Science.gov

Sample records for locally constant functions

  1. Localized (super)gravity and cosmological constant

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zurab

    2000-11-01

    We consider localization of gravity in domain wall solutions of Einstein's gravity coupled to a scalar field with a generic potential. We discuss conditions on the scalar potential such that domain wall solutions are non-singular. Such solutions even exist for appropriate potentials which have no minima at all and are unbounded below. Domain walls of this type have infinite tension, while usual kink type of solutions interpolating between two AdS minima have finite tension. In the latter case the cosmological constant on the domain wall is necessarily vanishing, while in the former case it can be zero or negative. Positive cosmological constant is allowed for singular domain walls. We discuss non-trivial conditions for physically allowed singularities arising from the requirement that truncating the space at the singularities be consistent. Non-singular domain walls with infinite tension might a priori avoid recent "no-go" theorems indicating impossibility of supersymmetric embedding of kink type of domain walls in gauged supergravity. We argue that (non-singular) domain walls are stable even if they have infinite tension. This is essentially due to the fact that localization of gravity in smooth domain walls is a Higgs mechanism corresponding to a spontaneous breakdown of translational invariance. As to discontinuous domain walls arising in the presence of δ-function "brane" sources, they explicitly break translational invariance. Such solutions cannot therefore be thought of as limits of smooth domain walls. We point out that if the scalar potential has no minima and approaches finite negative values at infinity, then higher derivative terms are under control, and do not affect the cosmological constant which is vanishing for such backgrounds. Nonetheless, we also point out that higher curvature terms generically delocalize gravity, so that the desired lower-dimensional Newton's law is no longer reproduced.

  2. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  3. Tuning sum rules with window functions for optical constant evaluation

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis V.; Méndez, José A.; Larruquert, Juan I.

    2016-07-01

    Sum rules are a useful tool to evaluate the global consistency of a set of optical constants. We present a procedure to spectrally tune sum rules to evaluate the local consistency of optical constants. It enables enhancing the weight of a desired spectral range within the sum-rule integral. The procedure consists in multiplying the complex refractive index with an adapted function, which is named window function. Window functions are constructed through integration of Lorentz oscillators. The asymptotic decay of these window functions enables the derivation of a multiplicity of sum rules akin to the inertial sum rule, along with one modified version of f-sum rule. This multiplicity of sum rules combined with the free selection of the photon energy range provides a double way to tune the spectral contribution within the sum rule. Window functions were applied to reported data of SrF2 and of Al films in order to check data consistency over the spectrum. The use of window functions shows that the optical constants of SrF2 are consistent in a broad spectrum. Regarding Al, some spectral ranges are seen to present a lower consistency, even though the standard sum rules with no window function did not detect inconsistencies. Hence window functions are expected to be a helpful tool to evaluate the local consistency of optical constants.

  4. Local surface elastic constants by resonant-ultrasound microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Ogi, Hirotsugu; Tada, Toyokazu; Hirao, Masahiko; Ledbetter, Hassel

    2004-07-01

    We report a method—resonant-ultrasound microscopy—for measuring elastic-constant distribution over a solid's surface. Applying an oscillating electric field to a rectangular-parallelepiped oscillator of langasite (La3Ga5SiO14) crystal by a surrounding solenoid coil, we generated and detected vibrations of the crystal without electrodes and without wires. Acoustic coupling of the specimen to the oscillator is only made at an antinodal vibration point on the crystal's bottom surface. The crystal's resonance-frequency shift reflects elastic constants of the specimen in the contacting area. Point-contact measurement permits sensitive, quantitative evaluation of a material's local elastic constants. As an illustrating example, we measured the elastic-stiffness distribution of a Nb-Ti/Cu resin superconductive wire. We compared our measurements with both static-contact and dynamic-contact models.

  5. On the local variation of the Hubble constant

    SciTech Connect

    Odderskov, Io; Hannestad, Steen; Haugbølle, Troels E-mail: sth@phys.au.dk

    2014-10-01

    We have carefully studied how local measurements of the Hubble constant, H{sub 0}, can be influenced by a variety of different parameters related to survey depth, size, and fraction of the sky observed, as well as observer position in space. Our study is based on N-body simulations of structure in the standard ΛCDM model and our conclusion is that the expected variance in measurements of H{sub 0} is far too small to explain the current discrepancy between the low value of H{sub 0} inferred from measurements of the cosmic microwave background (CMB) by the Planck collaboration and the value measured directly in the local universe by use of Type Ia supernovae. This conclusion is very robust and does not change with different assumptions about effective sky coverage and depth of the survey or observer position in space.

  6. Assessment of DFT functionals with fluorine-fluorine coupling constants

    NASA Astrophysics Data System (ADS)

    García de la Vega, J. M.; San Fabián, J.

    2015-07-01

    Density functional theory (DFT) calculations of nuclear magnetic resonance (NMR) spin-spin coupling constants (SSCCs) provide an important contribution for understanding experimentally observed values. It is known that calculated SSCCs using DFT methods correlate well with those experimentally measured. Unlike most of SSCCs, in fluorine compounds, fluorine-fluorine SSCC JFF shows that the Fermi contact (FC) term is not dominant, particularly for JFF in polyfluorinated organic molecules. In order to devise a DFT approach that would correctly reproduce the variation of SSCCs within a series of fluorine compounds, we test several DFT-based approaches, using different exchange and correlation functionals. Isotropic contributions to NMR fluorine-fluorine coupling constants (FC, spin-dipolar, SD, paramagnetic spin-orbit, PSO, and diamagnetic spin-orbit, DSO) have been calculated. Results show that DFT methods give appropriate values for nJFF (n = 4 to 7), while for geminal and vicinal JFF present large deviations from experimental values. For the latter SSCCs (2JFF and 3JFF), the four contributions (FC, SD, PSO and DSO) are analysed as a function of the local and nonlocal exchange in 1,1- and 1,2-difluoroethylene. Although FC term is not dominant for these SSCCs, the variation of this contribution with exchange is remarkable. On the other hand, SD and PSO contributions can be suitably computed without and with exact exchange, respectively. This article is dedicated to the memory of Prof. N. C. Handy, whose contributions to the development of Theoretical Chemistry have been widely recognized.

  7. Strong coupling constant from Adler function in lattice QCD

    NASA Astrophysics Data System (ADS)

    Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo

    2016-09-01

    We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a‑1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.

  8. Density functional theory predictions of isotropic hyperfine coupling constants.

    PubMed

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  9. Homogeneous thermal cloak with constant conductivity and tunable heat localization.

    PubMed

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  10. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    NASA Astrophysics Data System (ADS)

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-04-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons.

  11. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    PubMed Central

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  12. The Not so Constant Gravitational "Constant" G as a Function of Quantum Vacuum

    NASA Astrophysics Data System (ADS)

    Maxmilian Caligiuri, Luigi

    Gravitation is still the less understood among the fundamental forces of Nature. The ultimate physical origin of its ruling constant G could give key insights in this understanding. According to the Einstein's Theory of General Relativity, a massive body determines a gravitational potential that alters the speed of light, the clock's rate and the particle size as a function of the distance from its own center. On the other hand, it has been shown that the presence of mass determines a modification of Zero-Point Field (ZPF) energy density within its volume and in the space surrounding it. All these considerations strongly suggest that also the constant G could be expressed as a function of quantum vacuum energy density somehow depending on the distance from the mass whose presence modifies the ZPF energy structure. In this paper, starting from a constitutive medium-based picture of space, it has been formulated a model of gravitational constant G as a function of Planck's time and Quantum Vacuum energy density in turn depending on the radial distance from center of the mass originating the gravitational field, supposed as spherically symmetric. According to this model, in which gravity arises from the unbalanced physical vacuum pressure, gravitational "constant" G is not truly unchanging but slightly varying as a function of the distance from the mass source of gravitational potential itself. An approximate analytical form of such dependence has been discussed. The proposed model, apart from potentially having deep theoretical consequences on the commonly accepted picture of physical reality (from cosmology to matter stability), could also give the theoretical basis for unthinkable applications related, for example, to the field of gravity control and space propulsion.

  13. Local Elastic Constants for Epoxy-Nanotube Composites from Molecular Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Gates, T. S.

    2007-01-01

    A method from molecular dynamics simulation is developed for determining local elastic constants of an epoxy/nanotube composite. The local values of C11, C33, K12, and K13 elastic constants are calculated for an epoxy/nanotube composite as a function of radial distance from the nanotube. While the results possess a significant amount of statistical uncertainty resulting from both the numerical analysis and the molecular fluctuations during the simulation, the following observations can be made. If the size of the region around the nanotube is increased from shells of 1 to 6 in thickness, then the scatter in the data reduces enough to observe trends. All the elastic constants determined are at a minimum 20 from the center of the nanotube. The C11, C33, and K12 follow similar trends as a function of radial distance from the nanotube. The K13 decreases greater distances from the nanotube and becomes negative which may be a symptom of the statistical averaging.

  14. Localized functionalization of single nanopores

    SciTech Connect

    Nilsson, J; Lee, J I; Ratto, T V; Letant, S E

    2005-09-12

    We demonstrate the localization of chemical functionality at the entrance of single nanopores for the first time by using the controlled growth of an oxide ring. Nanopores were fabricated by Focused Ion Beam machining on silicon platforms, locally derivatized by ion beam assisted oxide deposition, and further functionalized with DNA probes via silane chemistry. Ionic current recorded through single nanopores at various stages of the fabrication process demonstrated that the apertures can be locally functionalized with DNA probes. Future applications for this functional platform include the selective detection of biological organisms and molecules by ionic current blockade measurements.

  15. On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors

    NASA Astrophysics Data System (ADS)

    Râsander, M.; Moram, M. A.

    2015-10-01

    We have performed density functional calculations using a range of local and semi-local as well as hybrid density functional approximations of the structure and elastic constants of 18 semiconductors and insulators. We find that most of the approximations have a very small error in the lattice constants, of the order of 1%, while the errors in the elastic constants and bulk modulus are much larger, at about 10% or better. When comparing experimental and theoretical lattice constants and bulk modulus we have included zero-point phonon effects. These effects make the experimental reference lattice constants 0.019 Å smaller on average while making the bulk modulus 4.3 GPa stiffer on average. According to our study, the overall best performing density functional approximations for determining the structure and elastic properties are the PBEsol functional, the two hybrid density functionals PBE0 and HSE (Heyd, Scuseria, and Ernzerhof), as well as the AM05 functional.

  16. Ig Constant Region Effects on Variable Region Structure and Function

    PubMed Central

    Janda, Alena; Bowen, Anthony; Greenspan, Neil S.; Casadevall, Arturo

    2016-01-01

    The adaptive humoral immune response is responsible for the generation of antimicrobial proteins known as immunoglobulin molecules or antibodies. Immunoglobulins provide a defense system against pathogenic microbes and toxins by targeting them for removal and/or destruction. Historically, antibodies have been thought to be composed of distinct structural domains known as the variable and constant regions that are responsible for antigen binding and mediating effector functions such as opsonization and complement activation, respectively. These domains were thought to be structurally and functionally independent. Recent work has revealed however, that in some families of antibodies, the two regions can influence each other. We will discuss the body of work that led to these observations, as well as the mechanisms that have been proposed to explain how these two different antibody regions may interact in the function of antigen binding. PMID:26870003

  17. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGES

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  18. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  19. Calculation of trajectories using constant and slowly varying functions

    NASA Technical Reports Server (NTRS)

    Culpepper, B. K.

    1971-01-01

    A method is presented for calculating trajectories for the restricted problem of three bodies which utilizes conic propagation of the state vector with frequency correction of position and velocity by means of a constant or slowly varying function. This method of calculating trajectories was applied to the planar circular restricted three body problem, the planar elliptic restricted problem, and the ephemeral restricted problem. Two methods (the refined method and the straight forward method) of determining the direction of the position correction are presented for the circular restricted problem and the elliptic restricted problem of three bodies. Only the straight forward method was used with the ephemeral restricted problem. The earth, the moon, and a space vehicle comprise the restricted three body model that is used.

  20. Corrections to the apparent value of the cosmological constant due to local inhomogeneities

    SciTech Connect

    Romano, Antonio Enea; Chen, Pisin E-mail: pisinchen@phys.ntu.edu.tw

    2011-10-01

    Supernovae observations strongly support the presence of a cosmological constant, but its value, which we will call apparent, is normally determined assuming that the Universe can be accurately described by a homogeneous model. Even in the presence of a cosmological constant we cannot exclude nevertheless the presence of a small local inhomogeneity which could affect the apparent value of the cosmological constant. Neglecting the presence of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological data, leading to the distinction between an apparent and true value of the cosmological constant. We establish the theoretical framework to calculate the corrections to the apparent value of the cosmological constant by modeling the local inhomogeneity with a ΛLTB solution. Our assumption to be at the center of a spherically symmetric inhomogeneous matter distribution correspond to effectively calculate the monopole contribution of the large scale inhomogeneities surrounding us, which we expect to be the dominant one, because of other observations supporting a high level of isotropy of the Universe around us. By performing a local Taylor expansion we analyze the number of independent degrees of freedom which determine the local shape of the inhomogeneity, and consider the issue of central smoothness, showing how the same correction can correspond to different inhomogeneity profiles. Contrary to previous attempts to fit data using large void models our approach is quite general. The correction to the apparent value of the cosmological constant is in fact present for local inhomogeneities of any size, and should always be taken appropriately into account both theoretically and observationally.

  1. Global Positioning System test of the local position invariance of Planck's constant.

    PubMed

    Kentosh, J; Mohageg, M

    2012-03-16

    Publicly available clock correction data from the Global Positioning System was analyzed and used in combination with the results of terrestrial clock comparison experiments to confirm the local position invariance (LPI) of Planck's constant within the context of general relativity. The results indicate that h is invariant within a limit of |β(h)|<0.007, where β(h) is a dimensionless parameter that represents the extent of LPI violation.

  2. Constant covariance in local vertical coordinates for near-circular orbits

    NASA Technical Reports Server (NTRS)

    Shepperd, Stanley W.

    1991-01-01

    A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.

  3. The effect of interacting dark energy on local measurements of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ8. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  4. Viscoelastic Timoshenko Beams with Occasionally Constant Relaxation Functions

    SciTech Connect

    Tatar, Nasser-eddine

    2012-08-15

    For a prescribed desirable arbitrary decay suitable viscoelastic materials are determined through their relaxation functions. It is shown that if we wish to have a decay of order {gamma}(t) then the kernels should be of the same order. That is their product with this function should be summable.

  5. Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.

    2016-08-01

    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.

  6. Functional Localization of Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Eto, Shinji; Hirasawa, Kotaro; Hu, Jinglu

    According to the knowledge of brain science, it is suggested that there exists cerebral functional localization, which means that a specific part of the cerebrum is activated depending on various kinds of information human receives. The aim of this paper is to build an artificial model to realize functional localization based on Genetic Network Programming (GNP), a new evolutionary computation method recently developed. GNP has a directed graph structure suitable for realizing functional localization. We studied the basic characteristics of the proposed system by making GNP work in a functionally localized way.

  7. Locality of correlation in density functional theory.

    PubMed

    Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano

    2016-08-01

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed. PMID:27497544

  8. Locality of correlation in density functional theory

    NASA Astrophysics Data System (ADS)

    Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano

    2016-08-01

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  9. Locality of correlation in density functional theory.

    PubMed

    Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano

    2016-08-01

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  10. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M.

    2014-10-28

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  11. Functional congruity in local auditory cortical microcircuits.

    PubMed

    Atencio, C A; Schreiner, C E

    2016-03-01

    Functional columns of primary auditory cortex (AI) are arranged in layers, each composed of highly connected fine-scale networks. The basic response properties and interactions within these local subnetworks have only begun to be assessed. We examined the functional diversity of neurons within the laminar microarchitecture of cat AI to determine the relationship of spectrotemporal processing between neighboring neurons. Neuronal activity was recorded across the cortical layers while presenting a dynamically modulated broadband noise. Spectrotemporal receptive fields (STRFs) and their nonlinear input/output functions (nonlinearities) were constructed for each neuron and compared for pairs of neurons simultaneously recorded at the same contact site. Properties of these local neuron pairs showed greater similarity than non-paired neurons within the same column for all considered parameters including firing rate, envelope-phase precision, preferred spectral and temporal modulation frequency, as well as for the threshold and transition of the response nonlinearity. This higher functional similarity of paired versus non-paired neurons was most apparent in infragranular neuron pairs, and less for local supragranular and granular pairs. The functional similarity of local paired neurons for firing rate, best temporal modulation frequency and two nonlinearity aspects was laminar dependent, with infragranular local pair-wise differences larger than for granular or supragranular layers. Synchronous spiking events between pairs of neurons revealed that simultaneous 'Bicellular' spikes, in addition to carrying higher stimulus information than non-synchronized spikes, encoded faster modulation frequencies. Bicellular functional differences to the best matched of the paired neurons could be substantial. Bicellular nonlinearities showed that synchronous spikes act to transmit stimulus information with higher fidelity and precision than non-synchronous spikes of the individual

  12. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus

    PubMed Central

    Michaelides, Ellie B.; Rupasinghe, Thusitha; Tull, Dedreia; Green, Mark P.; Jones, Therésa M.

    2015-01-01

    Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested. PMID:26339535

  13. Time constants and feedback transfer functions of EBR-II (Experimental Breeder Reactor) subassembly types

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel.

  14. A 2.4% Determination of the Local Value of the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.; Scolnic, Dan; Casertano, Stefano; Filippenko, Alexei V.; Tucker, Brad E.; Reid, Mark J.; Jones, David O.; Silverman, Jeffrey M.; Chornock, Ryan; Challis, Peter; Yuan, Wenlong; Brown, Peter J.; Foley, Ryan J.

    2016-07-01

    We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ˜300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s-1 Mpc-1, respectively. Our best estimate of H 0 = 73.24 ± 1.74 km s-1 Mpc-1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s-1 Mpc-1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s-1 Mpc-1 based on the comparably precise combination of WMAP

  15. A 2.4% Determination of the Local Value of the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.; Scolnic, Dan; Casertano, Stefano; Filippenko, Alexei V.; Tucker, Brad E.; Reid, Mark J.; Jones, David O.; Silverman, Jeffrey M.; Chornock, Ryan; Challis, Peter; Yuan, Wenlong; Brown, Peter J.; Foley, Ryan J.

    2016-07-01

    We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ˜300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s‑1 Mpc‑1, respectively. Our best estimate of H 0 = 73.24 ± 1.74 km s‑1 Mpc‑1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s‑1 Mpc‑1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s‑1 Mpc‑1 based on the comparably precise combination of WMAP

  16. Challenges and implications of global modeling approaches that are alternatives to using constant plant functional types

    NASA Astrophysics Data System (ADS)

    Bodegom, P. V.

    2015-12-01

    In recent years a number of approaches have been developed to provide alternatives to the use of plant functional types (PFTs) with constant vegetation characteristics for simulating vegetation responses to climate changes. In this presentation, an overview of those approaches and their challenges is given. Some new approaches aim at removing PFTs altogether by determining the combination of vegetation characteristics that would fit local conditions best. Others describe the variation in traits within PFTs as a function of environmental drivers, based on community assembly principles. In the first approach, after an equilibrium has been established, vegetation composition and its functional attributes can change by allowing the emergence of a new type that is more fit. In the latter case, changes in vegetation attributes in space and time as assumed to be the result intraspecific variation, genetic adaptation and species turnover, without quantifying their respective importance. Hence, it is assumed that -by whatever mechanism- the community as a whole responds without major time lags to changes in environmental drivers. Recently, we showed that intraspecific variation is highly species- and trait-specific and that none of the current hypotheses on drivers of this variation seems to hold. Also genetic adaptation varies considerably among species and it is uncertain whether it will be fast enough to cope with climate change. Species turnover within a community is especially fast in herbaceous communities, but much slower in forest communities. Hence, it seems that assumptions made may not hold for forested ecosystems, but solutions to deal with this do not yet exist. Even despite the fact that responsiveness of vegetation to environmental change may be overestimated, we showed that -upon implementation of trait-environment relationships- major changes in global vegetation distribution are projected, to similar extents as to those without such responsiveness.

  17. Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers

    SciTech Connect

    Guo, Rui Hao, Hui-Qin

    2014-05-15

    In nonlinear erbium doped fibers, the Hirota–Maxwell–Bloch system with higher order effects usually governs the propagation of ultrashort pulses. New soliton solutions for this system are constructed on the constant backgrounds including one and two breathers and first and higher order localized soliton solutions. Considering the influence of higher order effects, propagation properties of those soliton solutions are discussed. -- Highlights: •The AB and Ma-breathers are derived on the constant backgrounds. •Dynamic features of two-breathers are discussed. •Localized solutions are generated from two different ways.

  18. Constant-current control method of multi-function electromagnetic transmitter.

    PubMed

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load. PMID:25725863

  19. Constant-current control method of multi-function electromagnetic transmitter

    NASA Astrophysics Data System (ADS)

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.

  20. Constant-current control method of multi-function electromagnetic transmitter.

    PubMed

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.

  1. Local and Global Comparison of Continuous Functions

    SciTech Connect

    Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2004-12-16

    We introduce local and global comparison measures for a collection of k {<=} d real-valued smooth functions on a common d-dimensional Riemannian manifold. For k = d = 2 we relate the measures to the set of critical points of one function restricted to the level sets of the other. The definition of the measures extends to piecewise linear functions for which they are easy to compute. The computation of the measures forms the centerpiece of a software tool which we use to study scientific datasets.

  2. The Einstein-Hilbert action with cosmological constant as a functional of generic form

    NASA Astrophysics Data System (ADS)

    Tolksdorf, Jürgen

    2015-01-01

    The geometrical underpinnings of a specific class of Dirac operators are discussed. It is demonstrated how this class of Dirac operators allows to relate various geometrical functionals like the Yang-Mills action and the functional of non-linear σ - models (i.e., of (Dirac) harmonic maps). These functionals are shown to be similar to the Einstein-Hilbert action with cosmological constant (EHC). The EHC may thus be regarded as a "generic functional." As a byproduct, the geometrical setup presented also allows to avoid the issue of "fermion doubling" as usually encountered, for instance, in the geometrical discussion of the Standard Model in terms of Dirac operators. Furthermore, it is demonstrated how the geometrical setup presented allows to derive the cosmological constant term of the EHC from the Einstein-Hilbert functional and the action of a purely gauge coupling Higgs field.

  3. H0, q0 and the local velocity field. [Hubble and deceleration constants in Big Bang expansion

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Tammann, G. A.

    1982-01-01

    An attempt is made to find a systematic deviation from linearity for distances that are under the control of the Virgo cluster, and to determine the value of the mean random motion about the systematic flow, in order to improve the measurement of the Hubble and the deceleration constants. The velocity-distance relation for large and intermediate distances is studied, and type I supernovae are calibrated relatively as distance indicators and absolutely to obtain a new value for the Hubble constant. Methods of determining the deceleration constant are assessed, including determination from direct measurement, mean luminosity density, virgocentric motion, and the time scale test. The very local velocity field is investigated, and a solution is preferred with a random peculiar radial velocity of very nearby field galaxies of 90-100 km/s, and a Virgocentric motion of the local group of 220 km/s, leading to an underlying expansion rate of 55, in satisfactory agreement with the global value.

  4. Local cosmic strings in Brans-Dicke theory with a cosmological constant

    SciTech Connect

    Delice, Oezguer

    2006-09-15

    It is known that Vilenkin's phenomenological equation of state for static straight cosmic strings is inconsistent with Brans-Dicke theory. We will prove that, in the presence of a cosmological constant, this equation of state is consistent with Brans-Dicke theory. The general solution of the full nonlinear field equations, representing the interior of a cosmic string with a cosmological constant, is also presented.

  5. Analysis of agonist dissociation constants as assessed by functional antagonism in guinea pig left atria

    SciTech Connect

    Molenaar, P.; Malta, E.

    1986-04-01

    In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.

  6. THE ONSET OF ELECTRICAL BREAKDOWN IN DUST LAYERS: II. EFFECTIVE DIELECTRIC CONSTANT AND LOCAL FIELD ENHANCEMENT

    EPA Science Inventory

    Part 1 of the work has shown that electrical breakdown in dust layers obeys Paschen's Law, but occurs at applied field values which appear too small to initiate the breakdown. In this paper the authors show how an effective dielectric constant characterizing the dust layer can be...

  7. Local spin analyses using density functional theory

    NASA Astrophysics Data System (ADS)

    Abate, Bayileyegn; Peralta, Juan

    Local spin analysis is a valuable technique in computational investigations magnetic interactions on mono- and polynuclear transition metal complexes, which play vital roles in catalysis, molecular magnetism, artificial photosynthesis, and several other commercially important materials. The relative size and complex electronic structure of transition metal complexes often prohibits the use of multi-determinant approaches, and hence, practical calculations are often limited to single-determinant methods. Density functional theory (DFT) has become one of the most successful and widely used computational tools for the electronic structure study of complex chemical systems; transition metal complexes in particular. Within the DFT formalism, a more flexible and complete theoretical modeling of transition metal complexes can be achieved by considering noncollinear spins, in which the spin density is 'allowed to' adopt noncollinear structures in stead of being constrained to align parallel/antiparallel to a universal axis of magnetization. In this meeting, I will present local spin analyses results obtained using different DFT functionals. Local projection operators are used to decompose the expectation value of the total spin operator; first introduced by Clark and Davidson.

  8. Time constants and transfer functions for a homogeneous 900 MWt metallic fueled LMR

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Nodal transfer functions are calculated for a 900 MWt U10Zr-fueled sodium cooled reactor. From the transfer functions the time constants, feedback reactivity transfer function coefficients, and power coefficients can be determined. These quantities are calculated for core fuel, upper and lower axial reflector steel, radial blanket fuel, radial reflector steel, and B/sub 4/C rod shaft expansion effect. The quantities are compared to the analogous quantities of a 60 MWt metallic-fueled sodium cooled Experimental Breeder Reactor II configuration. 8 refs., 2 figs., 6 tabs.

  9. A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility

    NASA Astrophysics Data System (ADS)

    Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta

    2015-05-01

    We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective non-local Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.

  10. Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water

    NASA Astrophysics Data System (ADS)

    Schaaf, Christian; Gekle, Stephan

    2016-08-01

    We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water.

  11. Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water.

    PubMed

    Schaaf, Christian; Gekle, Stephan

    2016-08-28

    We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water. PMID:27586940

  12. Global network influences on local functional connectivity

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.; Willis, Cory M.; Smith, Matthew A.

    2015-01-01

    A central neuroscientific pursuit is understanding neuronal interactions that support computations underlying cognition and behavior. Although neurons interact across disparate scales – from cortical columns to whole-brain networks – research has been restricted to one scale at a time. We measured local interactions through multi-neuronal recordings while accessing global networks using scalp EEG in rhesus macaques. We measured spike count correlation, an index of functional connectivity with computational relevance, and EEG oscillations, which have been linked to various cognitive functions. We found a surprising non-monotonic relationship between EEG oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct relationship. With a widely-used network model we replicated these findings by incorporating a private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. Finally, we report that spike count correlation explains nonlinearities in the relationship between EEG oscillations and response time in a spatial selective attention task. PMID:25799040

  13. Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila

    PubMed Central

    Bai, Yongsheng; Casola, Claudio; Feschotte, Cédric; Betrán, Esther

    2007-01-01

    Background Processed copies of genes (retrogenes) are duplicate genes that originated through the reverse-transcription of a host transcript and insertion in the genome. This type of gene duplication, as any other, could be a source of new genes and functions. Using whole genome sequence data for 12 Drosophila species, we dated the origin of 94 retroposition events that gave rise to candidate functional genes in D. melanogaster. Results Based on this analysis, we infer that functional retrogenes have emerged at a fairly constant rate of 0.5 genes per million years per lineage over the last approximately 63 million years of Drosophila evolution. The number of functional retrogenes and the rate at which they are recruited in the D. melanogaster lineage are of the same order of magnitude as those estimated in the human lineage, despite the higher deletion bias in the Drosophila genome. However, unlike primates, the rate of retroposition in Drosophila seems to be fairly constant and no burst of retroposition can be inferred from our analyses. In addition, our data also support an important role for retrogenes as a source of lineage-specific male functions, in agreement with previous hypotheses. Finally, we identified three cases of functional retrogenes in D. melanogaster that have been independently retroposed and recruited in parallel as new genes in other Drosophila lineages. Conclusion Together, these results indicate that retroposition is a persistent mechanism and a recurrent pathway for the emergence of new genes in Drosophila. PMID:17233920

  14. A deconvolution function for single photon emission computed tomography with constant attenuation

    SciTech Connect

    Tomitani, T.

    1986-02-01

    A shift-invariant spatial deconvolution function for single-photon-emission computerized tomography with constant attenuation is presented. Image reconstruction algorithm is similar to conventional convolution-back-projection algorithm except that exponential weight is applied in backprojection process. The deconvolution function was obtained as a solution of a generalized Schlomilch's integral equation. A method to solve the integral equation is described briefly. The present deconvolution function is incorporated with frequency roll-off and image resolution can be preset. At the extreme of ideal image reconstruction, the deconvolution function is identical to that deduced by Kim et al. and its Fourier transform was proved to be identical to the filter deduced by Tretiak and Delaney and Gullburg and Budinger. Variance of the reconstructed image was analyzed and some numerical results were given. The algorithm was tested with computer simulation.

  15. The relation of local measures of Hubble's constant to its global value

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.; Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    The distributions of fractional deviations of local values form global H0 that observers with perfect distance data would find if they surveyed specified volumes of the universe are examined here using new very large scale calculations of cold dark matter (CDM) and primordial isocurvature baryonic (PIB) scenarios for the origin of structure. It is found that the expected deviations due to large-scale motions are larger than quoted observational errors unless very large volumes are surveyed. Even perfect sampling and distances of all galaxies within a sphere extending out to the distances of the Virgo and Coma clusters would leave 45 percent and 3 percent rms uncertainties, respectively, in the global value of H0 in the CDM model. It is shown that the local versus global error in an H0 determination can be roughly estimated by the angular variance seen over the sky in the expansion rate, and that a very rough correction from the local to the global H0 value can be derived.

  16. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    NASA Astrophysics Data System (ADS)

    Hrycyna, Orest; Szydłowski, Marek

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  17. Role of Möbius constants and scattering functions in Cachazo-He-Yuan scalar amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-05-01

    The integration over the Möbius variables leading to the Cachazo-He-Yuan double-color n -point massless scalar amplitude are carried out one integral at a time. Möbius invariance dictates the final amplitude to be independent of the three Möbius constants σr,σs,σt, but their choice affects integrations and the intermediate results. The effect of the Möbius constants, which will be held finite but otherwise arbitrary, the two sets of colors, and the scattering functions on each integration is investigated. A general systematic way to carry out the n -3 integrations is explained, each exposing one of the n -3 propagators of a single Feynman diagram. Two detailed examples are shown to illustrate the procedure, one a five-point amplitude, and the other a nine-point amplitude. Our procedure does not generate intermediate spurious poles, in contrast to what is common by choosing Möbius constants at 0, 1, and ∞ .

  18. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance.

    PubMed

    Fortier, T M; Ashby, N; Bergquist, J C; Delaney, M J; Diddams, S A; Heavner, T P; Hollberg, L; Itano, W M; Jefferts, S R; Kim, K; Levi, F; Lorini, L; Oskay, W H; Parker, T E; Shirley, J; Stalnaker, J E

    2007-02-16

    We report tests of local position invariance and the variation of fundamental constants from measurements of the frequency ratio of the 282-nm 199Hg+ optical clock transition to the ground state hyperfine splitting in 133Cs. Analysis of the frequency ratio of the two clocks, extending over 6 yr at NIST, is used to place a limit on its fractional variation of <5.8x10(-6) per change in normalized solar gravitational potential. The same frequency ratio is also used to obtain 20-fold improvement over previous limits on the fractional variation of the fine structure constant of |alpha/alpha|<1.3x10(-16) yr-1, assuming invariance of other fundamental constants. Comparisons of our results with those previously reported for the absolute optical frequency measurements in H and 171Yb+ vs other 133Cs standards yield a coupled constraint of -1.5x10(-15)

  19. Function and regulation of local axonal translation

    PubMed Central

    Lin, Andrew C; Holt, Christine E

    2013-01-01

    An increasing body of evidence indicates that local axonal translation is required for growing axons to respond appropriately to guidance cues and other stimuli. Recent studies suggest that asymmetrical synthesis of cytoskeletal proteins mediates growth cone turning and that local translation and retrograde transport of transcription factors mediate neuronal survival. Axonal translation is regulated partly by selective axonal localization of mRNAs and by translation initiation factors and RNA-binding proteins. We discuss possible rationales for local axonal translation, including distinct properties of nascent proteins, precise localization, and axonal autonomy. PMID:18508259

  20. Partition functions and equilibrium constants for diatomic molecules and atoms of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Collet, R.

    2016-04-01

    Partition functions and dissociation equilibrium constants are presented for 291 diatomic molecules for temperatures in the range from near absolute zero to 10 000 K, thus providing data for many diatomic molecules of astrophysical interest at low temperature. The calculations are based on molecular spectroscopic data from the book of Huber & Herzberg (1979, Constants of Diatomic Molecules) with significant improvements from the literature, especially updated data for ground states of many of the most important molecules by Irikura (2007, J. Phys. Chem. Ref. Data, 36, 389). Dissociation energies are collated from compilations of experimental and theoretical values. Partition functions for 284 species of atoms for all elements from H to U are also presented based on data collected at NIST. The calculated data are expected to be useful for modelling a range of low density astrophysical environments, especially star-forming regions, protoplanetary disks, the interstellar medium, and planetary and cool stellar atmospheres. The input data, which will be made available electronically, also provides a possible foundation for future improvement by the community. Full Tables 1-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A96

  1. Low-redshift effects of local structure on the Hubble parameter in presence of a cosmological constant

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Vallejo, Sergio Andres

    2016-04-01

    In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H( z) and δ H/H for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H( z) observations will show deviations from the Λ CDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure.

  2. Dielectric constants of solid-liquid and liquid-liquid systems as a function of composition.

    PubMed

    Cavé, G; Puisieux, F; Carstensen, J T

    1979-04-01

    The dielectric constant of a solid substance in the dissolved state may be found by using a solvent with a dielectric constant that remains invariable when the solid substance is dissolved. The slope values obtained from dielectric constant versus concentration plots of the solid substance in two solvents with different dielectric constants are extrapolated or interpolated. The dielectric constant of a solid substance in the dissolved state also can be found directly from the dielectric constants of solutions of the solid in one solvent at two concentrations. The dielectric constants are converted to polarizations, and the two values allow calculations of the polarizations of the solvent and solute separately. From the polarization of the solute, one can calculate its dielectric constant (in dissolved state). Such a procedure is correct only if the dielectric constant is concentration independent.

  3. Methods of evaluation of elastic constants and several other properties using radial distribution functions

    NASA Astrophysics Data System (ADS)

    Gopala Rao, R. V.; Venkatesh, R.

    1989-05-01

    The I1 and I2 integrals defined by Schofield are evaluated for the hard-sphere, square-well, and Lennard-Jones potential functions. We have also presented calculations of I1 and I2 integrals from Ascarelli's modified compressibility equation. These I1 and I2 values are used in the evaluation of second- and third-order elastic constants. A relationship between (C111/C11) and the pressure variation of bulk modulus C1 has been derived. This is found to give results in fair agreement with experiment. Using the Collin-Raffel's equation of viscosity, the effective mass of the liquid molecule is deduced, and from the effective mass the diffusion coefficient has been calculated. Using Zwanzig's and Mountain's equation, the high-frequency moduli G∞ and K∞ have been computed, and from this the dilation modulus M∞ has been calculated and compared with experiment. We use Takeno's and Goda's equation to evaluate CL and CT, the longitudinal and transverse sound velocities, respectively, and hence the Poisson ratio σs. Thus the present investigation involves the use of I1 and I2 integrals, which in turn are dependent on the microscopic properties; g(r), the radial distribution function; and u(r), the potential function.

  4. Remote Control of Gene Function by Local Translation

    PubMed Central

    Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.

    2014-01-01

    The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524

  5. Simultaneous determination of optical constants, local thickness and roughness of ZnSe thin films by imaging spectroscopic reflectometry

    NASA Astrophysics Data System (ADS)

    Nečas, D.; Ohlídal, I.; Franta, D.; Ohlídal, M.; Vodák, J.

    2016-01-01

    A rough non-uniform ZnSe thin film on a GaAs substrate is optically characterised using imaging spectroscopic reflectometry (ISR) in the visible, UV and near IR region, applied as a standalone technique. A global-local data processing algorithm is used to fit spectra from all pixels together and simultaneously determine maps of the local film thickness, roughness and overlayer thickness as well as spectral dependencies of film optical constants determined for the sample as a whole. The roughness of the film upper boundary is modelled using scalar diffraction theory (SDT), for which an improved calculation method is developed to process the large quantities of experimental data produced by ISR efficiently. This method avoids expensive operations by expressing the series obtained from SDT using a double recurrence relation and it is shown that it essentially eliminates the necessity for any speed-precision trade-offs in the SDT calculations. Comparison of characterisation results with the literature and other techniques shows the ability of multi-pixel processing to improve the stability and reliability of least-squares data fitting and demonstrates that standalone ISR, coupled with suitable data processing methods, is viable as a characterisation technique, even for thin films that are relatively far from ideal and require complex modelling.

  6. Local representation of the electronic dielectric response function

    SciTech Connect

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized, which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.

  7. Local representation of the electronic dielectric response function

    DOE PAGES

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less

  8. Local hybrid functionals: An assessment for thermochemical kinetics

    SciTech Connect

    Kaupp, Martin; Bahmann, Hilke; Arbuznikov, Alexei V.

    2007-11-21

    Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b({tau}{sub W}(r)/{tau}(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers.

  9. 'Syncing' Up with the Quinn-Rand-Strogatz Constant: Hurwitz-ZetaFunctions in Non-Linear physics

    SciTech Connect

    Durgin, Natalie J.; Garcia, Sofia M.; Flournoy, Tamara; Bailey,David H.

    2007-12-01

    This work extends the analytical and computationalinvestigation of the Quinn-Rand-Strogatz (QRS) constants from non-linearphysics. The QRS constants (c1, c2, ..., cN) are found in a Winfreeoscillator mean-field system used to examine the transition of coupledoscillators as they lose synchronization. The constants are part of anasymptotic expansion of a function related to the oscillatorsynchronization. Previous work used high-precision software packages toevaluate c1 to 42 decimal-digits, which made it possible to recognize andprove that c1 was the root of a certain Hurwitz-zeta function. Thisallowed a value of c2 to beconjectured in terms of c1. Therefore thereis interest in determining the exact values of these constants to highprecision in the hope that general relationships can be establishedbetween the constants and the zeta functions. Here, we compute the valuesof the higher order constants (c3, c4) to more than 42-digit precision byextending an algorithm developed by D.H. Bailey, J.M. Borwein and R.E.Crandall. Several methods for speeding up the computation are exploredand an alternate proof that c1 is the root of a Hurwitz-zeta function isattempted.

  10. Kolmogorov constants for the second-order structure function and the energy spectrum.

    PubMed

    Ni, Rui; Xia, Ke-Qing

    2013-02-01

    We examine the behavior of the Kolmogorov constants C(2), C(k), and C(k1), which are, respectively, the prefactors of the second-order longitudinal structure function and the three-dimensional and one-dimensional longitudinal energy spectrum in the inertial range. We show that their ratios, C(2)/C(k1) and C(k)/C(k1), exhibit clear dependence on the microscale Reynolds number R(λ), implying that they cannot all be independent of R(λ). In particular, it is found that (C(k1)/C(2)-0.25)=1.95R(λ)(-0.68). The study further reveals that the widely used relation C(2)=4.02C(k1) holds only asymptotically when R(λ)>/~10(5). It is also found that C(2) has much stronger R(λ) dependence than either C(k) or C(k1) if the latter indeed has a systematic dependence on R(λ). We further show that the varying dependence on R(λ) of these three numbers can be attributed to the difference of the inertial range in real- and wave-number space, with the inertial range in real-space known to be much shorter than that in wave-number space.

  11. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    SciTech Connect

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  12. Merge Frame Design for Video Stream Switching Using Piecewise Constant Functions

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Cheung, Gene; Cheung, Ngai-Man; Ortega, Antonio; Au, Oscar C.

    2016-08-01

    The ability to efficiently switch from one pre-encoded video stream to another (e.g., for bitrate adaptation or view switching) is important for many interactive streaming applications. Recently, stream-switching mechanisms based on distributed source coding (DSC) have been proposed. In order to reduce the overall transmission rate, these approaches provide a "merge" mechanism, where information is sent to the decoder such that the exact same frame can be reconstructed given that any one of a known set of side information (SI) frames is available at the decoder (e.g., each SI frame may correspond to a different stream from which we are switching). However, the use of bit-plane coding and channel coding in many DSC approaches leads to complex coding and decoding. In this paper, we propose an alternative approach for merging multiple SI frames, using a piecewise constant (PWC) function as the merge operator. In our approach, for each block to be reconstructed, a series of parameters of these PWC merge functions are transmitted in order to guarantee identical reconstruction given the known side information blocks. We consider two different scenarios. In the first case, a target frame is first given, and then merge parameters are chosen so that this frame can be reconstructed exactly at the decoder. In contrast, in the second scenario, the reconstructed frame and merge parameters are jointly optimized to meet a rate-distortion criteria. Experiments show that for both scenarios, our proposed merge techniques can outperform both a recent approach based on DSC and the SP-frame approach in H.264, in terms of compression efficiency and decoder complexity.

  13. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    PubMed

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated. PMID:26374014

  14. Non-Friedmann cosmology for the Local Universe, significance of the universal Hubble constant, and short-distance indicators of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Baryshev, Yu. V.

    2006-09-01

    Based on the increasing evidence of the cosmological relevance of the local Hubble flow, we consider a simple analytical cosmological model for the Local Universe. This is a non-Friedmann model with a non-uniform static space-time. The major dynamical factor controlling the local expansion is the antigravity produced by the omnipresent and permanent dark energy of the cosmic vacuum (or the cosmological constant). The antigravity dominates at larger distances than 1-2 Mpc from the center of the Local group. The model gives a natural explanation of the two key quantitative characteristics of the local expansion flow, which are the local Hubble constant and the velocity dispersion of the flow. The observed kinematical similarity of the local and global flows of expansion is clarified by the model. We analytically demonstrate the efficiency of the vacuum cooling mechanism that allows one to see the Hubble law this close to the Local group. The "universal Hubble constant" HV (≈60 km s-1 Mpc-1), depending only on the vacuum density, has special significance locally and globally. The model makes a number of verifiable predictions. It also unexpectedly shows that the dwarf galaxies of the local flow with the shortest distances and lowest redshifts may be the most sensitive indicators of dark energy in our neighborhood.

