno; Hardwick, Emily; Leinberger‐Jabari, Andrea; Newton, Gail; Odell, Jere; Paberzs, Adam; Spellecy, Ryan

    2014-01-01

    Abstract Funders, institutions, and research organizations are increasingly recognizing the need for human subjects protections training programs for those engaged in academic research. Current programs tend to be online and directed toward an audience of academic researchers. Research teams now include many nonacademic members, such as community partners, who are less likely to respond to either the method or the content of current online trainings. A team at the CTSA‐supported Michigan Institute for Clinical and Health Research at the University of Michigan developed a pilot human subjects protection training program for community partners that is both locally implemented and adaptable to local contexts, yet nationally consistent and deliverable from a central administrative source. Here, the developers of the program and the collaborators who participated in the pilot across the United States describe 10 important lessons learned that align with four major themes: The distribution of the program, the implementation of the program, the involvement of community engagement in the program, and finally lessons regarding the content of the program. These lessons are relevant to anyone who anticipates developing or improving a training program that is developed in a central location and intended for local implementation. PMID:24720349

  16. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation.

    PubMed

    Fitzpatrick, Matthew C; Keller, Stephen R

    2015-01-01

    Local adaptation is a central feature of most species occupying spatially heterogeneous environments, and may factor critically in responses to environmental change. However, most efforts to model the response of species to climate change ignore intraspecific variation due to local adaptation. Here, we present a new perspective on spatial modelling of organism-environment relationships that combines genomic data and community-level modelling to develop scenarios regarding the geographic distribution of genomic variation in response to environmental change. Rather than modelling species within communities, we use these techniques to model large numbers of loci across genomes. Using balsam poplar (Populus balsamifera) as a case study, we demonstrate how our framework can accommodate nonlinear responses of loci to environmental gradients. We identify a threshold response to temperature in the circadian clock gene GIGANTEA-5 (GI5), suggesting that this gene has experienced strong local adaptation to temperature. We also demonstrate how these methods can map ecological adaptation from genomic data, including the identification of predicted differences in the genetic composition of populations under current and future climates. Community-level modelling of genomic variation represents an important advance in landscape genomics and spatial modelling of biodiversity that moves beyond species-level assessments of climate change vulnerability. © 2014 John Wiley & Sons Ltd/CNRS.

  17. Improving the aluminum-air battery system for use in electrical vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is not as significant as the increase in the current density away from the entrance. By extending the cathode below the anode, the high local current density can be reduced.

  18. Determining the distribution loss of brown eared-pheasant (Crossoptilon mantchuricum) using historical data and potential distribution estimates

    PubMed Central

    Song, Zitan

    2016-01-01

    We analyzed the synchronous relationship between forest cover and species distribution to explain the contraction in the distribution range of the brown eared-pheasant (Crossoptilon mantchuricum) in China. Historical resources can provide effective records for reconstructing long-term distribution dynamics. The brown eared-pheasant’s historical distribution from 25 to 1947 CE, which included the three provinces of Shaanxi, Shanxi, and Hebei based on this species’ habitat selection criteria, the history of the forests, ancient climate change records, and fossil data. The current species distribution covers Shaanxi, Shanxi, and Hebei provinces, as well as Beijing city, while Shanxi remains the center of the distribution area. MaxEnt model indicated that the suitable conditions of the brown eared-pheasant had retreated to the western regions of Shanxi and that the historical distribution area had reduced synchronously with the disappearance of local forest cover in Shanxi. We built a correlative relationship between the presence/absence of brown eared-pheasants and forest coverage and found that forest coverage in the north, northeast, central, and southeast areas of the Shanxi province were all less than 10% in 1911. Wild brown eared-pheasants are stable in the Luliang Mountains, where forest coverage reached 13.2% in 2000. Consequently, we concluded that the distribution of this species is primarily determined by vegetation conditions and that forest cover was the most significant determining factor. PMID:27781161

  19. High-Energy Electron Shell in ECR Ion Source:

    NASA Astrophysics Data System (ADS)

    Niimura, M. G.; Goto, A.; Yano, Y.

    1997-05-01

    As an injector of cyclotrons and RFQ linacs, ECR ion source (ECRIS) is expected to deliver highly charged ions (HCI) at high beam-current (HBC). Injections of light gases and supplementary electrons have been employed for enhancement of HCI and HBC, respectively. Further amelioration of the performance may be feasible by investigating the hot-electron ring inside an ECRIS. Its existence has been granted because of the MeV of Te observable via X-ray diagnostics. However, its location, acceleration mechanism, and effects on the performance are not well known.We found them by deriving the radially negative potential distribution for an ECRIS from measured endloss-current data. It was evidenced from a hole-burning on the parabolic potential profile (by uniformly distributed warm-electron space charges of 9.5x10^5cm-3) and from a local minimum of the electrostatically-trapped ion distribution. A high-energy electron shell (HEES) was located right on the ECR-radius of 6 cm with shell-halfwidth of 1 cm. Such a thin shell around core plasma can only be generated by the Sadeev-Shapiro or v_phxBz acceleration mechanism that can raise Te up to a relativistic value. Here, v_ph is the phase velocity of ES Bernstein waves propagating backwards against incident microwave and Bz the axial mirror magnetic field. The HEES carries diamagnetic current which reduces the core magnetic pressure, thereby stabilizing the ECR surface against driftwave instabilities similarly to gas-mixing.

  20. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite

    NASA Astrophysics Data System (ADS)

    Chang, Longfei; Asaka, Kinji; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Li, Dichen

    2014-06-01

    Ionic Polymer-Metal Composite (IPMC) has been well-documented of being a promising functional material in extensive applications. In its most popular and traditional manufacturing technique, roughening is a key process to ensure a satisfying performance. In this paper, based on a lately established multi-physical model, the effect of roughening process on the inner mass transportation and the electro-active output of IPMC were investigated. In the model, the electro-chemical field was monitored by Poisson equation and a properly simplified Nernst-Planck equation set, while the mechanical field was evaluated on the basis of volume strain effect. Furthermore, with Ramo-Shockley theorem, the out-circuit current and accumulated charge on the electrode were bridged with the inner cation distribution. Besides, nominal current and charge density as well as the curvature of the deformation were evaluated to characterize the performance of IPMC. The simulation was implemented by Finite Element Method with Comsol Multi-physics, based on two groups of geometrical models, those with various rough interface and those with different thickness. The results of how the roughening impact influences on the performance of IPMC were discussed progressively in three aspects, steady-state distribution of local potential and mass concentration, current response and charge accumulation, as well as the curvature of deformation. Detailed explanations for the performance improvement resulted from surface roughening were provided from the micro-distribution point of view, which can be further explored for the process optimization of IPMC.

Top