  15. Linking Long Noncoding RNA Localization and Function.

    PubMed

    Chen, Ling-Ling

    2016-09-01

    Recent studies have revealed the regulatory potential of many long noncoding RNAs (lncRNAs). Most lncRNAs, like mRNAs, are transcribed by RNA polymerase II and are capped, polyadenylated, and spliced. However, the subcellular fates of lncRNAs are distinct and the mechanisms of action are diverse. Investigating the mechanisms that determine the subcellular fate of lncRNAs has the potential to provide new insights into their biogenesis and specialized functions. PMID:27499234

  16. Synchrony, connectivity, and functional similarity in auditory midbrain local circuits.

    PubMed

    Atencio, Craig A; Shen, Victor; Schreiner, Christoph E

    2016-10-29

    The central nucleus of the inferior colliculus (ICC) contains a laminar structure that functions as an organizing substrate of ascending inputs and local processing. While topographic distributions of ICC response parameters within and across laminae have been reported, the functional micro-organization of the ICC is less well understood. For pairs of neighboring ICC neurons, we examined the nature of functional connectivity and receptive field preferences to gain a better understanding of the structure and function of local circuits. By recording from pairs of adjacent neurons and presenting pure-tone and dynamic broad-band stimulation, we estimated functional connectivity and local differences in frequency response areas (FRAs), spectrotemporal receptive fields (STRFs), nonlinear input/output functions, and single-spike information. From the cross-covariance functions we identified putative unidirectional as well as bidirectional excitatory/inhibitory interactions. STRFs of neighboring neurons strongly conserve best frequency, and moderately agree in STRF similarity, bandwidth, temporal response type, best modulation frequency, nonlinearity structure, and degree of information processing. Excitatory connectivity was stronger and temporally more precise than for inhibitory connections. Neither connection strength nor degree of synchrony correlated with receptive field parameters. The functional similarity of local pairs of ICC neurons was substantially less than for local pairs in the granular layers of primary auditory cortex (AI). These results imply that while the ICC is an obligatory nexus of ascending information, local neurons are comparatively weakly connected and exhibit considerable receptive field variability, potentially reflecting the heterogeneity of converging inputs to ICC functional zones.

  17. Semiconductor band gap localization via Gaussian function

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Brown, G. J.; Xi, H.

    2012-10-01

    To determine the band gap of bulk semiconductors with transmission spectroscopy alone is considered as an extremely difficult task because in the higher energy range, approaching and exceeding the band gap energy, the material is opaque yielding no useful data to be recorded. In this paper, by investigating the transmission of industrial GaSb wafers with a thickness of 500 µm, we demonstrate how these obstacles of transmission spectroscopy can be overcome. The key is the transmission spectrums’ derivative, which coincides with the Gaussian function. This understanding can be used to transfer Beers’ law in an integral form opening the pathway of band gap determinations based on mathematical parameters only. The work also emphasizes the correlation between the thermal band gap variation and Debye temperature.

  18. Applying and assessing some semi-local density functionals for condensed matter physics and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Hao, Pan

    Density functional theory (DFT) is a widely used quantum mechanical method for the simulation of the electronic structure of atoms, molecules, and solids. The only part that needs to be approximated is the exchange-correlation energy as a functional of the electron density. After many-year development, there is a huge variety of exchange-correlation functionals. According to the ingredients, an exchange-correlation functional can be classified as a semi-local functional or beyond. A semi-local functional can be nonempirical or empirical and only uses locality information, such as electron density, gradient of the density, Laplacian of the density, and kinetic energy density. Unlike a non-local functional that uses non-locality information, a semi-local functional is computationally efficient and can be applied to large systems. The meta-generalized gradient approximation (meta-GGA), which is the highest-level semi-local functional, has the potential to give a good description for condensed matter physics and quantum chemistry. We built the self-consistent revised Tao-Perdew-Staroverov-Scuseria (revTPSS) meta-GGA into the band-structure program BAND to test the performances of some self-consistent semi-local functionals on lattice constant with a 58-solid test set. The self-consistent effect of revTPSS was also discussed. The vibration of a crystal has a contribution to the ground state energy of a system, which is the zero-point energy at zero temperature. It has anharmonicity at the equilibrium geometry. The standard DFT doesn't consider the zero-point energy of a crystal. We used density functional perturbation theory (DFPT), which is a powerful and flexible theoretical technique within the density functional framework, to study the zero-point energy and make a correction to the lattice constant. The method was compared to a traditional zero-point anharmonic expansion method that is based on the Debye and Dugdale-MacDonald approximations. We also tested some new

  19. Selective determination of rate constants of reactions of atomic hydrogen with various functional groups of a complex molecule

    NASA Astrophysics Data System (ADS)

    Brauer, G. B.; Pugachev, D. V.; Azatyan, V. V.

    2016-05-01

    The possibility of determining absolute values of the rate constants of reactions of active intermediate species with different functional groups of molecules is demonstrated by measuring macrokinetic combustion characteristics. The Arrhenius parameters of the rate constant of the reaction between atomic hydrogen with the methylene group of ethanol and molecular oxygen within the temperature range of 830-970 K are determined. The reasons for the differences between the rate constants of reactions with the methylene and methyl groups of an ethanol molecule are discussed using thermochemical data. It is found that the obtained values of activation energies and preexponential factors of rate constants are in good agreement with the literature data on the region of lower temperatures.

  20. The local structure, infrared phonon modes and the origin of the dielectric constant in La2Hf2O7 thin film

    NASA Astrophysics Data System (ADS)

    Qi, Zeming; Cheng, Xuerui; Zhang, Guobin; Li, Tingting; Wang, Yuyin; Shao, Tao; Li, Chengxiang; He, Bo

    2012-03-01

    The local structure and dielectric properties of crystalline and amorphous La2Hf2O7 (LHO) thin film were studied by X-ray absorption spectroscopy and infrared spectroscopy. The basic infrared phonon modes with most contributions to the static dielectric constant of crystal LHO are preserved, which causes the considerable value of the static dielectric constant in the amorphous thin film. The preservation of the main infrared phonon modes in the amorphous thin film is because it has similar the nearest local structures around Hf and La atoms as the crystal LHO. This inheritance of the local structural and vibrational features of the crystal phase is the origin of the dielectric constant of the LHO thin film.

  1. Local-hybrid functional based on the correlation length

    SciTech Connect

    Johnson, Erin R.

    2014-09-28

    Local-hybrid functionals involve position-dependent mixing of Hartree-Fock and density-functional exchange, which should allow improved performance relative to conventional hybrids by reducing the inherent delocalization error and improving the long-range behaviour. Herein, the same-spin correlation length, obtained from the Fermi-hole radius, is used as the mixing parameter. The performance of the resulting local-hybrid functional is assessed for standard thermochemical and kinetics benchmarks. The local hybrid is shown to perform significantly better than the corresponding global hybrid in almost all cases.

  2. A New Electron Localization Function and Its Interpretation

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    A new electron localization function is justified and compared with the laplacian of the electronic charge density. Some advantages of the new function and its novel predictions are discussed. Several slides and some video of visualizations using the new function in comparison to the laplacian will be shown.

  3. The bond force constant and bulk modulus of small fullerenes using density functional theory and finite element analysis.

    PubMed

    Tapia, A; Villanueva, C; Peón-Escalante, R; Quintal, R; Medina, J; Peñuñuri, F; Avilés, F

    2015-06-01

    Dedicated bond force constant and bulk modulus of C n fullerenes (n = 20, 28, 36, 50, 60) are computed using density functional theory (DFT). DFT predicts bond force constants of 611, 648, 675, 686, and 691 N/m, for C20, C28, C36, C50, and C60, respectively, indicating that the bond force constant increases for larger fullerenes. The bulk modulus predicted by DFT increases with decreased fullerene diameter, from 0.874 TPa for C60 to 1.830 TPa for C20. The bond force constants predicted by DFT are then used as an input for finite element analysis (FEA) of the fullerenes, considered as spatial frames in structural models where the bond stiffness is represented by the DFT-computed bond force constant. In agreement with DFT, FEA predicts that smaller fullerenes are stiffer, and underestimates the bulk modulus with respect to DFT. The difference between the FEA and DFT predictions of the bulk modulus decreases as the size of the fullerene increases, from 20.9% difference for C20 to only 4% difference for C60. Thus, it is concluded that knowing the appropriate bond force constant, FEA can be used as a plausible approximation to model the elastic behavior of small fullerenes.

  4. Functional roles of plasma membrane localized estrogen receptors.

    PubMed

    Sreeja, S; Thampan, RaghavaVarman

    2003-07-01

    A series of emerging data supports the existence and importance of plasma membrane localized estrogen receptors in a variety of cells that are targets for the steroid hormone action. When estradiol (E2) binds to the cell surface protein, the ensuing signal transduction event triggers downstream signaling cascades that contribute to important biological functions. Aside from the classical signaling through nuclear estrogen receptors, we have provided evidence for the functional roles of an estrogen receptor localized in the plasma membrane. This review highlights some of the recent advances made in the understanding of the genomic/non-genomic actions of plasma membrane localized estrogen receptors. PMID:15255376

  5. How do electron localization functions describe π-electron delocalization?

    PubMed

    Steinmann, Stephan N; Mo, Yirong; Corminboeuf, Clemence

    2011-12-14

    Scalar fields provide an intuitive picture of chemical bonding. In particular, the electron localization function (ELF) has proven to be highly valuable in interpreting a broad range of bonding patterns. The discrimination between enhanced or reduced electron (de)localization within cyclic π-conjugated systems remains, however, challenging for ELF. In order to clearly distinguish between the local properties of ten highly and weakly π-(de)localized prototype systems, we compare the ELFs of both the canonical wave functions and electron-localized states (diabatic) with those of two closely related scalar fields: the electron localizability indicator (ELI-D) and the localized orbital locator (LOL). The simplest LOL function distinguishes enhanced from weak π-(de)localization in an insightful and reliable manner. LOL offers the finest contrast between annulenes with 4n/4n + 2 π electrons and their inorganic analogues as well as between hyperconjugated cyclopentadiene derivatives. LOL(π) also gives an appealing and intuitive picture of the π-bond. In contrast, the most popular ELF fails to capture subtle contrasting local electronic properties and suffers from the arbitrariness of the σ/π dissection. The orbital separation of the most recent ELI-D is clear-cut but the interpretations sometime less straightforward in the present context. PMID:21660323

  6. How do electron localization functions describe π-electron delocalization?

    PubMed

    Steinmann, Stephan N; Mo, Yirong; Corminboeuf, Clemence

    2011-12-14

    Scalar fields provide an intuitive picture of chemical bonding. In particular, the electron localization function (ELF) has proven to be highly valuable in interpreting a broad range of bonding patterns. The discrimination between enhanced or reduced electron (de)localization within cyclic π-conjugated systems remains, however, challenging for ELF. In order to clearly distinguish between the local properties of ten highly and weakly π-(de)localized prototype systems, we compare the ELFs of both the canonical wave functions and electron-localized states (diabatic) with those of two closely related scalar fields: the electron localizability indicator (ELI-D) and the localized orbital locator (LOL). The simplest LOL function distinguishes enhanced from weak π-(de)localization in an insightful and reliable manner. LOL offers the finest contrast between annulenes with 4n/4n + 2 π electrons and their inorganic analogues as well as between hyperconjugated cyclopentadiene derivatives. LOL(π) also gives an appealing and intuitive picture of the π-bond. In contrast, the most popular ELF fails to capture subtle contrasting local electronic properties and suffers from the arbitrariness of the σ/π dissection. The orbital separation of the most recent ELI-D is clear-cut but the interpretations sometime less straightforward in the present context.

  7. Synchrony, connectivity, and functional similarity in auditory midbrain local circuits.

    PubMed

    Atencio, Craig A; Shen, Victor; Schreiner, Christoph E

    2016-10-29

    The central nucleus of the inferior colliculus (ICC) contains a laminar structure that functions as an organizing substrate of ascending inputs and local processing. While topographic distributions of ICC response parameters within and across laminae have been reported, the functional micro-organization of the ICC is less well understood. For pairs of neighboring ICC neurons, we examined the nature of functional connectivity and receptive field preferences to gain a better understanding of the structure and function of local circuits. By recording from pairs of adjacent neurons and presenting pure-tone and dynamic broad-band stimulation, we estimated functional connectivity and local differences in frequency response areas (FRAs), spectrotemporal receptive fields (STRFs), nonlinear input/output functions, and single-spike information. From the cross-covariance functions we identified putative unidirectional as well as bidirectional excitatory/inhibitory interactions. STRFs of neighboring neurons strongly conserve best frequency, and moderately agree in STRF similarity, bandwidth, temporal response type, best modulation frequency, nonlinearity structure, and degree of information processing. Excitatory connectivity was stronger and temporally more precise than for inhibitory connections. Neither connection strength nor degree of synchrony correlated with receptive field parameters. The functional similarity of local pairs of ICC neurons was substantially less than for local pairs in the granular layers of primary auditory cortex (AI). These results imply that while the ICC is an obligatory nexus of ascending information, local neurons are comparatively weakly connected and exhibit considerable receptive field variability, potentially reflecting the heterogeneity of converging inputs to ICC functional zones. PMID:27544405

  8. Comments on the locality in density-functional theory

    SciTech Connect

    Lindgren, Ingvar; Salomonson, Sten

    2003-05-01

    The 'locality hypothesis' in density-functional theory (DFT), implying that the functional derivative is equivalent to a multiplicative local function, forms the basis of models of Kohn-Sham type. This has been generally accepted by the community since the advent of the model, and has later been formally proved for a large class of functionals. The hypothesis has recently been questioned by Nesbet [Phys. Rev. A 58, R12 (1998) and Phys. Rev. A 65, 010502 (2001)], who claims that it fails for the kinetic-energy functional for a system with more than two noninteracting electrons with a nondegenerate ground state. This conclusion has been questioned by Gal [Phys. Rev. A 62, 044501 (2000)] and by Holas and March [Phys. Rev. A 64, 016501 (2001)]. We claim that the arguments of Nesbet are incorrect, since the orbital functional used for the kinetic energy is not a unique functional of the total density in the domain of unnormalized orbitals. We have demonstrated that with a proper definition of the kinetic energy, which is a unique density functional also in the unnormalized region, the derivative can be represented by a single local multiplicative function for all v-representable densities. Therefore, we consider the controversy connected with the issue raised by Nesbet as resolved. We believe that the proof of the differentiability given here can be extended to larger groups of DFT functionals, and works along these lines are in progress.

  9. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  10. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  11. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  12. Prediction of viscoelastic material functions from constant stress- or strain-rate experiments

    NASA Astrophysics Data System (ADS)

    Saprunov, Ivan; Gergesova, Marina; Emri, Igor

    2014-05-01

    To predict durability of polymeric structures an information on polymer's long-term properties in the form of relaxation modulus and/or creep compliance is required. It is well known that determination of relaxation or creep properties from experimental data is an inverse problem, which, due to presence of experimental errors in input data, becomes ill-posed. To find a stable solution using standard integration schemes is practically impossible. In this paper we propose a "hands-on" methodology which bypasses the solution of ill-posed integral equation and allows finding long-term relaxation or creep properties from simple constant strain rate or constant stress-rate experiments performed at different temperatures. The proposed approach can be applied not only for characterization of viscoelastic materials in solid state but can also be used for prediction of time-dependent properties of polymer melts. The paper presents the detailed steps of the proposed method as well as its validation on several simulated and real experimental data. It has been shown that the proposed approach can accurately reconstruct the desired long-term time-dependent properties obtained in traditional way (i.e., from step loading).

  13. Characterizing dynamic local functional connectivity in the human brain

    PubMed Central

    Deng, Lifu; Sun, Junfeng; Cheng, Lin; Tong, Shanbao

    2016-01-01

    Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding ‘noise’. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain’s functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future. PMID:27231194

  14. Characterizing dynamic local functional connectivity in the human brain.

    PubMed

    Deng, Lifu; Sun, Junfeng; Cheng, Lin; Tong, Shanbao

    2016-01-01

    Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding 'noise'. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain's functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future. PMID:27231194

  15. Function and evolution of local repeats in the Firre locus

    PubMed Central

    Hacisuleyman, Ezgi; Shukla, Chinmay J.; Weiner, Catherine L.; Rinn, John L.

    2016-01-01

    More than half the human and mouse genomes are comprised of repetitive sequences, such as transposable elements (TEs), which have been implicated in many biological processes. In contrast, much less is known about other repeats, such as local repeats that occur in multiple instances within a given locus in the genome but not elsewhere. Here, we systematically characterize local repeats in the genomic locus of the Firre long noncoding RNA (lncRNA). We find a conserved function for the RRD repeat as a ribonucleic nuclear retention signal that is sufficient to retain an otherwise cytoplasmic mRNA in the nucleus. We also identified a repeat, termed R0, that can function as a DNA enhancer element within the intronic sequences of Firre. Collectively, our data suggest that local repeats can have diverse functionalities and molecular modalities in the Firre locus and perhaps more globally in other lncRNAs. PMID:27009974

  16. Symmetry-adapted Wannier functions in the maximal localization procedure

    NASA Astrophysics Data System (ADS)

    Sakuma, R.

    2013-06-01

    A procedure to construct symmetry-adapted Wannier functions in the framework of the maximally localized Wannier function approach [Marzari and Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.56.12847 56, 12847 (1997); Souza, Marzari, and Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.65.035109 65, 035109 (2001)] is presented. In this scheme, the minimization of the spread functional of the Wannier functions is performed with constraints that are derived from symmetry properties of the specified set of the Wannier functions and the Bloch functions used to construct them, therefore one can obtain a solution that does not necessarily yield the global minimum of the spread functional. As a test of this approach, results of atom-centered Wannier functions for GaAs and Cu are presented.

  17. Nuclear localization of Chfr is crucial for its checkpoint function.

    PubMed

    Kwon, Young Eun; Kim, Ye Seul; Oh, Young Mi; Seol, Jae Hong

    2009-03-31

    Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.

  18. Localization and function of calmodulin in live-cells of Aspergillus nidulans.

    PubMed

    Chen, Shaochun; Song, Yiju; Cao, Jinling; Wang, Gang; Wei, Hua; Xu, Xushi; Lu, Ling

    2010-03-01

    Calmodulin (CaM) is a small, eukaryotic protein that reversibly binds Ca(2+). Study of CaM localization in genetically tractable organisms has yielded many insights into CaM function. Here, we described the dynamic localization of Aspergillus nidulans CaM (AnCaM) in live-cells by using recombination strains with homologous, single cross-over insertions at the target gene which placed the GFP fused copy under the inducible alcA promoter and the RFP-CaM integration under the native cam promoter. We found that the localization of CaM fusion was quite dynamic throughout the hypha and was concentrated to the active growing sites during germination, hyphal growth, cytokinesis and conidiation. The depletion of CaM by alcA promoter repression induced the explicit abnormalities of germlings with the swollen germ tubes. In addition, the position of highly concentrated GFP-CaM in the extreme apex seemed to determine the hyphal orientation. These data collectively suggest that CaM is constantly required for new hyphal growth. In contrast to this constant accumulation at the apex, GFP-CaM was only transiently localized at septum sites during cytokinesis. Notably, depletion of CaM caused the defect of septation with a completely blocked septum formation indicating that the transient CaM accumulation at the septum site is essential for septation. Moreover, the normal localization of CaM at a hyphal tip required the presence of the functional actin cytoskeleton and the motor protein KipA, which is indispensable for positioning Spitzenkörper. This is the first report of CaM localization and function in live-cells by the site-specific homologous integration in filamentous fungi.

  19. Spectral emissivities and optical constants of electromagnetically levitated liquid metals as functions of temperature and wavelength

    NASA Technical Reports Server (NTRS)

    Krishnan, S.; Hauge, R. H.; Margrave, J. L.

    1989-01-01

    The development of a noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomittant with radiance brightness. Using this approach, the optical properties of electromagnetically levitated liquid metals Cu, Ag, Au, Ni, Pd, Pt, and Zr were measured in situ at four wavelengths and up to 600 K superheat in the liquid. The data suggest an increase in the emissivity of the liquid compared with the incandescent solid. The data also show moderate temperature dependence of the spectral emissivity. A few measurements of the optical properties of undercooled liquid metals were also conducted. The data for both solids and liquids show excellent agreement with available values in the literature for the spectral emissivities as well as the optical constants.

  20. High magnetic exchange coupling constants: a density functional theory based study of substituted Schlenk diradicals.

    PubMed

    Latif, Iqbal A; Hansda, Shekhar; Datta, Sambhu N

    2012-08-23

    The Schlenk diradical has been known since 1915. After a detailed experimental work by Rajca, its magnetic nature has remained more or less unexplored. We have investigated by quantum chemical calculations the nature of magnetic coupling in 11 substituted Schlenk diradicals. Substitution has been considered at the fifth carbon atom of the meta-phenylene moiety. The UB3LYP method has been used to study 12 diradicals including the original one. The 6-311G(d,p) basis set has been employed for optimization of molecular geometry in both singlet and triplet states for each species. The singlet optimization has led to the optimization of the broken-symmetry structure for 10 species including the unsubstituted one. This development makes it possible to carry out further broken symmetry calculations in two ways. The triplet calculation has been done using 6-311++G(d,p) basis set and the optimized triplet geometry in both procedures. The broken symmetry calculations have used the optimized geometries of either the triplet states or the broken symmetry solutions. The first method leads to the prediction of electron paramagnetic resonance (EPR) compatible magnetic exchange coupling constant (J) in the range 517-617 cm(-1). A direct optimization of the broken symmetry geometry gives rise to a lower estimate of J, in the range of 411-525 cm(-1) and compatible with macroscopic Curie studies. The calculated J for the unsubstituted Schlenk diradical is 512 cm(-1) that can be compared with 455 cm(-1) estimated by Rajca. In both cases, introduction of groups with +M and +I effects (Ingold's notation) decreases the J value from that for the unsubstituted Schlenk diradical while -I and -M groups at the same position increases J. These trends have been explained in terms of Hammett constants, atomic spin densities, and dihedral angles.

  1. Steroidogenesis in the skin: implications for local immune functions

    PubMed Central

    Slominski, Andrzej; Zbytek, Bazej; Nikolakis, Georgios; Manna, Pulak R.; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C.; Tuckey, Robert C.

    2013-01-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7 -steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or

  2. Steroidogenesis in the skin: implications for local immune functions.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Nikolakis, Georgios; Manna, Pulak R; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C; Tuckey, Robert C

    2013-09-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7Δ-steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or

  3. Steroidogenesis in the skin: implications for local immune functions.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Nikolakis, Georgios; Manna, Pulak R; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C; Tuckey, Robert C

    2013-09-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7Δ-steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or

  4. Quality function deployment applied to local traffic accident reduction.

    PubMed

    Sohn, S Y

    1999-11-01

    One of the major tasks of police stations is the management of local road traffic accidents. Proper prevention policy which reflects the local accident characteristics could immensely help individual police stations in decreasing various severity levels of road traffic accidents. In order to relate accident variation to local driving environmental characteristics, we use both cluster analysis and Poisson regression. The fitted result at the level of each cluster for each type of accident severity is utilized as an input to quality function deployment. Quality function deployment (QFD) has been applied to customer satisfaction in various industrial quality improvement settings, where several types of customer requirements are related to various control factors. We show how QFD enables one to set priorities on various road accident control policies to which each police station has to pay particular attention.

  5. Quality function deployment applied to local traffic accident reduction.

    PubMed

    Sohn, S Y

    1999-11-01

    One of the major tasks of police stations is the management of local road traffic accidents. Proper prevention policy which reflects the local accident characteristics could immensely help individual police stations in decreasing various severity levels of road traffic accidents. In order to relate accident variation to local driving environmental characteristics, we use both cluster analysis and Poisson regression. The fitted result at the level of each cluster for each type of accident severity is utilized as an input to quality function deployment. Quality function deployment (QFD) has been applied to customer satisfaction in various industrial quality improvement settings, where several types of customer requirements are related to various control factors. We show how QFD enables one to set priorities on various road accident control policies to which each police station has to pay particular attention. PMID:10487350

  6. Charge regulation and local dielectric function in planar polyelectrolyte brushes

    SciTech Connect

    Kumar, Rajeev; Sumpter, Bobby G; Kilbey, II, S Michael

    2012-01-01

    Understanding the effect of inhomogeneity on the charge regulation and dielectric properties, and how it depends on the conformational characteristics of the macromolecules is a long-standing problem. In order to address this problem, we have developed a field-theory to study charge regulation and local dielectric function in planar polyelectrolyte brushes. The theory is used to study a polyacid brush, which is comprised of chains end-grafted at the solid-fluid interface, in equilibrium with a bulk solution containing monovalent salt ions, solvent molecules, and pH controlling acid. In particular, we focus on the effects of the concentration of added salt and pH of the bulk in determining the local charge and dielectric function. Our theoretical investigations reveal that the dipole moment of the ion-pairs formed as a result of counterion adsorption on the chain backbones play a key role in affecting the local dielectric function. For polyelectrolytes made of monomers having dipole moments lower than the solvent molecules, dielectric decrement is predicted inside the brush region. However, the formation of ion-pairs (due to adsorption of counterions coming from the dissociation of added salt) more polar than the solvent molecules is shown to increase the magnitude of the dielectric function with respect to its bulk value. Furthermore, an increase in the bulk salt concentration is shown to increase the local charge inside the brush region.

  7. Enhancing the accuracy of the Fowler method for monitoring non-constant work functions

    NASA Astrophysics Data System (ADS)

    Friedl, R.

    2016-04-01

    The Fowler method is a prominent non-invasive technique to determine the absolute work function of a surface based on the photoelectric effect. The evaluation procedure relies on the correlation of the photocurrent with the incident photon energy hν which is mainly dependent on the surface work function χ. Applying Fowler's theory of the photocurrent, the measurements can be fitted by the theoretical curve near the threshold hν⪆χ yielding the work function χ and a parameter A. The straightforward experimental implementation of the Fowler method is to use several particular photon energies, e.g. via interference filters. However, with a realization like that the restriction hν ≈ χ can easily be violated, especially when the work function of the material is decreasing during the measurements as, for instance, with coating or adsorption processes. This can lead to an overestimation of the evaluated work function value of typically some 0.1 eV, reaching up to more than 0.5 eV in an unfavorable case. A detailed analysis of the Fowler theory now reveals the background of that effect and shows that the fit-parameter A can be used to assess the accuracy of the determined value of χ conveniently during the measurements. Moreover, a scheme is introduced to quantify a potential overestimation and to perform a correction to χ to a certain extent. The issues are demonstrated exemplarily at the monitoring of the work function reduction of a stainless steel sample surface due to caesiation.

  8. Enhancing the accuracy of the Fowler method for monitoring non-constant work functions.

    PubMed

    Friedl, R

    2016-04-01

    The Fowler method is a prominent non-invasive technique to determine the absolute work function of a surface based on the photoelectric effect. The evaluation procedure relies on the correlation of the photocurrent with the incident photon energy hν which is mainly dependent on the surface work function χ. Applying Fowler's theory of the photocurrent, the measurements can be fitted by the theoretical curve near the threshold hν⪆χ yielding the work function χ and a parameter A. The straightforward experimental implementation of the Fowler method is to use several particular photon energies, e.g. via interference filters. However, with a realization like that the restriction hν ≈ χ can easily be violated, especially when the work function of the material is decreasing during the measurements as, for instance, with coating or adsorption processes. This can lead to an overestimation of the evaluated work function value of typically some 0.1 eV, reaching up to more than 0.5 eV in an unfavorable case. A detailed analysis of the Fowler theory now reveals the background of that effect and shows that the fit-parameter A can be used to assess the accuracy of the determined value of χ conveniently during the measurements. Moreover, a scheme is introduced to quantify a potential overestimation and to perform a correction to χ to a certain extent. The issues are demonstrated exemplarily at the monitoring of the work function reduction of a stainless steel sample surface due to caesiation. PMID:27131682

  9. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    SciTech Connect

    Hao, Feng Mattsson, Ann E.; Armiento, Rickard

    2014-05-14

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.

  10. Elastic constants and Fermi surface topology change in Calaverite AuTe{sub 2}: A density functional study

    SciTech Connect

    Gudelli, Vijay Kumar Kanchana, V.

    2014-04-24

    Structural, elastic, electronic and Fermi surface studies of AuTe{sub 2} have been carried out by means of first principles calculations based on density functional theory. The calculated ground state properties agree well with the experiment. Fermi surface and elastic constants are predicted for the first time and from the calculated elastic constants we find the compound to be mechanically stable satisfying the stability criteria of monoclinic structure. In addition, we also find the c-axis to be more compressible than the other two which is also speculated from the present work. The metallic behaviour of this compound is confirmed from the electronic band structure calculation as we find the bands to cross the Fermi level (E{sub F}). In addition, we also observe a FS topology change under pressure which is also explained in the present work.

  11. Phase transitions as a function of material constants and temperature in intermetallic compounds of the terfenol-D type

    NASA Astrophysics Data System (ADS)

    Fridman, Yu. A.; Klevets, F. N.; Voĭtenko, A. P.

    2010-07-01

    A model of magnetic and magnetoelastic properties of intermetallic compounds has been considered with the inclusion of the influence of the “giant” magnetoelastic coupling and the biquadratic exchange interaction. The phase transitions as a function of material constants and temperature have been investigated in the framework of the proposed model. It has been demonstrated that the ferromagnetic and quadrupole phases can be formed in the system under consideration. In this case, the phase transition between these phases is a first-order transition and occurs through the intermediate, i.e., quadrupole-ferromagnetic, state. The dependences of the phase transition temperature on the Heisenberg and biquadratic exchange interaction constants have been obtained for compounds of the terfenol-D type.

  12. Hamaker Constants of Systems Involving Water Obtained from a Dielectric Function That Fulfills the f Sum Rule.

    PubMed

    Fernández-Varea; Garcia-Molina

    2000-11-15

    Hamaker constants of systems involving liquid water are evaluated, within the full Lifshitz theory, by means of a recently proposed model of the dielectric function of this substance [Dingfelder et al., Radiat. Phys. Chem. 53, 1 (1998)], which has been extended in the present work by including terms corresponding to infrared excitations and microwave relaxation. An important feature of the complete model is that, besides a good fit to experimental data, it satisfies the physical constraint provided by the f sum rule. For symmetrical systems interacting across water, calculated Hamaker constants are generally in good agreement with results obtained using the Ninham-Parsegian representation with the Roth and Lenhoff parameters for water. Copyright 2000 Academic Press.

  13. The galaxy luminosity function and the Local Hole

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2016-06-01

    In a previous study Whitbourn & Shanks have reported evidence for a local void underdense by ≈15 per cent extending to 150-300 h-1 Mpc around our position in the Southern Galactic Cap (SGC). Assuming a local luminosity function they modelled K- and r-limited number counts and redshift distributions in the 6dFGS/2MASS and SDSS redshift surveys and derived normalized n(z) ratios relative to the standard homogeneous cosmological model. Here we test further these results using maximum likelihood techniques that solve for the galaxy density distributions and the galaxy luminosity function simultaneously. We confirm the results from the previous analysis in terms of the number density distributions, indicating that our detection of the `Local Hole' in the SGC is robust to the assumption of either our previous, or newly estimated, luminosity functions. However, there are discrepancies with previously published K- and r-band luminosity functions. In particular the r-band luminosity function has a steeper faint end slope than the r0.1 results of Blanton et al. but is consistent with the r0.1 results of Montero-Dorta & Prada and Loveday et al.

  14. Local properties of three-body atomic wave functions

    SciTech Connect

    Krivec, R.; Mandelzweig, V. B.; Varga, K.

    2000-06-01

    The local properties and accuracy of the positronium negative-ion (Ps{sup -}) ground-state wave functions obtained by the stochastic variational method (SVM) and by direct solution of the Schroedinger equation with the help of the correlation-function hyperspherical-harmonic method (CFHHM) are studied and compared. Though the energy, calculated by both methods, agrees to up to ten digits, the amplitudes of the values of the operator D=H{psi}/E{psi}-1, characterizing local deviation of the wave function from its true value, in all of the coordinate space in the SVM are consistently larger (by up to five orders of magnitude) than in the CFHHM, despite the fact that the SVM observables except <{delta}(r{sub k})> converge to significantly more digits than the CFHHM observables for their respective selected bases. (c) 2000 The American Physical Society.

  15. Reliable Spectroscopic Constants for CCH-, NH2- and Their Isotopomers from an Accurate Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.

    2005-01-01

    Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.

  16. PSCL: predicting protein subcellular localization based on optimal functional domains.

    PubMed

    Wang, Kai; Hu, Le-Le; Shi, Xiao-He; Dong, Ying-Song; Li, Hai-Peng; Wen, Tie-Qiao

    2012-01-01

    It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/.

  17. Automated construction of maximally localized Wannier functions: Optimized projection functions method

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Coh, Sinisa; Cohen, Marvin L.; Louie, Steven G.

    2015-10-01

    Maximally localized Wannier functions are widely used in electronic structure theory for analyses of bonding, electric polarization, orbital magnetization, and for interpolation. The state of the art method for their construction is based on the method of Marzari and Vanderbilt. One of the practical difficulties of this method is guessing functions (initial projections) that approximate the final Wannier functions. Here we present an approach based on optimized projection functions that can construct maximally localized Wannier functions without a guess. We describe and demonstrate this approach on several realistic examples.

  18. A New Green's Function for the Wake Potential Calculation of the SLAC S-band Constant Gradient Accelerating Section

    SciTech Connect

    Novokhatski, A,; /SLAC

    2012-02-17

    The behavior of the longitudinal wake fields excited by a very short bunch in the SLAC S-band constant gradient accelerating structures has been studied. Wake potential calculations were performed for a bunch length of 10 microns using the author's code to obtain a numerical solution of Maxwell's equations in the time domain. We have calculated six accelerating sections in the series (60-ft) to find the stationary solution. While analyzing the computational results we have found a new formula for the Green's function. Wake potentials, which are calculated using this Green's function are in amazingly good agreement with numerical results over a wide range of bunch lengths. The Green's function simplifies the wake potential calculations and can be easily incorporated into the tracking codes. This is very useful for beam dynamics studies of the linear accelerators of LCLS and FACET.

  19. Initial Sensorimotor and Cardiovascular Data Acquired from Soyuz Landings: Establishing a Functional Performance Recovery Time Constant

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.

    2015-01-01

    INTRODUCTION Testing of crew responses following long-duration flights has not been previously possible until a minimum of more than 24 hours after landing. As a result, it has not been possible to determine the trend of the early recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented joint testing at the Soyuz landing site. This International Space Station research effort has been identified as the functional Field Test, and represents data collect on NASA, Russian, European Space Agency, and Japanese Aerospace Exploration Agency crews. RESEARCH The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible on the day of landing (typically within 1 to 1.5 hours). This goal has both sensorimotor and cardiovascular elements. To date, a total of 15 subjects have participated in a 'pilot' version of the full 'field test'. The full version of the 'field test' will assess functional sensorimotor measurements included hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with the hands (both strength and ability to judge just noticeable differences of force), standing from a prone position, coordinated walking involving tandem heel-to-toe placement (tested with eyes both closed and open), walking normally while avoiding obstacles of differing heights, and determining postural ataxia while standing (measurement of quiet stance). Sensorimotor performance has been obtained using video records, and data from body worn inertial sensors. The cardiovascular portion of the investigation has measured blood pressure and heart rate during a timed stand test in conjunction with postural ataxia

  20. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Sauer, Stephan P. A.; Provasi, Patricio F.

    2014-10-01

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the 1J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the 1J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  1. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  2. Strong coupling constant from vacuum polarization functions in three-flavor lattice QCD with dynamical overlap fermions

    SciTech Connect

    Shintani, E.; Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Onogi, T.; Yamada, N.

    2010-10-25

    We determine the strong coupling constant {alpha}{sub s} from a lattice calculation of vacuum polarization functions (VPF) in three-flavor QCD with dynamical overlap fermions. Fitting lattice data of VPF to the continuum perturbative formula including the operator product expansion, we extract the QCD scale parameter {Lambda}{sub MS}{sup -(3)}. At the Z boson mass scale, we obtain {alpha}{sub s}{sup (5)}(M{sub z}) = 0.1181(3)(+14/-12), where the first error is statistical and the second is our estimate of various systematic uncertainties.

  3. Evolution of a localized vortex in plane nonparallel viscous flows with constant velocity shear. I. Hyperbolic flow

    NASA Astrophysics Data System (ADS)

    Shukhman, I. G.

    2006-09-01

    The framework of the linear theory is employed to study the evolution of an initial compact vortical disturbance in unbounded plane nonparallel viscous incompressible flows with constant velocity gradients. Two types of such flows are known to be possible: hyperbolical and elliptical (as well as an intermediate case of the well-studied parallel Couette flow). The results presented here are obtained for a hyperbolical flow. (Results concerning the elliptical flow are to be issued in a separate publication.) This paper is a development of earlier work by R. R. Lagnado, N. Phan-Thien, and L. G. Leal [Phys. Fluids 27, 1094 (1984)] studying the stability of a hyperbolical flow relative to the simplest perturbations in the form of plane waves with a time-dependent wave vector. The dynamics of vortex intensity is investigated as well as the evolution of its geometrical form and orientation. The results are discussed in the context of the problem of hairpin vortex formation.

  4. Range Separation and Local Hybridization in Density Functional Theory†

    PubMed Central

    Henderson, Thomas M.; Janesko, Benjamin G.; Scuseria, Gustavo E.

    2016-01-01

    Kohn–Sham density functional theory has become a standard method for modeling energetic, spectroscopic, and chemical reactivity properties of large molecules and solids. Density functional theory provides a rigorous theoretical framework for modeling the many-body exchange-correlation effects that dominate the computational cost of traditional wave function approaches. The advent of hybrid exchange-correlation functionals which incorporate a fraction of nonlocal exact exchange has solidified the prominence of density functional theory within computational chemistry. Hybrids provide accurate treatments of properties such as thermochemistry and molecular geometry. But they also exhibit some rather spectacular failures, and often contain multiple empirical parameters. This article reviews our work on developing novel exchange-correlation functionals that build upon the successes of global hybrids. We focus on more flexible functional forms, including local and range-separated hybrid functionals, constructed to obey known exact constraints and (ideally) to incorporate a minimum of empirical parametrization. The article places our work within the context of some other new approximate density functionals and discusses prospects for future work. PMID:19006280

  5. Learning without local minima in radial basis function networks.

    PubMed

    Bianchini, M; Frasconi, P; Gori, M

    1995-01-01

    Learning from examples plays a central role in artificial neural networks. The success of many learning schemes is not guaranteed, however, since algorithms like backpropagation may get stuck in local minima, thus providing suboptimal solutions. For feedforward networks, optimal learning can be achieved provided that certain conditions on the network and the learning environment are met. This principle is investigated for the case of networks using radial basis functions (RBF). It is assumed that the patterns of the learning environment are separable by hyperspheres. In that case, we prove that the attached cost function is local minima free with respect to all the weights. This provides us with some theoretical foundations for a massive application of RBF in pattern recognition.

  6. Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions.

    PubMed

    Allahyarov, Elshad; Löwen, Hartmut; Zhu, Lei

    2016-07-28

    Mixing dielectric polymers with high permittivity (high-k) inclusions can affect their electrical properties. In actuation applications of dielectric elastomers, the polarized inclusions generate additional volume polarization-related electrostriction. In energy storage applications, it is possible to store more energy in dielectric composites because of additional polarization of the inclusions and interfaces. However, mixing an electroactive polymer with high-k inclusions also brings several disadvantages. The expulsion of the field from the interior of high-k fillers and the presence of two poles on the filler surface along the applied field direction result in higher local fields EL near the inclusion poles. The resulting field enhancement lowers the breakdown field (Eb) threshold for the material and therefore compromises the actuation and energy storage capabilities of dielectric composites. To mitigate this issue, the dependence of EL on the morphology of inclusion distribution, the field localization effect in chained configurations, and the role of the dipole-dipole correlation effects in the enhancement of the dipolar field of inclusions are analyzed. We show that the dipolar correlation effects are strong in large inclusion composites and their contribution to the inclusion dipole moment μ and to the local fields EL can reach 30-50%. A new method for deriving the composite permittivity from the field EL distribution, based on a caged probe technique, is also presented. PMID:27357433

  7. Structure and Possible Functions of Constant-Frequency Calls in Ariopsis seemanni (Osteichthyes, Ariidae)

    PubMed Central

    Schmidtke, Daniel; Schulz, Jochen; Hartung, Jörg; Esser, Karl-Heinz

    2013-01-01

    In the 1970s, Tavolga conducted a series of experiments in which he found behavioral evidence that the vocalizations of the catfish species Ariopsis felis may play a role in a coarse form of echolocation. Based on his findings, he postulated a similar function for the calls of closely related catfish species. Here, we describe the physical characteristics of the predominant call-type of Ariopsis seemanni. In two behavioral experiments, we further explore whether A. seemanni uses these calls for acoustic obstacle detection by testing the hypothesis that the call-emission rate of individual fish should increase when subjects are confronted with novel objects, as it is known from other vertebrate species that use pulse-type signals to actively probe the environment. Audio-video monitoring of the fish under different obstacle conditions did not reveal a systematic increase in the number of emitted calls in the presence of novel objects or in dependence on the proximity between individual fish and different objects. These negative findings in combination with our current understanding of directional hearing in fishes (which is a prerequisite for acoustic obstacle detection) make it highly unlikely that A. seemanni uses its calls for acoustic obstacle detection. We argue that the calls are more likely to play a role in intra- or interspecific communication (e.g. in school formation or predator deterrence) and present results from a preliminary Y-maze experiment that are indicative for a positive phonotaxis of A. seemanni towards the calls of conspecifics. PMID:23741408

  8. Involvement of local lamellipodia in endothelial barrier function.

    PubMed

    Breslin, Jerome W; Zhang, Xun E; Worthylake, Rebecca A; Souza-Smith, Flavia M

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  9. Local Density Approximation Exchange-correlation Free-energy Functional

    NASA Astrophysics Data System (ADS)

    Karasiev, Valentin; Sjostrom, Travis; Dufty, James; Trickey, S. B.

    2014-03-01

    Restricted path integral Monte-Carlo (RPIMC) simulation data for the homogeneous electron gas at finite temperatures are used to fit the exchange-correlation free energy as a function of the density and temperature. Together with a new finite- T spin-polarization interpolation, this provides the local spin density approximation (LSDA) for the exchange-correlation free-energy functional required by finite- T density functional theory. We discuss and compare different methods of fitting to the RPIMC data. The new function reproduces the RPIMC data in the fitting range of Wigner-Seitz radius and temperature, satisfies correct high-density, low- and high- T asymptotic limits and is applicable beyond the range of fitting data. Work supported by U.S. Dept. of Energy, grant DE-SC0002139 and by the DOE Office of Fusion Sciences (FES).

  10. Global functions in global-local finite-element analysis of localized stresses in prismatic structures

    NASA Technical Reports Server (NTRS)

    Dong, Stanley B.

    1989-01-01

    An important consideration in the global local finite-element method (GLFEM) is the availability of global functions for the given problem. The role and mathematical requirements of these global functions in a GLFEM analysis of localized stress states in prismatic structures are discussed. A method is described for determining these global functions. Underlying this method are theorems due to Toupin and Knowles on strain energy decay rates, which are related to a quantitative expression of Saint-Venant's principle. It is mentioned that a mathematically complete set of global functions can be generated, so that any arbitrary interface condition between the finite element and global subregions can be represented. Convergence to the true behavior can be achieved with increasing global functions and finite-element degrees of freedom. Specific attention is devoted to mathematically two-dimensional and three-dimensional prismatic structures. Comments are offered on the GLFEM analysis of NASA flat panel with a discontinuous stiffener. Methods for determining global functions for other effects are also indicated, such as steady-state dynamics and bodies under initial stress.

  11. Investigation of Biodiesel Through Photopyroelectric and Dielectric-Constant Measurements as a Function of Temperature: Freezing/Melting Interval

    NASA Astrophysics Data System (ADS)

    Zanelato, E. B.; Machado, F. A. L.; Rangel, A. B.; Guimarães, A. O.; Vargas, H.; da Silva, E. C.; Mansanares, A. M.

    2015-06-01

    Biodiesel is a promising option for alternative fuels since it derives from natural and renewable materials; it is biodegradable and less polluting than fossil fuels. A gradual replacement of diesel by biodiesel has been adopted by many countries, making necessary the investigation of the physical properties of biodiesel and of its mixture in diesel. Photothermal techniques, specifically the photopyroelectric technique (PPE), have proved to be suitable in the characterization of biodiesel and of its precursor oils, as well as of the biodiesel/diesel mixtures. In this paper, we investigate thermal and electrical properties of animal fat-based biodiesel as a function of temperature, aiming to characterize the freezing/melting interval and the changes in the physical properties from the solid to the liquid phase. The samples were prepared using the transesterification method, by the ethylic route. Optical transmittance experiments were carried out in order to confirm the phase transition interval. Solid and liquid phases present distinct thermal diffusivities and conductivities, as well as dielectric constants. The PPE signal amplitude is governed by the changes in the thermal diffusivity/conductivity. As a consequence, the amplitude of the signal becomes like a step function, which is smoothed and sometimes delayed by the nucleation processes during cooling. A similar behavior is found in the dielectric constant data, which is higher in the liquid phase since the molecules have a higher degree of freedom. Both methods (PPE/dielectric constant) proved to be useful in the characterization of the freezing/melting interval, as well as to establish the distinction in the physical properties of solid and liquid phases. The methodology allowed a discussion of the cloud point and the pour point of the samples in the temperature variation interval.

  12. Hydrogen Abstraction Reactions from Phenolic Compounds by Peroxyl Radicals: Multireference Character and Density Functional Theory Rate Constants.

    PubMed

    Galano, Annia; Muñoz-Rugeles, Leonardo; Alvarez-Idaboy, Juan Raul; Bao, Junwei Lucas; Truhlar, Donald G

    2016-07-14

    An assessment of multireference character in transition states is considered to be an important component in establishing the expected reliability of various electronic structure methods. In the present work, the multireference characters of the transition states and the forming and breaking of bonds for a large set of hydrogen abstraction reactions from phenolic compounds by peroxyl radicals have been analyzed using the T1, M, B1, and GB1 diagnostics. The extent of multireference character depends on the system and on the conditions under which the reaction takes place, and some systematic trends are observed. In particular, the multireference character is found to be reduced by solvation, the size of the phenolic compound, and deprotonation in aqueous solution. However, the deviations of calculated rate constants from experimental ones are not correlated with the extent of multireference character. The performance of single-determinant density functional theory was investigated for the kinetics of these reactions by comparing calculated rate constants to experimental data; the results from these analyses showed that the M05 functional performs well for the task at hand.

  13. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses.

    PubMed

    Nieto-Castañón, Alfonso; Fedorenko, Evelina

    2012-11-15

    One important goal of cognitive neuroscience is to discover and explain properties common to all human brains. The traditional solution for comparing functional activations across brains in fMRI is to align each individual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent but functionally different neural responses) in group analyses. Subject-specific functional localizers have been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence of inter-subject variability in the locations of functional activations (e.g., Brett et al., 2002; Fedorenko and Kanwisher, 2009, 2011; Fedorenko et al., 2010; Kanwisher et al., 1997; Saxe et al., 2006). In the current paper we quantify this dependence of sensitivity and functional resolution on functional variability across subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses. We show that analyses that use subject-specific functional localizers usually outperform traditional group-based methods in both sensitivity and functional resolution, even when the same total amount of data is used for each analysis. We further discuss how the subject-specific functional localization approach, which has traditionally only been considered in the context of ROI-based analyses, can be extended to whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can perform all of the analyses described in this paper is publicly available, and the analyses can be applied retroactively to any dataset, provided that

  14. Prediction of the dissociation constant pKa of organic acids from local molecular parameters of their electronic ground state.

    PubMed

    Yu, Haiying; Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit

    2011-09-26

    A quantum chemical method has been developed to estimate the dissociation constant pK(a) of organic acids from their neutral molecular structures by employing electronic structure properties. The data set covers 219 phenols (including 29 phenols with intramolecular H-bonding), 150 aromatic carboxylic acids, 190 aliphatic carboxylic acids, and 138 alcohols, with pK(a) varying by 16 units (0.38-16.80). Optimized ground-state geometries employing the semiempirical AM1 Hamiltonian have been used to quantify the site-specific molecular readiness to donate or accept electron charge in terms of both charge-associated energies and energy-associated charges, augmented by an ortho substitution indicator for aromatic compounds. The resultant regression models yield squared correlation coefficients (r(2)) from 0.82 to 0.90 and root-mean-square errors (rms) from 0.39 to 0.70 pK(a) units, corresponding to an overall (subset-weighted) r(2) of 0.86. Simulated external validation, leave-10%-out cross-validation and target value scrambling demonstrate the statistical robustness and prediction power of the derived model suite. The low intercorrelation with prediction errors from the commercial ACD package provides opportunity for a consensus model approach, offering a pragmatic way for further increasing the confidence in prediction significantly. Interestingly, inclusion of calculated free energies of aqueous solvation does not improve the prediction performance, probably because of the limited precision provided by available continuum-solvation models.

  15. Global and local curvature in density functional theory

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.

    2016-08-01

    Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.

  16. Exponentially localized Wannier functions in periodic zero flux magnetic fields

    NASA Astrophysics Data System (ADS)

    De Nittis, G.; Lein, M.

    2011-11-01

    In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results [Panati, G., Ann. Henri Poincare 8, 995-1011 (2007), 10.1007/s00023-007-0326-8] to include periodic zero flux magnetic fields which is the setting also investigated by Kuchment [J. Phys. A: Math. Theor. 42, 025203 (2009), 10.1088/1751-8113/42/2/025203]. The new notion of magnetic symmetry plays a crucial rôle; to a large class of symmetries for a non-magnetic system, one can associate "magnetic" symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d = 1, 2, 3. For d = 4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d > 4 and d ⩽ 2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of Kuchment [J. Phys. A: Math. Theor. 42, 025203 (2009), 10.1088/1751-8113/42/2/025203]. Finally, for d > 4 and d > 2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove triviality and thus exponential localization.

  17. Effects of Local Compression on Peroneal Nerve Function in Humans

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Botte, Michael J.; Swenson, Michael R.; Gelberman, Richard H.; Rhoades, Charles E.; Akeson, Wayne H.

    1993-01-01

    A new apparatus was developed to compress the anterior compartment selectively and reproducibly in humans. Thirty-five normal volunteers were studied to determine short-term thresholds of local tissue pressure that produce significant neuromuscular dysfunction. Local tissue fluid pressure adjacent to the deep peroneal nerve was elevated by the compression apparatus and continuously monitored for 2-3 h by the slit catheter technique. Elevation of tissue fluid pressure to within 35-40 mm Hg of diastolic blood pressure (approx. 40 mm Hg of in situ pressure in our subjects) elicited a consistent progression of neuromuscular deterioration including, in order, (a) gradual loss of sensation, as assessed by Semmes-Weinstein monofilaments, (b) subjective complaints, (c) reduced nerve conduction velocity, (d) decreased action potential amplitude of the extensor digitorum brevis muscle, and (e) motor weakness of muscles within the anterior compartment. Generally, higher intracompartment at pressures caused more rapid deterioration of neuromuscular function. In two subjects, when in situ compression levels were 0 and 30 mm Hg, normal neuromuscular function was maintained for 3 h. Threshold pressures for significant dysfunction were not always the same for each functional parameter studied, and the magnitudes of each functional deficit did not always correlate with compression level. This variable tolerance to elevated pressure emphasizes the need to monitor clinical signs and symptoms carefully in the diagnosis of compartment syndromes. The nature of the present studies was short term; longer term compression of myoneural tissues may result in dysfunction at lower pressure thresholds.

  18. Novel subcellular localization for α-synuclein: possible functional consequences

    PubMed Central

    Guardia-Laguarta, Cristina; Area-Gomez, Estela; Schon, Eric A.; Przedborski, Serge

    2015-01-01

    α-synuclein (α-syn) is one of the genes that when mutated or overexpressed causes Parkinson’s Disease (PD). Initially, it was described as a synaptic terminal protein and later was found to be localized at mitochondria. Mitochondria-associated membranes (MAM) have emerged as a central endoplasmic reticulum (ER) subcellular compartments where key functions of the cell occur. These domains, enriched in cholesterol and anionic phospholipids, are where calcium homeostasis, lipid transfer, and cholesterol metabolism are regulated. Some proteins, related to mitochondrial dynamics and function, are also localized to this area. Several neurodegenerative diseases have shown alterations in MAM functions and resident proteins, including Charcot Marie-Tooth and Alzheimer’s disease (AD). We have recently reported that MAM function is downregulated in cell and mouse models of PD expressing pathogenic mutations of α-syn. This review focuses on the possible role of α-syn in these cellular domains and the early pathogenic features of PD that could be explained by α-syn-MAM disturbances. PMID:25755636

  19. Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.

    PubMed

    Tigchelaar, Wardit; de Jong, Anne Margreet; Bloks, Vincent W; van Gilst, Wiek H; de Boer, Rudolf A; Silljé, Herman H W

    2016-08-01

    Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes, including mitochondrial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dynamic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor 1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses, respectively. A decreased activity of the mitochondrial electron transport chain (ETC) (state 3) was observed in permeabilized NRVCs stimulated with PE, whereas this was improved in IGF1 stimulated NRVCs. In contrast, in intact NRVCs, mitochondrial oxygen consumption rate (OCR) was increased in PE stimulated NRVCs, but remained constant in IGF1 stimulated NRVCs. After stimulation with PE, mitochondria were localized to the periphery of the cell. To study the differences in more detail, we performed gene array studies. IGF1 and PE stimulated NRVCs did not reveal major differences in gene expression of mitochondrial encoding proteins, but we identified a gene encoding a motor protein implicated in mitochondrial localization, kinesin family member 5b (Kif5b), which was clearly elevated in PE stimulated NRVCs but not in IGF1 stimulated NRVCs. We confirmed that Kif5b gene and protein expression were elevated in animal models with pathological cardiac hypertrophy. Silencing of Kif5b reverted the peripheral mitochondrial localization in PE stimulated NRVCs and diminished PE induced increases in mitochondrial OCR, indicating that KIF5B dependent localization affects cellular responses to PE stimulated NRVCs. These results indicate that KIF5B contributes to mitochondrial localization and function in cardiomyocytes and may play a role in pathological hypertrophic responses in vivo. PMID:27094714

  20. Avoiding coral reef functional collapse requires local and global action.

    PubMed

    Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J

    2013-05-20

    Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services. PMID:23664976

  1. Avoiding coral reef functional collapse requires local and global action.

    PubMed

    Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J

    2013-05-20

    Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services.

  2. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  3. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  4. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  5. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  6. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Nakai, Hiromi

    2009-12-01

    A new method to calculate the atom-atom dispersion coefficients in a molecule is proposed for the use in density functional theory with dispersion (DFT-D) correction. The method is based on the local response approximation due to Dobson and Dinte [Phys. Rev. Lett. 76, 1780 (1996)], with modified dielectric model recently proposed by Vydrov and van Voorhis [J. Chem. Phys. 130, 104105 (2009)]. The local response model is used to calculate the distributed multipole polarizabilities of atoms in a molecule, from which the dispersion coefficients are obtained by an explicit frequency integral of the Casimir-Polder type. Thus obtained atomic polarizabilities are also used in the damping function for the short-range singularity. Unlike empirical DFT-D methods, the local response dispersion (LRD) method is able to calculate the dispersion energy from the ground-state electron density only. It is applicable to any geometry, free from physical constants such as van der Waals radii or atomic polarizabilities, and computationally very efficient. The LRD method combined with the long-range corrected DFT functional (LC-BOP) is applied to calculations of S22 weakly bound complex set [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. Binding energies obtained by the LC-BOP + LRD agree remarkably well with ab initio references.

  7. Functional specificity of local synaptic connections in neocortical networks

    PubMed Central

    Ko, Ho; Hofer, Sonja B.; Pichler, Bruno; Buchanan, Kate; Sjöström, P. Jesper; Mrsic-Flogel, Thomas D.

    2011-01-01

    Neuronal connectivity is fundamental to information processing in the brain. Understanding the mechanisms of sensory processing, therefore, requires uncovering how connection patterns between neurons relate to their function. On a coarse scale long range projections can preferentially link cortical regions with similar responses to sensory stimuli1-4. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro whose response properties were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the deg of functional specificity of local synaptic connections in visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information. PMID:21478872

  8. Comparing Teacher-Directed and Computer-Assisted Constant Time Delay for Teaching Functional Sight Words to Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Coleman, Mari Beth; Hurley, Kevin J.; Cihak, David F.

    2012-01-01

    The purpose of this study was to compare the effectiveness and efficiency of teacher-directed and computer-assisted constant time delay strategies for teaching three students with moderate intellectual disability to read functional sight words. Target words were those found in recipes and were taught via teacher-delivered constant time delay or…

  9. Hole localization in molecular crystals from hybrid density functional theory.

    PubMed

    Sai, Na; Barbara, Paul F; Leung, Kevin

    2011-06-01

    We use first-principles computational methods to examine hole trapping in organic molecular crystals. We present a computational scheme based on the tuning of the fraction of exact exchange in hybrid density functional theory to eliminate the many-electron self-interaction error. With small organic molecules, we show that this scheme gives accurate descriptions of ionization and dimer dissociation. We demonstrate that the excess hole in perfect molecular crystals forms self-trapped molecular polarons. The predicted absolute ionization potentials of both localized and delocalized holes are consistent with experimental values.

  10. Involvement of Local Lamellipodia in Endothelial Barrier Function

    PubMed Central

    Breslin, Jerome W.; Zhang, Xun E.; Worthylake, Rebecca A.; Souza-Smith, Flavia M.

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  11. Involvement of local lamellipodia in endothelial barrier function.

    PubMed

    Breslin, Jerome W; Zhang, Xun E; Worthylake, Rebecca A; Souza-Smith, Flavia M

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  12. Association constants and distribution functions for ion pairs in binary solvent mixtures: Application to a cyanine dye system

    NASA Astrophysics Data System (ADS)

    Odinokov, A. V.; Basilevsky, M. V.; Nikitina, E. A.

    2011-10-01

    The computations of the association constants Kass were performed at the microscopic level for the ion pair Cy+I- composed of the complex cyanine dye cation Cy+ coupled to the negative iodine counterion. The wide array of Kass values is arranged by a variation of the composition of the binary solvent mixtures toluene/dimethylsulfoxide with the accompanying change of the solvent polarity. The potentials of mean force (PMFs) are calculated for a set of interionic separations R in the Cy+I- by a methodology which combines the quantum-chemical techniques for the treatment of the electronic structure of the Cy+I- system with the recent dielectric continuum approach which accounts for the solvation effects. For a given solute/solvent system the probability function P(R), which describes the distribution of interionic separations, is constructed in terms of the PMFs and implemented for the evaluation of the Kass.

  13. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments.

    PubMed

    Niesen, Judith; Sack, Markus; Seidel, Melanie; Fendel, Rolf; Barth, Stefan; Fischer, Rainer; Stein, Christoph

    2016-08-17

    Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives. PMID:27391930

  14. Exact density functional and wave function embedding schemes based on orbital localization

    NASA Astrophysics Data System (ADS)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  15. Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane

    NASA Astrophysics Data System (ADS)

    Badieirostami, Majid; Lew, Matthew D.; Thompson, Michael A.; Moerner, W. E.

    2010-10-01

    Wide-field microscopy with a double-helix point spread function (DH-PSF) provides three-dimensional (3D) position information beyond the optical diffraction limit. We compare the theoretical localization precision for an unbiased estimator of the DH-PSF to that for 3D localization by astigmatic and biplane imaging using Fisher information analysis including pixelation and varying levels of background. The DH-PSF results in almost constant localization precision in all three dimensions for a 2 μm thick depth of field while astigmatism and biplane improve the axial localization precision over smaller axial ranges. For high signal-to-background ratio, the DH-PSF on average achieves better localization precision.

  16. Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane.

    PubMed

    Badieirostami, Majid; Lew, Matthew D; Thompson, Michael A; Moerner, W E

    2010-10-18

    Wide-field microscopy with a double-helix point spread function (DH-PSF) provides three-dimensional (3D) position information beyond the optical diffraction limit. We compare the theoretical localization precision for an unbiased estimator of the DH-PSF to that for 3D localization by astigmatic and biplane imaging using Fisher information analysis including pixelation and varying levels of background. The DH-PSF results in almost constant localization precision in all three dimensions for a 2 μm thick depth of field while astigmatism and biplane improve the axial localization precision over smaller axial ranges. For high signal-to-background ratio, the DH-PSF on average achieves better localization precision.

  17. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant*

    PubMed Central

    Li, Ting-Feng; Painter, Richard G.; Ban, Bhupal; Blake, Robert C.

    2015-01-01

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s−1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment. PMID:26041781

  18. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant.

    PubMed

    Li, Ting-Feng; Painter, Richard G; Ban, Bhupal; Blake, Robert C

    2015-07-24

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm(2) in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s(-1). The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.

  19. A modified Monte Carlo 'local importance function transform' method

    SciTech Connect

    Keady, K. P.; Larsen, E. W.

    2013-07-01

    The Local Importance Function Transform (LIFT) method uses an approximation of the contribution transport problem to bias a forward Monte-Carlo (MC) source-detector simulation [1-3]. Local (cell-based) biasing parameters are calculated from an inexpensive deterministic adjoint solution and used to modify the physics of the forward transport simulation. In this research, we have developed a new expression for the LIFT biasing parameter, which depends on a cell-average adjoint current to scalar flux (J{sup *}/{phi}{sup *}) ratio. This biasing parameter differs significantly from the original expression, which uses adjoint cell-edge scalar fluxes to construct a finite difference estimate of the flux derivative; the resulting biasing parameters exhibit spikes in magnitude at material discontinuities, causing the original LIFT method to lose efficiency in problems with high spatial heterogeneity. The new J{sup *}/{phi}{sup *} expression, while more expensive to obtain, generates biasing parameters that vary smoothly across the spatial domain. The result is an improvement in simulation efficiency. A representative test problem has been developed and analyzed to demonstrate the advantage of the updated biasing parameter expression with regards to solution figure of merit (FOM). For reference, the two variants of the LIFT method are compared to a similar variance reduction method developed by Depinay [4, 5], as well as MC with deterministic adjoint weight windows (WW). (authors)

  20. Multicolour localization microscopy by point-spread-function engineering

    NASA Astrophysics Data System (ADS)

    Shechtman, Yoav; Weiss, Lucien E.; Backer, Adam S.; Lee, Maurice Y.; Moerner, W. E.

    2016-09-01

    Super-resolution microscopy has revolutionized cellular imaging in recent years. Methods that rely on sequential localization of single point emitters enable spatial tracking at a resolution of ˜10-40 nm. Moreover, tracking and imaging in three dimensions is made possible by various techniques, including point-spread-function (PSF) engineering—namely, encoding the axial (z) position of a point source in the shape that it creates in the image plane. However, efficient multicolour imaging remains a challenge for localization microscopy—a task of the utmost importance for contextualizing biological data. Normally, multicolour imaging requires sequential imaging, multiple cameras or segmented dedicated fields of view. Here, we demonstrate an alternate strategy: directly encoding the spectral information (colour), in addition to three-dimensional position, in the image. By exploiting chromatic dispersion we design a new class of optical phase masks that simultaneously yield controllably different PSFs for different wavelengths, enabling simultaneous multicolour tracking or super-resolution imaging in a single optical path.

  1. Multicolour localization microscopy by point-spread-function engineering

    NASA Astrophysics Data System (ADS)

    Shechtman, Yoav; Weiss, Lucien E.; Backer, Adam S.; Lee, Maurice Y.; Moerner, W. E.

    2016-09-01

    Super-resolution microscopy has revolutionized cellular imaging in recent years. Methods that rely on sequential localization of single point emitters enable spatial tracking at a resolution of ∼10–40 nm. Moreover, tracking and imaging in three dimensions is made possible by various techniques, including point-spread-function (PSF) engineering—namely, encoding the axial (z) position of a point source in the shape that it creates in the image plane. However, efficient multicolour imaging remains a challenge for localization microscopy—a task of the utmost importance for contextualizing biological data. Normally, multicolour imaging requires sequential imaging, multiple cameras or segmented dedicated fields of view. Here, we demonstrate an alternate strategy: directly encoding the spectral information (colour), in addition to three-dimensional position, in the image. By exploiting chromatic dispersion we design a new class of optical phase masks that simultaneously yield controllably different PSFs for different wavelengths, enabling simultaneous multicolour tracking or super-resolution imaging in a single optical path.

  2. A Mapping of the Electron Localization Function for Earth Materials

    SciTech Connect

    Gibbs, Gerald V.; Cox, David F.; Ross, Nancy; Crawford, T Daniel; Burt, Jason; Rosso, Kevin M.

    2005-06-01

    The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering it more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies

  3. The performance of hybrid density functional theory for the calculation of indirect nuclear spin-spin coupling constants in substituted hydrocarbons.

    PubMed

    Lutnaes, Ola B; Ruden, Torgeir A; Helgaker, Trygve

    2004-10-01

    Density functional theory, in particular, with the Becke-3-parameter-Lee-Yang-Parr (B3LYP) hybrid functional, has been shown to be a promising method for the calculation of indirect nuclear spin-spin coupling constants. However, no systematic investigation has so far been undertaken to evaluate the capability of B3LYP to calculate these coupling constants accurately, taking properly into account the vibrational contributions. In this work, vibrationally corrected indirect spin-spin coupling constants were calculated using the B3LYP functional for 10 rigid unsubstituted and substituted hydrocarbons: ethyne, ethene, allene, cyclopropene, cyclopropane, cyclobutene, pyrrole, furan, thiophene and benzene. The resulting spin-spin constants were compared with the available experimental values. The basis sets in these calculations give indirect nuclear spin-spin coupling constants of ethyne that are almost converged to the basis-set limit, making the intrinsic error of the computational method and the error in equilibrium geometry the main sources of error. On average, the B3LYP functional overestimates the indirect nuclear spin-spin coupling constants in hydrocarbons by 10%.

  4. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  5. Contours of constant Δ and Ψ in the ɛ2- ɛ4 plane for the ellipsometric functions

    NASA Astrophysics Data System (ADS)

    Ward, L.

    2002-10-01

    Contour graphs of ɛ2 vs ɛ4 for different film thicknesses and a range of angles of incidence have been plotted for the ellipsometric functions Δ and Ψ in both the reflection and transmission modes. In the case of reflection ellipsometry, when the plots for ΔR and ΨR are superimposed, the two sets of contours cross nearly at right angles over a large part of the field, this being indicative of the high accuracy obtainable in using this technique to determine ɛ4 and ɛ2 and hence the optical constants, n and k, for the film material. The reflection ellipsometric technique is accurate over angles of incidence between 30° and 75° and for a range of film thicknesses between λ/30 and 5 λ. Transmission ellipsometry is less useful, due to anomalies in both Xs and Xp where sudden phase changes of ± π occur in regions of interest. There is also the possibility of multiple solutions, although the use of a multiangle technique would enable the "correct" values to be more easily determined.

  6. The hubble constant.

    PubMed

    Huchra, J P

    1992-04-17

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution. PMID:17743107

  7. Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength

    PubMed Central

    Luo, Yanxin; Millero, Frank J.

    2015-01-01

    The stability constants for the formation of lead (Pb2+) with chloride Pb2+=nCl−↔PbCln2−nβn(n=1,2,3) have been determined using a spectrophotometric method in NaClO4 solutions as a function of ionic strength (0–6 m) and temperature (15–45 °C). The results have been fitted to the equations: logβ1∗=logβ1+0.21I−8.61I0.5∕(1+1.2I0.5)+1927.40[I0.5∕(1+1.2I0.5)]∕Tlogβ2∗=logβ2+0.32I−4.67I0.5(1+1.2I0.5)+594.54[I0.5∕(1+1.2I0.5)]∕Tlogβ3∗=logβ3+0.40I−2.68I0.5(1+1.2I0.5)−43.98[I0.5∕(1+1.2I0.5)]∕T with standard errors of 0.05, 0.04 and 0.06, respectively. The thermodynamic values of log β1, logβ2 and logβ3 at 25.0 °C and the enthalpies of formation of PbCl+, PbCl20 and PbCl3− are in good agreement with literature values. We have combined our results with the earlier work of Seward (1984) to yield thermodynamic constants that are valid from 15 to 300 °C: logβ1=44.82+0.031T−21.21logTlogβ2=61.42+0.046T−29.51logTlogβ3=107.97+0.071T−51.46logT with standard errors of 0.05, 0.08 and 0.10, respectively. PMID:26937043

  8. Are Fundamental Constants Really Constant?

    ERIC Educational Resources Information Center

    Swetman, T. P.

    1972-01-01

    Dirac's classical conclusions, that the values of e2, M and m are constants and the quantity of G decreases with time. Evoked considerable interest among researchers and traces historical development by which further experimental evidence points out that both e and G are constant values. (PS)

  9. The black hole mass function derived from local spiral galaxies

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Daniel; Kennefick, Julia; Seigar, Marc S.; Lacy, Claud H. S.; Hartley, Matthew T.

    2014-07-10

    We present our determination of the nuclear supermassive black hole (SMBH) mass function for spiral galaxies in the local universe, established from a volume-limited sample consisting of a statistically complete collection of the brightest spiral galaxies in the southern (δ < 0°) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. The sample is defined by a limiting luminosity (redshift-independent) distance, D{sub L} = 25.4 Mpc (z = 0.00572) and a limiting absolute B-band magnitude, M{sub B}=−19.12. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch-angle distribution function may be useful in the study of the morphology of late-type galaxies. We then use an established relationship between the logarithmic spiral arm pitch angle and the mass of the central SMBH in a host galaxy in order to estimate the mass of the 128 respective SMBHs in this volume-limited sample. This result effectively gives us the distribution of mass for SMBHs residing in spiral galaxies over a lookback time, t{sub L} ≤ 82.1 h{sub 67.77}{sup −1} Myr and contained within a comoving volume, V{sub C} = 3.37 × 10{sup 4} h{sub 67.77}{sup −3} Mpc{sup 3}. We estimate that the density of SMBHs residing in spiral galaxies in the local universe is ρ=5.54{sub −2.73}{sup +6.55} × 10{sup 4} h{sub 67.77}{sup 3} M{sub ☉} Mpc{sup –3}. Thus, our derived cosmological SMBH mass density for spiral galaxies is Ω{sub BH}=4.35{sub −2.15}{sup +5.14} × 10{sup –7} h{sub 67.77}. Assuming that

  10. Recent Advances in Plant NLR Structure, Function, Localization, and Signaling

    PubMed Central

    Qi, Dong; Innes, Roger W.

    2013-01-01

    Nucleotide-binding domain leucine-rich repeat (NLR) proteins play a central role in the innate immune systems of plants and vertebrates. In plants, NLR proteins function as intracellular receptors that detect pathogen effector proteins directly, or indirectly by recognizing effector-induced modifications to other host proteins. NLR activation triggers a suite of defense responses associated with programed cell death (PCD). The molecular mechanisms underlying NLR activation, and how activation is translated into defense responses, have been particularly challenging to elucidate in plants. Recent reports, however, are beginning to shed some light. It is becoming clear that plant NLR proteins are targeted to diverse sub-cellular locations, likely depending on the locations where the effectors are detected. These reports also indicate that some NLRs re-localize following effector detection, while others do not, and such relocalization may reflect differences in signaling pathways. There have also been recent advances in understanding the structure of plant NLR proteins, with crystal structures now available for the N-terminal domains of two well-studied NLRs, a coiled-coil (CC) domain and a Toll-interleukin Receptor (TIR). Significant improvements in molecular modeling have enabled more informed structure-function studies, illuminating roles of intra- and inter-molecular interactions in NLR activation regulation. Several independent studies also suggest that intracellular trafficking is involved in NLR-mediated resistance. Lastly, progress is being made on identifying transcriptional regulatory complexes activated by NLRs. Current models for how plant NLR proteins are activated and how they induce defenses are discussed, with an emphasis on what remains to be determined. PMID:24155748

  11. Towards a Density Functional Theory Exchange-Correlation Functional able to describe localization/delocalization

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wills, John M.

    2013-03-01

    The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Xist localization and function: new insights from multiple levels.

    PubMed

    Cerase, Andrea; Pintacuda, Greta; Tattermusch, Anna; Avner, Philip

    2015-08-15

    In female mammals, one of the two X chromosomes in each cell is transcriptionally silenced in order to achieve dosage compensation between the genders in a process called X chromosome inactivation. The master regulator of this process is the long non-coding RNA Xist. During X-inactivation, Xist accumulates in cis on the future inactive X chromosome, triggering a cascade of events that provoke the stable silencing of the entire chromosome, with relatively few genes remaining active. How Xist spreads, what are its binding sites, how it recruits silencing factors and how it induces a specific topological and nuclear organization of the chromatin all remain largely unanswered questions. Recent studies have improved our understanding of Xist localization and the proteins with which it interacts, allowing a reappraisal of ideas about Xist function. We discuss recent advances in our knowledge of Xist-mediated silencing, focusing on Xist spreading, the nuclear organization of the inactive X chromosome, recruitment of the polycomb complex and the role of the nuclear matrix in the process of X chromosome inactivation.

  13. Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe

    SciTech Connect

    Chung, Woo-Hyun; Kim, Kyoung-Dong; Roe, Jung-Hye . E-mail: jhroe@plaza.snu.ac.kr

    2005-05-06

    The fission yeast Schizosaccharomyces pombe contains two dithiol glutaredoxins (Grx1 and Grx2) and genes for three putative monothiol glutaredoxins (grx3, 4, and 5). We investigated the expression, sub-cellular localization, and functions of the three monothiol glutaredoxins. Fluorescence microscopy revealed that Grx3 is targeted to nuclear rim and endoplasmic reticulum, Grx4 primarily to the nucleus, and Grx5 to mitochondria. Null mutation of grx3 did not significantly affect growth and resistance against various oxidants, whereas grx5 mutation caused slow growth and sensitivity toward oxidants such as hydrogen peroxide, paraquat, and diamide. The grx2grx5 double mutation, deficient in all mitochondrial glutaredoxins, caused further retardation in growth and severe sensitivity toward all the oxidants tested. The grx4 mutation was not viable, suggesting a critical role of Grx4 for the physiology of S. pombe. Overproduction of Grx3 and Grx5, but not the truncated form of Grx5 without mitochondrial target sequence, severely retarded growth as Grx2 did, supporting the idea that Grx2, 3, and 5 are targeted to organellar compartments. Our results propose a distinct role for each glutaredoxin to maintain thiol redox balance, and hence the growth and stress resistance, of the fission yeast.

  14. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  15. On the Khinchin Constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)

    1995-01-01

    We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.

  16. Chemistry as a function of the fine-structure constant and the electron-proton mass ratio

    NASA Astrophysics Data System (ADS)

    King, Rollin A.; Siddiqi, Ali; Allen, Wesley D.; Schaefer, Henry F., III

    2010-04-01

    In standard computations in theoretical quantum chemistry the accepted values of the fundamental physical constants are assumed. Alternatively, the tools of computational quantum chemistry can be used to investigate hypothetical chemistry that would result from different values of these constants, given the same physical laws. In this work, the dependence of a variety of basic chemical quantities on the values of the fine-structure constant and the electron-proton mass ratio is explored. In chemistry, the accepted values of both constants may be considered small, in the sense that their increase must be substantial to seriously impact bond energies. It is found that if the fine-structure constant were larger, covalent bonds between light atoms would be weaker, and the dipole moment and hydrogen-bonding ability of water would be reduced. Conversely, an increase in the value of the electron-proton mass ratio increases dissociation energies in molecules such as H2, O2, and CO2. Specifically, a sevenfold increase in the fine-structure constant decreases the strength of the O-H bond in the water molecule by 7 kcal mol-1 while reducing its dipole moment by at least 10%, whereas a 100-fold increase in the electron-proton mass ratio increases the same bond energy by 11 kcal mol-1.

  17. Identification, localization, and functional implications of an abundant nematode annexin

    PubMed Central

    1996-01-01

    Cultures of the nematode C. elegans were examined for the presence of calcium-dependent, phospholipid-binding proteins of the annexin class. A single protein of apparent mass on SDS-polyacrylamide gels of 32 kD was isolated from soluble extracts of nematode cultures on the basis of its ability to bind to phospholipids in a calcium-dependent manner. After verification of the protein as an annexin by peptide sequencing, an antiserum to the protein was prepared and used to isolate a corresponding cDNA from an expression library in phage lambda gt11. The encoded protein, herein referred to as the nex-1 annexin, has a mass of 35 kD and is 36-42% identical in sequence to 10 known mammalian annexins. Several unique modifications were found in the portions of the sequence corresponding to calcium-binding sites. Possible phosphorylation sites in the NH2-terminal domain of the nematode annexin correspond to those of mammalian annexins. The gene for this annexin (nex-1) was physically mapped to chromosome III in the vicinity of the dpy-17 genetic marker. Two other annexin genes (nex-2 and nex-3) were also identified in chromosome III sequences reported by the nematode genomic sequencing project (Sulston, J., Z. Du, K. Thomas, R. Wilson, L. Hillier, R. Staden, N. Halloran, P. Green, J. Thierry-Mieg, L. Qiu, et al. 1992. Nature (Lond.). 356:37-41). The nex-1 annexin was localized in the nematode by immunofluorescence and by electron microscopy using immunogold labeling. The protein is associated with membrane systems of the secretory gland cells of the pharynx, with sites of cuticle formation in the grinder in the pharynx, with yolk granules in oocytes, with the uterine wall and vulva, and with membrane systems in the spermathecal valve. The presence of the annexin in association with the membranes of the spermathecal valve suggests a novel function of the protein in the folding and unfolding of these membranes as eggs pass through the valve. The localizations also indicate

  18. Many-body Localization Transition in Rokhsar-Kivelson-type wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Yu, Xiongjie; Cho, Gil Young; Clark, Bryan; Fradkin, Eduardo

    We construct a family of many-body wave functions to study the many-body localization phase transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the configurations are chosen from the Gibbs weights of a classical spin glass model, known as the Random Energy Model, multiplied by a random sign structure to represent a highly excited state. These wave functions show a phase transition into an MBL phase. In addition, we see three regimes of entanglement scaling with subsystem size: scaling with entanglement corresponding to an infinite temperature thermal phase, constant scaling, and a sub-extensive scaling between these limits. Near the phase transition point, the fluctuations of the Renyi entropies are non-Gaussian. We find that Renyi entropies with different Renyi index transition into the MBL phase at different points and have different scaling behavior, suggesting a multifractal behavior. This work was supported in part by DMR-1064319 and DMR-1408713 (XC,GYC,EF) at the University of Illinois, PHY11-25915 at KITP (EF), DOE, SciDAC FG02-12ER46875 (BKC and XY), and the Brain Korea 21 PLUS Project of Korea Government (GYC).

  19. On the spectrum of almost periodic solution of second order scalar functional differential equations with piecewise constant argument

    NASA Astrophysics Data System (ADS)

    Yuan, Rong

    2005-03-01

    We study the spectrum containment of almost periodic solution to neutral delay differential equations with piecewise constant argument (EPCA, for short). We find an important property, which is different from that given by Cartwright for ordinary differential equations (ODE). Some known (periodic solution) results would be expanded. As a corollary, it is shown that EPCA with periodic perturbations possess a quasi-periodic solution and no periodic solution. This new phenomenon is due to the piecewise constant argument and illustrates a crucial difference between ODE and EPCA.

  20. Comparison of Constant Time Delay and Simultaneous Prompting Procedures: Teaching Functional Sight Words to Students with Intellectual Disabilities and Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Swain, Rasheeda; Lane, Justin D.; Gast, David L.

    2015-01-01

    Constant time delay (CTD) and simultaneous prompting (SP) are effective response prompting procedures for teaching students with moderate to severe disabilities. The purpose of this study was to compare the efficiency of CTD and SP when teaching functional sight words to four students, 8-11 years of age, with moderate intellectual disability (ID)…

  1. Local field effect as a function of pulse duration

    SciTech Connect

    Novitsky, Denis V.

    2010-07-15

    In this brief report we give semiclassical consideration to the role of pulse duration in the observation of local field effects in the regime of optical switching. We show that the main parameter governing local field influence is the ratio of peak Rabi frequency corresponding to medium inversion and Lorentz frequency of the medium. To obtain significant local field effect, this parameter should be near unity that is valid only for long enough pulses. We also discuss the role of relaxation and pulse shape in this process.

  2. Determination of Henry's law constants of organochlorine pesticides in deionized and saline water as a function of temperature

    NASA Astrophysics Data System (ADS)

    Cetin, Banu; Ozer, Serdar; Sofuoglu, Aysun; Odabasi, Mustafa

    The Henry's law constant ( H) is an important parameter that is required to estimate the air-water exchange of semi-volatile organic compounds. Henry's law constants for 17 banned/restricted/currently used organochlorine pesticides (OCPs) were experimentally determined using a gas-stripping technique in deionized and saline water (3%) over a temperature range of 5-35 °C. H values (at 25 °C) ranged between 0.066±0.037 Pa m 3 mol -1 (endosulfan II) and 62.0±24.2 Pa m 3 mol -1 (heptachlor) in deionized water while the range in saline water was 0.28±0.03 Pa m 3 mol -1 ( γ-HCH) and 135.2±31.3 Pa m 3 mol -1 (heptachlor). The increase in dimensionless Henry's law constants ( H') for OCPs over the studied temperature range was between 3 ( γ-HCH)-19 times (chlorpyrifos) and 3 (endosulfan II)-80 times ( trans-nonachlor) in deionized and saline water, respectively. The calculated enthalpies of phase change (Δ HH) were within the ranges previously reported for OCPs and other organic compounds (23.8-100.2 kJ mol -1). The salting-out constant, ks, ranged between 0.04 ( γ-HCH) and 1.80 L mol -1 (endosulfan II) indicating the importance of assessing the H values of OCPs in saline water to accurately determine their partitioning and fate in seawater.

  3. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1992-08-01

    Recent studies have been made on the distribution of the rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in natural waters relative to their concentration in shales. These metals have also been used as models for the behavior of the trivalent actinides. The speciation of the rare earths in natural waters is modelled by using ionic interaction models which require reliable stability constants. In this paper the stability constants for the formation of lanthanide complexes ( k mx∗) with Cl -, NO 3-, SO 42-, OH -, HCO 3-, H 2PO 4-, HPO 42-, and CO 32- determined in NaClO 44 at various ionic strengths have been extrapolated to infinite dilution using the Pitzer interaction model. The activity coefficients for free ions ( γM, γx) needed for this extrapolation have been estimated from the Pitzer equations. The thermodynamic stability constants ( KMX) and activity coefficients of the various ion pairs ( γMX) were determined from In ( solK MX∗/γ Mγ x) = In K mx+ In (γ MX). The activity coefficients of the ion pairs have been used to determine Pitzer parameters ( BMX) for the rare earth complexes. The values of BMX were found to be the same for complexes of the same charge. These results make it possible to estimate the stability constants for the formation of rare earth complexes over a wide range of ionic strengths. The stability constants have been used to determine the speciation of the lanthanides in seawater and in brines. The carbonate complexes dominate for all natural waters where the carbonate alkalinity is greater than 0.001 eq/L at a pH near 8.

  4. Perturbation Theory with Convergent Series for Large Values of Coupling Constant:. a Calculation of β-FUNCTION in φ4 Model

    NASA Astrophysics Data System (ADS)

    Belokurov, V. V.; Shavgulidze, E. T.; Solov'yov, Yu. P.; Yudin, I. L.

    2001-04-01

    A new perturbation theory with convergent series is used to calculate quantities given by a finite number of terms of the traditional perturbation theory. As examples of such a problem, the zero-dimensional analog of a functional integral and β-function in gφ4 model in four-dimensional space-time are considered. The results obtained demonstrate high accuracy of the calculation in a wide region of coupling constant values.

  5. Density-Functional and Coupled-Cluster Singles-and-Doubles Calculations of the Nuclear Shielding and Indirect Nuclear Spin-Spin Coupling Constants of o-Benzyne.

    PubMed

    Helgaker, Trygve; Jaszuński, Michał

    2007-01-01

    Density-functional theory (DFT) and coupled-cluster singles-and-doubles (CCSD) theory are applied to compute the nuclear magnetic resonance (NMR) shielding and indirect nuclear spin-spin coupling constants of o-benzyne, whose biradical nature makes it difficult to study both experimentally and theoretically. Because of near-equilibrium triplet instabilities that follow from its biradical character, the calculated DFT NMR properties of o-benzyne are unusually sensitive to details of the exchange-correlation functional. However, this sensitivity is greatly reduced if these properties are calculated at the equilibrium of the chosen functional. A strong correlation is demonstrated between the quality of the calculated indirect spin-spin coupling constants and the quality of the calculated lowest triplet excitation energy in o-benzyne. Orbital-unrelaxed coupled-cluster theory should be less affected by such instabilities, and the CCSD NMR properties were only calculated at the experimental equilibrium geometry. For the shielding constants, the results in best agreement with experimental results are obtained with CCSD theory and with the Keal-Tozer KT1 and KT2 functionals. For the triply bonded carbon atoms, these models yield an isotropic shielding of 1.3, -3.3, and -1.2 ppm, respectively, compared with the experimentally observed shielding of 3.7 ppm for incarcerated o-benzyne. For the indirect spin-spin coupling constants, the CCSD model and the Perdew-Burke-Ernzerhof functional both yield reliable results; for the most interesting spin-spin coupling constant, (1)J (C⋮C), we obtain 210 and 209 Hz with these two models, respectively, somewhat above the recently reported experimental value of 177.9 ± 0.7 Hz for o-benzyne inside a molecular container, suggesting large incarceration effects.

  6. Transverse isospin response function of asymmetric nuclear matter from a local isospin density functional

    NASA Astrophysics Data System (ADS)

    Lipparini, Enrico; Pederiva, Francesco

    2016-08-01

    The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.

  7. 34 CFR 489.1 - What is the Functional Literacy for State and Local Prisoners Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Functional Literacy for State and Local... (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION FUNCTIONAL LITERACY FOR STATE AND LOCAL PRISONERS PROGRAM General § 489.1 What is the Functional Literacy for State and...

  8. 34 CFR 489.1 - What is the Functional Literacy for State and Local Prisoners Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Functional Literacy for State and Local... (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION FUNCTIONAL LITERACY FOR STATE AND LOCAL PRISONERS PROGRAM General § 489.1 What is the Functional Literacy for State and...

  9. 34 CFR 489.1 - What is the Functional Literacy for State and Local Prisoners Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Functional Literacy for State and Local... (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION FUNCTIONAL LITERACY FOR STATE AND LOCAL PRISONERS PROGRAM General § 489.1 What is the Functional Literacy for State and...

  10. 34 CFR 489.1 - What is the Functional Literacy for State and Local Prisoners Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Functional Literacy for State and Local... (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION FUNCTIONAL LITERACY FOR STATE AND LOCAL PRISONERS PROGRAM General § 489.1 What is the Functional Literacy for State and...

  11. 34 CFR 489.1 - What is the Functional Literacy for State and Local Prisoners Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Functional Literacy for State and Local... (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION FUNCTIONAL LITERACY FOR STATE AND LOCAL PRISONERS PROGRAM General § 489.1 What is the Functional Literacy for State and...

  12. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor. PMID:26574455

  13. Learning local objective functions for robust face model fitting.

    PubMed

    Wimmer, Matthias; Stulp, Freek; Pietzsch, Sylvia; Radig, Bernd

    2008-08-01

    Model-based techniques have proven to be successful in interpreting the large amount of information contained in images. Associated fitting algorithms search for the global optimum of an objective function, which should correspond to the best model fit in a given image. Although fitting algorithms have been the subject of intensive research and evaluation, the objective function is usually designed ad hoc, based on implicit and domain-dependent knowledge. In this article, we address the root of the problem by learning more robust objective functions. First, we formulate a set of desirable properties for objective functions and give a concrete example function that has these properties. Then, we propose a novel approach that learns an objective function from training data generated by manual image annotations and this ideal objective function. In this approach, critical decisions such as feature selection are automated, and the remaining manual steps hardly require domain-dependent knowledge. Furthermore, an extensive empirical evaluation demonstrates that the obtained objective functions yield more robustness. Learned objective functions enable fitting algorithms to determine the best model fit more accurately than with designed objective functions. PMID:18566491

  14. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  15. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies

    NASA Astrophysics Data System (ADS)

    Maier, Toni M.; Bahmann, Hilke; Arbuznikov, Alexei V.; Kaupp, Martin

    2016-02-01

    The first systematic evaluation of local hybrid functionals for the calculation of electronic excitation energies within linear-response time-dependent density functional theory (TDDFT) is reported. Using our recent efficient semi-numerical TDDFT implementation [T. M. Maier et al., J. Chem. Theory Comput. 11, 4226 (2015)], four simple, thermochemically optimized one-parameter local hybrid functionals based on local spin-density exchange are evaluated against a database of singlet and triplet valence excitations of organic molecules, and against a mixed database including also Rydberg, intramolecular charge-transfer (CT) and core excitations. The four local hybrids exhibit comparable performance to standard global or range-separated hybrid functionals for common singlet valence excitations, but several local hybrids outperform all other functionals tested for the triplet excitations of the first test set, as well as for relative energies of excited states. Evaluation for the combined second test set shows that local hybrids can also provide excellent Rydberg and core excitations, in the latter case rivaling specialized functionals optimized specifically for such excitations. This good performance of local hybrids for different excitation types could be traced to relatively large exact-exchange (EXX) admixtures in a spatial region intermediate between valence and asymptotics, as well as close to the nucleus, and lower EXX admixtures in the valence region. In contrast, the tested local hybrids cannot compete with the best range-separated hybrids for intra- and intermolecular CT excitation energies. Possible directions for improvement in the latter category are discussed. As the used efficient TDDFT implementation requires essentially the same computational effort for global and local hybrids, applications of local hybrid functionals to excited-state problems appear promising in a wide range of fields. Influences of current-density dependence of local kinetic

  16. Local thermodynamic mapping for effective liquid density-functional theory

    NASA Technical Reports Server (NTRS)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  17. Using local operator fluctuations to identify wave function improvements.

    PubMed

    Williams, Kiel T; Wagner, Lucas K

    2016-07-01

    A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors in trial wave functions. The purpose of this method is to allow for the systematic improvement of variational wave functions by identifying degrees of freedom that are not well described by an initial trial state. We provide proof of concept implementations of this method by identifying the need for a Jastrow correlation factor and implementing a selected multideterminant wave function algorithm for small dimers that systematically decreases the variational energy. Selection of the two-particle excitations is done using the quantum Monte Carlo method within the presence of a Jastrow correlation factor and without the need to explicitly construct the determinants. We also show how this technique can be used to design compact wave functions for transition metal systems. This method may provide a route to analyze and systematically improve descriptions of complex quantum systems in a scalable way. PMID:27575232

  18. Using local operator fluctuations to identify wave function improvements

    NASA Astrophysics Data System (ADS)

    Williams, Kiel T.; Wagner, Lucas K.

    2016-07-01

    A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors in trial wave functions. The purpose of this method is to allow for the systematic improvement of variational wave functions by identifying degrees of freedom that are not well described by an initial trial state. We provide proof of concept implementations of this method by identifying the need for a Jastrow correlation factor and implementing a selected multideterminant wave function algorithm for small dimers that systematically decreases the variational energy. Selection of the two-particle excitations is done using the quantum Monte Carlo method within the presence of a Jastrow correlation factor and without the need to explicitly construct the determinants. We also show how this technique can be used to design compact wave functions for transition metal systems. This method may provide a route to analyze and systematically improve descriptions of complex quantum systems in a scalable way.

  19. Local behavior of autonomous neutral functional differential equations.

    NASA Technical Reports Server (NTRS)

    Hale, J. K.

    1972-01-01

    Basic problems for a special class of neutral functional differential equations (NFDE) are formulated, and some contributions to a general qualitative theory in the neighborhood of an equilibrium point are indicated. The properties of a NFDE (G,f) are examined to determine in what sense these properties are insensitive to small changes in (G,f) in the topology G x F. The special class of equations that is introduced includes retarded functional differential equations and difference equations.

  20. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  1. p53 Cellular Localization and Function in Neuroblastoma

    PubMed Central

    Tweddle, Deborah A.; Malcolm, Archie J.; Cole, Michael; Pearson, Andrew D.J.; Lunec, John

    2001-01-01

    This study investigated the hypothesis that p53 accumulation in neuroblastoma, in the absence of mutation, is associated with functional inactivation, which interferes with downstream mediators of p53 function. To test this hypothesis, p53 expression, location, and functional integrity was examined in neuroblastoma by irradiating 6 neuroblastoma cell lines and studying the effects on p53 transcriptional function, cell cycle arrest, and induction of apoptosis, together with the transcriptional function of p53 after irradiation in three ex vivo primary, untreated neuroblastoma tumors. p53 sequencing showed five neuroblastoma cell lines, two of which were MYCN-amplified, and that all of the tumors were wild-type for p53. p53 was found to be predominantly nuclear before and after irradiation and to up-regulate the p53 responsive genes WAF1 and MDM2 in wild-type p53 cell lines and a poorly-differentiated neuroblastoma, but not a differentiating neuroblastoma or the ganglioneuroblastoma part of a nodular ganglioneuroblastoma in short term culture. This suggests intact p53 transcriptional activity in proliferating neuroblastoma. Irradiation of wild-type p53 neuroblastoma cell lines led to G1 cell cycle arrest in cell lines without MYCN amplification, but not in those with MYCN amplification, despite induction of WAF1. This suggests MYCN amplification may alter downstream mediators of p53 function in neuroblastoma. PMID:11395384

  2. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  3. Localization of acoustic sensors from passive Green's function estimation.

    PubMed

    Nowakowski, Thibault; Daudet, Laurent; de Rosny, Julien

    2015-11-01

    A number of methods have recently been developed for passive localization of acoustic sensors, based on the assumption that the acoustic field is diffuse. This article presents the more general case of equipartition fields, which takes into account reflections off boundaries and/or scatterers. After a thorough discussion on the fundamental differences between the diffuse and equipartition models, it is shown that the method is more robust when dealing with wideband noise sources. Finally, experimental results show, for two types of boundary conditions, that this approach is especially relevant when acoustic sensors are close to boundaries.

  4. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  5. DSCAM Localization and Function at the Mouse Cone Synapse

    PubMed Central

    de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.

    2014-01-01

    The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985

  6. Influence of pressure derivative of partition function on thermodynamic properties of non-local thermodynamic equilibrium thermal plasma

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Sharma, Rohit; Singh, Kuldip

    2015-09-01

    Thermodynamic properties (compressibility coefficient Z γ , specific heat at constant volume c v , adiabatic coefficient γ a , isentropic coefficient γ i s e n , and sound speed c s ) of non-local thermodynamic equilibrium hydrogen thermal plasma have been investigated for different values of pressure and non-equilibrium parameter θ (=Te/Th) in the electron temperature range from 6000 K to 60 000 K. In order to estimate the influence of pressure derivative of partition function on thermodynamic properties, two cases have been considered: (a) in which pressure derivative of partition function is taken into account in the expressions and (b) without pressure derivative of partition function in their expressions. Here, the case (b) represents expressions already available in literature. It has been observed that the temperature from which pressure derivative of partition function starts influencing a given thermodynamic property increases with increase of pressure and non-equilibrium parameter θ. Thermodynamic property in the case (a) is always greater than its value in the case (b) for compressibility coefficient and specific heat at constant volume, whereas for adiabatic coefficient, isentropic coefficient, and sound speed, its value in the case (a) is always less than its value in the case (b). For a given value of θ, the relationship of compressibility coefficient with degree of ionization depends upon pressure in the case (a), whereas it is independent of pressure in the case (b). Relative deviation between the two cases shows that the influence of pressure derivative of partition function is significantly large and increases with the augmentation of pressure and θ for compressibility coefficient, specific heat at constant volume, and adiabatic coefficient, whereas for isentropic coefficient and sound speed, it is marginal even at high values of pressure and non-equilibrium parameter θ.

  7. A Tomographic Method for the Reconstruction of Local Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.

  8. Local hybrid functionals with orbital-free mixing functions and balanced elimination of self-interaction error

    SciTech Connect

    Silva, Piotr de E-mail: clemence.corminboeuf@epfl.ch; Corminboeuf, Clémence E-mail: clemence.corminboeuf@epfl.ch

    2015-02-21

    The recently introduced density overlap regions indicator (DORI) [P. de Silva and C. Corminboeuf, J. Chem. Theory Comput. 10(9), 3745–3756 (2014)] is a density-dependent scalar field revealing regions of high density overlap between shells, atoms, and molecules. In this work, we exploit its properties to construct local hybrid exchange-correlation functionals aiming at balanced reduction of the self-interaction error. We show that DORI can successfully replace the ratio of the von Weizsäcker and exact positive-definite kinetic energy densities, which is commonly used in mixing functions of local hybrids. Additionally, we introduce several semi-empirical parameters to control the local and global admixture of exact exchange. The most promising of our local hybrids clearly outperforms the underlying semi-local functionals as well as their global hybrids.

  9. Dielectric function and magneto-optical Voigt constant of Cu2O: A combined spectroscopic ellipsometry and polar magneto-optical Kerr spectroscopy study

    NASA Astrophysics Data System (ADS)

    Haidu, Francisc; Fronk, Michael; Gordan, Ovidiu D.; Scarlat, Camelia; Salvan, Georgeta; Zahn, Dietrich R. T.

    2011-11-01

    Cuprous oxide is a highly interesting material for the emerging field of transparent oxide electronics. In this work the energy dispersion of the dielectric function of Cu2O bulk material is revised by spectroscopic ellipsometry measurements in an extended spectral range from 0.73 to 10 eV. For the first time, the magneto-optical Kerr effect was measured in the spectral range from 1.7 to 5.5 eV and the magneto-optical Voigt constant of Cu2O was obtained by numerical calculations from the magneto-optical Kerr effect spectra and the dielectric function.

  10. DSCAM localization and function at the mouse cone synapse.

    PubMed

    de Andrade, Gabriel Belem; Long, Samuel S; Fleming, Harrison; Li, Wei; Fuerst, Peter G

    2014-08-01

    The Down syndrome cell adhesion molecule (DSCAM) is required for regulation of cell number, soma spacing, and cell type-specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, whereas other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different from that of wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, density recovery profiling (DRP) analysis, and nearest neighbor analysis. Spacing was found to be significantly different when wild-type and mutant type 3b bipolar cell dendrites were compared. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque, and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells.

  11. The Hubble constant

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1992-01-01

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy radial velocities and distances. Although there has been considerable progress in the development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.

  12. Communication: Hole localization in Al-doped quartz SiO{sub 2} within ab initio hybrid-functional DFT

    SciTech Connect

    Gerosa, Matteo; Bottani, Carlo Enrico

    2015-09-21

    We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.

  13. Model of local temperature changes in brain upon functional activation.

    PubMed

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  14. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.

    PubMed

    Yu, Haoyu S; He, Xiao; Truhlar, Donald G

    2016-03-01

    Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology. PMID:26722866

  15. Dissecting the Structure-Function Relationship of a Fungicidal Peptide Derived from the Constant Region of Human Immunoglobulins

    PubMed Central

    Ciociola, Tecla; Pertinhez, Thelma A.; Giovati, Laura; Sperindè, Martina; Magliani, Walter; Ferrari, Elena; Gatti, Rita; D'Adda, Tiziana; Spisni, Alberto; Polonelli, Luciano

    2016-01-01

    Synthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activities in vitro and/or in vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activities in vitro. The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives with Candida albicans cells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in a Galleria mellonella model. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptides in vitro and their therapeutic effects in vivo. PMID:26856836

  16. Evaluation of a combination of local hybrid functionals with DFT-D3 corrections for the calculation of thermochemical and kinetic data.

    PubMed

    Theilacker, Kolja; Arbuznikov, Alexei V; Bahmann, Hilke; Kaupp, Martin

    2011-08-18

    Due to their position-dependent exact exchange admixture, local hybrid functionals offer a higher flexibility and thus the potential for more universal and accurate exchange correlation functionals compared to global hybrids with a constant admixture, as has been demonstrated in previous work. Yet, the local hybrid constructions used so far do not account for the inclusion of dispersion-type interactions. As a first exploratory step toward a more general approach that includes van der Waals-type interactions with local hybrids, the present work has added DFT-D3-type corrections to a number of simple local hybrid functionals. Optimization of only the s(8) and s(r,6) parameters for the S22 set provides good results for weak interaction energies but deteriorates the excellent performance of the local hybrids for G3 atomization energies and for classical reaction barriers. A combined optimization of the two DFT-D3 parameters with one of the two parameters of the spin-polarized local mixing function (LMF) of a local hybrid for a more general optimization set provides simultaneously accurate dispersion energies, improved atomization energies, and accurate reaction barriers, as well as excellent alkane protobranching ratios. For other LMFs, the improvements of such a combined optimization for the S22 energies have been less satisfactory. The most notable advantage of the dispersion-corrected local hybrids over, for example, a B3LYP-D3 approach, is in the much more accurate reaction barriers.

  17. Efficient Semi-numerical Implementation of Global and Local Hybrid Functionals for Time-Dependent Density Functional Theory.

    PubMed

    Maier, Toni M; Bahmann, Hilke; Kaupp, Martin

    2015-09-01

    Local hybrid functionals with position-dependent exact-exchange admixture offer increased flexibility compared to global hybrids. For sufficiently advanced functionals of this type, this is expected to hold also for a wide range of electronic excitations within time-dependent density functional theory (TDDFT). Following a recent semi-numerical implementation of local hybrid functionals for ground-state self-consistent-field calculations (Bahmann, H.; Kaupp, M. J. Chem. Theory Comput. 2015, 11, 1540-1548), the first linear-response TDDFT implementation of local hybrids is reported, using a semi-numerical integration technique. The timings and accuracy of the semi-numerical implementation are evaluated by comparison with analytical schemes for time-dependent Hartree-Fock (TDHF) and for the TPSSh global hybrid. In combination with the RI approximation to the Coulomb part of the kernel, the semi-numerical implementation is faster than the existing analytical TDDFT/TDHF implementation of global hybrid functionals in the TURBOMOLE code, even for small systems and moderate basis sets. Moreover, timings for global and local hybrids are practically equal for the semi-numerical scheme. The way to TDDFT calculations with local hybrid functionals for large systems is thus now open, and more sophisticated parametrizations of local hybrids may be evaluated.

  18. Tetraspan vesicle membrane proteins: synthesis, subcellular localization, and functional properties.

    PubMed

    Hübner, Kirsten; Windoffer, Reinhard; Hutter, Harald; Leube, Rudolf E

    2002-01-01

    Tetraspan vesicle membrane proteins (TVPs) are characterized by four transmembrane regions and cytoplasmically located end domains. They are ubiquitous and abundant components of vesicles in most, if not all, cells of multicellular organisms. TVP-containing vesicles shuttle between various membranous compartments and are localized in biosynthetic and endocytotic pathways. Based on gene organization and amino acid sequence similarities TVPs can be grouped into three distinct families that are referred to as physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In mammals synaptophysin, synaptoporin, pantophysin, and mitsugumin29 constitute the physins, synaptogyrin 1-4 the gyrins, and SCAMP1-5 the SCAMPs. Members of each family are cell-type-specifically synthesized resulting in unique patterns of TVP coexpression and subcellular colocalization. TVP orthologs have been identified in most multicellular organisms, including diverse animal and plant species, but have not been detected in unicellular organisms. They are subject to protein modification, most notably to phosphorylation, and are part of multimeric complexes. Experimental evidence is reviewed showing that TVPs contribute to vesicle trafficking and membrane morphogenesis. PMID:11893164

  19. Local Search Methods for Tree Chromosome Structure in a GA to Identify Functions

    NASA Astrophysics Data System (ADS)

    Matayoshi, Mitsukuni; Nakamura, Morikazu; Miyagi, Hayao

    In this paper, Local search methods for “Tree Chromosome Structure in a Genetic Algorithm to Identify Functions" which succeeds in function identifications are proposed. The proposed method aims at the identification success rate improvement and shortening identification time. The target functions of identification are composed of algebraic functions, primary transcendental functions, time series functions include a chaos function, and user-defined one-variable funcions. In testing, Kepler's the third law is added to Matayoshi's test functions(7)-(9). When some functions are identified, the improvement of identification rate and shortening time are indicated. However, we also report some ineffectual results, and give considerations.

  20. Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function.

    PubMed

    Jang, SoRi; Nelson, Jessica C; Bend, Eric G; Rodríguez-Laureano, Lucelenie; Tueros, Felipe G; Cartagenova, Luis; Underwood, Katherine; Jorgensen, Erik M; Colón-Ramos, Daniel A

    2016-04-20

    Changes in neuronal activity create local and transient changes in energy demands at synapses. Here we discover a metabolic compartment that forms in vivo near synapses to meet local energy demands and support synaptic function in Caenorhabditis elegans neurons. Under conditions of energy stress, glycolytic enzymes redistribute from a diffuse localization in the cytoplasm to a punctate localization adjacent to synapses. Glycolytic enzymes colocalize, suggesting the ad hoc formation of a glycolysis compartment, or a "glycolytic metabolon," that can maintain local levels of ATP. Local formation of the glycolytic metabolon is dependent on presynaptic scaffolding proteins, and disruption of the glycolytic metabolon blocks the synaptic vesicle cycle, impairs synaptic recovery, and affects locomotion. Our studies indicate that under energy stress conditions, energy demands in C. elegans synapses are met locally through the assembly of a glycolytic metabolon to sustain synaptic function and behavior. VIDEO ABSTRACT.

  1. Topological Gravity Localization on a δ-FUNCTION like Brane

    NASA Astrophysics Data System (ADS)

    Tahim, M. O.; Almeida, C. A. S.

    In the celebrated Plebanski formalism of topological gravity, the constraints connecting topological field theories and gravity are imposed in spacetimes with trivial topology. In the braneworld context there are two distinct regions of the spacetime, namely, the bulk and the braneworld volume. In this work we show how to construct topological classical gravity in a scenario containing one extra dimension and a δ-function like three-brane which naturally emerges from a spontaneously broken discrete symmetry. Starting from a D = 5 theory we obtain the action for General Relativity in the Palatini form in the bulk as well as in the braneworld volume. This result is important for future insights about quantum gravity on brane scenarios.

  2. The VO(2)-on kinetics in constant load exercise sub-anaerobic threshold reflects endothelial function and dysfunction in muscle microcirculation.

    PubMed

    Maione, D; Cicero, A Fg; Bacchelli, S; Cosentino, E R; Degli Esposti, D; Manners, D N; Rinaldi, E R; Rosticci, M; Senaldi, R; Ambrosioni, E; Borghi, C

    2015-01-01

    To propose a test to evaluate endothelial function, based on VO(2) on-transition kinetics in sub-anaerobic threshold (AT) constant load exercise, we tested healthy subjects and patients with ischemic-hypertensive cardiopathy by two cardiopulmonary tests on a cycle ergometer endowed with an electric motor to overcome initial inertia: a pre-test and, after at least 24 h, one 6 min constant load exercise at 90 % AT. We measured net phase 3 VO(2)-on kinetics and, by phase 2 time constant (tau), valued endothelial dysfunction. We found shorter tau in repeated tests, shorter time between first and second test, by persisting endothelium-dependent arteriolar vasodilatation and/or several other mechanisms. Reducing load to 80 % and 90 % AT did not produce significant changes in tau of healthy volunteers, while in heart patients an AT load of 70 %, compared to 80 % AT, shortened tau (delta=4.38+/-1.65 s, p=0.013). In heart patients, no correlation was found between NYHA class, ejection fraction (EF), and the two variables derived from incremental cycle cardio-pulmonary exercise, as well as between EF and tau; while NYHA class groups were well correlated with tau duration (r=0.92, p=0.0001). Doxazosin and tadalafil also significantly reduced tau. In conclusion, the O(2) consumption kinetics during the on-transition of constant load exercise below the anaerobic threshold are highly sensitive to endothelial function in muscular microcirculation, and constitute a marker for the evaluation of endothelial dysfunction.

  3. [Cognitive functions and personality traits in patients with brain tumors: the role of lesion localization].

    PubMed

    Razumnikova, O M; Perfil'ev, A M; Stupak, V V

    2014-01-01

    Personality traits and cognitive functions were studied depending on a tumor localization in the brain in 21 neurosurgical patients and the results were compared with a control group. In patients with brain damage, mostly affected were personality traits associated with emotion regulation and social interaction (neuroticism, psychoticism and social conformity). Increases in psychoticism and decreases in neuroticism were more expressed in patients with a left-hemisphere localization of tumors. The tumor-induced decrease in cognitive abilities was more presented in performing figurative tasks and less in verbal ones. Verbal functions were more decreased in the group with frontal localization of tumor compared to that with parietal localization.

  4. Local Analysis via the Real Space GREEN’S Function Method

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Yu; Jayanthi, Chakram S.

    A complete account of the development of the method of real space Green’s function is given in this review. The emphasis is placed on the calculation of the local Green’s function in a real space representation. The discussion is centered on a list of issues particularly relevant to the study of properties of complex systems with reduced symmetry.They include: (i) the convergence procedure for calculating the local Green’s function of infinite systems without any boundary effects associated with an arbitrary truncation of the system; (ii) a general recursive relation which streamlines the calculation of the local Green’s function; (iii) the calculation of the eigenvector of selected eigenvalues directly from the Green’s function. An example of the application of the method to carry out a local analysis of dynamics of the Au(511) surface is also presented.

  5. Passive localization in the deep ocean based on cross-correlation function matching.

    PubMed

    Lei, Zhixiong; Yang, Kunde; Ma, Yuanliang

    2016-06-01

    Passive localization of a sound source in the deep ocean is investigated in this study. The source can be localized by taking advantage of a cross-correlation function matching technique. When a two-sensor vertical array is used in the deep ocean, two types of side lobe curves appear in the ambiguity surface of the localization. The side lobe curves are analytically expressed and they are then used as indicators of the localization result instead of the scanning point with the maximum power. Simulation and experiment demonstrate the performance of the proposed passive localization method. PMID:27369172

  6. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.

    PubMed

    Fernández, M S; Arias, J I; Neira-Carrillo, A; Arias, J L

    2015-09-01

    Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded.

  7. Dynamic auditory localization: systematic replication of the auditory velocity function.

    PubMed

    Perrott, D R; Buck, V; Waugh, W; Strybel, T Z

    1979-10-01

    Two experiments explored the capability of normal-hearing adults to judge the apparent velocity of an unseen moving sound source. In exper. I, 9 naive and, 1 experienced S judged the velocity of a moving source emitting a .5-kc/s tone at 50 db SPL. S's head was in the center of a circle of 1.88-m radius swept by a small loudspeaker. In exper. II the sound was a low-pass-filtered (0.1-1 kc/s) noise at 50 db sound spectrum level. In both experiments perceived velocity was directly proportional to the actual velocity of the source. These results support out initial observations (Waugh et al, J. Aud. Res., 1979, 19, 103-1 10) that auditory velocity discrimination can be described as a power function with an exponent of 1.0. In exper. II the Ss also varied the sound source velocity by means of a variable resistor to produce a perceived velocity of 100 degrees/sec. Performance on the adaptive velocity production task was successfully predicted from the data of the absolute velocity judgment task. The Weber fraction was .052 for relatively fast-moving sound sources (100 degrees/sec). The ability to discriminate sound source velocity appears to be a well-defined feature of the dynamic binaural spatial system. PMID:262464

  8. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.

    PubMed

    Fernández, M S; Arias, J I; Neira-Carrillo, A; Arias, J L

    2015-09-01

    Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded. PMID:26276577

  9. Local analyses of Planck maps with Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Novaes, C. P.; Bernui, A.; Marques, G. A.; Ferreira, I. S.

    2016-09-01

    Minkowski functionals (MF) are excellent tools to investigate the statistical properties of the cosmic background radiation (CMB) maps. Between their notorious advantages is the possibility to use them efficiently in patches of the CMB sphere, which allow studies in masked skies, inclusive analyses of small sky regions. Then, possible deviations from Gaussianity are investigated by comparison with MF obtained from a set of Gaussian isotropic simulated CMB maps to which are applied the same cut-sky masks. These analyses are sensitive enough to detect contaminations of small intensity like primary and secondary CMB anisotropies. Our methodology uses the MF, widely employed to study non-Gaussianities in CMB data, and asserts Gaussian deviations only when all of them points out an exceptional χ2 value, at more than 2.2σ confidence level, in a given sky patch. Following this rigorous procedure, we find 13 regions in the foreground-cleaned Planck maps that evince such high levels of non-Gaussian deviations. According to our results, these non-Gaussian contributions show signatures that can be associated to the presence of hot or cold spots in such regions. Moreover, some of these non-Gaussian deviations signals suggest the presence of foreground residuals in those regions located near the Galactic plane. Additionally, we confirm that most of the regions revealed in our analyses, but not all, have been recently reported in studies done by the Planck collaboration. Furthermore, we also investigate whether these non-Gaussian deviations can be possibly sourced by systematics, like inhomogeneous noise and beam effect in the released Planck data, or perhaps due to residual Galactic foregrounds.

  10. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  11. Towards improved local hybrid functionals by calibration of exchange-energy densities

    SciTech Connect

    Arbuznikov, Alexei V. E-mail: martin.kaupp@tu-berlin.de; Kaupp, Martin E-mail: martin.kaupp@tu-berlin.de

    2014-11-28

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.

  12. Towards improved local hybrid functionals by calibration of exchange-energy densities

    NASA Astrophysics Data System (ADS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-11-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.

  13. Regional localization within the bone marrow influences the functional capacity of human HSCs.

    PubMed

    Guezguez, Borhane; Campbell, Clinton J V; Boyd, Allison L; Karanu, Francis; Casado, Fanny L; Di Cresce, Christine; Collins, Tony J; Shapovalova, Zoya; Xenocostas, Anargyros; Bhatia, Mickie

    2013-08-01

    Numerous studies have shown that the bone marrow (BM) niche plays a key role in mouse hematopoietic stem cell (HSC) function and involves contributions from a broad array of cell types. However, the composition and role of the human BM HSC niche have not been investigated. Here, using human bone biopsy specimens, we provide evidence of HSC propensity to localize to endosteal regions of the trabecular bone area (TBA). Through functional xenograft transplantation, we found that human HSCs localizing to the TBA have superior regenerative and self-renewal capacity and are molecularly distinct from those localizing to the long bone area (LBA). In addition, osteoblasts in the TBA possess unique characteristics and express a key network of factors that regulate TBA- versus LBA-localized human HSCs in vivo. Our study reveals that BM localization and architecture play a critical role in defining the functional and molecular properties of human HSCs.

  14. Local electric dipole moments for periodic systems via density functional theory embedding.

    PubMed

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries. PMID:25527922

  15. Local electric dipole moments for periodic systems via density functional theory embedding

    NASA Astrophysics Data System (ADS)

    Luber, Sandra

    2014-12-01

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  16. Local electric dipole moments for periodic systems via density functional theory embedding

    SciTech Connect

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  17. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  18. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  19. Calculation of the rate constant for state-selected recombination of H+O2(v) as a function of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.

    2004-06-01

    Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.

  20. Relationship Between Nutrient Enrichment and Benthic Function: Local Effects and Spatial Patterns

    EPA Science Inventory

    Eutrophication-induced changes to benthic structure and function are problems of enormous ecological and economic significance. Understanding the relationships between nutrient enrichment and effects, modifying factors such as localized transport time, and symptoms of eutrophica...

  1. Global-Local Visual Processing in High Functioning Children with Autism: Structural vs. Implicit Task Biases

    ERIC Educational Resources Information Center

    Iarocci, Grace; Burack, Jacob A.; Shore, David I.; Mottron, Laurent; Enns, James T.

    2006-01-01

    Global-local processing was examined in high-functioning children with autism and in groups of typically developing children. In experiment 1, the effects of structural bias were tested by comparing visual search that favored access to either local or global targets. The children with autism were not unusually sensitive to either level of visual…

  2. Structural information content of networks: graph entropy based on local vertex functionals.

    PubMed

    Dehmer, Matthias; Emmert-Streib, Frank

    2008-04-01

    In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating j-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. PMID:18243802

  3. Local Parity Violation or Local Charge Conservation/Flow? A Reaction-Plane-Dependent Balance Function Study

    NASA Astrophysics Data System (ADS)

    Wang, Hui; STAR Collaboration

    2011-10-01

    STAR has recently reported charge-dependent azimuthal correlations using a three particle correlator that is sensitive to the charge separation effect in Au+Au collisions at √{sNN} = 200 GeV. Qualitatively, these results agree with some of the theoretical predictions for local parity violation in heavy-ion collisions. However, a study using reaction-plane-dependent balance functions shows an alternative origin of this signal. The balance function, which measures the correlation between oppositely charged pairs, is sensitive to the mechanisms of charge formation and the subsequent relative diffusion of the balancing charges. We report reaction-plane-dependent balance functions for Au+Au collisions at √{sNN} = 200 GeV using the STAR detector. The reaction-plane-dependent balance function analysis is consistent with the three particle correlator analysis as expected mathematically. The model of Schlicting and Pratt incorporating local charge conservation and elliptic flow can reproduce most of the three-particle azimuthal correlation results at 200 GeV.

  4. In Situ Characterization of the Local Work Function along Individual Free Standing Nanowire by Electrostatic Deflection

    PubMed Central

    Chen, Yicong; Zhao, Chengchun; Huang, Feng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2016-01-01

    In situ characterization of the work function of quasi one dimensional nanomaterials is essential for exploring their applications. Here we proposed to use the electrostatic deflection induced by work function difference between nanoprobe and nanowire for in situ measuring the local work function along a free standing nanowire. The physical mechanism for the measurement was discussed in details and a parabolic relationship between the deflection and the potential difference was derived. As a demonstration, measurement of the local work functions on the tip and the sidewall of a ZnO nanowire with Au catalyst at its end and a LaB6 nanowire have been achieved with good accuracy. PMID:26882827

  5. Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index

    NASA Astrophysics Data System (ADS)

    Petousis, Ioannis; Chen, Wei; Hautier, Geoffroy; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.

    2016-03-01

    We demonstrate a high-throughput density functional perturbation theory (DFPT) methodology capable of screening compounds for their dielectric properties. The electronic and ionic dielectric tensors are calculated for 88 compounds, where the eigenvalues of the total dielectric tensors are compared with single crystal and polycrystalline experimental values reported in the literature. We find that GGA/PBE has a smaller mean average deviation from experiments (MARD=16.2 %) when compared to LDA. The prediction accuracy of DFPT is lowest for compounds that exhibit complex structural relaxation effects (e.g., octahedra rotation in perovskites) and/or strong anharmonicity. Despite some discrepancies between DFPT results and reported experimental values, the high-throughput methodology is found to be useful in identifying interesting compounds by ranking. This is demonstrated by the high Spearman correlation factor (ρ =0.92 ). Finally, we demonstrate that DFPT provides a good estimate for the refractive index of a compound without calculating the frequency dependence of the dielectric matrix (MARD=5.7 %).

  6. EVALUATION OF ANATOMICAL INTEGRITY USING ULTRASOUND EXAMINATION, AND FUNCTIONAL INTEGRITY USING THE CONSTANT & MURLEY SCORE, OF THE ROTATOR CUFF FOLLOWING ARTHROSCOPIC REPAIR

    PubMed Central

    Godinho, Glaydson Gomes; França, Flavio de Oliveira; Alves, Freitas José Marcio; Watanabe, Fábio Nagato; Nobre, Leonardo Oliveira; De Almeida Neto, Manoel Augusto; Mendes Da Silva, Marcos André

    2015-01-01

    Objective: To evaluate the functional and anatomical results from surgical treatment via arthroscopy in cases of complete rupture of the rotator cuff, using ultrasound images and the Constant and Murley functional index to investigate the correlation between them. Methods: 100 patients (110 shoulders) were evaluated. The mean follow-up was 48.8 ± 33.28 months (12 to 141 months). The mean age was 60.25 ± 10.09 (36 to 81 years). Rupture of the supraspinal tendon alone occurred in 85 cases (77%), and in association with the infraspinatus in 20 cases (18%) and subscapularis in four shoulders (4%). An association of supraspinatus, infraspinatus and subscapularis lesions was found in one shoulder (1%). The lesions were classified according to DeOrio and Cofield scores as small/medium in 85 shoulders (77%) and large/extensive in 25 (23%). The clinical results were assessed in accordance with the Constant and Murley criteria. The ultrasound results relate to reports issued by different radiologists. Statistical analysis was carried out using the chi-square test, Fisher's exact test, Student's t test, Pearson's correlation, Kruskal-Wallis correlation and logistic regression (significance: p < 0.05). Results: The mean Constant evaluation was 85.3 ± 10.06 in the normal shoulders and 83.96 ± 8.67 in the operated shoulders (p = 0.224). Excellent and good results were found in 74 shoulders (67%), satisfactory and moderate results in 32 (29%) and poor results in four (4%). The ultrasound evaluation showed 38 shoulders with re-rupture (35%) and absence of rupture in 71 (65%). Among the 74 shoulders (67%) with excellent/good results, 22 (30%) presented re-rupture in the ultrasound report (p = 0.294). Among the four shoulders (4%) with poor results, two (50%) presented reports of intact tendons (p = 0.294). Conclusion: There was no statistically valid correlation between the ultrasound diagnosis and the clinical evaluation of results among the patients who underwent arthroscopic

  7. Change in blood coagulation indices as a function of the incubation period of plasma in a constant magnetic field. [considering heparin tolerance and recalcification

    NASA Technical Reports Server (NTRS)

    Yepishina, S. G.

    1974-01-01

    The influence of a constant magnetic field (CMF) with a strength of 250 and 2500 oersteds on the recalcification reaction and the tolerance of plasma to heparin was studied as a function of the exposure time of the plasma to the CMF. The maximum and reliable change in the activation of the coagulatory system of the blood was observed after a 20-hour incubation of the plasma in a CMF. As the exposure time increased, the recalcification reaction changed insigificantly; the difference between the mean arithmetic of the experiment and control values was not statistically reliable. The tolerance of the plasma to heparin as a function of the exposure time to the CMF of the plasma was considerably modified, an was statistically reliable.

  8. Uncertainty in measurement: a review of monte carlo simulation using microsoft excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants.

    PubMed

    Farrance, Ian; Frenkel, Robert

    2014-02-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship

  9. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins

    PubMed Central

    Merianda, Tanuja T.; Lin, Andrew C.; Lam, Joyce S.Y.; Vuppalanchi, Deepika; Willis, Dianna E.; Karin, Norman; Holt, Christine E.; Twiss, Jeffery L.

    2013-01-01

    Subcellular localization of protein synthesis provides a means to regulate the protein composition in far reaches of a cell. This localized protein synthesis gives neuronal processes autonomy to rapidly respond to extracellular stimuli. Locally synthesized axonal proteins enable neurons to respond to guidance cues and can help to initiate regeneration after injury. Most studies of axonal mRNA translation have concentrated on cytoplasmic proteins. While ultrastructural studies suggest that axons do not have rough endoplasmic reticulum or Golgi apparatus, mRNAs for transmembrane and secreted proteins localize to axons. Here, we show that growing axons with protein synthetic activity contain ER and Golgi components needed for classical protein synthesis and secretion. Isolated axons have the capacity to traffic locally synthesized proteins into secretory pathways and inhibition of Golgi function attenuates translation-dependent axonal growth responses. Finally, the capacity for secreting locally synthesized proteins in axons appears to be increased by injury. PMID:19022387

  10. Extension of local-type inequality for the higher order correlation functions

    SciTech Connect

    Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  11. Localization and delocalization errors in density functional theory and implications for band-gap prediction.

    PubMed

    Mori-Sánchez, Paula; Cohen, Aron J; Yang, Weitao

    2008-04-11

    The band-gap problem and other systematic failures of approximate exchange-correlation functionals are explained from an analysis of total energy for fractional charges. The deviation from the correct intrinsic linear behavior in finite systems leads to delocalization and localization errors in large and bulk systems. Functionals whose energy is convex for fractional charges such as the local density approximation display an incorrect apparent linearity in the bulk limit, due to the delocalization error. Concave functionals also have an incorrect apparent linearity in the bulk calculation, due to the localization error and imposed symmetry. This resolves an apparent paradox and identifies the physical nature of the error to be addressed to obtain accurate band gaps from density functional theory.

  12. Nocturnal illumination maintains reproductive function and simulates the period-lengthening effect of constant light in the mature male Djungarian hamster (Phodopus sungorus)

    NASA Technical Reports Server (NTRS)

    Ferraro, J. S.

    1990-01-01

    Mature male Djungarian hamsters (Phodopus sungorus) were placed in individual light-tight, sound attenuated chambers and exposed to one of four lighting conditions for a duration of approximately seven weeks. The four lighting conditions were: constant light (LL); constant dark (DD); feedback lighting (LDFB; a condition that illuminates the cage in response to locomotor activity); or a feedback lighting neighbor control (LDFB NC; the animal receives the same light pattern as a paired animal in feedback lighting, but has no control over it). Exposure of hamsters to LL or LDFB produced significantly and similarly longer free-running periods of the locomotor activity rhythm than exposure of animals to DD. Hamsters exposed to LDFB NC did not free-run or entrain, but rather displayed "relative coordination". The paired testes and sex accessory glands weights suggest that in the Djungarian hamster, LL and LDFB exposed animals maintained reproductive function, whereas DD exposed animals did not. Animals exposed to LDFB NC had intermediate paired testes weights. Since several previous studies have demonstrated that short pulses of light, which are coincident with the subjective night, are photostimulatory, it is not surprising that LDFB maintained reproductive function in the mature Djungarian hamster. Feedback lighting, however, has been shown to be an insufficient stimulus to maintain reproductive function of mature male and female Syrian hamsters, and to the reproductive maturation of immature Djungarian hamsters. The results suggest that there may be slight, but significant differences in the way these two species interpret photoperiod, as well as a developmental change in the photoperiodic response of Djungarian hamsters.

  13. Role of κ→λ light-chain constant-domain switch in the structure and functionality of A17 reactibody

    SciTech Connect

    Ponomarenko, Natalia; Belogurov, Alexey Jr; Fedorova, Olga S.; Dubina, Michael; Golovin, Andrey; Lamzin, Victor; Makarov, Alexander A.; Wilmanns, Matthias

    2014-03-01

    Catalytic antibody variants with κ and λ light-chain constant domains show differences in their crystal structures which lead to subtle changes in catalytic efficiency and thermodynamic parameters as well as in their affinity for peptide substrates. The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Å resolution. It was found that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the V{sub L} and V{sub H} domains. These V{sub L}/V{sub H} domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.

  14. One- and many-electron self-interaction error in local and global hybrid functionals

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias; Kümmel, Stephan

    2016-04-01

    Electronic self-interaction poses a fundamental challenge in density-functional theory. It greatly limits, e.g., the physical interpretation of eigenvalues as electron removal energies. We here investigate whether local hybrid functionals that are designed to be free from one-electron self-interaction lead to occupied Kohn-Sham eigenvalues and orbitals that approximate photoemission observables well. We compare the local hybrid results to the ones from global hybrid functionals that only partially counteract the self-interaction, and to the results that are obtained with a Perdew-Zunger-type self-interaction correction. Furthermore, we check whether being nominally free from one-electron self-interaction translates into a reduced many-electron self-interaction error. Our findings show that this is not the case for the local hybrid functionals that we studied: In practice they are similar to global hybrids in many respects, despite being formally superior. This finding indicates that there is a conceptual difference between the Perdew-Zunger way and the local hybrid way of translating the one-electron condition to a many-electron system. We also point out and solve some difficulties that occur when using local hybrid functionals in combination with pseudopotentials.

  15. Quasi-particle energy spectra in local reduced density matrix functional theory.

    PubMed

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids. PMID:25362285

  16. Quasi-particle energy spectra in local reduced density matrix functional theory

    SciTech Connect

    Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  17. Local Release of Highly Loaded Antibodies from Functionalized Nanoporous Support for Cancer Immunotherapy

    SciTech Connect

    Lei, Chenghong; Liu, P.; Chen, Baowei; Mao, Yumeng; Engelmann, Heather E.; Shin, Yongsoon; Jaffar, Jade; Hellstrom, Ingegerd; Liu, Jun; Hellstrom, Karl E.

    2010-05-26

    We report that antibodies can be loaded in functionalized mesoporous silica (FMS) with super-high density to provide long-lasting local release at a given site. Preliminary data indicate that FMS-antibody injected directly into a mouse melanoma induces a greater inhibition of tumor growth than seen in various controls, including the antibody injected intraperitoneally. Our findings introduce a novel approach for local delivery of therapeutically active proteins to tumors and potentially, other diseases.

  18. Horizon News Function and Quasi-Local Energy-Momentum Flux Near Black Hole

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Huei

    2008-09-01

    From the 'quasi-local' definition of horizons, e.g. isolated horizon and dynamical horizon, the consequence quasi-local energy-momentum near horizons can be observed by using the idea of frame alignment. In particular, we find the horizon news function from the asymptotic expansion near horizons and use this to describe the gravitational flux and change of mass of a black hole.

  19. Peroxiredoxin Functions as a Peroxidase and a Regulator and Sensor of Local Peroxides*

    PubMed Central

    Rhee, Sue Goo; Woo, Hyun Ae; Kil, In Sup; Bae, Soo Han

    2012-01-01

    Peroxiredoxins (Prxs) contain an active site cysteine that is sensitive to oxidation by H2O2. Mammalian cells express six Prx isoforms that are localized to various cellular compartments. The oxidized active site cysteine of Prx can be reduced by a cellular thiol, thus enabling Prx to function as a locally constrained peroxidase. Regulation of Prx via phosphorylation in response to extracellular signals allows the local accumulation of H2O2 and thereby enables its messenger function. The fact that the oxidation state of the active site cysteine of Prx can be transferred to other proteins that are less intrinsically susceptible to H2O2 also allows Prx to function as an H2O2 sensor. PMID:22147704

  20. Quantifying local exciton, charge resonance, and multiexciton character in correlated wave functions of multichromophoric systems

    NASA Astrophysics Data System (ADS)

    Casanova, David; Krylov, Anna I.

    2016-01-01

    A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.

  1. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides.

    PubMed

    Rhee, Sue Goo; Woo, Hyun Ae; Kil, In Sup; Bae, Soo Han

    2012-02-10

    Peroxiredoxins (Prxs) contain an active site cysteine that is sensitive to oxidation by H(2)O(2). Mammalian cells express six Prx isoforms that are localized to various cellular compartments. The oxidized active site cysteine of Prx can be reduced by a cellular thiol, thus enabling Prx to function as a locally constrained peroxidase. Regulation of Prx via phosphorylation in response to extracellular signals allows the local accumulation of H(2)O(2) and thereby enables its messenger function. The fact that the oxidation state of the active site cysteine of Prx can be transferred to other proteins that are less intrinsically susceptible to H(2)O(2) also allows Prx to function as an H(2)O(2) sensor.

  2. Exchange-Correlation Functionals via Local Interpolation along the Adiabatic Connection.

    PubMed

    Vuckovic, Stefan; Irons, Tom J P; Savin, Andreas; Teale, Andrew M; Gori-Giorgi, Paola

    2016-06-14

    The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed. PMID:27116427

  3. Exchange–Correlation Functionals via Local Interpolation along the Adiabatic Connection

    PubMed Central

    2016-01-01

    The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange–correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange–correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed. PMID:27116427

  4. Cortical localization of cognitive function by regression of performance on event-related potentials

    NASA Technical Reports Server (NTRS)

    Montgomery, R. W.; Montgomery, L. D.; Guisado, R.

    1992-01-01

    This paper demonstrates a new method of mapping cortical localization of cognitive function, using electroencephalographic data. Cross-subject regression analyses are used to identify cortical sites and post-stimulus latencies where there is a high correlation between subjects' performance and their cognitive event-related potential amplitude. The procedure was tested using a mental arithmetic task and was found to identify essentially the same cortical regions that have been associated with such tasks on the basis of research with patients suffering localized cortical lesions. Thus, it appears to offer an inexpensive, noninvasive tool for exploring the dynamics of localization in neurologically normal subjects.

  5. Differentiability in density-functional theory: Further study of the locality theorem

    SciTech Connect

    Lindgren, Ingvar; Salomonson, Sten

    2004-09-01

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the arguments [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s{sup 3}S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem.

  6. The Central Dogma Decentralized: New Perspectives on RNA Function and Local Translation in Neurons

    PubMed Central

    Holt, Christine E.; Schuman, Erin M.

    2013-01-01

    The elaborate morphology of neurons together with the information processing that occurs in remote dendritic and axonal compartments makes the use of decentralized cell biological machines necessary. Recent years have witnessed a revolution in our understanding of signaling in neuronal compartments and the manifold functions of a variety of RNA molecules that regulate protein translation and other cellular functions. Here we discuss the view that mRNA localization and RNA-regulated and localized translation underlie many fundamental neuronal processes and highlight key issues for future experiments. PMID:24183017

  7. Si dielectric function in a local basis representation: Optical properties, local field effects, excitons, and stopping power

    NASA Astrophysics Data System (ADS)

    Gómez, M.; González, P.; Ortega, J.; Flores, F.

    2014-11-01

    An atomiclike basis representation is used to analyze the dielectric function ɛ (q ⃗+G ⃗,q ⃗+G⃗';ω ) of Si. First, we show that a s p3d5 local basis set yields good results for the electronic band structure of this crystal and, then, we analyze the Si optical properties including local field and excitonic effects. In our formulation, we follow Hanke and Sham [W. Hanke and L. J. Sham, Phys. Rev. B 12, 4501 (1975), 10.1103/PhysRevB.12.4501; Phys. Rev. B 21, 4656 (1980), 10.1103/PhysRevB.21.4656], and introduce excitonic effects using a many-body formulation that incorporates a static screened electron-hole interaction. Dynamical effects in this interaction are also analyzed and shown to introduce non-negligible corrections in the optical spectrum. Our results are found in reasonable agreement with the experimental evidence and with other theoretical results calculated with the computationally more demanding plane-wave representation. Finally, calculations for the stopping power of Si are also presented.

  8. Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.

    2003-01-01

    A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.

  9. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    SciTech Connect

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curve for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.

  10. Microscopic description of large-amplitude shape-mixing dynamics with local QRPA inertial functions

    SciTech Connect

    Hinohara, Nobuo; Yoshida, Kenichi; Nakatsukasa, Takashi; Sato, Koichi; Matsuo, Masayuki

    2011-05-06

    We introduce a microscopic approach to derive all the inertial functions in the five-dimensional quadrupole collective Hamiltonian. Local normal modes are evaluated on the constrained mean field in the quasiparticle random-phase approximation in order to derive the inertial functions. The collective Hamiltonians for neutron-rich Mg isotopes are determined with use of this approach, and the shape coexistence/mixing around the N = 20 region is analyzed.

  11. Density functional theory study on aqueous aluminum-fluoride complexes: exploration of the intrinsic relationship between water-exchange rate constants and structural parameters for monomer aluminum complexes.

    PubMed

    Jin, Xiaoyan; Qian, Zhaosheng; Lu, Bangmei; Yang, Wenjing; Bi, Shuping

    2011-01-01

    Density functional theory (DFT) calculation is carried out to investigate the structures, (19)F and (27)Al NMR chemical shifts of aqueous Al-F complexes and their water-exchange reactions. The following investigations are performed in this paper: (1) the microscopic properties of typical aqueous Al-F complexes are obtained at the level of B3LYP/6-311+G**. Al-OH(2) bond lengths increase with F(-) replacing inner-sphere H(2)O progressively, indicating labilizing effect of F(-) ligand. The Al-OH(2) distance trans to fluoride is longer than other Al-OH(2) distance, accounting for trans effect of F(-) ligand. (19)F and (27)Al NMR chemical shifts are calculated using GIAO method at the HF/6-311+G** level relative to F(H(2)O)(6)(-) and Al(H(2)O)(6)(3+) references, respectively. The results are consistent with available experimental values; (2) the dissociative (D) activated mechanism is observed by modeling water-exchange reaction for [Al(H(2)O)(6-i)F(i)]((3-i)+) (i = 1-4). The activation energy barriers are found to decrease with increasing F(-) substitution, which is in line with experimental rate constants (k(ex)). The log k(ex) of AlF(3)(H(2)O)(3)(0) and AlF(4)(H(2)O)(2)(-) are predicted by three ways. The results indicate that the correlation between log k(ex) and Al-O bond length as well as the given transmission coefficient allows experimental rate constants to be predicted, whereas the correlation between log k(ex) and activation free energy is poor; (3) the environmental significance of this work is elucidated by the extension toward three fields, that is, polyaluminum system, monomer Al-organic system and other metal ions system with high charge-to-radius ratio. PMID:21133367

  12. The Local Control Index: A Proposed Model for Classifying Types of Local Control As a Function of Statutory Provisions.

    ERIC Educational Resources Information Center

    Luna, Lonnie Lynn

    The purpose of this study was to derive an operational definition of local control and to devise a model, the Local Control Index, for classifying degrees of local control by using the education codes of eight states--Arizona, California, Illinois, Mississippi, New Mexico, New York, Oklahoma, and Texas. The Local Control Index consists of four…

  13. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A.

    PubMed

    Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors.

  14. Exchange-correlation functionals from a local interpolation along the adiabatic connection

    NASA Astrophysics Data System (ADS)

    Vuckovic, Stefan; Irons, Tom; Teale, Andrew; Savin, Andreas; Gori-Giorgi, Paola

    We use the adiabatic connection formalism to construct a density functional by doing an interpolation between the weak and the strong coupling regime. Combining the information from the two limits, we are able to construct an exchange-correlation (xc) density functional free of the bias towards weakly correlated system, which is present in the majority of approximate xc functionals. Previous attempts in doing the interpolation between the two regimes, such as the interaction strength interpolation (ISI), had a fundamental flaw: the lack of size-consistency, as the corresponding functional depends non-linearly on the global (integrated over all space) ingredients. To recover size-consistency in such a framework, we move from the global to local quantities. We use the energy densities as local quantities in the gauge of the electrostatic potential of the xc hole. We use the ``strictly-correlated electrons'' (SCE) approach to compute the energy densities in the strong-coupling limit and the Lieb maximization algorithm to extract the energy densities from the low-coupling regime. We then test the accuracy of the local interpolation schemes by using the nearly exact local energy densities. In this talk I am going to present our results with the emphasis on strongly correlated systems.

  15. Gestalt Perception and Local-Global Processing in High-Functioning Autism

    ERIC Educational Resources Information Center

    Bolte, Sven; Holtmann, Martin; Poustka, Fritz; Scheurich, Armin; Schmidt, Lutz

    2007-01-01

    This study examined gestalt perception in high-functioning autism (HFA) and its relation to tasks indicative of local visual processing. Data on of gestalt perception, visual illusions (VI), hierarchical letters (HL), Block Design (BD) and the Embedded Figures Test (EFT) were collected in adult males with HFA, schizophrenia, depression and…

  16. Functional Hemispheric Differences for the Categorization of Global and Local Information in Naturalistic Stimuli

    ERIC Educational Resources Information Center

    Hubner, Ronald; Studer, Tobias

    2009-01-01

    Up to now functional hemispheric asymmetries for global/local processing have mainly been investigated with hierarchical letters as stimuli. In the present study, three experiments were conducted to examine whether corresponding visual-field (VF) effects can also be obtained with more naturalistic stimuli. To this end, images of animals with a…

  17. [Progress of clinical application of functional MRI in the localization of brain language area].

    PubMed

    Zhang, Nan; Lu, Junfeng; Wu, Jinsong

    2016-02-01

    For surgical operation in the functional area in the brain, it's commonly demanded to resect the lesion to the maximal extent on the basis of preserve the normal neural function, thus the precise localization of functional area is extremely important. As for the advantages of being widely available, easy to grasp and non-invasive, the functional MRI (fMRI) has come into wide use, while the application of language fMRI is still in the initial stage. It's important to choose appropriate fMRI task according to the individual condition of the subject, the commonly-adopted tasks include verb generation, picture naming, word recognition, word generation, etc. However, the effectiveness of using fMRI to localize language area is not totally satisfactory, adopting multiple task is an effective approach to improve the sensitivity of this technique. The application of resting state fMRI in the localization of language area and the further research of the role of fMRI in localizing the Chinese language area are the important future directions.

  18. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    PubMed

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  19. An updated version of BOLTZWANN: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis

    NASA Astrophysics Data System (ADS)

    Pizzi, Giovanni; Volja, Dmitri; Kozinsky, Boris; Fornari, Marco; Marzari, Nicola

    2014-08-01

    BoltzWann is a code to evaluate thermoelectric and electronic transport properties of extended systems with a maximally-localized Wannier function basis set. The semiclassical Boltzmann transport equations for the homogeneous infinite system are solved in the constant relaxation-time approximation and band energies and band derivatives are obtained via Wannier interpolations. Thanks to the exponential localization of the Wannier functions obtained, very high accuracy in the Brillouin zone integrals can be achieved with very moderate computational costs. Moreover, the analytical expression for the band derivatives in the Wannier basis resolves any issues that may occur when evaluating derivatives near band crossings. We present here an updated version of the BoltzWann code, which is now fully integrated within Wannier90 version 2.0, with minor bug fixes and the possibility to study also two-dimensional systems.

  20. Localized template-driven functionalization of nanoparticles by dynamic combinatorial chemistry.

    PubMed

    Nowak, Piotr; Saggiomo, Vittorio; Salehian, Fatemeh; Colomb-Delsuc, Mathieu; Han, Yang; Otto, Sijbren

    2015-03-27

    We have developed a method for the localized functionalization of gold nanoparticles using imine-based dynamic combinatorial chemistry. By using DNA templates, amines were grafted on the aldehyde-functionalized nanoparticles only if and where the nanoparticles interacted with the template molecules. Functionalization of the nanoparticles was controlled solely by the DNA template; only amines capable of interacting with DNA were bound to the surface. Interestingly, even though our libraries contained only a handful of simple amines, the DNA sequence influenced their attachment to the surface. Our method opens up new opportunities for the synthesis of multivalent, nanoparticle-based receptors for biomacromolecules.

  1. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery.

    PubMed

    Li, Yong-Yong; Li, Lan; Dong, Hai-Qing; Cai, Xiao-Jun; Ren, Tian-Bin

    2013-07-01

    PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ~100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery.

  2. Local and Regional Determinants of an Uncommon Functional Group in Freshwater Lakes and Ponds

    PubMed Central

    McCann, Michael James

    2015-01-01

    A combination of local and regional factors and stochastic forces is expected to determine the occurrence of species and the structure of communities. However, in most cases, our understanding is incomplete, with large amounts of unexplained variation. Using functional groups rather than individual species may help explain the relationship between community composition and conditions. In this study, I used survey data from freshwater lakes and ponds to understand factors that determine the presence of the floating plant functional group in the northeast United States. Of the 176 water bodies surveyed, 104 (59.1%) did not contain any floating plant species. The occurrence of this functional group was largely determined by local abiotic conditions, which were spatially autocorrelated across the region. A model predicting the presence of the floating plant functional group performed similarly to the best species-specific models. Using a permutation test, I also found that the observed prevalence of floating plants is no different than expected by random assembly from a species pool of its size. These results suggest that the size of the species pool interacts with local conditions in determining the presence of a functional group. Nevertheless, a large amount of unexplained variation remains, attributable to either stochastic species occurrence or incomplete predictive models. The simple permutation approach in this study can be extended to test alternative models of community assembly. PMID:26121636

  3. Systematic offset of kV and MV localization systems as a function of gantry angle.

    PubMed

    Mullins, John P; Herman, Michael G

    2010-11-09

    Mechanical flex of the gantry and mounted imaging panels leads to systematic offsets in localization image isocenter as a function of gantry angle for linear accelerator-mounted image guidance systems. Subsequently, object positions obtained from localization radiographs may be offset, resulting in greater target positioning uncertainty. While current QA procedures measure kV/MV image agreement, these measurements do not provide insight to apparent isocenter position for either single imaging system as a function of gantry rotation. This study measures offset as a function of gantry angle in kV and MV imaging systems on four treatment machines to investigate the magnitude of systematic offsets and their reproducibility between systems and machines, as well as over time. It is shown that each machine and energy has a reproducible pattern of offset as a function of gantry angle that is independent of kV/MV agreement, and it varies by machine. kV and MV offset ranges are on the order of 1.5 mm in the R/L and A/P directions, and 0.5 mm in the S/I direction. Variability of kV-MV agreement is on the order of 0.7 mm. At certain angles, combinations of localization images could show a compounded offset of over 2 mm, exceeding the desired certainty threshold. Since these trends are persistent over time for each machine, online correction for image offsets as a function of gantry angle could improve the margin of positioning uncertainty.

  4. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases - (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  5. A Nuclear Export Signal and Phosphorylation Regulate Dok1 Subcellular Localization and Functions

    PubMed Central

    Niu, Yamei; Roy, François; Saltel, Frédéric; Andrieu-Soler, Charlotte; Dong, Wen; Chantegrel, Anne-Lise; Accardi, Rosita; Thépot, Amélie; Foiselle, Nadège; Tommasino, Massimo; Jurdic, Pierre; Sylla, Bakary S.

    2006-01-01

    Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKβ. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions. PMID:16705178

  6. Relativistic distribution function for particles with spin at local thermodynamical equilibrium

    SciTech Connect

    Becattini, F.; Chandra, V.; Del Zanna, L.; Grossi, E.

    2013-11-15

    We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict their polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.

  7. Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory

    PubMed Central

    Bao, Peng

    2013-01-01

    An interaction energy decomposition analysis method based on the block-localized wavefunction (BLW-ED) approach is described. The first main feature of the BLW-ED method is that it combines concepts of valence bond and molecular orbital theories such that the intermediate and physically intuitive electron-localized states are variationally optimized by self-consistent field calculations. Furthermore, the block-localization scheme can be used both in wave function theory and in density functional theory, providing a useful tool to gain insights on intermolecular interactions that would otherwise be difficult to obtain using the delocalized Kohn–Sham DFT. These features allow broad applications of the BLW method to energy decomposition (BLW-ED) analysis for intermolecular interactions. In this perspective, we outline theoretical aspects of the BLW-ED method, and illustrate its applications in hydrogen-bonding and π–cation intermolecular interactions as well as metal–carbonyl complexes. Future prospects on the development of a multistate density functional theory (MSDFT) are presented, making use of block-localized electronic states as the basis configurations. PMID:21369567

  8. Local brain atrophy accounts for functional activity differences in normal aging.

    PubMed

    Kalpouzos, Grégoria; Persson, Jonas; Nyberg, Lars

    2012-03-01

    Functional brain imaging studies of normal aging typically show age-related under- and overactivations during episodic memory tasks. Older individuals also undergo nonuniform gray matter volume (GMv) loss. Thus, age differences in functional brain activity could at least in part result from local atrophy. We conducted a series of voxel-based blood oxygen level-dependent (BOLD)-GMv analyses to highlight whether age-related under- and overrecruitment was accounted for by GMv changes. Occipital GMv loss accounted for underrecruitment at encoding. Efficiency reduction of sensory-perceptual mechanisms underpinned by these areas may partly be due to local atrophy. At retrieval, local GMv loss accounted for age-related overactivation of left dorsolateral prefrontal cortex, but not of left dorsomedial prefrontal cortex. Local atrophy also accounted for age-related overactivation in left lateral parietal cortex. Activity in these frontoparietal regions correlated with performance in the older group. Atrophy in the overrecruited regions was modest in comparison with other regions as shown by a between-group voxel-based morphometry comparison. Collectively, these findings link age-related structural differences to age-related functional under- as well as overrecruitment.

  9. On the regulation, function, and localization of the DNA-dependent ATPase PICH.

    PubMed

    Kaulich, Manuel; Cubizolles, Fabien; Nigg, Erich A

    2012-08-01

    The putative chromatin remodeling enzyme Plk1-interacting checkpoint helicase (PICH) was discovered as an interaction partner and substrate of the mitotic kinase Plk1. During mitosis PICH associates with centromeres and kinetochores and, most interestingly, constitutes a robust marker for ultrafine DNA bridges (UFBs) that connect separating chromatids in anaphase cells. The precise roles of PICH remain to be clarified. Here, we have used antibody microinjection and siRNA-rescue experiments to study PICH function and localization during M phase progression, with particular emphasis on the role of the predicted ATPase domain and the regulation of PICH localization by Plk1. We show that interference with PICH function results in chromatin bridge formation and micronucleation and that ATPase activity is critical for PICH function. Interestingly, an intact ATPase domain of PICH is required for prevention of chromatin bridge formation but not for UFB resolution, and quantitative analyses of UFB and chromatin bridge frequencies suggest that these structures are of different etiologies. We also show that the ATPase activity of PICH is required for temporal and spatial control of PICH localization to chromatin and that Plk1 likely controls PICH localization through phosphorylation of proteins distinct from PICH itself. This work strengthens the view that PICH is an important, Plk1-regulated enzyme, whose ATPase activity is essential for maintenance of genome integrity. Although not required for the spindle assembly checkpoint, PICH is clearly important for faithful chromosome segregation. PMID:22527115

  10. mBEEF: An accurate semi-local Bayesian error estimation density functional

    NASA Astrophysics Data System (ADS)

    Wellendorff, Jess; Lundgaard, Keld T.; Jacobsen, Karsten W.; Bligaard, Thomas

    2014-04-01

    We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation functional generated within the Bayesian error estimation functional framework [J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT) predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without compromising high performance on adsorption and reaction energies. We thus expect it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations.

  11. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory.

    PubMed

    Marino, Tiziana; Galano, Annia; Russo, Nino

    2014-09-01

    Gallic acid is a ubiquitous compound, widely distributed in the vegetal kingdom and frequently found in the human diet. In the present work, its primary antioxidant activity has been investigated using the density functional theory (DFT), and the quantum mechanics-based test for overall free radical scavenging activity (QM-ORSA) protocol. It was found that gallic acid is a better antioxidant than the reference compound, Trolox, regardless of the polarity of the environment. In addition, gallic acid is predicted to be among the best peroxyl radical scavengers identified so far in nonpolar (lipid) media. This compound is capable of scavenging hydroxyl radicals at diffusion-limited rates, and hydroperoxyl radicals with rate constants in the order of 10(5) M(-1) s(-1). The deprotonation of gallic acid, in aqueous solution, is predicted to increase the protective action of this compound against oxidative stress. Gallic acid was also identified as a versatile scavenger, capable of rapidly deactivating a wide variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) via electron transfer at physiological pH. PMID:25119432

  12. Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis

    SciTech Connect

    Billinge, S.J.L.; Thorpe, M.F.

    2002-06-24

    We have been taking advantage of recent experimental developments, which involve utilizing diffraction data from x-rays or neutrons out to very large wave-vectors, to obtain a detailed structural characterization of semiconductor alloys. This approach allows an accurate Pair Distribution Function (PDF) to be obtained to 20A and beyond and reveals the local structure of the alloy directly. These data can be modeled explicitly to learn about local correlations and short-range order in materials. We are combining theory, modeling and experiments to study a range of materials from semiconductors to thermoelectrics and proton conductors.

  13. Density functionals not based on the electron gas: local-density approximation for a Luttinger liquid.

    PubMed

    Lima, N A; Silva, M F; Oliveira, L N; Capelle, K

    2003-04-11

    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.

  14. Density functionals not based on the electron gas: local-density approximation for a Luttinger liquid.

    PubMed

    Lima, N A; Silva, M F; Oliveira, L N; Capelle, K

    2003-04-11

    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported. PMID:12731934

  15. A functional near-infrared spectroscopy study of sustained attention to local and global target features.

    PubMed

    De Joux, Neil; Russell, Paul N; Helton, William S

    2013-04-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a quadratic trend over time-on-task with performance levels returning to initial levels late in the task. This trend did not occur in the global shape discrimination task. Functional near-infrared spectroscopy (fNIRS) was utilized in this study as an index of cerebral activation. In both tasks there was increased right hemisphere relative to left hemisphere oxygenation and right hemisphere oxygenation increased with time-on-task. Left hemisphere oxygenation, however, decreased slightly in the global task, but increased significantly in the local task as task duration increased. Indeed, total oxygenation, averaging both right and left, increased more with time-on-task in the local discrimination task. Both the performance and physiological results of this study indicate increased utilization of bilateral cerebral resources with time-on-task in the local, but not the global discrimination vigil.

  16. Fractal dimensions of wave functions and local spectral measures on the Fibonacci chain

    NASA Astrophysics Data System (ADS)

    Macé, Nicolas; Jagannathan, Anuradha; Piéchon, Frédéric

    2016-05-01

    We present a theoretical framework for understanding the wave functions and spectrum of an extensively studied paradigm for quasiperiodic systems, namely the Fibonacci chain. Our analytical results, which are obtained in the limit of strong modulation of the hopping amplitudes, are in good agreement with published numerical data. In the perturbative limit, we show a symmetry of wave functions under permutation of site and energy indices. We compute the wave-function renormalization factors and from them deduce analytical expressions for the fractal exponents corresponding to individual wave functions, as well as their global averages. The multifractality of wave functions is seen to appear at next-to-leading order in ρ . Exponents for the local spectral density are given, in extremely good accord with numerical calculations. Interestingly, our analytical results for exponents are observed to describe the system rather well even for values of ρ well outside the domain of applicability of perturbation theory.

  17. Identification of a functional nuclear localization signal within the human USP22 protein

    SciTech Connect

    Xiong, Jianjun; Wang, Yaqin; Gong, Zhen; Liu, Jianyun; Li, Weidong

    2014-06-20

    Highlights: • USP22 was accumulated in nucleus. • We identified of a functional USP22 NLS. • The KRRK amino acid residues are indispensable in NLS. • The KRRK motif is conserved in USP22 homologues. - Abstract: Ubiquitin-specific processing enzyme 22 (USP22), a member of the deubiquitinase family, is over-expressed in most human cancers and has been implicated in tumorigenesis. Because it is an enzymatic subunit of the human SAGA transcriptional cofactor, USP22 deubiquitylates histone H2A and H2B in the nucleus, thus participating in gene regulation and cell-cycle progression. However, the mechanisms regulating its nuclear translocation have not yet been elucidated. It was here demonstrated that USP22 is imported into the nucleus through a mechanism mediated by nuclear localization signal (NLS). The bipartite NLS sequence KRELELLKHNPKRRKIT (aa152–168), was identified as the functional NLS for its nuclear localization. Furthermore, a short cluster of basic amino acid residues KRRK within this bipartite NLS plays the primary role in nuclear localization and is evolutionarily conserved in USP22 homologues. In the present study, a functional NLS and the minimal sequences required for the active targeting of USP22 to the nucleus were identified. These findings may provide a molecular basis for the mechanism underlying USP22 nuclear trafficking and function.

  18. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    PubMed

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-01-01

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees. PMID:26235237

  19. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage

    PubMed Central

    Yang, Jie; Swenson, Nathan G.; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J. W.; Lin, Luxiang

    2015-01-01

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees. PMID:26235237

  20. Meshless Local Petrov-Galerkin Method for Shallow Shells with Functionally Graded and Orthotropic Material Properties

    NASA Astrophysics Data System (ADS)

    Sladek, J.; Sladek, V.; Zhang, Ch.

    2008-02-01

    A meshless local Petrov-Galerkin (MLPG) formulation is presented for analysis of shear deformable shallow shells with orthotropic material properties and continuously varying material properties through the shell thickness. Shear deformation of shells described by the Reissner theory is considered. Analyses of shells under static and dynamic loads are given here. For transient elastodynamic case the Laplace-transform is used to eliminate the time dependence of the field variables. A weak formulation with a unit test function transforms the set of the governing equations into local integral equations on local subdomains in the plane domain of the shell. The meshless approximation based on the Moving Least-Squares (MLS) method is employed for the implementation.

  1. Ejaculatory Function After Permanent {sup 125}I Prostate Brachytherapy for Localized Prostate Cancer

    SciTech Connect

    Huyghe, Eric Delannes, Martine; Wagner, Fabien M.; Delaunay, Boris; Nohra, Joe; Thoulouzan, Matthieu; Shut-Yee, J. Yeung; Plante, Pierre; Soulie, Michel; Thonneau, Patrick; Bachaud, Jean Marc

    2009-05-01

    Purpose: Ejaculatory function is an underreported aspect of male sexuality in men treated for prostate cancer. We conducted the first detailed analysis of ejaculatory function in patients treated with permanent {sup 125}I prostate brachytherapy for localized prostate cancer. Patients and Methods: Of 270 sexually active men with localized prostate cancer treated with permanent {sup 125}I prostate brachytherapy, 241 (89%), with a mean age of 65 years (range, 43-80), responded to a mailed questionnaire derived from the Male Sexual Health Questionnaire regarding ejaculatory function. Five aspects of ejaculatory function were examined: frequency, volume, dry ejaculation, pleasure, and pain. Results: Of the 241 sexually active men, 81.3% had conserved ejaculatory function after prostate brachytherapy; however, the number of patients with rare/absent ejaculatory function was double the pretreatment number (p < .0001). The latter finding was correlated with age (p < .001) and the preimplant International Index of Erectile Function score (p < .001). However, 84.9% of patients with maintained ejaculatory function after implantation reported a reduced volume of ejaculate compared with 26.9% before (p < .001), with dry ejaculation accounting for 18.7% of these cases. After treatment, 30.3% of the patients experienced painful ejaculation compared with 12.9% before (p = .0001), and this was associated with a greater number of implanted needles (p = .021) and the existence of painful ejaculation before implantation (p < .0001). After implantation, 10% of patients who continued to be sexually active experienced no orgasm compared with only 1% before treatment. in addition, more patients experienced late/difficult or weak orgasms (p = .001). Conclusion: Most men treated with brachytherapy have conserved ejaculatory function after prostate brachytherapy. However, most of these men experience a reduction in volume and a deterioration in orgasm.

  2. Applying local Green's functions to study the influence of the crustal structure on hydrological loading displacements

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Klemann, Volker

    2015-04-01

    The influence of the elastic Earth properties on seasonal or shorter periodic surface mass loads due to atmospheric surface pressure and terrestrial water storage variations is usually modeled by applying a local isostatic model like a homogeneous half-space model, or by a one dimensional spherical Earth model like PREM from which a unique set of elastic load Love numbers, or alternatively, elastic Green's functions are derived. The drawbacks of these strategies are that, in the first case, the response according to the local Earth structure is valid only if load and observer almost coincide, or that, in the second case, only the response of an average Earth structure is considered. However, for surface loads with horizontal scales less than 2500 km2, as for instance, for strong localized hydrological signals associated with heavy precipitation events and river floods, the Earth elastic response becomes very sensitive to inhomogeneities in the Earth crustal structure. We derive a set of local Green's functions defined for every global 1°× 1° gridcell for the 3-layer crustal structure TEA12. Local Green's functions show standard deviations of ±12% in the vertical and ±21% in the horizontal directions for distances in the range from 0.1° to 0.5°. The application of local Green's functions introduces a variability of 0.5 - 1.0 mm into the hydrological loading displacements, both in vertical and in horizontal directions. Maximum changes due to the local crustal structures are from -25% to +26% in the vertical and -91% to +55% in the horizontal displacements. In addition, the horizontal displacement changes its direction significantly, even to the opposite. The modeling of a site-dependent crustal response to surface loads provides an alternative way to probe the density and elastic structure of the Earth's crust and mantle by means of observed surface deformations caused by mass re-distributions. In addition, realistic loading models allow the monitoring of mass

  3. The cerebral ventricles, the animal spirits and the dawn of brain localization of function.

    PubMed

    Manzoni, T

    1998-03-01

    This paper reviews the early history of brain localization of function. It analyses the doctrines professed in ancient times by philosophers and physicians, who believed that brain functions were carried out in the cerebral ventricles by the psychic pneuma, or animal spirit, a sort of special and light substance endowed with the power to perform sensory, motor and mental activities. This theory, conceived in the Classic Age and called "ventricular-pneumatic doctrine", evolved in the 4th-5th centuries A.D. into the "three-cell theory", according to which each cerebral ventricle was the seat of a specific function, and contained a unique type of spirit with the power to perform that function. The three-cell theory represents the earliest attempt to localize different mind functions in separate brain sites and was held true by Byzantine, Arabian and Western Latin scholars well beyond the Renaissance. The paper is subdivided into an Introduction and eight sections. The first two sections report a brief history of the philosophical and medical doctrines about the pneuma as mediator of all vital functions, the ventricular-pneumatic doctrine elaborated by Galen of Pergamon, and his theory of nerve physiology based on the assumption that the pneuma, set in motion by active brain movements and flowing in the hollow nerves, could transfer sensations from the sense organs to the anterior ventricles, and motor commands from the posterior ventricle to the muscles. The third and fourth sections trace the ways in which these doctrines were transmitted to the Byzantine physicians and then to the Arabs, until they reached the Latin West. Here, throughout the Middle Ages they not only formed the background of medical and natural philosophy, but also influenced Christian theologians. The fifth section is devoted to the ventricular localization of mind faculties, called internal senses by Arabian and Western Latin scholars. Most authors recognized three basic internal senses

  4. Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma

    PubMed Central

    Faura Tellez, Grissel; Willemse, Brigitte W. M.; Brouwer, Uilke; Nijboer-Brinksma, Susan; Vandepoele, Karl; Noordhoek, Jacobien A.; Heijink, Irene; de Vries, Maaike; Smithers, Natalie P.; Postma, Dirkje S.; Timens, Wim; Wiffen, Laura; van Roy, Frans; Holloway, John W.; Lackie, Peter M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2016-01-01

    Background The asthma gene PCDH1 encodes Protocadherin-1, a putative adhesion molecule of unknown function expressed in the airway epithelium. Here, we characterize the localization, differential expression, homotypic adhesion specificity and function of PCDH1 in airway epithelial cells in asthma. Methods We performed confocal fluorescence microscopy to determine subcellular localization of PCDH1 in 16HBE cells and primary bronchial epithelial cells (PBECs) grown at air-liquid interface. Next, to compare PCDH1 expression and localization in asthma and controls we performed qRT-PCR and fluorescence microscopy in PBECs and immunohistochemistry on airway wall biopsies. We examined homotypic adhesion specificity of HEK293T clones overexpressing fluorescently tagged-PCDH1 isoforms. Finally, to evaluate the role for PCDH1 in epithelial barrier formation and repair, we performed siRNA knockdown-studies and measured epithelial resistance. Results PCDH1 localized to the cell membrane at cell-cell contact sites, baso-lateral to adherens junctions, with increasing expression during epithelial differentiation. No differences in gene expression or localization of PCDH1 isoforms expressing the extracellular domain were observed in either PBECs or airway wall biopsies between asthma patients and controls. Overexpression of PCDH1 mediated homotypic interaction, whereas downregulation of PCDH1 reduced epithelial barrier formation, and impaired repair after wounding. Conclusions In conclusion, PCDH1 is localized to the cell membrane of bronchial epithelial cells baso-lateral to the adherens junction. Expression of PCDH1 is not reduced nor delocalized in asthma even though PCDH1 contributes to homotypic adhesion, epithelial barrier formation and repair. PMID:27701444

  5. Introducing anisotropic Minkowski functionals and quantitative anisotropy measures for local structure analysis in biomedical imaging

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.

    2013-03-01

    The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10-4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications.

  6. Influence of the local-spin-density correlation functional on the stability of bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Singh, D.; Clougherty, D. P.; MacLaren, J. M.; Albers, R. C.; Wang, C. S.

    1991-10-01

    The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan [Can. J. Phys. 58, 1200 (1980)] and of MacLaren, Clougherty, and Albers [Phys. Rev. B 42, 3205 (1990)]. While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that the VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.

  7. Electron transfer and localization in endohedral metallofullerenes: Ab initio density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Shenyuan; Yoon, Mina; Hicke, Christian; Zhang, Zhenyu; Wang, Enge

    2008-09-01

    Endohedral metallofullerenes constitute an appealing class of nanoscale building blocks for fabrication of a wide range of materials. One open question of fundamental importance is the precise nature of charge redistribution within the carbon cages (Cn) upon metal encapsulation. Using ab initio density functional theory, we systematically study the electronic structure of metallofullerenes, focusing on the spatial charge redistribution. For large metallofullerenes (n>32) , the valence electrons of the metal atoms are all transferred to the fullerene states. Surprisingly, the transferred charge is found to be highly localized inside the cage near the metal cations rather than uniformly distributed on the surfaces of the carbon cage as traditionally believed. This counterintuitive charge localization picture is attributed to the strong metal-cage interactions within the systems. These findings may prove to be instrumental in the design of fullerene-based functional nanomaterials.

  8. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.

    PubMed

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-03-01

    We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.

  9. Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities

    SciTech Connect

    Rodriguez, Brian; Kalinin, Sergei V; Jesse, Stephen; Thompson, G. L.; Vertegel, Alexey; Hohlbauch, Sophia; Proksch, Roger

    2008-01-01

    Coupling between electrical and mechanical phenomena is extremely common in inorganic materials, and nearly ubiquitous in biological systems, underpinning phenomena and devices ranging from SONAR to cardiac activity and hearing. This paper briefly summarizes the Scanning Probe Microscopy (SPM) approach, referred to as Piezoresponse Force Microscopy (PFM), for probing electromechanical coupling on the nanometer scales, and delineates some existing and emerging applications to probe local structure and functionality in inorganic ferroelectrics, calcified and connective tissues, and complex biosystems based on electromechanical detection.

  10. [Localization and functions of c-kit positive cells in the urinary tract].

    PubMed

    Gil, Krzysztof; Urbanowicz, Wiesław; Thor, Piotr

    2009-01-01

    Interstitial cells of Cajal (ICCs) play an important role in the regulation of gut motility as they are responsible for the slow wave activity of smooth muscle. There is strong evidence that several subpopulations of ICC are present in the wall of the urinary tract. This review presents the currently available literature on the localization and proposed functions of interstitial cells of Cajal (ICC) in the urinary tract.

  11. The anharmonic potential function of methylene fluoride. SCF ab initio computations of the cubic force field and analysis of vibration-rotation interaction constants

    NASA Astrophysics Data System (ADS)

    Gaw, Jeffrey F.; Handy, Nicholas C.; Palmieri, Paolo; Esposti, Alessandra Degli

    1988-07-01

    The harmonic and the cubic force fields of CH2F2 have been evaluated ab initio from the SCF energy expression by analytic derivative methods. The computed cubic force constants were used as starting values in a least squares analysis of the experimental vibration-rotation constants of CH2F2 and CD2F2. A simple scaling procedure of the ab initio cubic force constants provides a complete cubic force field for the molecule and the best fit with the experimental data.

  12. Building Local Infrastructure for Community Adoption of Science-Based Prevention: The Role of Coalition Functioning.

    PubMed

    Shapiro, Valerie B; Hawkins, J David; Oesterle, Sabrina

    2015-11-01

    The widespread adoption of science-based prevention requires local infrastructures for prevention service delivery. Communities That Care (CTC) is a tested prevention service delivery system that enables a local coalition of community stakeholders to use a science-based approach to prevention and improve the behavioral health of young people. This paper uses data from the Community Youth Development Study (CYDS), a community-randomized trial of CTC, to examine the extent to which better internal team functioning of CTC coalitions increases the community-wide adoption of science-based prevention within 12 communities, relative to 12 matched comparison communities. Specifically, this paper examines the potential of both a direct relationship between coalition functioning and the community-wide adoption of science-based prevention and a direct relationship between functioning and the coalition capacities that ultimately enable the adoption of science-based prevention. Findings indicate no evidence of a direct relationship between four dimensions of coalition functioning and the community-wide adoption of a science-based approach to prevention, but suggest a relationship between coalition functioning and coalition capacities (building new member skills and establishing external linkages with existing community organizations) that enable science-based prevention.

  13. Investigation of the resonance-assisted hydrogen bond in model β-diketones through localized molecular orbital analysis of the spin-spin coupling constants related to the O-H···O hydrogen bond.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F

    2015-02-01

    The resonance-assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin-spin coupling constants between atoms either involved or close to the O-H···O system of some β-diketones and their saturated counterparts. The analysis, carried out at the level of the second-order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π-electron structure supporting the idea of the existence of the resonance-assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π-electrons.

  14. The local projection in the density functional theory plus U approach: A critical assessment

    NASA Astrophysics Data System (ADS)

    Wang, Yue-Chao; Chen, Ze-Hua; Jiang, Hong

    2016-04-01

    Density-functional theory plus the Hubbard U correction (DFT + U) method is widely used in first-principles studies of strongly correlated systems, as it can give qualitatively (and sometimes, semi-quantitatively) correct description of energetic and structural properties of many strongly correlated systems with similar computational cost as local density approximation or generalized gradient approximation. On the other hand, the DFT + U approach is limited both theoretically and practically in several important aspects. In particular, the results of DFT + U often depend on the choice of local orbitals (the local projection) defining the subspace in which the Hubbard U correction is applied. In this work we have systematically investigated the issue of the local projection by considering typical transition metal oxides, β-MnO2 and MnO, and comparing the results obtained from different implementations of DFT + U. We found that the choice of the local projection has significant effects on the DFT + U results, which are more significant for systems with stronger covalent bonding (e.g., MnO2) than those with more ionic bonding (e.g., MnO). These findings can help to clarify some confusion arising from the practical use of DFT + U and may also provide insights for the development of new first-principles approaches beyond DFT + U.

  15. The local projection in the density functional theory plus U approach: A critical assessment.

    PubMed

    Wang, Yue-Chao; Chen, Ze-Hua; Jiang, Hong

    2016-04-14

    Density-functional theory plus the Hubbard U correction (DFT + U) method is widely used in first-principles studies of strongly correlated systems, as it can give qualitatively (and sometimes, semi-quantitatively) correct description of energetic and structural properties of many strongly correlated systems with similar computational cost as local density approximation or generalized gradient approximation. On the other hand, the DFT + U approach is limited both theoretically and practically in several important aspects. In particular, the results of DFT + U often depend on the choice of local orbitals (the local projection) defining the subspace in which the Hubbard U correction is applied. In this work we have systematically investigated the issue of the local projection by considering typical transition metal oxides, β-MnO2 and MnO, and comparing the results obtained from different implementations of DFT + U. We found that the choice of the local projection has significant effects on the DFT + U results, which are more significant for systems with stronger covalent bonding (e.g., MnO2) than those with more ionic bonding (e.g., MnO). These findings can help to clarify some confusion arising from the practical use of DFT + U and may also provide insights for the development of new first-principles approaches beyond DFT + U. PMID:27083707

  16. Functional assays of local connectivity in the somatosensory cortex of individuals with autism.

    PubMed

    Coskun, Mehmet Akif; Loveland, Katherine A; Pearson, Deborah A; Papanicolaou, Andrew C; Sheth, Bhavin R

    2013-06-01

    Emerging evidence for differences between individuals with autism spectrum disorder (ASD) and neurotypical (NT) individuals in somatic processing and brain response to touch suggests somatosensory cortex as a promising substrate for elucidating differences in functional brain connectivity between individuals with and without autism. Signals from adjacent digits project to neighboring locations or representations in somatosensory cortex. When a digit is stimulated, i.e. touched, its representation in cortex is directly activated; local intracortical connections indirectly activate nonprimary cortical representations corresponding to adjacent digits. The response of the nonprimary cortical representations is thus a proxy for connection strength. Local overconnectivity in autism implies that the nonprimary/primary response ratios of the ASD group will be higher than those of the NT group. D1 and D2 of the dominant hand of the participant were individually stimulated while we recorded neural responses using magnetoencephalography. The cortical representations of D1 and D2 (somatosensory-evoked fields) were computed from the ensemble-averaged data using (a) dipole model fits and (b) singular value decomposition. Individual adjacent/primary response ratios were measured, and group response ratio data were fitted with straight lines. Local overconnectivity in autism implies steeper ASD vs. NT group slopes. Our findings did not support local overconnectivity. Slopes were found to be significantly shallower for the ASD group than the NT group. Our findings support the idea of local underconnectivity in the somatosensory cortex of the brains of individuals with ASD. PMID:23427110

  17. Density Functional Modeling of the Local Structure of Kaolinite Subjected to Thermal Dehydroxylation

    SciTech Connect

    White, Claire E.; Provis, John L.; Proffen, Thomas; Riley, Daniel P.; van Deventer, Jannie S.J.

    2010-11-19

    Understanding the atomic-level changes that occur as kaolinite is converted (thermally dehydroxylated) to metakaolin is critical to the optimization of this large-scale industrial process. Metakaolin is X-ray amorphous; therefore, conventional crystallographic techniques do not reveal the changes in local structure during its formation. Local structure-based experimental techniques are useful in understanding the atomic structure but do not provide the thermodynamic information which is necessary to ensure plausibility of refined structures. Here, kaolinite dehydroxylation is modeled using density functional theory, and a stepwise methodology, where several water molecules are removed from the structure, geometry optimization is carried out, and then the process is repeated. Hence, the structure remains in an energetically and thermodynamically feasible state while transitioning from kaolinite to metakaolin. The structures generated during the dehydroxylation process are validated by comparison with X-ray and neutron pair distribution function data. Thus, this study illustrates one possible route by which dehydroxylation of kaolinite can take place, revealing a chemically, energetically, and experimentally plausible structure of metakaolin. This methodology of density functional modeling of the stepwise changes in a material is not limited in application to kaolinite or other aluminosilicates and provides an accurate representation of the local structural changes occurring in materials used in industrially important processes.

  18. Controlled localization of functionally active proteins to inclusion bodies using leucine zippers.

    PubMed

    Choi, Su-Lim; Lee, Sang Jun; Yeom, Soo-Jin; Kim, Hyun Ju; Rhee, Young Ha; Jung, Heung-Chae; Lee, Seung-Goo

    2014-01-01

    Inclusion bodies (IBs) are typically non-functional particles of aggregated proteins. However, some proteins in fusion with amyloid-like peptides, viral coat proteins, and cellulose binding domains (CBDs) generate IB particles retaining the original functions in cells. Here, we attempted to generate CBD IBs displaying functional leucine zipper proteins (LZs) as bait for localizing cytosolic proteins in E. coli. When a red fluorescent protein was tested as a target protein, microscopic observations showed that the IBs red-fluoresced strongly. When different LZ pairs with KDs of 8-1,000 µM were tested as the bait and prey, the localization of the red fluorescence appeared to change following the affinities between the LZs, as observed by fluorescence imaging and flow cytometry. This result proposed that LZ-tagged CBD IBs can be applied as an in vivo matrix to entrap cytosolic proteins in E. coli while maintaining their original activities. In addition, easy detection of localization to IBs provides a unique platform for the engineering and analyses of protein-protein interactions in E. coli.

  19. Imaging the static dielectric constant in vitro and in living cells by a bioconjugable GFP chromophore analog.

    PubMed

    Signore, Giovanni; Abbandonato, Gerardo; Storti, Barbara; Stöckl, Martin; Subramaniam, Vinod; Bizzarri, Ranieri

    2013-02-28

    A fluorescent probe structurally similar to the GFP chromophore is demonstrated to report the local static dielectric constant. This probe can be chemically functionalized for selective targeting at the intracellular level.

  20. Comment on the Non-Renormalization Theorem in Four-Dimensional String Theory and Vanishing β-FUNCTION for NEWTON’S Constant

    NASA Astrophysics Data System (ADS)

    Chen, C. C.; Kikuchi, Y.

    Three-point one-loop amplitude for the graviton is considered in the string theory compactified on orbifolds with N=1 supersymmetry. We show that the amplitude leads to the vanishing correction to the Newton’s constant.

  1. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling

    PubMed Central

    Masyuk, Anatoliy I.; Huang, Bing Q.; Radtke, Brynn N.; Gajdos, Gabriella B.; Splinter, Patrick L.; Masyuk, Tatyana V.; Gradilone, Sergio A.

    2013-01-01

    TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling. PMID:23578785

  2. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    PubMed

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  3. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  4. Local climate and cultivation, but not ploidy, predict functional trait variation in Bouteloua gracilis (Poaceae)

    USGS Publications Warehouse

    Butterfield, Bradley J.; Wood, Troy E.

    2015-01-01

    Efforts to improve the diversity of seed 18 resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.

  5. Functional Brain Networks Develop from a “Local to Distributed” Organization

    PubMed Central

    Power, Jonathan D.; Dosenbach, Nico U. F.; Church, Jessica A.; Miezin, Francis M.; Schlaggar, Bradley L.; Petersen, Steven E.

    2009-01-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and

  6. Globus Pallidus Interna in Tourette Syndrome: Decreased Local Activity and Disrupted Functional Connectivity

    PubMed Central

    Ji, Gong-Jun; Liao, Wei; Yu, Yang; Miao, Huan-Huan; Feng, Yi-Xuan; Wang, Kai; Feng, Jian-Hua; Zang, Yu-Feng

    2016-01-01

    Globus pallidus interna (GPi) is an effective deep brain stimulation site for the treatment of Tourette syndrome (TS), and plays a crucial role in the pathophysiology of TS. To investigate the functional network feature of GPi in TS patients, we retrospectively studied 24 boys with ‘pure’ TS and 32 age-/education-matched healthy boys by resting state functional magnetic resonance images. Amplitude of low-frequency fluctuation (ALFF) and functional connectivity were used to estimate the local activity in GPi and its functional coordinate with the whole brain regions, respectively. We found decreased ALFF in patients’ bilateral GPi, which was also negatively correlated with clinical symptoms. Functional connectivity analysis indicated abnormal regions within motor and motor-control networks in patients (inferior part of sensorimotor area, cerebellum, prefrontal cortex, cingulate gyrus, caudate nucleus, and brain stem). Transcranial magnetic stimulation sites defined by previous studies (“hand knob” area, premotor area, and supplementary motor area) did not show significantly different functional connectivity with GPi between groups. In summary, this study characterized the disrupted functional network of GPi and provided potential regions-of-interest for further basic and clinical studies on TS. PMID:27799898

  7. Extended Kantorovich method for local stresses in composite laminates upon polynomial stress functions

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Wang, Ji; Du, Jianke; Guo, Yan; Ma, Tingfeng; Yi, Lijun

    2016-06-01

    The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work, the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method (FEM). The convergent stresses have good agreements with those results obtained by three dimensional (3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.

  8. Analysis of potential functional regions using local degeneracy: mutational hotspots in human factor IX are localized in high-degeneracy regions.

    PubMed

    Xu, J; Chen, R; Xiao, Z X

    1994-11-15

    To study the relationship between the potential functional regions with the primary amino acid sequence, we introduced a new factor termed local degeneracy to analyze the degree of the degeneracy in a given segment of the protein. Using the defined local degeneracy, we have analyzed the human coagulation Factor IX (Christmas factor) which is an essential component of the clotting cascade. The mutational hotspots in Factor IX are primarily distributed in the high-degeneracy regions, suggesting a direct correlation of the functional regions with high degree of the degeneracy. This method may be useful to predict and to evaluate potential functional domains of a protein.

  9. Dynamics of the cosmological and Newton’s constant

    NASA Astrophysics Data System (ADS)

    Smolin, Lee

    2016-01-01

    A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density.

  10. Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization.

    PubMed

    Salvan, Carmen V; Ulmer, John L; DeYoe, Edgar A; Wascher, Thomas; Mathews, Vincent P; Lewis, James W; Prost, Robert W

    2004-01-01

    We present a case of a 64-year-old, right-handed female with a metastatic breast cancer lesion involving the left posterior inferior temporal lobe causing complete loss of the ability to recognize visually common objects and words. After her symptoms resolved on corticosteroid therapy, functional magnetic resonance imaging (fMRI) mapping demonstrated strong left-hemispheric dominance for word recognition and right-hemispheric dominance for object recognition. The case illustrates the relationships among ventral occipito-temporal cortical activation, lesion localization, and lesion-induced deficits of higher visual function. The relationship between hemispheric dominance determined by fMRI and risk of postoperative deficit depends on the specific visual function of interest.

  11. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function.

    PubMed

    Holtz, Alexander M; Griffiths, Samuel C; Davis, Samantha J; Bishop, Benjamin; Siebold, Christian; Allen, Benjamin L

    2015-06-01

    Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non-cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non-cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type-specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis. PMID:26056142

  12. Eight-choice sound localization by manatees: performance abilities and head related transfer functions.

    PubMed

    Colbert-Luke, Debborah E; Gaspard, Joseph C; Reep, Roger L; Bauer, Gordon B; Dziuk, Kimberly; Cardwell, Adrienne; Mann, David A

    2015-02-01

    Two experiments investigated the ability and means by which two male Florida manatees (Trichechus manatus latirostris) may determine the direction of a sound source. An eight-choice discrimination paradigm was used to determine the subjects' sound localization abilities of five signal conditions covering a range of frequencies, durations, and levels. Subjects performed above the 12.5% chance level for all broadband frequencies and were able to localize sounds over a large level range. Errors were typically located to either side of the signal source location when presented in the front 180° but were more dispersed when presented from locations behind the subject. Front-to-back confusions were few and accuracy was greater when signals originated from the front 180°. Head-related transfer functions were measured to determine if frequencies were filtered by the manatee body to create frequency-specific interaural level differences (ILDs). ILDs were found for all frequencies as a function of source location, although they were largest with frequencies above 18 kHz and when signals originated to either side of the subjects. Larger ILDs were found when the signals originated behind the subjects. A shadowing-effect produced by the body may explain the relatively low occurrence of front-back confusions in the localization study.

  13. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems.

    PubMed

    Sun, Jianwei; Perdew, John P; Yang, Zenghui; Peng, Haowei

    2016-05-21

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound. PMID:27208927

  14. Eight-choice sound localization by manatees: performance abilities and head related transfer functions.

    PubMed

    Colbert-Luke, Debborah E; Gaspard, Joseph C; Reep, Roger L; Bauer, Gordon B; Dziuk, Kimberly; Cardwell, Adrienne; Mann, David A

    2015-02-01

    Two experiments investigated the ability and means by which two male Florida manatees (Trichechus manatus latirostris) may determine the direction of a sound source. An eight-choice discrimination paradigm was used to determine the subjects' sound localization abilities of five signal conditions covering a range of frequencies, durations, and levels. Subjects performed above the 12.5% chance level for all broadband frequencies and were able to localize sounds over a large level range. Errors were typically located to either side of the signal source location when presented in the front 180° but were more dispersed when presented from locations behind the subject. Front-to-back confusions were few and accuracy was greater when signals originated from the front 180°. Head-related transfer functions were measured to determine if frequencies were filtered by the manatee body to create frequency-specific interaural level differences (ILDs). ILDs were found for all frequencies as a function of source location, although they were largest with frequencies above 18 kHz and when signals originated to either side of the subjects. Larger ILDs were found when the signals originated behind the subjects. A shadowing-effect produced by the body may explain the relatively low occurrence of front-back confusions in the localization study. PMID:25533765

  15. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins.

  16. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    PubMed

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome. PMID:26983346

  17. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  18. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  19. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  20. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  1. Varying Constants, Gravitation and Cosmology

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2011-12-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  2. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages.

    PubMed

    Redrejo-Rodríguez, Modesto; Muñoz-Espín, Daniel; Holguera, Isabel; Mencía, Mario; Salas, Margarita

    2012-11-01

    A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.

  3. Localization using nonindividualized head-related transfer functions. [for auditory interfaces in virtual environments

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Arruda, Marianne; Kistler, Doris J.; Wightman, Frederic L.

    1993-01-01

    The paper investigates the accuracy of localization by inexperienced listeners of the direction (azimuth and elevation) of wideband noisebursts presented in the free-field or over headphones, with headphone stimuli being synthesized using head-related transfer functions (HRTFs) from a representative subject of Wightman and Kistler (1989). Many subjects showed high rates of front-back and up-down confusions that increased significantly for virtual sources compared to the free-field stimuli. When confusions were resolved, localization of virtual sources was quite accurate and comparable to the free-field sources for 12 out of 16 subjects. The results of this study suggest that, while the interaural cues to horizontal location are robust, the spectral cues considered important for resolving location along a particular cone-of-confusion are distorted by a synthesis process that uses nonindividualized HRTFs.

  4. Gestalt perception and local-global processing in high-functioning autism.

    PubMed

    Bölte, Sven; Holtmann, Martin; Poustka, Fritz; Scheurich, Armin; Schmidt, Lutz

    2007-09-01

    This study examined gestalt perception in high-functioning autism (HFA) and its relation to tasks indicative of local visual processing. Data on of gestalt perception, visual illusions (VI), hierarchical letters (HL), Block Design (BD) and the Embedded Figures Test (EFT) were collected in adult males with HFA, schizophrenia, depression and normative controls. Individuals with HFA processed gestalt stimuli less in accord with gestalt laws, particularly regarding the principle of similarity. Gestalt processing correlated positively with global processing of the HL. EFT and BD performance correlated negatively with VI susceptibility in HFA. All clinical groups succumbed less to VI than the normative sample. Results suggest decreased gestalt perception in HFA, being associated with a more general local visual processing bias.

  5. Effects of adaptation of vestibulo-ocular reflex function on manual target localization

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Merkle, L. A.; Barry, S. R.; Huebner, W. P.; Cohen, H. S.; Mueller, S. A.; Fordice, J.

    2000-01-01

    The goal of the present study was to determine if adaptive modulation of vestibulo-ocular reflex (VOR) function is associated with commensurate alterations in manual target localization. To measure the effects of adapted VOR on manual responses we developed the Vestibular-Contingent Pointing Test (VCP). In the VCP test, subjects pointed to a remembered target following passive whole body rotation in the dark. In the first experiment, subjects performed VCP before and after wearing 0.5X minifying lenses that adaptively attenuate horizontal VOR gain. Results showed that adaptive reduction in horizontal VOR gain was accompanied by a commensurate change in VCP performance. In the second experiment, bilaterally labyrinthine deficient (LD) subjects were tested to confirm that vestibular cues were central to the spatial coding of both eye and hand movements during VCP. LD subjects performed significantly worse than normal subjects. These results demonstrate that adaptive change in VOR can lead to alterations in manual target localization.

  6. A role for mRNA trafficking and localized translation in peroxisome biogenesis and function?

    PubMed

    Haimovich, Gal; Cohen-Zontag, Osnat; Gerst, Jeffrey E

    2016-05-01

    Peroxisomes are distinct membrane-enclosed organelles involved in the β-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents.

  7. A role for mRNA trafficking and localized translation in peroxisome biogenesis and function?

    PubMed

    Haimovich, Gal; Cohen-Zontag, Osnat; Gerst, Jeffrey E

    2016-05-01

    Peroxisomes are distinct membrane-enclosed organelles involved in the β-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents. PMID:26367800

  8. Accurate Prediction of Hyperfine Coupling Constants in Muoniated and Hydrogenated Ethyl Radicals: Ab Initio Path Integral Simulation Study with Density Functional Theory Method.

    PubMed

    Yamada, Kenta; Kawashima, Yukio; Tachikawa, Masanori

    2014-05-13

    We performed ab initio path integral molecular dynamics (PIMD) simulations with a density functional theory (DFT) method to accurately predict hyperfine coupling constants (HFCCs) in the ethyl radical (CβH3-CαH2) and its Mu-substituted (muoniated) compound (CβH2Mu-CαH2). The substitution of a Mu atom, an ultralight isotope of the H atom, with larger nuclear quantum effect is expected to strongly affect the nature of the ethyl radical. The static conventional DFT calculations of CβH3-CαH2 find that the elongation of one Cβ-H bond causes a change in the shape of potential energy curve along the rotational angle via the imbalance of attractive and repulsive interactions between the methyl and methylene groups. Investigation of the methyl-group behavior including the nuclear quantum and thermal effects shows that an unbalanced CβH2Mu group with the elongated Cβ-Mu bond rotates around the Cβ-Cα bond in a muoniated ethyl radical, quite differently from the CβH3 group with the three equivalent Cβ-H bonds in the ethyl radical. These rotations couple with other molecular motions such as the methylene-group rocking motion (inversion), leading to difficulties in reproducing the corresponding barrier heights. Our PIMD simulations successfully predict the barrier heights to be close to the experimental values and provide a significant improvement in muon and proton HFCCs given by the static conventional DFT method. Further investigation reveals that the Cβ-Mu/H stretching motion, methyl-group rotation, methylene-group rocking motion, and HFCC values deeply intertwine with each other. Because these motions are different between the radicals, a proper description of the structural fluctuations reflecting the nuclear quantum and thermal effects is vital to evaluate HFCC values in theory to be comparable to the experimental ones. Accordingly, a fundamental difference in HFCC between the radicals arises from their intrinsic molecular motions at a finite temperature, in

  9. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions.

    PubMed

    Holguera, Isabel; Redrejo-Rodríguez, Modesto; Salas, Margarita; Muñoz-Espín, Daniel

    2014-01-01

    Protein-primed DNA replication constitutes a strategy to initiate viral DNA synthesis in a variety of prokaryotic and eukaryotic organisms. Although the main function of viral terminal proteins (TPs) is to provide a free hydroxyl group to start initiation of DNA replication, there are compelling evidences that TPs can also play other biological roles. In the case of Bacillus subtilis bacteriophage ϕ29, the N-terminal domain of the TP organizes viral DNA replication at the bacterial nucleoid being essential for an efficient phage DNA replication, and it contains a nuclear localization signal (NLS) that is functional in eukaryotes. Here we provide information about the structural properties of the ϕ29 TP N-terminal domain, which possesses sequence-independent DNA-binding capacity, and dissect the amino acid residues important for its biological function. By mutating all the basic residues of the TP N-terminal domain we identify the amino acids responsible for its interaction with the B. subtilis genome, establishing a correlation between the capacity of DNA-binding and nucleoid localization of the protein. Significantly, these residues are important to recruit the DNA polymerase at the bacterial nucleoid and, subsequently, for an efficient phage DNA replication.

  10. A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2

    PubMed Central

    Ezak, Meredith J.; Ferkey, Denise M.

    2011-01-01

    The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated. PMID:21957475

  11. Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain

    PubMed Central

    Hatayama, Minoru; Tomizawa, Tadashi; Sakai-Kato, Kumiko; Bouvagnet, Patrice; Kose, Shingo; Imamoto, Naoko; Yokoyama, Shigeyuki; Utsunomiya-Tate, Naoko; Mikoshiba, Katsuhiko; Kigawa, Takanori; Aruga, Jun

    2008-01-01

    Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left–right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1–4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin α1/α6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS. PMID:18716025

  12. Elastic constants for 8-OCB

    NASA Astrophysics Data System (ADS)

    Czechowski, Grzegorz; Zywucki, B.; Jadzyn, Jan

    1993-10-01

    The Frederiks transitions for the n-octyloxycyanobiphenyl (8-OCB) placed in the external magnetic and electric field as a function of the temperature have been studied. On the basis of threshold values Bc and Uc, the elastic constants for splay, bend and twist modes are determined. The magnetic anisotropy of 8-OCB as a function of temperature has been determined. The K11 and K33 elastic constants show the pretransitional nematic- smectic A effect. The values of critical exponents obtained from the temperature dependence of K11 and K33 in the vicinity of N-SA phase transition are discussed.

  13. Stellar mass functions: methods, systematics and results for the local Universe

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Bruderer, Claudio

    2016-06-01

    We present a comprehensive method for determining stellar mass functions, and apply it to samples in the local Universe. We combine the classical 1/Vmax approach with STY, a parametric maximum likelihood method and step-wise maximum likelihood, a non-parametric maximum likelihood technique. In the parametric approach, we are assuming that the stellar mass function can be modelled by either a single or a double Schechter function and we use a likelihood ratio test to determine which model provides a better fit to the data. We discuss how the stellar mass completeness as a function of z biases the three estimators and how it can affect, especially the low-mass end of the stellar mass function. We apply our method to Sloan Digital Sky Survey DR7 data in the redshift range from 0.02 to 0.06. We find that the entire galaxy sample is best described by a double Schechter function with the following parameters: log (M*/M⊙) = 10.79 ± 0.01, log (Φ ^{{ast }}_1/h^3 Mpc^{-3}) = -3.31 ± 0.20, α1 = -1.69 ± 0.10, log (Φ ^{{ast }}_2/h^3 Mpc^{-3}) = -2.01 ± 0.28 and α2 = -0.79 ± 0.04. We also use morphological classifications from Galaxy Zoo and halo mass, overdensity, central/satellite, colour and specific star formation rate measurements to split the galaxy sample into over 130 subsamples. We determine and present the stellar mass functions and the best-fitting Schechter function parameters for each of these subsamples.

  14. Local duality in spin structure functions g1(p) and g1(d)

    SciTech Connect

    Yelena Prok

    2006-02-01

    Inclusive double spin asymmetries obtained by scattering polarized electrons off polarized protons and deuterons have been analyzed to address the issue of quark hadron duality in the polarized spin structure functions gp 1 and gd 1. A polarized electron beam, solid polarized NH3 and ND3 targets and the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B were used to collect the data. The resulting gp 1 and gd 1 were averaged over the nucleon resonance energy region (M local duality.

  15. Electron affinities for rare gases and some actinides from local-spin-density-functional theory

    SciTech Connect

    Guo, Y.; Wrinn, M.C.; Whitehead, M.A. )

    1989-12-01

    The negative ions of the rare gases (He, Ne, Ar, Kr, Xe, and Rn) and some actinides (Pu, Am, Bk, Cf, and Es) have been calculated self-consistently by the generalized exchange local-spin-density-functional theory with self-interaction correction and correlation. The electron affinities were obtained as the differences between the statistical total energies of the negative ions and neutral atoms; the electron affinities were positive around several millirydbergs. Consequently, the negative ions are predicted stable for the rare gases and actinides.

  16. Structure based classification of μ-CT images of human trabecular bone using local Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bauer, Jan; Sidorenko, Irina; Müller, Dirk; Rummeny, Ernst; Matsuura, Maiko; Eckstein, Felix; Lochmueller, Eva-Maria; Zysset, Philippe; Räth, Christoph

    2011-03-01

    We analyse μ-CT tomographic images of human trabecular bone in vitro. We consider a sample consisting of 201 bone specimens harvested from six different skeletal sites within a narrow range of bone fraction values. Using the characterization of the trabecular bone network given by local Minkowski Functionals, we apply classification algorithms in order to reveal structural similarities in the sample. Clusters show some interesting specific structural features, like compact, porous, and fragmented structures. The contribution of the different skeletal sites to these clusters indicate some variability due to intrinsic structural differences of the specific skeletal site.

  17. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions

    SciTech Connect

    Brown, James Carrington, Tucker

    2015-07-28

    Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.

  18. Investigation of the numerics of point spread function integration in single molecule localization.

    PubMed

    Chao, Jerry; Ram, Sripad; Lee, Taiyoon; Ward, E Sally; Ober, Raimund J

    2015-06-29

    The computation of point spread functions, which are typically used to model the image profile of a single molecule, represents a central task in the analysis of single molecule microscopy data. To determine how the accuracy of the computation affects how well a single molecule can be localized, we investigate how the fineness with which the point spread function is integrated over an image pixel impacts the performance of the maximum likelihood location estimator. We consider both the Airy and the two-dimensional Gaussian point spread functions. Our results show that the point spread function needs to be adequately integrated over a pixel to ensure that the estimator closely recovers the true location of the single molecule with an accuracy that is comparable to the best possible accuracy as determined using the Fisher information formalism. Importantly, if integration with an insufficiently fine step size is carried out, the resulting estimates can be significantly different from the true location, particularly when the image data is acquired at relatively low magnifications. We also present a methodology for determining an adequate step size for integrating the point spread function. PMID:26191698

  19. Approaching many-body localization from disordered Luttinger liquids via the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Moore, J. E.

    2015-09-01

    We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 104 samples for lattices as large as 105 sites. We identify regimes in which non-Ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In the presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization.

  20. Structure, Function, and Localization of Gβ5–RGS Complexes

    PubMed Central

    Slepak, Vladlen Z.

    2012-01-01

    Members of the R7 subfamily of regulator of G protein signaling (RGS) proteins (RGS6, 7, 9, and 11) exist as heterodimers with the G protein beta subunit Gβ5. These protein complexes are only found in neurons and are defined by the presence of three domains: DEP/DHEX, Gβ5/GGL, and RGS. This article summarizes published work in the following areas: (1) the functional significance of structural organization of Gβ5–R7 complexes, (2) regional distribution of Gβ5–R7 in the nervous system and regulation of R7 family expression, (3) subcellular localization of Gβ5–R7 complexes, and (4) novel binding partners of Gβ5–R7 proteins. The review points out some contradictions between observations made by different research groups and highlights the importance of using alternative experimental approaches to obtain conclusive information about Gβ5–R7 function in vivo. PMID:20374716

  1. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  2. Functional role of unmyelinated tactile afferents in human hairy skin: sympathetic response and perceptual localization.

    PubMed

    Olausson, Håkan; Cole, Jonathan; Rylander, Karin; McGlone, Francis; Lamarre, Yves; Wallin, B Gunnar; Krämer, Heidrun; Wessberg, Johan; Elam, Mikael; Bushnell, M Catherine; Vallbo, Ake

    2008-01-01

    In addition to A-beta fibres the human hairy skin has unmyelinated (C) fibres responsive to light touch. Previous functional magnetic resonance imaging (fMRI) studies in a subject with a neuronopathy who specifically lacks A-beta afferents indicated that tactile C afferents (CT) activate insular cortex, whereas no response was seen in somatosensory areas 1 and 2. Psychophysical tests suggested that CT afferents give rise to an inconsistent perception of weak and pleasant touch. By examining two neuronopathy subjects as well as control subjects we have now demonstrated that CT stimulation can elicit a sympathetic skin response. Further, the neuronopathy subjects' ability to localize stimuli which activate CT afferents was very poor but above chance level. The findings support the interpretation that the CT system is well suited to underpin affective rather than discriminative functions of tactile sensations.

  3. Local network structure of a-SiC:H and its correlation with dielectric function

    SciTech Connect

    Kageyama, Shota; Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-12-21

    The microscopic disordered structures of hydrogenated amorphous silicon carbide (a-Si{sub 1−x}C{sub x}:H) layers with different carbon contents have been determined based on the correlations between the dielectric function in the ultraviolet/visible region and the local bonding states studied by high-sensitivity infrared attenuated total reflection spectroscopy. We find that the microscopic structure of the a-Si{sub 1−x}C{sub x}:H layers fabricated by plasma-enhanced chemical vapor deposition shows a sharp structural transition at a boundary of x = 6.3 at. %. In the regime of x ≤ 6.3 at. %, (i) the amplitude of the a-SiC:H dielectric function reduces and (ii) the SiH{sub 2} content increases drastically with x, even though most of the C atoms are introduced into the tetrahedral sites without bonding with H. In the regime of x > 6.3 at. %, on the other hand, (i) the amplitude of the dielectric function reduces further and (ii) the concentration of the sp{sup 3} CH{sub n} (n = 2,3) groups increases. Moreover, we obtained the direct evidence that the sp{sup 2} C bonding state in the a-SiC matrix exists in the configuration of C = CH{sub 2} and the generation of the graphite-like C = CH{sub 2} unit suppresses the band gap widening significantly. At high C contents of x > 6.3 at. %, the a-SiC:H layers show quite porous structures due to the formation of microvoids terminated with the SiH{sub 2}/CH{sub n} groups. By taking the SiH{sub 2}/CH{sub n} microvoid generation in the network and the high-energy shift of the dielectric function by the local bonding states into account, the a-SiC:H dielectric function model has been established. From the analysis using this model, we have confirmed that the a-SiC:H optical properties in the ultraviolet/visible region are determined almost completely by the local network structures.

  4. Classification of protein motifs based on subcellular localization uncovers evolutionary relationships at both sequence and functional levels

    PubMed Central

    2013-01-01

    Background Most proteins have evolved in specific cellular compartments that limit their functions and potential interactions. On the other hand, motifs define amino acid arrangements conserved between protein family members and represent powerful tools for assigning function to protein sequences. The ideal motif would identify all members of a protein family but in practice many motifs identify both family members and unrelated proteins, referred to as True Positive (TP) and False Positive (FP) sequences, respectively. Results To address the relationship between protein motifs, protein function and cellular localization, we systematically assigned subcellular localization data to motif sequences from the comprehensive PROSITE sequence motif database. Using this data we analyzed relationships between localization and function. We find that TPs and FPs have a strong tendency to localize in different compartments. When multiple localizations are considered, TPs are usually distributed between related cellular compartments. We also identified cases where FPs are concentrated in particular subcellular regions, indicating possible functional or evolutionary relationships with TP sequences of the same motif. Conclusions Our findings suggest that the systematic examination of subcellular localization has the potential to uncover evolutionary and functional relationships between motif-containing sequences. We believe that this type of analysis complements existing motif annotations and could aid in their interpretation. Our results shed light on the evolution of cellular organelles and potentially establish the basis for new subcellular localization and function prediction algorithms. PMID:23865897

  5. Prognostic Role of Functional Neuroimaging after Multilobar Resection in Patients with Localization-Related Epilepsy

    PubMed Central

    Cho, Eun Bin; Seo, Dae-Won; Hong, Seung-Chyul

    2015-01-01

    To investigate the usage of functional neuroimaging as a prognostic tool for seizure recurrence and long-term outcomes in patients with multilobar resection, we recruited 90 patients who received multilobar resections between 1995 and 2013 with at least 1-year follow-up (mean 8.0 years). All patients were monitored using intracranial electroencephalography (EEG) after pre-surgical evaluation. Clinical data (demographics, electrophysiology, and neuroimaging) were reviewed retrospectively. Surgical outcomes were evaluated at 1, 2, 5 years after surgery, and at the end of the study. After 1 year, 56 patients (62.2%) became Engel class I and at the last follow-up, 47 patients (52.2%) remained seizure-free. Furthermore, non-localized 18F-fluorodeoxyglucose positron emission tomography (PET), identifying hypometabolic areas not concordant with ictal onset zones, significantly correlated with seizure recurrence after 1 year. Non-lesional magnetic resonance imaging (MRI) and left-sided resection correlated with poor outcomes. In the last follow-up, non-localized PET and left-sided resection significantly correlated with seizure recurrence. Both localized PET and ictal-interictal SPECT subtraction co-registered to MR (SISCOM) predicted good surgical outcomes in the last follow-up (69.2%, Engel I). This study suggests that PET and SISCOM may predict postoperative outcomes for patients after multilobar epilepsy and shows comparable long-term surgical outcomes after multilobar resection. PMID:26305092

  6. Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization

    PubMed Central

    Marelli, Damián; Baumgartner, Robert; Majdak, Piotr

    2015-01-01

    Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930

  7. Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis.

    PubMed

    Li, Pingdong; Wang, Danni; Li, Haiyang; Yu, Zhenkun; Chen, Xiaohong; Fang, Jugao

    2014-10-01

    The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.

  8. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.

    PubMed

    Doyle, Michael; Badertscher, Lukas; Jaskiewicz, Lukasz; Güttinger, Stephan; Jurado, Sabine; Hugenschmidt, Tabea; Kutay, Ulrike; Filipowicz, Witold

    2013-09-01

    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We show that the dsRBD-NLS can mediate nuclear import of a reporter protein via interaction with importins β, 7, and 8. In the context of full-length Dicer, the dsRBD-NLS is masked. However, duplication of the dsRBD localizes the full-length protein to the nucleus. Furthermore, deletion of the N-terminal helicase domain results in partial accumulation of Dicer in the nucleus upon leptomycin B treatment, indicating that CRM1 contributes to nuclear export of Dicer. Finally, we demonstrate that human Dicer has the ability to shuttle between the nucleus and the cytoplasm. We conclude that Dicer is a shuttling protein whose steady-state localization is cytoplasmic.

  9. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  10. Evidence for local relaxin ligand-receptor expression and function in arteries.

    PubMed

    Novak, Jacqueline; Parry, Laura J; Matthews, Julianna E; Kerchner, Laurie J; Indovina, Kimberly; Hanley-Yanez, Karen; Doty, Ketah D; Debrah, Dan O; Shroff, Sanjeev G; Conrad, Kirk P

    2006-11-01

    Relaxin is a 6 kDa protein hormone produced by the corpus luteum and secreted into the blood during pregnancy in rodents and humans. Growing evidence indicates that circulating relaxin causes vasodilatation and increases in arterial compliance, which may be among its most important actions during pregnancy. Here we investigated whether there is local expression and function of relaxin and relaxin receptor in arteries of nonpregnant females and males. Relaxin-1 and its major receptor, Lgr7, mRNA are expressed in thoracic aortas, small renal and mesenteric arteries from mice and rats of both sexes, as well as in small renal arteries from female tammar wallabies (an Australian marsupial). Using available antibodies for rat and mouse Lgr7 receptor and rat relaxin, we also identified protein expression in arteries. Small renal arteries isolated from relaxin-1 gene-deficient mice demonstrate enhanced myogenic reactivity and decreased passive compliance relative to wild-type (WT) and heterozygous mice. Taken together, these findings reveal an arterial-derived, relaxin ligand-receptor system that acts locally to regulate arterial function.

  11. Defining the face processing network: optimization of the functional localizer in fMRI.

    PubMed

    Fox, Christopher J; Iaria, Giuseppe; Barton, Jason J S

    2009-05-01

    Functional localizers that contrast brain signal when viewing faces versus objects are commonly used in functional magnetic resonance imaging studies of face processing. However, current protocols do not reliably show all regions of the core system for face processing in all subjects when conservative statistical thresholds are used, which is problematic in the study of single subjects. Furthermore, arbitrary variations in the applied thresholds are associated with inconsistent estimates of the size of face-selective regions-of-interest (ROIs). We hypothesized that the use of more natural dynamic facial images in localizers might increase the likelihood of identifying face-selective ROIs in individual subjects, and we also investigated the use of a method to derive the statistically optimal ROI cluster size independent of thresholds. We found that dynamic facial stimuli were more effective than static stimuli, identifying 98% (versus 72% for static) of ROIs in the core face processing system and 69% (versus 39% for static) of ROIs in the extended face processing system. We then determined for each core face processing ROI, the cluster size associated with maximum statistical face-selectivity, which on average was approximately 50 mm(3) for the fusiform face area, the occipital face area, and the posterior superior temporal sulcus. We suggest that the combination of (a) more robust face-related activity induced by a dynamic face localizer and (b) a cluster-size determination based on maximum face-selectivity increases both the sensitivity and the specificity of the characterization of face-related ROIs in individual subjects.

  12. Defining the face processing network: optimization of the functional localizer in fMRI.

    PubMed

    Fox, Christopher J; Iaria, Giuseppe; Barton, Jason J S

    2009-05-01

    Functional localizers that contrast brain signal when viewing faces versus objects are commonly used in functional magnetic resonance imaging studies of face processing. However, current protocols do not reliably show all regions of the core system for face processing in all subjects when conservative statistical thresholds are used, which is problematic in the study of single subjects. Furthermore, arbitrary variations in the applied thresholds are associated with inconsistent estimates of the size of face-selective regions-of-interest (ROIs). We hypothesized that the use of more natural dynamic facial images in localizers might increase the likelihood of identifying face-selective ROIs in individual subjects, and we also investigated the use of a method to derive the statistically optimal ROI cluster size independent of thresholds. We found that dynamic facial stimuli were more effective than static stimuli, identifying 98% (versus 72% for static) of ROIs in the core face processing system and 69% (versus 39% for static) of ROIs in the extended face processing system. We then determined for each core face processing ROI, the cluster size associated with maximum statistical face-selectivity, which on average was approximately 50 mm(3) for the fusiform face area, the occipital face area, and the posterior superior temporal sulcus. We suggest that the combination of (a) more robust face-related activity induced by a dynamic face localizer and (b) a cluster-size determination based on maximum face-selectivity increases both the sensitivity and the specificity of the characterization of face-related ROIs in individual subjects. PMID:18661501

  13. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue

    PubMed Central

    Santos, Carlos F.; Morandini, Ana C.; Dionísio, Thiago J.; Faria, Flávio A.; Lima, Marta C.; Figueiredo, Caio M.; Colombini-Ishikiriama, Bella L.; Sipert, Carla R.; Maciel, Rubens P.; Akashi, Ana P.; Souza, Gabriela P.; Garlet, Gustavo P.; Rodini, Camila O.; Amaral, Sandra L.; Becari, Christiane; Salgado, Maria C.; Oliveira, Eduardo B.; Matus, Isaac; Didier, Daniela N.; Greene, Andrew S.

    2015-01-01

    The initiation or progression of periodontitis might involve a local renin-angiotensin system (RAS) in periodontal tissue. The aim of this study was to further characterize the local RAS in human and rat periodontal tissues between healthy and periodontally-affected tissue. Components of the RAS were investigated using in vitro, ex vivo and in vivo experiments involving both human and Wistar rat periodontium. Although not upregulated when challenged with P. gingivalis-lipopolysaccharide, human gingival and periodontal ligament fibroblasts expressed RAS components. Likewise, healthy and inflamed human gingiva expressed RAS components, some of which were shown to be functional, yet no differences in expression were found between healthy and diseased gingiva. However, in inflamed tissue the immunoreactivity was greater for the AT1R compared to AT2R in fibroblasts. When compared to healthy tissue, ACE activity was increased in human gingiva from volunteers with gingivitis. Human-gingiva homogenates generated Ang II, Ang 1-9 and Ang 1-7 when incubated with precursors. In gingiva homogenates, Ang II formation from Ang I was nearly abolished only when captopril and chymostatin were combined. Ang 1-7 formation was significantly greater when human gingiva homogenates were incubated with chymostatin alone compared to incubation without any inhibitor, only captopril, or captopril and chymostatin. In rat gingiva, RAS components were also found; their expression was not different between healthy and experimentally induced periodontitis (EP) groups. However, renin inhibition (aliskiren) and an AT1R antagonist (losartan) significantly blocked EP-alveolar-bone loss in rats. Collectively, these data are consistent with the hypothesis that a local RAS system is not only present but is also functional in both human and rat periodontal tissue. Furthermore, blocking AT1R and renin can significantly prevent periodontal bone loss induced by EP in rats. PMID:26244896

  14. Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates.

    PubMed

    Oliveira, João M; Segurado, Pedro; Santos, José M; Teixeira, Amílcar; Ferreira, Maria T; Cortes, Rui V

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in 'natural' streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.

  15. Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites

    PubMed Central

    Park, Jae-Sook; Thorsness, Mary K.; Policastro, Robert; McGoldrick, Luke L.; Hollingsworth, Nancy M.; Thorsness, Peter E.; Neiman, Aaron M.

    2016-01-01

    The Vps13 protein family is highly conserved in eukaryotic cells. Mutations in human VPS13 genes result in a variety of diseases, such as chorea acanthocytosis (ChAc), but the cellular functions of Vps13 proteins are not well defined. In yeast, there is a single VPS13 orthologue, which is required for at least two different processes: protein sorting to the vacuole and sporulation. This study demonstrates that VPS13 is also important for mitochondrial integrity. In addition to preventing transfer of DNA from the mitochondrion to the nucleus, VPS13 suppresses mitophagy and functions in parallel with the endoplasmic reticulum–mitochondrion encounter structure (ERMES). In different growth conditions, Vps13 localizes to endosome–mitochondrion contacts and to the nuclear–vacuole junctions, indicating that Vps13 may function at membrane contact sites. The ability of VPS13 to compensate for the absence of ERMES correlates with its intracellular distribution. We propose that Vps13 is present at multiple membrane contact sites and that separation-of-function mutants are due to loss of Vps13 at specific junctions. Introduction of VPS13A mutations identified in ChAc patients at cognate sites in yeast VPS13 are specifically defective in compensating for the lack of ERMES, suggesting that mitochondrial dysfunction might be the basis for ChAc. PMID:27280386

  16. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  17. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    PubMed

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  18. Local structure study of disordered crystalline materials with the atomic pair distribution function method

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun

    The employed experimental method in this Ph.D. dissertation research is the atomic pair distribution function (PDF) technique specializing in high real space resolution local structure determination. The PDF is obtained via Fourier transform from powder total scattering data including the important local structural information in the diffuse scattering intensities underneath, and in-between, the Bragg peaks. Having long been used to study liquids and amorphous materials, the PDF technique has been recently successfully applied to highly crystalline materials owing to the advances in modern X-ray and neutron sources and computing power. An integral part of this thesis work has been to make the PDF technique accessible to a wider scientific community. We have recently developed the rapid acquisition PDF (RA-PDF) method featuring high energy X-rays coupled with an image plate area detector, allowing three to four orders of magnitude decrease of data collection time. Correspondingly in software development, I have written a complete X-ray data correction program PDFgetX2 (user friendly with GUI, 32,000+ lines). Those developments sweep away many barriers to the wide-spread application of the PDF technique in complex materials. The RA-PDF development also opens up new fields of research such as time-resolved studies, pump-probe measurements and so on, where the PDF analysis can provide unique insights. Two examples of the RA-PDF applications are described: the distorted T12 square nets in the new binary antimonide Ti2Sb and in-situ chemical reduction of CuO to Cu. The most intellectually enriching has been the local structure studies of the colossal magneto-resistive (CMR) manganites with intrinsic inhomogeneities. The strong coupling between electron, spin, orbital, and lattice degrees of freedom result in extremely rich and interesting phase diagrams. We have carried out careful PDF analysis of neutron powder diffraction data to study the local MnO6 octahedral

  19. On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: Part II-Observations

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.

    2014-07-01

    An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.

  20. Calculation of the Kirkwood-Frohlich correlation factor and dielectric constant of methanol using a statistical model and density functional theory

    NASA Astrophysics Data System (ADS)

    Deb, Nipamanjari; Tiwary, Amit S.; Mukherjee, Asok. K.

    2010-07-01

    The geometries of methanol monomer and methanol clusters, (CH3OH) m , m = 2-10, were optimized using the DFT/B3LYP/6-31++G(d,p) method. For each m > 2, a number of conformers were found to satisfy the optimization condition, showing no imaginary frequency in their calculated IR spectra. With increasing m, five- and six-membered rings begin to appear with open chain branches and the calculated IR spectra approach the experimentally observed IR spectrum of liquid methanol. Using the average energy of formation of one hydrogen bond and a statistical model, the Kirkwood-Frohlich (K-F) correlation factor (g) and dielectric constant (ε) were calculated for each methanol cluster. From a plot of ε versus cluster size (m), the bulk dielectric constant was obtained by extrapolation to m→∞. The value of g averaged over all conformers is in almost complete agreement with the g value obtained in an earlier molecular dynamics simulation study by Fonseca and Ladanyi [J. Chem. Phys. 93, 8148 (1990)]. Using this value of g in the K-F equation, the dielectric constant (ε) of methanol was calculated and found to be in fair agreement with (∼17% lower than) the experimental value and also with an earlier molecular dynamics simulation [Mol. Phys. 94, 435 (1998)]. The calculated ε follows the same trend in variation with temperature as the experimental ε in the range 288-318 K.

  1. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.

    PubMed

    Chang, Peng; Fan, Xueyi; Chen, Jiangye

    2015-08-01

    Candida albicans is an opportunistic fungal pathogen commonly found in humans. It has the ability to switch reversibly between three growth forms: budding yeast, pseudohypha, and hypha. The transition between yeast and hyphal growth forms is critical for the pathogenesis of C. albicans. During the yeast-to-hypha morphologic transition, gene expression is regulated by transcriptional regulators including histone modifying complexes and chromatin remodeling complexes. We previously reported that Esa1, a catalytic subunit in the histone acetyltransferase complex NuA4, is essential for the hyphal development of C. albicans. In this study, we analyzed the functional roles of Gcn5, a catalytic subunit in the histone acetyltransferase complex SAGA, in C. albicans. Gcn5 is required for the invasive and filamentous growth of C. albicans. Deletion of GCN5 impaired hyphal elongation in sensing serum and attenuated the virulence of C. albicans in a mouse systemic infection model. The C. albicans gcn5/gcn5 mutant cells also exhibited sensitivity to cell wall stress. Functional analysis showed that the HAT domain and Bromodomain in Gcn5 play distinct roles in morphogenesis and cell wall stress response of C. albicans. Our results show that the conserved residue Glu188 is crucial for the Gcn5 HAT activity and for Gcn5 function during filamentous growth. In addition, the subcellular distribution of ectopically expressed GFP-Gcn5 correlates with the different growth states of C. albicans. In stationary phase, Gcn5 accumulated in the nucleus, while during vegetative growth it localized in the cytoplasm in a morpha-independent manner. Our results suggest that the nuclear localization of Gcn5 depends on the existence of its N-terminal NLS and HAT domains.

  2. Nucleolar localization signals of LIM kinase 2 function as a cell-penetrating peptide.

    PubMed

    Kobayashi, Nahoko; Niwa, Mikio; Hao, Yang; Yoshida, Tetsuhiko

    2010-12-01

    LIM Kinase 2 (LIMK2) is a LIM domain-containing protein kinase which regulates actin polymerization thorough phosphorylation of the actin depolymerizing factor cofilin. It is also known to function as a shuttle between the cytoplasm and nucleus in endothelial cells. A basic amino acid-rich motif in LIMK2 was previously identified to be responsible for this shuttling function, as a nucleolar localization signal (NoLS). Here it is shown that this nucleolar localization signal sequence also has the characteristic function of a cell-penetrating peptide (CPP). We synthesized LIMK2 NoLS-conjugated peptides and a protein and analyzed their cell-penetrating abilities in various types of cells. The BC-box motif of the Von Hippel-Lindau (VHL) protein was used for the peptide. This motif previously has been reported to be involved in the neural differentiation of bone marrow stromal cells and skin-derived precursor cells. Green fluorescence protein (GFP) was used as a large biologically active biomolecule for the protein. The LIMK2 NoLS-conjugated peptides and protein translocated across the cell membranes of fibroblast cells, neural stem cells, and even iPS cells. These results suggest that LIMK2 NoLS acts as a cell-penetrating peptide and its cell-penetrating ability is not restricted by cell type. Moreover, from an in vivo assay using a mouse brain, it was confirmed that NoLS has potential for transporting biomolecules across the blood-brain barrier. PMID:20937035

  3. First principles calculations for liquids and solids using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Swartz, Charles W., VI

    The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can

  4. The local stellar luminosity function and mass-to-light ratio in the near-infrared

    NASA Astrophysics Data System (ADS)

    Just, A.; Fuchs, B.; Jahreiß, H.; Flynn, C.; Dettbarn, C.; Rybizki, J.

    2015-07-01

    A new sample of stars, representative of the solar neighbourhood luminosity function (LF), is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the Two Micron All Sky Survey catalogue so that for all stars individually determined near-infrared (NIR) photometry is available on a homogeneous system (typically Ks). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR LF of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 ± 0.004 LK⊙ pc-3, corresponding to a volumetric mass-to-light ratio (M/L) of M/L_K = 0.31 ± 0.02 {M}_{⊙}/L_{K⊙}, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 LK⊙ pc-2 with an uncertainty of approximately 10 per cent. This corresponds to an M/L for the solar cylinder of M/L_K = 0.34 {M}_{⊙}/L_{K⊙}. The M/L for the solar cylinder is only 10 per cent larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scaleheights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V - K = 2.89 mag compared to the local value of V - K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of MK = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher relations from the literature.

  5. The cosmological constant

    NASA Technical Reports Server (NTRS)

    Carroll, Sean M.; Press, William H.; Turner, Edwin L.

    1992-01-01

    The cosmological constant problem is examined in the context of both astronomy and physics. Effects of a nonzero cosmological constant are discussed with reference to expansion dynamics, the age of the universe, distance measures, comoving density of objects, growth of linear perturbations, and gravitational lens probabilities. The observational status of the cosmological constant is reviewed, with attention given to the existence of high-redshift objects, age derivation from globular clusters and cosmic nuclear data, dynamical tests of Omega sub Lambda, quasar absorption line statistics, gravitational lensing, and astrophysics of distant objects. Finally, possible solutions to the physicist's cosmological constant problem are examined.

  6. Localization and socialization: Experimental insights into the functional architecture of IP3 receptors

    NASA Astrophysics Data System (ADS)

    Diambra, Luis; Marchant, Jonathan S.

    2009-09-01

    Inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals display great spatiotemporal malleability. This malleability depends on diversity in both the cellular organization and in situ functionality of IP3 receptors (IP3Rs) that regulate Ca2+ release from the endoplasmic reticulum (ER). Recent experimental data imply that these considerations are not independent, such that—as with other ion channels—the local organization of IP3Rs impacts their functionality, and reciprocally IP3R activity impacts their organization within native ER membranes. Here, we (i) review experimental data that lead to our understanding of the "functional architecture" of IP3Rs within the ER, (ii) propose an updated terminology to span the organizational hierarchy of IP3Rs observed in intact cells, and (iii) speculate on the physiological significance of IP3R socialization in Ca2+ dynamics, and consequently the emerging need for modeling studies to move beyond gridded, planar, and static simulations of IP3R clustering even over short experimental timescales.

  7. A possible functional localizer for identifying brain regions sensitive to sentence-level prosody

    PubMed Central

    Fedorenko, Evelina; Hsieh, Po-Jang; Balewski, Zuzanna

    2013-01-01

    Investigations of how we produce and perceive prosodic patterns are not only interesting in their own right but can inform fundamental questions in language research. We here argue that functional magnetic resonance imaging (fMRI) in general – and the functional localization approach in particular (e.g., Kanwisher et al., 1997; Saxe et al., 2006; Fedorenko et al., 2010; Nieto-Castañon & Fedorenko, 2012) – has the potential to help address open research questions in prosody research and at the intersection of prosody and other domains. Critically, this approach can go beyond questions like “where in the brain does mental process x produce activation” and toward questions that probe the nature of the representations and computations that subserve different mental abilities. We describe one way to functionally define regions sensitive to sentence-level prosody in individual subjects. This or similar “localizer” contrasts can be used in future studies to test hypotheses about the precise contributions of prosody-sensitive brain regions to prosodic processing and cognition more broadly. PMID:25642425

  8. Intracellular localization of the BCL-2 family member BOK and functional implications

    PubMed Central

    Echeverry, N; Bachmann, D; Ke, F; Strasser, A; Simon, H U; Kaufmann, T

    2013-01-01

    The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a ‘tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK. PMID:23429263

  9. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel.

    PubMed Central

    Fink, M; Duprat, F; Lesage, F; Reyes, R; Romey, G; Heurteaux, C; Lazdunski, M

    1996-01-01

    Human TWIK-1, which has been cloned recently, is a new structural type of weak inward rectifier K+ channel. Here we report the structural and functional properties of TREK-1, a mammalian TWIK-1-related K+ channel. Despite a low amino acid identity between TWIK-1 and TREK-1 (approximately 28%), both channel proteins share the same overall structural arrangement consisting of two pore-forming domains and four transmembrane segments (TMS). This structural similarity does not give rise to a functional analogy. K+ currents generated by TWIK-1 are inwardly rectifying while K+ currents generated by TREK-1 are outwardly rectifying. These channels have a conductance of 14 pS. TREK-1 currents are insensitive to pharmacological agents that block TWIK-1 activity such as quinine and quinidine. Extensive inhibitions of TREK-1 activity are observed after activation of protein kinases A and C. TREK-1 currents are sensitive to extracellular K+ and Na+. TREK-1 mRNA is expressed in most tissues and is particularly abundant in the lung and in the brain. Its localization in this latter tissue has been studied by in situ hybridization. TREK-1 expression is high in the olfactory bulb, hippocampus and cerebellum. These results provide the first evidence for the existence of a K+ channel family with four TMS and two pore domains in the nervous system of mammals. They also show that different members in this structural family can have totally different functional properties. Images PMID:9003761

  10. Presynaptic DLG regulates synaptic function through the localization of voltage-activated Ca2+ Channels

    PubMed Central

    Astorga, César; Jorquera, Ramón A.; Ramírez, Mauricio; Kohler, Andrés; López, Estefanía; Delgado, Ricardo; Córdova, Alex; Olguín, Patricio; Sierralta, Jimena

    2016-01-01

    The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo. PMID:27573697

  11. Presynaptic DLG regulates synaptic function through the localization of voltage-activated Ca(2+) Channels.

    PubMed

    Astorga, César; Jorquera, Ramón A; Ramírez, Mauricio; Kohler, Andrés; López, Estefanía; Delgado, Ricardo; Córdova, Alex; Olguín, Patricio; Sierralta, Jimena

    2016-01-01

    The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo. PMID:27573697

  12. Direct localization of poles of a meromorphic function from measurements on an incomplete boundary

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki; Ando, Shigeru

    2010-01-01

    This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.

  13. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  14. Implementation of the locally renormalized CCSD(T) approaches for arbitrary reference function.

    PubMed

    Kowalski, Karol

    2005-07-01

    Several new variants of the locally-renormalized coupled-cluster (CC) approaches that account for the effect of triples (LR-CCSD(T)) have been formulated and implemented for arbitrary reference states using the TENSOR CONTRACTION ENGINE functionality, enabling the automatic generation of an efficient parallel code. Deeply rooted in the recently derived numerator-denominator-connected (NDC) expansion for the ground-state energy [K. Kowalski and P. Piecuch, J. Chem. Phys. 122, 074107 (2005)], LR-CCSD(T) approximations use, in analogy to the completely renormalized CCSD(T) (CR-CCSD(T)) approach, the three-body moments in constructing the noniterative corrections to the energies obtained in CC calculations with singles and doubles (CCSD). In contrast to the CR-CCSD(T) method, the LR-CCSD(T) approaches discussed in this paper employ local denominators, which assure the additive separability of the energies in the noninteracting system limit when the localized occupied spin-orbitals are employed in the CCSD and LR-CCSD(T) calculations. As clearly demonstrated on several challenging examples, including breaking the bonds of the F2, N2, and CN molecules, the LR-CCSD(T) approaches are capable of providing a highly accurate description of the entire potential-energy surface (PES), while maintaining the characteristic N(7) scaling of the ubiquitous CCSD(T) approach. Moreover, as illustrated numerically for the ozone molecule, the LR-CCSD(T) approaches yield highly competitive values for a number of equilibrium properties including bond lengths, angles, and harmonic frequencies. PMID:16035828

  15. Source localization approach for functional DOT using MUSIC and FDR control.

    PubMed

    Jung, Jin Wook; Lee, Ok Kyun; Ye, Jong Chul

    2012-03-12

    In this paper, we formulate diffuse optical tomography (DOT) problems as a source localization problem and propose a MUltiple SIgnal Classification (MUSIC) algorithm for functional brain imaging application. By providing MUSIC spectra for major chromophores such as oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR), we are able to investigate the spatial distribution of brain activities. Moreover, the false discovery rate (FDR) algorithm can be applied to control the family-wise error in the MUSIC spectra. The minimum distance between the center of mass in DOT and the Montreal Neurological Institute (MNI) coordinates of target regions in experiments was between approximately 6 and 18 mm, and the displacement of the center of mass in DOT and fMRI ranged between 12 and 28 mm, which demonstrate the legitimacy of the DOT-based imaging. The proposed brain mapping method revealed its potential as an alternative algorithm to monitor the brain activation. PMID:22418510

  16. CD44 functions in Wnt signaling by regulating LRP6 localization and activation

    PubMed Central

    Schmitt, M; Metzger, M; Gradl, D; Davidson, G; Orian-Rousseau, V

    2015-01-01

    Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt activity in a concentration-dependent manner. Epistasis experiments place CD44 function at the level of the Wnt receptor LRP6. Mechanistically, CD44 physically associates with LRP6 upon Wnt treatment and modulates LRP6 membrane localization. Moreover, CD44 regulates Wnt signaling in the developing brain of Xenopus laevis embryos as shown by a decreased expression of Wnt targets tcf-4 and en-2 in CD44 morphants. PMID:25301071

  17. Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex.

    PubMed

    Li, Yansong; Sescousse, Guillaume; Amiez, Céline; Dreher, Jean-Claude

    2015-01-28

    Experienced value representations within the human orbitofrontal cortex (OFC) are thought to be organized through an antero-posterior gradient corresponding to secondary versus primary rewards. Whether this gradient depends upon specific morphological features within this region, which displays considerable intersubject variability, remains unknown. To test the existence of such relationships, we performed a subject-by-subject analysis of fMRI data taking into account the local morphology of each individual. We tested 38 subjects engaged in a simple incentive delay task manipulating both monetary and visual erotic rewards, focusing on reward outcome (experienced value signal). The results showed reliable and dissociable primary (erotic) and secondary (monetary) experienced value signals at specific OFC sulci locations. More specifically, experienced value signal induced by monetary reward outcome was systematically located in the rostral portion of the medial orbital sulcus. Experienced value signal related to erotic reward outcome was located more posteriorly, that is, at the intersection between the caudal portion of the medial orbital sulcus and transverse orbital sulcus. Thus, the localizations of distinct experienced value signals can be predicted from the organization of the human orbitofrontal sulci. This study provides insights into the anatomo-functional parcellation of the anteroposterior OFC gradient observed for secondary versus primary rewards because there is a direct relationship between value signals at the time of reward outcome and unique OFC sulci locations. PMID:25632140

  18. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function.

    PubMed

    Rajanala, Kalpana; Sarkar, Anshuk; Jhingan, Gagan Deep; Priyadarshini, Raina; Jalan, Manisha; Sengupta, Sagar; Nandicoori, Vinay Kumar

    2014-08-15

    A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.

  19. Acetyl salicylic acid locally enhances functional recovery after sciatic nerve transection in rat.

    PubMed

    Mohammadi, Rahim; Amini, Keyvan; Abdollahi-Pirbazari, Mehdi; Yousefi, Alireza

    2013-01-01

    Local effect of acetyl salicylic acid (ASA) on peripheral nerve regeneration was studied using a rat sciatic nerve transection model. Forty-five male healthy White Wistar rats were divided into three experimental groups (n = 15), randomly: Sham-operation (SHAM), control (SIL), and ASA-treated (SIL/ASA) groups. In SHAM group after anesthesia left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis the muscle was sutured. In SIL group the left sciatic nerve was exposed the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a silicone tube and filled with 10 μl phosphate buffered solution. In SIL/ASA group defect was bridged using a silicone tube filled with 10 μl acetyl salisylic acid (0.1 mg/ml). Each group was subdivided into three subgroups of five animals each and were studied 4, 8, and 12 weeks after surgery. Data were analyzed statistically by factorial analysis of variance (ANOVA) and the Bonferroni test for pair-wise comparisons. Functional study confirmed faster and better recovery of regenerated axons in SIL/ASA than in SIL group (p < 0.05). Gastrocnemius muscle mass in SIL/ASA was significantly more than in SIL group. Morphometric indices of regenerated fibers showed that the number and diameter of the myelinated fibers in SIL/ASA were significantly higher than in control group. In immuohistochemistry, location of reactions to S-100 in SIL/ASA was clearly more positive than in SIL group. Response to local treatment of ASA demonstrates that it influences and improves functional recovery of peripheral nerve regeneration.

  20. Structure-dependent interatomic dispersion coefficients in oxides with maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, Sergey V.; Smirnov, Konstantin S.

    2012-11-01

    The interatomic C6 dispersion coefficients in crystalline and amorphous SiO2 and ZrO2 structures were obtained with the approach proposed by Silvestrelli (2008 Phys. Rev. Lett. 100 053002) and based on the use of maximally localized Wannier functions (MLWFs) for partitioning the electron density. Localization of Wannier functions close to the nuclei in oxide systems makes it possible to assign the MLWFs to the atoms in an unambiguous way and then to compute the C6 coefficients in an atom pairwise manner. A modification of the method is suggested in which the MLWFs are condensed to effective orbitals centred on the atoms and parameters of these effective orbitals are used for computing the interatomic dispersion coefficients. The obtained values of the dispersion coefficients were found to vary not only from one oxide to another, but also between different modifications of the same compound. The oxygen-oxygen coefficient {C}_{6}^{{OO}} reveals the largest variation and its value in ZrO2 structures is twice as large as that in SiO2 ones. Atomic characteristics obtained in the frame of the effective orbital method, such as the self-atom dispersion coefficient, and the oxide ion polarizability were found to correlate with the metal-oxygen bond length and the oxygen coordination number in the systems. This behaviour is attributed to the confinement of electrons by the electrostatic potential. The values of the coefficient and of the polarizability were related to charges of the oxygen atoms. In all studied systems the oxygen atoms having larger absolute values of charge were found to be less polarizable because of a stronger confinement effect. The obtained results can be used in the development of polarizable force fields for the atomistic modelling of oxide materials.

  1. Mulan: Multiple-Sequence Local Alignment and Visualization for Studying Function and Evolution

    SciTech Connect

    Ovcharenko, I; Loots, G; Giardine, B; Hou, M; Ma, J; Hardison, R; Stubbs, L; Miller, W

    2004-07-14

    Multiple sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the tba multi-aligner program for rapid identification of local sequence conservation and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short-and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multi-species comparisons of the GATA3 gene locus and the identification of elements that are conserved differently in avians than in other genomes allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://bio.cse.psu.edu/.

  2. Structure-dependent interatomic dispersion coefficients in oxides with maximally localized Wannier functions.

    PubMed

    Sukhomlinov, Sergey V; Smirnov, Konstantin S

    2012-11-28

    The interatomic C(6) dispersion coefficients in crystalline and amorphous SiO(2) and ZrO(2) structures were obtained with the approach proposed by Silvestrelli (2008 Phys. Rev. Lett. 100 053002) and based on the use of maximally localized Wannier functions (MLWFs) for partitioning the electron density. Localization of Wannier functions close to the nuclei in oxide systems makes it possible to assign the MLWFs to the atoms in an unambiguous way and then to compute the C(6) coefficients in an atom pairwise manner. A modification of the method is suggested in which the MLWFs are condensed to effective orbitals centred on the atoms and parameters of these effective orbitals are used for computing the interatomic dispersion coefficients. The obtained values of the dispersion coefficients were found to vary not only from one oxide to another, but also between different modifications of the same compound. The oxygen-oxygen coefficient C6(OO) reveals the largest variation and its value in ZrO(2) structures is twice as large as that in SiO(2) ones. Atomic characteristics obtained in the frame of the effective orbital method, such as the self-atom dispersion coefficient, and the oxide ion polarizability were found to correlate with the metal-oxygen bond length and the oxygen coordination number in the systems. This behaviour is attributed to the confinement of electrons by the electrostatic potential. The values of the coefficient and of the polarizability were related to charges of the oxygen atoms. In all studied systems the oxygen atoms having larger absolute values of charge were found to be less polarizable because of a stronger confinement effect. The obtained results can be used in the development of polarizable force fields for the atomistic modelling of oxide materials.

  3. Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  4. Calculation of magnetostriction constants

    NASA Astrophysics Data System (ADS)

    Tatebayashi, T.; Ohtsuka, S.; Ukai, T.; Mori, N.

    1986-02-01

    The magnetostriction constants h1 and h2 for Ni and Fe metals and the anisotropy constants K1 and K2 for Fe metal are calculated on the basis of the approximate d bands obtained by Deegan's prescription, by using Gilat-Raubenheimer's method. The obtained results are compared with the experimental ones.

  5. Hydrogen Exchange Differences between Chemoreceptor Signaling Complexes Localize to Functionally Important Subdomains

    PubMed Central

    2015-01-01

    The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes. PMID:25420045

  6. Characterizing Oxidation State using Bader Analysis, Maximally Localized Wannier Functions and Atomic Orbitals Projection

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle; Kanai, Yosuke

    2013-03-01

    The concept of oxidation state of atoms in molecules and materials is widely used to predict and understand chemical and physical properties. This concept is perhaps driven more empirically than by any rigorous criteria differentiating one oxidation state from another. Within the oxidation state framework, an integer number of electrons is assigned to the nuclei within a system. In practice, a distribution of electron density makes it difficult to quantify such discrete assignments without some ambiguities. We explore three different charge analysis approaches in density functional theory calculations for addressing the oxidation state of important organometallic molecules [Ru(bpy)3]2+ and [Ru(bpy)3]3+, which are widely used for solar energy conversion applications. Bader charge analysis, Wannier function analysis, and atomic orbital projection are employed in this work. Given the highly-localized nature of the d-electrons of the ruthenium atom, the charge analysis methods are also compared with Hubbard-U correction. We also discuss how the solvation by water molecules influences the oxidation state characterization for these organometallic complexes.

  7. How to use fMRI functional localizers to improve EEG/MEG source estimation

    PubMed Central

    Cottereau, Benoit R.; Ales, Justin M.; Norcia, Anthony M.

    2015-01-01

    EEG and MEG have excellent temporal resolution, but the estimation of the neural sources that generate the signals recorded by the sensors is a difficult, ill-posed problem. The high spatial resolution of functional MRI makes it an ideal tool to improve the localization of the EEG/MEG sources using data fusion. However, the combination of the two techniques remains challenging, as the neural generators of the EEG/MEG and BOLD signals might in some cases be very different. Here we describe a data fusion approach that was developed by our team over the last decade in which fMRI is used to provide source constraints that are based on functional areas defined individually for each subject. This mini-review describes the different steps that are necessary to perform source estimation using this approach. It also provides a list of pitfalls that should be avoided when doing fMRI-informed EEG/MEG source imaging. Finally, it describes the advantages of using a ROI-based approach for group-level analysis and for the study of sensory systems. PMID:25088693

  8. Efficient hardware accelerated rendering of multiple volumes by data dependent local render functions

    NASA Astrophysics Data System (ADS)

    Lehmann, Helko; Geller, Dieter; Weese, Jürgen; Kiefer, Gundolf

    2007-03-01

    The inspection of a patient's data for diagnostics, therapy planning or therapy guidance involves an increasing number of 3D data sets, e.g. acquired by different imaging modalities, with different scanner settings or at different times. To enable viewing of the data in one consistent anatomical context fused interactive renderings of multiple 3D data sets are desirable. However, interactive fused rendering of typical medical data sets using standard computing hardware remains a challenge. In this paper we present a method to render multiple 3D data sets. By introducing local rendering functions, i.e. functions that are adapted to the complexity of the visible data contained in the different regions of a scene, we can ensure that the overall performance for fused rendering of multiple data sets depends on the actual amount of visible data. This is in contrast to other approaches where the performance depends mainly on the number of rendered data sets. We integrate the method into a streaming rendering architecture with brick-based data representations of the volume data. This enables efficient handling of data sets that do not fit into the graphics board memory and a good utilization of the texture caches. Furthermore, transfer and rendering of volume data that does not contribute to the final image can be avoided. We illustrate the benefits of our method by experiments with clinical data.

  9. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Peränen, Johan; Olkkonen, Vesa M

    2015-05-01

    Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.

  10. How to use fMRI functional localizers to improve EEG/MEG source estimation.

    PubMed

    Cottereau, Benoit R; Ales, Justin M; Norcia, Anthony M

    2015-07-30

    EEG and MEG have excellent temporal resolution, but the estimation of the neural sources that generate the signals recorded by the sensors is a difficult, ill-posed problem. The high spatial resolution of functional MRI makes it an ideal tool to improve the localization of the EEG/MEG sources using data fusion. However, the combination of the two techniques remains challenging, as the neural generators of the EEG/MEG and BOLD signals might in some cases be very different. Here we describe a data fusion approach that was developed by our team over the last decade in which fMRI is used to provide source constraints that are based on functional areas defined individually for each subject. This mini-review describes the different steps that are necessary to perform source estimation using this approach. It also provides a list of pitfalls that should be avoided when doing fMRI-informed EEG/MEG source imaging. Finally, it describes the advantages of using a ROI-based approach for group-level analysis and for the study of sensory systems.

  11. Cones of localized shear strain in incompressible elasticity with prestress: Green's function and integral representations

    PubMed Central

    Argani, L. P.; Bigoni, D.; Capuani, D.; Movchan, N. V.

    2014-01-01

    The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney–Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup–cone rupture of ductile metal bars. PMID:25197258

  12. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Peränen, Johan; Olkkonen, Vesa M

    2015-05-01

    Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling. PMID:25420878

  13. Efficacy of identifying neural components in the face and emotion processing system in schizophrenia using a dynamic functional localizer.

    PubMed

    Arnold, Aiden E G F; Iaria, Giuseppe; Goghari, Vina M

    2016-02-28

    Schizophrenia is associated with deficits in face perception and emotion recognition. Despite consistent behavioural results, the neural mechanisms underlying these cognitive abilities have been difficult to isolate, in part due to differences in neuroimaging methods used between studies for identifying regions in the face processing system. Given this problem, we aimed to validate a recently developed fMRI-based dynamic functional localizer task for use in studies of psychiatric populations and specifically schizophrenia. Previously, this functional localizer successfully identified each of the core face processing regions (i.e. fusiform face area, occipital face area, superior temporal sulcus), and regions within an extended system (e.g. amygdala) in healthy individuals. In this study, we tested the functional localizer success rate in 27 schizophrenia patients and in 24 community controls. Overall, the core face processing regions were localized equally between both the schizophrenia and control group. Additionally, the amygdala, a candidate brain region from the extended system, was identified in nearly half the participants from both groups. These results indicate the effectiveness of a dynamic functional localizer at identifying regions of interest associated with face perception and emotion recognition in schizophrenia. The use of dynamic functional localizers may help standardize the investigation of the facial and emotion processing system in this and other clinical populations. PMID:26792586

  14. Efficacy of identifying neural components in the face and emotion processing system in schizophrenia using a dynamic functional localizer.

    PubMed

    Arnold, Aiden E G F; Iaria, Giuseppe; Goghari, Vina M

    2016-02-28

    Schizophrenia is associated with deficits in face perception and emotion recognition. Despite consistent behavioural results, the neural mechanisms underlying these cognitive abilities have been difficult to isolate, in part due to differences in neuroimaging methods used between studies for identifying regions in the face processing system. Given this problem, we aimed to validate a recently developed fMRI-based dynamic functional localizer task for use in studies of psychiatric populations and specifically schizophrenia. Previously, this functional localizer successfully identified each of the core face processing regions (i.e. fusiform face area, occipital face area, superior temporal sulcus), and regions within an extended system (e.g. amygdala) in healthy individuals. In this study, we tested the functional localizer success rate in 27 schizophrenia patients and in 24 community controls. Overall, the core face processing regions were localized equally between both the schizophrenia and control group. Additionally, the amygdala, a candidate brain region from the extended system, was identified in nearly half the participants from both groups. These results indicate the effectiveness of a dynamic functional localizer at identifying regions of interest associated with face perception and emotion recognition in schizophrenia. The use of dynamic functional localizers may help standardize the investigation of the facial and emotion processing system in this and other clinical populations.

  15. Mediation of cytotoxic functions by classes and subclasses of sheep antibody reactive with cell surface immunoglobulin idiotypic and constant region determinants.

    PubMed Central

    Stevenson, F K; Elliott, E V

    1978-01-01

    Sheep antibodies, reactive with either the idiotypic or constant region antigenic determinants of the immunoglobulin light chain on guinea-pig L2C leukaemic cells, were separated into IgM and into the two subclasses of IgG, IgG1 and IgG2. Antibody of both IgG subclasses inhibited the migration of L2C cells along plastic surfaces; IgM was only weakly inhibitory. Antibody of class IgM and of subclass IgG1 mediated complement cytotoxicity against the L2C cells whereas only that of subclass IgG2 mediated K-cell cytotoxicity; the effector arms were rabbit complement and sheep peripheral leucocytes, respectively. PMID:75184

  16. The inhibition of demineralization of human enamel after fluoride varnish application as a function of the fluoride content. An in vitro study under constant composition demineralizing conditions.

    PubMed

    de Bruyn, H; Buskes, J A; Arends, J

    1986-06-01

    The inhibiting effect of a 24 hours application of a fluoridated varnish with various fluoride contents on demineralization of human sound enamel was evaluated in vitro. The varnishes used had the same polyurethane base (Fluor Protector) and contained 0.7; 0.1; 0.05 and 0 wt% fluoride, resp. A constant composition technique was used to demineralize varnished and non-varnished specimens at a pH of 5 for periods upto 2 weeks. Microhardness measurements were carried out after several time intervals to follow mineral loss in time longitudinally. At the end of each experimental run microradiography was carried out to investigate 1) lesion type, 2) lesion depth and 3) mineral loss. It is shown in this study that the fluoride releasing varnishes applied on the enamel for 24 hours can inhibit demineralization completely. No demineralization inhibition with the 0% fluoride varnish application was observed.

  17. Two-state model based on the block-localized wave function method

    NASA Astrophysics Data System (ADS)

    Mo, Yirong

    2007-06-01

    The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).

  18. Essential functions of Sds22p in chromosome stability and nuclear localization of PP1.

    PubMed

    Peggie, Mark W; MacKelvie, Sarah H; Bloecher, Andrew; Knatko, Elena V; Tatchell, Kelly; Stark, Michael J R

    2002-01-01

    Sds22p is a conserved, leucine-rich repeat protein that interacts with the catalytic subunit of protein phosphatase 1 (PP1(C)) and which has been proposed to regulate one or more functions of PP1(C) during mitosis. Here we show that Saccharomyces cerevisiae Sds22p is a largely nuclear protein, most of which is present as a sTable 1:1 complex with yeast PP1(C) (Glc7p). Temperature-sensitive (Ts(-)) S. cerevisiae sds22 mutants show profound chromosome instability at elevated growth temperatures but do not confer a cell cycle stage-specific arrest. In the sds22-6 Ts(-) mutant, nuclear Glc7p is both reduced in level and aberrantly localized at 37 degrees C and the interaction between Glc7p and Sds22p in vitro is reduced at higher temperatures, consistent with the in vivo Ts(-) growth defect. Like some glc7 mutations, sds22-6 can suppress the Ts(-) growth defect associated with ipl1-2, a loss of function mutation in a protein kinase that is known to work in opposition to PP1 on at least two nuclear substrates. This, together with reciprocal genetic interactions between GLC7 and SDS22, suggests that Sds22p functions positively with Glc7p to promote dephosphorylation of nuclear substrates required for faithful transmission of chromosomes during mitosis, and this role is at least partly mediated by effects of Sds22p on the nuclear distribution of Glc7p

  19. Local measurement of the Eliashberg function of Pb islands: enhancement of electron-phonon coupling by quantum well states.

    PubMed

    Schackert, Michael; Märkl, Tobias; Jandke, Jasmin; Hölzer, Martin; Ostanin, Sergey; Gross, Eberhard K U; Ernst, Arthur; Wulfhekel, Wulf

    2015-01-30

    Inelastic tunneling spectroscopy of Pb islands on Cu(111) obtained by scanning tunneling microscopy below 1 K provides a direct access to the local Eliashberg function of the islands with high energy resolution. The Eliashberg function describes the electron-phonon interaction causing conventional superconductivity. The measured Eliashberg function strongly depends on the local thickness of the Pb nanostructures and shows a sharp maximum when quantum well states of the Pb islands come close to the Fermi energy. Ab initio calculations reveal that this is related to enhanced electron-phonon coupling at these thicknesses. PMID:25679904

  20. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    SciTech Connect

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditional Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.

  1. Local spatial context measurements used to explore the relationship between land cover and land use functions

    NASA Astrophysics Data System (ADS)

    Wästfelt, Anders; Arnberg, Wolter

    2013-08-01

    Research making use of satellite data for land change science has developed in the last decades. However, analysis of land use has not developed with the same speed as development of new satellite sensors and available land cover data. Improvement of land use analysis is possible, but more advanced methods are needed which make it possible to link image data to analysis of land use functions. To make this linking possible, variable which affect farmer's long term decisions must be taken into account in analysis as well as the relative importance of the landscape itself. A GIS-based tool for the measurement of local spatial context in satellite data is presented in this paper and used to explore the relationship between land covers present in satellite data and land use represented in official databases. By the use of the developed tool, a land configuration image (LCI) over the Siljan area in northern Sweden was produced and used for analysis. The results are twofold. First, the produced LCI holds new information about variables that are relevant for the interpretation of land use. Second, the comparison with statistics of agricultural production shows that production in the study area varies depending on the relative land configuration. Villages consisting of relatively large-scale arable fields and less diverse landscape are less diverse in production than villages which consist of smaller-scale and more heterogonous landscapes. The result is especially relevant for land use studies and policymakers working on environmental and agricultural policies. We conclude that local spatial context is an endogenous variable in the relation between landscape configuration and agricultural land use.

  2. Biological function of hpsh4590 localized in the plasticity zone of Helicobacter pylori.

    PubMed

    Gu, Yu-feng; Li, Yu; Song, Yu; Chang, Xin; Qu, Ye-Min; Wang, Ming-Yi; Gao, Xiao-Zhong

    2016-04-01

    The aim of this study was to determine the biological function of hpsh4590 in Helicobacter pylori. After Hpsh4590 was expressed using a prokaryotic expression system, the cytotoxic effects and IL-8 production of Hpsh4590 were analyzed by co-culturing with GES-1 cells. Meanwhile, the antibody of rHpsh4590, produced by immunizing rabbit, was used for localization and protein interaction studies. Hpsh4590 fusion protein was expressed successfully in Escherichia coli Rosetta (DE3), and the polyclonal antibody was produced at high titers. The MTT assay showed that the inhibition ratio of GES-1 cells cultured with 0.1 μg/mL rHpsh4590 (3.02% ± 0.02%) was significantly lower than that of 20 μg/mL rHpsh4590 (57.57% ± 0.03%, p < 0.01), while DAPI staining showed the cytotoxic effects of rHpsh4590 for GES-1 cells. The up-regulation of cleaved caspase-3 and cleaved PARP was observed after GES-1 cells co-cultured with rHpsh4590 by Western blot. Co-culturing of GES-1 cells with rHpsh0459 (20 μg/mL) led to significant production of IL-8 at 12 h(1097.74 ± 212.37 pg/mL) and 24 h (1379.55 ± 209.58 pg/mL) then at 6 h(134.68 ± 14.64 pg/mL, p < 0.01). These observations suggest that the cytotoxicity of Hpsh4590 occurred in a concentration dependent manner, which is related with IL-8 secretion from gastric mucosal epithelial cells. Hpsh4590 was found localized in the membrane and the periplasm of H. pylori, interacted with zinc finger protein and methionine ABC transporter ATP-binding protein, and potentially regulates DNA uptake or transfer.

  3. Space Shuttle astrodynamical constants

    NASA Technical Reports Server (NTRS)

    Cockrell, B. F.; Williamson, B.

    1978-01-01

    Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

  4. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  5. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  6. Robust and automated solution for correcting hotspots locally using cost-function based OPC solver

    NASA Astrophysics Data System (ADS)

    Babcock, Carl; Yang, Dongok; McGowan, Sarah; Ye, Jun; Yan, Bo; Qiu, Jianhong; Baron, Stanislas; Pandey, Taksh; Kapasi, Sanjay; Aquino, Chris

    2014-03-01

    In previous work1, we introduced a new technology called Flexible Mask Optimization (FMO) that was successfully used for localized OPC correction. OPC/RET techniques such as model-based assist feature and process-window-based OPC solvers have become essential for addressing critical patterning issues at 2× and lower technology nodes. With an FMO flow, critical patterns were identified, classified and corrected in localized areas only, using advanced techniques. One challenge with this flow is that once the hotspots are identified, a user still has to come up with OPC solutions to address the hotspots. This process can be cumbersome and time consuming as different types of hotspots with new designs may require different recipes, causing delays to tapeout. What is required is a robust, powerful and automated OPC technique that can handle various types of hotspots, so an automatic hotspot correction flow can be established. In this work, we introduce a new cost-function-based OPC technique called Co-optimization OPC that can be used to correct various types of hotspots with minimum tuning effort. In this approach, the OPC solver simultaneously solves for all the segments in a patch including main and sub-resolution assist features (SRAF), applying additional user-defined cost function constraints such as MEEF, PV band, MRC and SRAF printability. Unlike conventional OPC solvers, Cooptimization solvers can also move and grow SRAFs, which further improves the process window. The key benefit of the Co-optimization OPC solution is that it can be used in a standard recipe to resolve many different hotspots encountered across various designs for a given layer. In this study, we demonstrate that Co-optimization OPC can be successfully used to address various types of hotspots across designs for selected 2× nm node line/space layers, as an example. These layers have been particularly challenging as they use single-exposure lithography with k1 around 0.3. Aggressive RET

  7. The HerMES submillimetre local and low-redshift luminosity functions

    NASA Astrophysics Data System (ADS)

    Marchetti, L.; Vaccari, M.; Franceschini, A.; Arumugam, V.; Aussel, H.; Béthermin, M.; Bock, J.; Boselli, A.; Buat, V.; Burgarella, D.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Farrah, D.; Feltre, A.; Glenn, J.; Griffin, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Page, M. J.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Roseboom, I. G.; Rowan-Robinson, M.; Schulz, B.; Scott, Douglas; Seymour, N.; Shupe, D. L.; Smith, A. J.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.; Wardlow, J.; Xu, C. K.; Zemcov, M.

    2016-02-01

    We used wide-area surveys over 39 deg2 by the HerMES (Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 μm. Within this redshift interval, we detected 7087 sources in five independent sky areas, ˜40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (IR; 8-1000 μm) LFs and their low-z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L_{IR}^{*} ∝ (1+z)^{6.0± 0.4} and Φ _{IR}^{*} ∝ (1+z)^{-2.1± 0.4}, L_{250}^{*} ∝ (1+z)^{5.3± 0.2} and Φ _{250}^{*} ∝ (1+z)^{-0.6± 0.4} estimated using the IR bolometric and the 250 μm LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling of SFRD0 + 0.08z, where SFRD0 ≃ (1.9 ± 0.03) × 10-2 [M⊙ Mpc-3] is our total SFRD estimate at z ˜ 0.02.

  8. A Functional Near-Infrared Spectroscopy Study of Sustained Attention to Local and Global Target Features

    ERIC Educational Resources Information Center

    De Joux, Neil; Russell, Paul N.; Helton, William S.

    2013-01-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…

  9. Effect of localized oxygen functionalization on the conductance of metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ashraf, M. K.; Bruque, Nicolas A.; Pandey, Rajeev R.; Collins, Philip G.; Lake, Roger K.

    2009-03-01

    A comprehensive study of the effect of covalent oxygen attachment on the transmission and conductance of armchair and metallic zigzag carbon nanotubes (CNTs) is presented. In both armchair and zigzag CNTs covalent oxygen attachment favors an ether-type bond in which the C-C bond breaks. Oxygen atoms attached on the CNT surface within the same carbon ring on parallel bonds are energetically more stable than well-separated attachments. In an armchair CNT, oxygen attachment favors the C-C bonds orthogonal to the CNT axis. Cooperative addition propagates axially along parallel orthogonal bonds. In a zigzag CNT, oxygen attachment prefers the slanted bond, and cooperative addition propagates spirally along parallel slanted bonds. Closely spaced oxygen attachment on the armchair and zigzag CNT surfaces causes a dip in transmission symmetrically away from the Fermi level at the turn-on of the first excited modes. For both armchair and zigzag CNTs, as more oxygen atoms are placed in close proximity, their levels interact and split and move closer to the Fermi level which results in broader dips in transmission closer to the Fermi level. The transmission of armchair CNTs near the charge-neutral Fermi level is relatively insensitive to a group of localized oxygen atoms compared to that of metallic zigzag CNTs. A clustered group of oxygen atoms covalently attached to a single-walled metallic zigzag CNT can result in a 1 order of magnitude drop in transmission that is asymmetric with respect to the Fermi energy resulting in a qualitative resemblance to conductance versus gate voltage curves observed experimentally. The covalent attachment of a single oxygen atom in any configuration, on either, an armchair, or zigzag metallic CNT does not give rise to a large change in conductance. Calculations use density-functional theory combined with nonequilibrium Green’s functions.

  10. Localized basis functions and other computational improvements in variational nonorthogonal basis function methods for quantum mechanical scattering problems involving chemical reactions

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Truhlar, Donald G.

    1990-01-01

    The Generalized Newton Variational Principle for 3D quantum mechanical reactive scattering is briefly reviewed. Then three techniques are described which improve the efficiency of the computations. First, the fact that the Hamiltonian is Hermitian is used to reduce the number of integrals computed, and then the properties of localized basis functions are exploited in order to eliminate redundant work in the integral evaluation. A new type of localized basis function with desirable properties is suggested. It is shown how partitioned matrices can be used with localized basis functions to reduce the amount of work required to handle the complex boundary conditions. The new techniques do not introduce any approximations into the calculations, so they may be used to obtain converged solutions of the Schroedinger equation.

  11. Integrin-like proteins in the pollen tube: detection, localization and function.

    PubMed

    Sun, Y; Qian, H; Xu, X D; Han, Y; Yen, L F; Sun, D Y

    2000-10-01

    The distribution of integrin-like proteins in the pollen tube was examined by immunofluorescent labeling and western blotting techniques using antibodies against human placenta integrin vitronectin receptor (VnR), and alpha(v), beta3 and beta1 integrin subunits. Pseudocolor-coded confocal images showed intense immunostaining within 10 and 5 microm of the tip of the pollen tube in Lilium davidii and Nicotiana tabacum respectively. In both segments the site near the plasma membrane was labeled. Western blotting analyses revealed cross-reaction of anti-beta3, anti-alpha(v) and anti-VnR with the proteins in the plasma membrane preparation of L. davidii and Hemerocallis citrina pollen tube. These studies provide evidence for the first time that the integrin-like protein is present in pollen tubes, and it may be mainly composed of alpha(v) and beta3 subunits in lily pollen tubes. In a functional assay, neither anti-VnR antibody nor the Arg-Gly-Asp-Ser tetrapeptide inhibited pollen tube growth of N. tabacum in vitro, but both of them depressed tube growth on the stigma and in style under quasi in vivo culture conditions. The integrin-like proteins localized in the tip and periphery of the pollen tube appeared to play roles in growth of the pollen tube tip and interaction with the extracellular matrix of the style. PMID:11148272

  12. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGES

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; Ayappa, K. Ganapathy; Narasimhan, Shobhana

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are similar, although CO2 binding is generally stronger by ~4 to 5 kJ mol–1. Furthermore, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gas-selective sensors.« less

  13. Functional KV10.1 Channels Localize to the Inner Nuclear Membrane

    PubMed Central

    Chen, Ye; Sánchez, Araceli; Rubio, María E.; Kohl, Tobias; Pardo, Luis A.; Stühmer, Walter

    2011-01-01

    Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression. PMID:21559285

  14. Bonding in elemental boron: a view from electronic structure calculations using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Gygi, Francois; Reed, John; Schwegler, Eric; Galli, Giulia

    2007-03-01

    Boron exhibits the most complex structure of all elemental solids, with more than 300 atoms per unit cell arranged in interconnecting icosahedra, and some crystallographic positions occupied with a probability of less than one. The precise determination of the ground state geometry of boron---the so-called β-boron structure--has been elusive and its electronic and bonding properties have been difficult to rationalize. Using lattice model Monte Carlo optimization techniques and ab-initio simulations, we have shown that a defective, quasi-ordered β solid is the most stable structure at zero as well as finite T. In the absence of partially occupied sites (POS), the perfect β-boron crystal is unstable; the presence of POS lower its internal energy below that of an ordered α-phase, not mere an entropic effect. We present a picture of the intricate and unique bonding in boron based on maximally localized Wannier (MLWF) functions, which indicates that the presence of POS provides a subtle, yet essential spatial balance between electron deficient and fully saturated bonds. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  15. Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms

    SciTech Connect

    Guo, Y.; Whitehead, M.A.

    1988-10-01

    The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, and Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.

  16. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    SciTech Connect

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; Ayappa, K. Ganapathy; Narasimhan, Shobhana

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are similar, although CO2 binding is generally stronger by ~4 to 5 kJ mol–1. Furthermore, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gas-selective sensors.

  17. Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation.

    PubMed

    Madigan, James P; Bodemann, Brian O; Brady, Donita C; Dewar, Brian J; Keller, Patricia J; Leitges, Michael; Philips, Mark R; Ridley, Anne J; Der, Channing J; Cox, Adrienne D

    2009-11-15

    The Rnd proteins (Rnd1, Rnd2 and Rnd3/RhoE) form a distinct branch of the Rho family of small GTPases. Altered Rnd3 expression causes changes in cytoskeletal organization and cell cycle progression. Rnd3 functions to decrease RhoA activity, but how Rnd3 itself is regulated to cause these changes is still under investigation. Unlike other Rho family proteins, Rnd3 is regulated not by GTP/GDP cycling, but at the level of expression and by post-translational modifications such as prenylation and phosphorylation. We show in the present study that, upon PKC (protein kinase C) agonist stimulation, Rnd3 undergoes an electrophoretic mobility shift and its subcellular localization becomes enriched at internal membranes. These changes are blocked by inhibition of conventional PKC isoforms and do not occur in PKCalpha-null cells or to a non-phosphorylatable mutant of Rnd3. We further show that PKCalpha directly phosphorylates Rnd3 in an in vitro kinase assay. Additionally, we provide evidence that the phosphorylation status of Rnd3 has a direct effect on its ability to block signalling from the Rho-ROCK (Rho-kinase) pathway. These results identify an additional mechanism of regulation and provide clarification of how Rnd3 modulates Rho signalling to alter cytoskeletal organization.

  18. Differential localization and functional specialization of centrin analogs in the parasitic ciliate Trichodina pediculus.

    PubMed

    Viguès, Bernard; Colombet, Jonathan; Damaj, Raghida

    2016-09-01

    Trichodinids are ciliated protozoans that reversibly attach to the tegument of marine and freshwater host-organisms via an adhesive disc. In this study, we have used permeabilized cell models of Trichodina pediculus to examine the distribution of centrins, a Ca(2+)-binding protein associated with centrioles and/or contractile filamentous structures in a large number of protists. The previous finding that filamentous material of the adhesive disc comprised a 23-kDa centrin analog suggested that this protein might be a disc-specific isoform. This possibility was explored through immunolabeling methods using two distinct antibodies, anti-ecto-endoplasmic boundary (EEB) and anti-Hscen2 previously shown to react respectively with centrin-based filament networks and with centrioles. Immunofluorescence microscopy showed that anti-EEB reacts with filamentous material of the disc but not with basal bodies. Conversely, anti-Hscen2 cross-reacted with basal bodies but failed to label any type of structure occurring in the disc area. More detailed data on localization of this protein was obtained by immunoelectron microscopy showing gold particles deposits in the lumen of basal bodies. The different patterns revealed by this immunochemical approach suggest that the two protein antigens concerned by this study are distinct centrin isoforms that presumably perform organelle-specific function in the ciliate T. pediculus.

  19. Interaction-energy functional of the Hubbard model: Local formulation and application to low-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Saubanère, Matthieu; Lepetit, Marie Bernadette; Pastor, G. M.

    2016-07-01

    The interaction energy W [γ ] of the Hubbard model is regarded as a functional of the single-particle density matrix γ in the framework of lattice density-functional theory. The local character of the Hubbard interaction is exploited to express W as a sum of local contributions ωi[γ ] , for which a simple semilocal scaling approximation is proposed. The method is applied to the ionic Hubbard model on one- and two-dimensional lattices with homogeneous and inhomogeneous Coulomb repulsions. Results are given for the kinetic and Coulomb energies, interatomic charge transfers, local magnetic moments, and charge gaps. Goals and limitations of the functional are discussed by comparison with exact results.

  20. Localizing Movement-Related Primary Sensorimotor Cortices with Multi-Band EEG Frequency Changes and Functional MRI

    PubMed Central

    Kuo, Ching-Chang; Luu, Phan; Morgan, Kyle K.; Dow, Mark; Davey, Colin; Song, Jasmine; Malony, Allen D.; Tucker, Don M.

    2014-01-01

    Electroencephalographic (EEG) oscillations in multiple frequency bands can be observed during functional activity of the cerebral cortex. An important question is whether activity of focal areas of cortex, such as during finger movements, is tracked by focal oscillatory EEG changes. Although a number of studies have compared EEG changes to functional MRI hemodynamic responses, we can find no previous research that relates the fMRI hemodynamic activity to localization of the multiple EEG frequency changes observed in motor tasks. In the present study, five participants performed similar thumb and finger movement tasks in parallel EEG and functional MRI studies. We examined changes in five frequency bands (from 5–120 Hz) and localized them using 256 dense-array EEG (dEEG) recordings and high-resolution individual head models. These localizations were compared with fMRI localizations in the same participants. Results showed that beta-band (14–30 Hz) desynchronizations (power decreases) were the most robust effects, appearing in all individuals, consistently localized to the hand region of the primary motor cortex, and consistently aligned with fMRI localizations. PMID:25375957

  1. Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.

    2006-11-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.

  2. Charge localization in a diamine cation provides a test of energy functionals and self-interaction correction

    PubMed Central

    Cheng, Xinxin; Zhang, Yao; Jónsson, Elvar; Jónsson, Hannes; Weber, Peter M.

    2016-01-01

    Density functional theory (DFT) is widely applied in calculations of molecules and materials. Yet, it suffers from a well-known over-emphasis on charge delocalization arising from self-interaction error that destabilizes localized states. Here, using the symmetric diamine N,N′-dimethylpiperazine as a model, we have experimentally determined the relative energy of a state with positive charge localized on one of the two nitrogen atoms, and a state with positive charge delocalized over both nitrogen atoms. The charge-localized state was found to be 0.33 (0.04) eV higher in energy than the charge-delocalized state. This provides an important test of theoretical approaches to electronic structure calculations. Calculations with all DFT functionals commonly used today, including hybrid functionals with exact exchange, fail to predict a stable charge-localized state. However, the application of an explicit self-interaction correction to a semi-local functional identifies both states and gives relative energy in excellent agreement with both experiment and CCSD(T) calculations. PMID:26980327

  3. A new function for estimating local rainfall thresholds for landslide triggering

    NASA Astrophysics Data System (ADS)

    Cepeda, J.; Nadim, F.; Høeg, K.; Elverhøi, A.

    2009-04-01

    The widely used power law for establishing rainfall thresholds for triggering of landslides was first proposed by N. Caine in 1980. The most updated global thresholds presented by F. Guzzetti and co-workers in 2008 were derived using Caine's power law and a rigorous and comprehensive collection of global data. Caine's function is defined as I = α×Dβ, where I and D are the mean intensity and total duration of rainfall, and α and β are parameters estimated for a lower boundary curve to most or all the positive observations (i.e., landslide triggering rainfall events). This function does not account for the effect of antecedent precipitation as a conditioning factor for slope instability, an approach that may be adequate for global or regional thresholds that include landslides in surface geologies with a wide range of subsurface drainage conditions and pore-pressure responses to sustained rainfall. However, in a local scale and in geological settings dominated by a narrow range of drainage conditions and behaviours of pore-pressure response, the inclusion of antecedent precipitation in the definition of thresholds becomes necessary in order to ensure their optimum performance, especially when used as part of early warning systems (i.e., false alarms and missed events must be kept to a minimum). Some authors have incorporated the effect of antecedent rainfall in a discrete manner by first comparing the accumulated precipitation during a specified number of days against a reference value and then using a Caine's function threshold only when that reference value is exceeded. The approach in other authors has been to calculate threshold values as linear combinations of several triggering and antecedent parameters. The present study is aimed to proposing a new threshold function based on a generalisation of Caine's power law. The proposed function has the form I = (α1×Anα2)×Dβ, where I and D are defined as previously. The expression in parentheses is

  4. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  5. Optical Constants of Silicon Carbide for Astrophysical Applications. II. Extending Optical Functions from Infrared to Ultraviolet Using Single-Crystal Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Pitman, K. M.; Goncharov, A. F.; Speck, A. K.

    2009-05-01

    Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal structures of silicon carbide (SiC) are presented from 1200-35000 cm-1 (λ ~ 8-0.28 μm) and used to improve the accuracy of optical functions (n and k) from the infrared (IR) to the ultraviolet (UV). Comparison with previous λ ~ 6-20 μm thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for k in the IR region. We extract n and k needed for radiative transfer models using a new "difference method," which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral regions, 3C (β-SiC) and the \\vec{E}\\bot \\vec{c} polarization of 6H (a type of α-SiC) have almost identical optical functions that can be substituted for each other in modeling astronomical environments. Optical functions for \\vec{E} \\Vert \\vec{c} of 6H SiC have peaks shifted to lower frequency, permitting identification of this structure below λ ~ 4 μm. The onset of strong UV absorption for pure SiC occurs near 0.2 μm, but the presence of impurities redshifts the rise to 0.33 μm. Optical functions are similarly impacted. Such large differences in spectral characteristics due to structural and chemical effects should be observable and provide a means to distinguish chemical variation of SiC dust in space.

  6. Functional renormalization-group approaches, one-particle (irreducible) reducible with respect to local Green’s functions, with dynamical mean-field theory as a starting point

    SciTech Connect

    Katanin, A. A.

    2015-06-15

    We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32]. We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.

  7. Validation of soil hydraulic pedotransfer functions at the local and catchment scale for an Indonesian basin

    NASA Astrophysics Data System (ADS)

    Booij, Martijn J.; Oldhoff, Ruben J. J.; Rustanto, Andry

    2016-04-01

    In order to accurately model the hydrological processes in a catchment, information on the soil hydraulic properties is of great importance. These data can be obtained by conducting field work, which is costly and time consuming, or by using pedotransfer functions (PTFs). A PTF is an empirical relationship between easily obtainable soil characteristics and a soil hydraulic parameter. In this study, PTFs for the saturated hydraulic conductivity (Ks) and the available water content (AWC) are investigated. PTFs are area-specific, since for instance tropical soils often have a different composition and hydraulic behaviour compared to temperate soils. Application of temperate soil PTFs on tropical soils might result in poor performance, which is a problem as few tropical soil PTFs are available. The objective of this study is to determine whether Ks and AWC can be accurately approximated using PTFs, by analysing their performance at both the local scale and the catchment scale. Four published PTFs for Ks and AWC are validated on a data set of 91 soil samples collected in the Upper Bengawan Solo catchment on Java, Indonesia. The AWC is predicted very poorly, with Nash-Sutcliffe Efficiency (NSE) values below zero for all selected PTFs. For Ks PTFs better results were found. The Wösten and Rosetta-3 PTFs predict the Ks moderately accurate, with NSE values of 0.28 and 0.39, respectively. New PTFs for both AWC and Ks were developed using multiple linear regression and NSE values of 0.37 (AWC) and 0.55 (Ks) were obtained. Although these values are not very high, they are significantly higher than for the published PTFs. The hydrological SWAT model was set up for the Keduang, a sub-catchment of the Upper Bengawan Solo River, to simulate monthly catchment streamflow. Eleven cases were defined to validate the PTFs at the catchment scale. For the Ks-PTF cases NSE values of around 0.84 were obtained for the validation period. The use of AWC PTFs resulted in slightly lower NSE

  8. Verification of the Usefulness of the Trimble Rtx Extended Satellite Technology with the Xfill Function in the Local Network Implementing Rtk Measurements

    NASA Astrophysics Data System (ADS)

    Siejka, Zbigniew

    2014-12-01

    The paper presents the method of satellite measurements, which gives users the ability of GNSS continuous precise positioning in real time, even in the case of short interruptions in receiving the correction of the local ground system of measurements support. The proposed method is a combination of two satellite positioning technologies RTN GNSS and RTX Extended. In technology RTX Extended the xFill function was used for precise positioning in real time and in the local reference system. This function provides the ability to perform measurement without the need for constant communication with the ground support satellite system. Test measurements were performed on a test basis located in Krakow, and RTN GNSS positioning was done based on the national network of reference stations of the ASGEUPOS. The solution allows for short (up to 5 minutes) interruptions in radio or internet communication. When the primary stream of RTN correction is not available, then the global corrections Trimble xFill broadcasted by satellite are used. The new technology uses in the real-time data from the global network of tracking stations and contributes significantly to improving the quality and efficiency of surveying works. At present according to the authors, technology Trimble CenterPoint RTX can guarantee repeatability of measurements not worse than 3.8 cm (Trimble Survey Division, 2012). In the paper the comparative analysis of measurement results between the two technologies was performed: RTN carried out in the classic way, which was based on the corrections of the terrestrial local network of the Polish system of active geodetic network (ASG-EUPOS) and RTK xFill technology. The results were related to the data of test network, established as error free. The research gave satisfactory results and confirmed the great potential of the use of the new technology in the geodetic work realization. By combining these two technologies of GNSS surveying the user can greatly improve the

  9. Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization

    PubMed Central

    Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang

    2015-01-01

    Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020

  10. Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal.

    PubMed

    Mariano, A R; Colombo, E; Luzi, L; Martinelli, P; Volorio, S; Bernard, L; Meani, N; Bergomas, R; Alcalay, M; Pelicci, P G

    2006-07-20

    Nucleophosmin (NPM) is a nucleus-cytoplasmic shuttling protein that is implicated in centrosome duplication, cell cycle progression and stress response. At the steady state, NPM localizes mainly in the nucleolus, where it forms a complex with different cellular proteins. One-third of acute myeloid leukemias (AML) are characterized by aberrant cytoplasmic localization of NPM, due to mutations within its last coding exon (exon 12) that cause a frameshift and the formation of novel C-termini. We report here our investigations on the molecular basis for the aberrant localization of mutated NPM. Alignment of the C-terminus of the various NPM mutants revealed the obligatory presence of four amino-acid residues that match a CRM1-dependent nuclear export signal (NES). Single alanine-substitutions at these sites provoked nuclear re-localization, while fusion of the mutated C-terminus to a heterologous nuclear protein induced CRM1-dependent cytoplasmic localization. Molecular characterization of one exceptional AML carrying cytoplasmic NPM and germ line exon 12 revealed a somatic mutation in the splicing donor site of exon 9 that caused the formation of a functional NES. It appears, therefore, that AMLs are frequently characterized by gain-of-function mutations of NPM that create functional NES, suggesting that alterations of nuclear export might represent a general mechanism of leukemogenesis and a novel target for therapeutic intervention.

  11. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE.

    PubMed

    Speth, Elena Bray; Imboden, Lori; Hauck, Paula; He, Sheng Yang

    2009-04-01

    Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection. PMID:19233904

  12. Discriminative local subspaces in gene expression data for effective gene function prediction

    PubMed Central

    Gutiérrez, Rodrigo A.; Soto, Alvaro

    2012-01-01

    Motivation: Massive amounts of genome-wide gene expression data have become available, motivating the development of computational approaches that leverage this information to predict gene function. Among successful approaches, supervised machine learning methods, such as Support Vector Machines (SVMs), have shown superior prediction accuracy. However, these methods lack the simple biological intuition provided by co-expression networks (CNs), limiting their practical usefulness. Results: In this work, we present Discriminative Local Subspaces (DLS), a novel method that combines supervised machine learning and co-expression techniques with the goal of systematically predict genes involved in specific biological processes of interest. Unlike traditional CNs, DLS uses the knowledge available in Gene Ontology (GO) to generate informative training sets that guide the discovery of expression signatures: expression patterns that are discriminative for genes involved in the biological process of interest. By linking genes co-expressed with these signatures, DLS is able to construct a discriminative CN that links both, known and previously uncharacterized genes, for the selected biological process. This article focuses on the algorithm behind DLS and shows its predictive power using an Arabidopsis thaliana dataset and a representative set of 101 GO terms from the Biological Process Ontology. Our results show that DLS has a superior average accuracy than both SVMs and CNs. Thus, DLS is able to provide the prediction accuracy of supervised learning methods while maintaining the intuitive understanding of CNs. Availability: A MATLAB® implementation of DLS is available at http://virtualplant.bio.puc.cl/cgi-bin/Lab/tools.cgi Contact: tfpuelma@uc.cl Supplementary Information: Supplementary data are available at http://bioinformatics.mpimp-golm.mpg.de/. PMID:22820203

  13. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.

    PubMed

    Strobel, Wolfgang; Möll, Andrea; Kiekebusch, Daniela; Klein, Kathrin E; Thanbichler, Martin

    2014-04-01

    The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.

  14. Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions

    NASA Astrophysics Data System (ADS)

    Perarnau, Marcelo; Gilbert, Hersh; Alvarado, Patricia; Martino, Roberto; Anderson, Megan

    2012-12-01

    The Eastern Sierras Pampeanas are basement cored outcrops uplifted in the Andean foreland where the easternmost segment of the Pampean flat slab segment starts dipping more steeply into the deeper mantle. These ranges of central Argentina known as the Sierras de Córdoba have an enriched-quartz composition and are bounded by a series of reverse faults. Different models have been suggested to represent the style of the thick-skinned deformation in this area. However the overall structure linking the exposed faults and terrane boundaries with their probable continuation at depth is unknown. In this paper we present images of the crustal structure beneath the Sierras de Córdoba using the common conversion point stacking method of high frequency local receiver functions recorded by the ESP broadband seismic array. The work consists of two transects located around 31°S and 32°S across the Sierras de Córdoba. The results show a consistent sharp Moho signal associated with a high contrast in seismic velocities in good agreement with the granitic character of the crust lying above the mafic upper mantle. The Moho morphology varies exhibiting thicknesses of 38 km in the west to 35 km in the east with a vertical shifting under the Sierra Chica. We relate this variable character to the presence of the boundary between the Pampia terrane and the Rio de La Plata craton. Our results for the intra-crustal structure indicate the presence of three discontinuities in the northern transect and at least two discontinuities in the southern transect. These discontinuities appear vertically displaced beneath the surface traces of the major range bounding faults providing evidence for the continuation to mid-crustal depths of the exposed reverse faults. Thus, the reverse faults seem to have displaced several horizontal intra-crustal interfaces. Finally in the lower crust we found a region which seems to be aseismic.

  15. Localization and Functional Characterization of a Novel Adipokinetic Hormone in the Mollusk, Aplysia californica

    PubMed Central

    Johnson, Joshua I.; Kavanaugh, Scott I.; Nguyen, Cindy; Tsai, Pei-San

    2014-01-01

    Increasing evidence suggests that gonadotropin-releasing hormone (GnRH), corazonin, adipokinetic hormone (AKH), and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates. PMID:25162698

  16. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.

    PubMed

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A

    2015-05-29

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.

  17. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish

    PubMed Central

    Sussman, Caroline R.; Zhao, Jinhua; Plata, Consuelo; Lu, Jing; Daly, Christopher; Angle, Nathan; DiPiero, Jennifer; Drummond, Iain A.; Liang, Jennifer O.; Boron, Walter F.; Romero, Michael F.

    2009-01-01

    Mutations in the electrogenic Na+/nHCO3− cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pHi), or intracellular Na+ activity (aNai), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3− transport as well as similar drug sensitivity, including inhibition by 4,4′-diiso-thiocyano-2,2′-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3−. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology. PMID:19625604

  18. Function and Localization Dynamics of Bifunctional Penicillin-Binding Proteins in Caulobacter crescentus

    PubMed Central

    Strobel, Wolfgang; Möll, Andrea; Kiekebusch, Daniela; Klein, Kathrin E.

    2014-01-01

    The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes. PMID:24532768

  19. Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range

    PubMed Central

    Miraftabi, Arezoo; Amini, Navid; Morales, Esteban; Henry, Sharon; Yu, Fei; Afifi, Abdolmonem; Coleman, Anne L.; Caprioli, Joseph; Nouri-Mahdavi, Kouros

    2016-01-01

    Purpose We tested the hypothesis that the macular ganglion cell layer (GCL) thickness demonstrates a stronger structure-function (SF) relationship and extends the useful range of macular measurements compared with combined macular inner layer or full thickness. Methods Ninety-eight glaucomatous eyes and eight normal eyes with macular spectral domain optical coherence tomography (SD-OCT) volume scans and 10-2 visual fields were enrolled. Inner plexiform layer (IPL), GCL, macular retinal nerve fiber layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex (GCC), and full thickness (FT) measurements were calculated for 8 × 8 arrays of 3° superpixels. Main outcome measures were local structure-function relationships between macular superpixels and corresponding sensitivities on 10-2 fields after adjusting for ganglion cell displacement, dynamic range of measurements, and the change point (total deviation value where macular parameters reached measurement floor). Results Median (interquartile range [IQR]) mean deviation was −7.2 (−11.6 to −3.2) dB in glaucoma eyes. Strength of SF relationships was highest for GCIPL, GCL, GCC, and IPL (ρ = 0.635, 0.627, 0.621, and 0.577, respectively; P ≤ 0.046 for comparisons against GCIPL). Highest SF correlations coincided with the peak of GCL thickness, where the dynamic range was widest for FT (81.1 μm), followed by GCC (65.7 μm), GCIPL (54.9 μm), GCL (35.2 μm), mRNFL (27.5 μm), and IPL (20.9 μm). Change points were similar for all macular parameters (−7.8 to −8.9 dB). Conclusions GCIPL, GCL, and GCC demonstrated comparable SF relationships while FT, GCC, and GCIPL had the widest dynamic range. Measurement of GCL did not extend the range of useful structural measurements. Measuring GCL does not provide any advantage for detection of progression with current SD-OCT technology. PMID:27623336

  20. Quaternions as astrometric plate constants

    NASA Technical Reports Server (NTRS)

    Jefferys, William H.

    1987-01-01

    A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.

  1. Compassion is a constant.

    PubMed

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands.

  2. XrayOpticsConstants

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  3. Compassion is a constant.

    PubMed

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands. PMID:26542898

  4. Accurate localization of supernumerary mediastinal parathyroid adenomas by a combination of structural and functional imaging.

    PubMed

    Mackie, G C; Schlicht, S M

    2004-09-01

    Reoperation for refractory or recurrent hyperparathyroidism following parathyroidectomy carries the potential for increased morbidity and the possibility of failure to localize and remove the lesion intraoperatively. Reported herein are three cases demonstrating the combined use of sestamibi scintigraphy, CT and MR for accurate localization of mediastinal parathyroid adenomas.

  5. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    SciTech Connect

    Wang, Tianying; Yu, Bohai; Lin, Lexun; Zhai, Xia; Han, Yelu; Qin, Ying; Guo, Zhiwei; Wu, Shuo; Zhong, Xiaoyan; Wang, Yan; Tong, Lei; Zhang, Fengmin; Si, Xiaoning; Zhao, Wenran; Zhong, Zhaohua

    2012-11-25

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: Black-Right-Pointing-Pointer The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. Black-Right-Pointing-Pointer The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. Black-Right-Pointing-Pointer The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. Black-Right-Pointing-Pointer There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  6. Adjustment of interaural time difference in head related transfer functions based on listeners' anthropometry and its effect on sound localization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi

    2005-04-01

    Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.

  7. Beyond the Hubble Constant

    NASA Astrophysics Data System (ADS)

    1995-08-01

    function (the Hubble relation) of the distance to the object. [3] A supernova at redshift 0.3 was found some years ago at ESO during an earlier search programme (Noergaard-Nielsen et al., Nature, Vol. 339, page 523, 1989) and before now the most distant known supernova was located in a galaxy at redshift 0.458 (Perlmutter et al., Astrophysical Journal, Vol. 440, Page L41, 1995) [4] For comparison, a Type Ia supernova at maximum brightness emits nearly 6,000 million times more light than the Sun. [5] The brighter the supernova at a given redshift is at maximum, the larger is q0. APPENDIX: Messages From the Deceleration Parameter q0 A determination of the deceleration parameter q0 by means of astronomical observations is important because it will allow us to choose between the various current theories of the evolution of the Universe, or at least to eliminate some of them as impossible. If the value turns of to be small, e.g. q0 ~ 0, then there has been only a small decrease (deceleration) of the universal expansion in the past. In this case, a galaxy's velocity does not change much with time and the actual distance is very nearly as indicated from the Hubble relation. Should, however, the value of q0 be significantly larger, then a galaxy's velocity would have been larger in the past than it is now. The velocity we now measure would therefore be ``too high'' (since it refers to the time the light was emitted from the galaxy), and the distance obtained by dividing with the Hubble constant will be too large. The value of q0 is proportional to the total amount of matter in the Universe. A measurement of q0 will establish limits for the amount of ``missing matter'', i.e. the ``invisible'' matter which cannot be directly observed with current observational techniques and which is believed to be the dominant mass component. If q0 is near 0, the expansion of the Universe will continue unabated (the Universe is ``open''). If, however, q0 is larger than 0.5, then the expansion will

  8. Impact of IgA Constant Domain on HIV-1 Neutralizing Function of Monoclonal Antibody F425A1g8 §

    PubMed Central

    Yu, Xiaocong; Duval, Mark; Lewis, Christopher; Gawron, Melissa A; Wang, Rijian; Posner, Marshall R; Cavacini, Lisa A

    2012-01-01

    With the majority of HIV infections resulting from mucosal transmission, induction of an effective mucosal immune response is thought to be pivotal in preventing transmission. HIV-specific IgA, but not IgG, has been detected in genital tract, seminal fluid, urethral swabs, urine and vaginal wash samples of HIV-negative sex workers and HIV-status discordant couples. Purified mucosal and plasma IgA from some individuals with highly exposed, persistently sero-negative (HEPS) can neutralize infection and present cross-clade neutralization activity though present at low levels. We generated a CD4i human monoclonal antibody (mAb) F425A1g8 and characterized the impact of its isotype variants on HIV neutralizing activity. The result showed that, in contrast to little neutralization by the F425A1g8 IgG1 in the absence of sCD4, the IgA1 variant of the antibody (Ab) displayed significant independent neutralization activity against a range of HIV clade B isolates in the absence of sCD4. The studies of the neutralizing function of IgA isotypes, and the functional relationship between different antigenic epitopes and IgA antibodies, may also suggest strategies for the intervention of virus transmission and spread within the mucosa of host, as well as serve to inform the design of vaccine strategies that may be more effective at preventing mucosal transmission. This research clearly suggests that IgA isotype because of its unique molecular structure may play an important role in HIV neutralization. PMID:23183895

  9. A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields.

    PubMed

    Lux, S; Marshall, J C; Ritzl, A; Weiss, P H; Pietrzyk, U; Shah, N J; Zilles, K; Fink, G R

    2004-01-01

    When stimuli are presented in the left or right visual fields, hemispheric specialization for global and local processing in occipital areas is attenuated. Using functional magnetic resonance imaging, we investigated how this attenuation is compensated for when information must cross the corpus callosum to reach the areas specialized for global and local processing. We presented hierarchically nested letters (e.g. a large E made of smaller E's) to the right or the left visual hemifield while subjects fixated centrally. In half the trials, subjects indicated whether the global aspect and in the other half whether the local aspect of the stimulus matched a pre-specified target letter. Visual hemifield presentations showed the expected contralateral activations of occipital cortex. The main effects of locally or globally directed attention did not show any differential occipital activations, but the right anterior cingulate cortex was activated differentially during local processing. Region-of-interest-based analyses showed increased neural activity in left posterior occipital cortex during local processing when stimuli were presented in the left hemifield. During global processing with stimulus presentation to the right hemifield, the right posterior occipital cortex was activated. Activation of right anterior cingulate cortex during local processing is likely to reflect the suppression of global processing precedence in order to select correctly the local stimulus level. The activations in left (local) and right (global) occipital areas are likely to reflect the top-down augmentation of stimulus information that has been degraded by callosal crossing in order to access the hemisphere specialized for local or global processing. PMID:14960344

  10. 34 CFR 462.44 - Which educational functioning levels must States and local eligible providers use to measure and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Which educational functioning levels must States and local eligible providers use to measure and report educational gain in the NRS? 462.44 Section 462.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL...

  11. 34 CFR 462.44 - Which educational functioning levels must States and local eligible providers use to measure and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Which educational functioning levels must States and local eligible providers use to measure and report educational gain in the NRS? 462.44 Section 462.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL...

  12. 34 CFR 462.44 - Which educational functioning levels must States and local eligible providers use to measure and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Which educational functioning levels must States and local eligible providers use to measure and report educational gain in the NRS? 462.44 Section 462.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL...

  13. 34 CFR 462.44 - Which educational functioning levels must States and local eligible providers use to measure and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Which educational functioning levels must States and local eligible providers use to measure and report educational gain in the NRS? 462.44 Section 462.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL...

  14. 34 CFR 462.44 - Which educational functioning levels must States and local eligible providers use to measure and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false Which educational functioning levels must States and local eligible providers use to measure and report educational gain in the NRS? 462.44 Section 462.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL...

  15. Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 to 1073 K and from 0 to 0.9 g/cm(3).

    PubMed

    Liu, Wenbin; Wood, Robert H; Doren, Douglas J

    2008-06-19

    The potential of mean force (PMF) of sodium chloride in water has been calculated by using the ab initio classical free-energy perturbation method at five state points: at 973 K with densities of 0.2796, 0.0935, and 0.0101 g/cm (3) and at 723 K with densities of 0.0897 and 0.0098 g/cm (3). The method is based on a QM-MM model in which Na-H 2O, Cl-H 2O, and Na-Cl interactions are calculated by ab initio methods. The water-water interactions are from the polarizable TIP4P-FQ model. The logarithm of the dissociation constant (log K c) has been calculated from the PMF. These predictions, together with experimental measurements, were used to derive an equation for log K c at densities from 0 to 0.9 g/cm (3) and temperatures from 723 to 1073 K, as well as from 600 to 1073 K for densities from 0.29 g/cm (3) to 0.9 g/cm (3). Extrapolation of the present equation below 723 K for densities less than 0.29 g/cm (3) does not fit the experimental results. This is attributed to long-range changes in the local dielectric constant due to the high compressibility. Comparisons with previous predictions and simulations are presented.

  16. Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 to 1073 K and from 0 to 0.9 g/cm(3).

    PubMed

    Liu, Wenbin; Wood, Robert H; Doren, Douglas J

    2008-06-19

    The potential of mean force (PMF) of sodium chloride in water has been calculated by using the ab initio classical free-energy perturbation method at five state points: at 973 K with densities of 0.2796, 0.0935, and 0.0101 g/cm (3) and at 723 K with densities of 0.0897 and 0.0098 g/cm (3). The method is based on a QM-MM model in which Na-H 2O, Cl-H 2O, and Na-Cl interactions are calculated by ab initio methods. The water-water interactions are from the polarizable TIP4P-FQ model. The logarithm of the dissociation constant (log K c) has been calculated from the PMF. These predictions, together with experimental measurements, were used to derive an equation for log K c at densities from 0 to 0.9 g/cm (3) and temperatures from 723 to 1073 K, as well as from 600 to 1073 K for densities from 0.29 g/cm (3) to 0.9 g/cm (3). Extrapolation of the present equation below 723 K for densities less than 0.29 g/cm (3) does not fit the experimental results. This is attributed to long-range changes in the local dielectric constant due to the high compressibility. Comparisons with previous predictions and simulations are presented. PMID:18491938

  17. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  18. The relations among Shannon information entropy, quantum discord, concurrence and localization properties of one-dimensional single-electron wave functions

    NASA Astrophysics Data System (ADS)

    Gong, Longyan; Zheng, Yongcui; Wang, Haihong; Cheng, Weiwen; Zhao, Shengmei

    2014-09-01

    Shannon information entropy (SE), concurrence (CC), quantum discord (QD) and localization properties for various one-dimensional one-electron wave functions are intensively studied, respectively. They include Gaussian functions, power-law functions, and functions in the Anderson model and the Harper ones. For all these wave functions, we find that SE, CC and QD increase as the localization length of a wave function increases, respectively. There are linear or quadratic relationships between two of them. Therefore, we can confirm for the analyzed models that SE, CC and QD are statistically equivalent quantities to reflect the localization properties of wave functions though they are different measures of quantum information.

  19. Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element

    PubMed Central

    Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna

    2011-01-01

    RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265

  20. Varying constants quantum cosmology

    SciTech Connect

    Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl

    2015-02-01

    We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.

  1. Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2016-07-01

    We present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Z e . Calculations are based on the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B 30, 2747(E) (1997), 10.1088/0953-4075/30/11/023], combined with the theory of hypergeometric functions. The final result is of an elementary form and agrees with corresponding formulas obtained earlier by other authors for some particular states of the atom.

  2. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections.

    PubMed

    Mardirossian, Narbe; Head-Gordon, Martin

    2014-05-14

    The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.

  3. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia.

    PubMed

    White, Tonya; Moeller, Steen; Schmidt, Marcus; Pardo, Jose V; Olman, Cheryl

    2012-08-01

    It has long been known that specific visual frequencies result in greater blood flow to the striate cortex. These peaks are thought to reflect synchrony of local neuronal firing that is reflective of local cortical networks. Since disrupted neural connectivity is a possible etiology for schizophrenia, our goal was to investigate whether localized connectivity, as measured by aberrant synchrony, is abnormal in children and adolescents with schizophrenia. Subjects included 25 children and adolescents with schizophrenia and 39 controls matched for age and gender. Subjects were scanned on a Siemens 3 Tesla Trio scanner while observing flashing checkerboard presented at either 1, 4, 8, or 12 Hz. Image processing included both a standard GLM model and a Fourier transform analysis. Patients had significantly smaller volume of activation in the occipital lobe compared to controls. There were no differences in the integral or percent signal change of the hemodynamic response function for each of the four frequencies. Occipital activation was stable during development between childhood and late adolescence. Finally, both patients and controls demonstrated an increased response between 4 and 8 Hz consistent with synchrony or entrainment in the neuronal response. Children and adolescents with schizophrenia had a significantly lower volume of activation in the occipital lobe in response to the flashing checkerboard task. However, features of intact local connectivity in patients, such as the hemodynamic response function and maximal response at 8 Hz, were normal. These results are consistent with abnormalities in regional connectivity with preserved local connectivity in early-onset schizophrenia.

  4. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas.

    PubMed

    Brooks, Joseph L; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-06-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG.

  5. Contaminant point source localization error estimates as functions of data quantity and model quality

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Vesselinov, Velimir V.

    2016-10-01

    We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. This greatly enhanced performance, but gains from additional data collection remained limited.

  6. Essential Function of the Polo Box of Cdc5 in Subcellular Localization and Induction of Cytokinetic Structures

    PubMed Central

    Song, Sukgil; Grenfell, Tallessyn Z.; Garfield, Susan; Erikson, Raymond L.; Lee, Kyung S.

    2000-01-01

    Members of the polo subfamily of protein kinases play pivotal roles in cell proliferation. In addition to the kinase domain, polo kinases have a strikingly conserved sequence in the noncatalytic C-terminal domain, termed the polo box. Here we show that the budding-yeast polo kinase Cdc5, when fused to green fluorescent protein and expressed under its endogenous promoter, localizes at spindle poles and the mother bud neck. Overexpression of Cdc5 can induce a class of cells with abnormally elongated buds in a polo box- and kinase activity-dependent manner. In addition to localizing at the spindle poles and cytokinetic neck filaments, Cdc5 induces and localizes to additional septin ring structures within the elongated buds. Without impairing kinase activity, conservative mutations in the polo box abolish the ability of Cdc5 to functionally complement the defect associated with a cdc5-1 temperature-sensitive mutation, to localize to the spindle poles and cytokinetic neck filaments, and to induce elongated cells with ectopic septin ring structures. Consistent with the polo box-dependent subcellular localization, the C-terminal domain of Cdc5, but not its polo box mutant, is sufficient for subcellular localization, and its overexpression appears to inhibit cytokinesis. These data provide evidence that the polo box is required to direct Cdc5 to specific subcellular locations and induce or organize cytokinetic structures. PMID:10594031

  7. Dielectric constant of NiO and LDA+U

    NASA Astrophysics Data System (ADS)

    Ye, Lin-Hui; Luo, Ning; Peng, Lian-Mao; Weinert, M.; Freeman, A. J.

    2013-02-01

    The local density approximation (LDA) and generalized gradient approximations (GGA) of density functional theory systematically overestimate the electronic polarizability of materials. We calculate the dielectric constant of NiO by the direct method and find, contrary to previous suggestions, that the LDA+U method reduces the polarization such that ɛ∞ decreases monotonically with increasing U. We illustrate the existence of a linear term in the effective exchange-correlation potential that counteracts the external electric field, thus demonstrating that the decrease of ɛ∞ is intrinsic to the LDA+U correction. The reduction of the polarization is due mostly to reduced orbital mixing between the unoccupied eg states and the occupied 2p states. Our work establishes LDA+U as a viable method for calculating the dielectric constants of correlated materials.

  8. Localization of the hand motor area by arterial spin labeling and blood oxygen level-dependent functional magnetic resonance imaging.

    PubMed

    Pimentel, Marco A F; Vilela, Pedro; Sousa, Inês; Figueiredo, Patrícia

    2013-01-01

    The new clinically available arterial spin labeling (ASL) perfusion imaging sequences present some advantages relatively to the commonly used blood oxygen level-dependent (BOLD) method for functional brain studies using magnetic resonance imaging (MRI). In particular, regional cerebral blood flow (CBF) changes are thought to be more directly related with neuronal activation. In this study, we aimed to investigate the accuracy of the functional localization of the hand motor area obtained by simultaneous CBF and BOLD contrasts provided by ASL functional MRI (fMRI) and compare it with a standard BOLD fMRI protocol. For this purpose, we measured the distance between the center of gravity of the activation clusters obtained with each contrast (CBF, BOLD(ASL), and Standard BOLD) and 11 positions defined on a well-established anatomical landmark of the hand motor area (the omega in the axial plane of the precentral gyrus). We found that CBF measurements were significantly closer to the anatomical landmark than the ones obtained using either simultaneous BOLD(ASL) or standard BOLD contrasts. Moreover, we also observed reduced intersubject variability of the functional localization, as well as percent signal change, for CBF relative to both BOLD contrast measurements. In conclusion, our results add further evidence in support to the notion that CBF provides a more accurate localization of motor activation than BOLD contrast, indicating that ASL may be an appropriate technique for clinical fMRI studies. PMID:22121040

  9. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    certain spectral lines with present-day values. Quasars are here only used as a beacon - the flame - in the very distant Universe. Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight and at distances varying from six to eleven thousand of million light years, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark "valleys" that can be attributed to well-known elements. If the fine-structure constant happens to change over the duration of the light's journey, the energy levels in the atoms would be affected and the wavelengths of the absorption lines would be shifted by different amounts. By comparing the relative gaps between the valleys with the laboratory values, it is possible to calculate alpha as a function of distance from us, that is, as a function of the age of the Universe. These measures are however extremely delicate and require a very good modelling of the absorption lines. They also put exceedingly strong requirements on the quality of the astronomical spectra. They must have enough resolution to allow very precise measurement of minuscule shifts in the spectra. And a sufficient number of photons must be captured in order to provide a statistically unambiguous result. For this, astronomers have to turn to the most advanced spectral instruments on the largest telescopes. This is where the Ultra-violet and Visible Echelle Spectrograph (UVES) and ESO's Kueyen 8.2-m telescope at the Paranal Observatory is unbeatable, thanks to the unequalled spectral quality and large collecting mirror area of this combination. Constant or not? ESO PR Photo 07/04 ESO PR Photo 07/04 Relative Changes with Redshift of the Fine Structure Constant [Preview - JPEG: 496 x 400 pix - 36k] [Normal - JPEG: 991 x 800 pix - 320k] Captions: ESO PR Photo 07/04 shows measured values of the relative change of alpha from the sample of absorption systems studied by Hum Chand and his colleagues, plotted as

  10. A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function.

    PubMed

    Okray, Zeynep; de Esch, Celine E F; Van Esch, Hilde; Devriendt, Koen; Claeys, Annelies; Yan, Jiekun; Verbeeck, Jelle; Froyen, Guy; Willemsen, Rob; de Vrij, Femke M S; Hassan, Bassem A

    2015-02-17

    Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5' untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes.

  11. A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function

    PubMed Central

    Okray, Zeynep; de Esch, Celine EF; Van Esch, Hilde; Devriendt, Koen; Claeys, Annelies; Yan, Jiekun; Verbeeck, Jelle; Froyen, Guy; Willemsen, Rob; de Vrij, Femke MS; Hassan, Bassem A

    2015-01-01

    Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes. PMID:25693964

  12. Local application of drugs to study nicotinic acetylcholine receptor function in mouse brain slices.

    PubMed

    Engle, Staci E; Broderick, Hilary J; Drenan, Ryan M

    2012-10-29

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9'A mice (1) and α6 L9'S mice (2), allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  13. Change is a Constant.

    PubMed

    Lubowitz, James H; Provencher, Matthew T; Brand, Jefferson C; Rossi, Michael J; Poehling, Gary G

    2015-06-01

    In 2015, Henry P. Hackett, Managing Editor, Arthroscopy, retires, and Edward A. Goss, Executive Director, Arthroscopy Association of North America (AANA), retires. Association is a positive constant, in a time of change. With change comes a need for continuing education, research, and sharing of ideas. While the quality of education at AANA and ISAKOS is superior and most relevant, the unique reason to travel and meet is the opportunity to interact with innovative colleagues. Personal interaction best stimulates new ideas to improve patient care, research, and teaching. Through our network, we best create innovation.

  14. Cosmology with varying constants.

    PubMed

    Martins, Carlos J A P

    2002-12-15

    The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.

  15. Functional Localization and Double Dissociations: The Relationship between Internal Structure and Behavior

    ERIC Educational Resources Information Center

    Medler, D.A.; Dawson, M.R.W.; Kingstone, A.

    2005-01-01

    Lesioning studies are often used in cognitive neuroscience to make inferences about the architecture of cognition. Recently, computational models have been used to address some of the underlying assumptions-such as modularity and locality-often implicitly used when interpreting lesion data. In this article, we explore the ''functional…

  16. Not Just Location: Attitudes and Functioning of Arab Local Education Administrators in Israel

    ERIC Educational Resources Information Center

    Arar, Khalid; Abu-Asbah, Khaled

    2013-01-01

    Purpose: This paper aims to provide useful insights into educational under-achievement among Palestinian Arab citizens of Israel (PAI), investigating the perceptions of local educational administrators (LEAs) towards the education system and its "modus vivendi", to uncover difficulties and suggest directions to improve the processes and…

  17. Analysis of Protein Localization and Secretory Pathway Function Using the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Vallen, Elizabeth

    2002-01-01

    The isolation and characterization of mutants has been crucial in understanding a number of processes in the field of cell biology. In this exercise, students examine the effects of mutations in the secretory pathway on protein localization. Yeast strains deficient for synthesis of histidinol dehydrogenase are transformed with a plasmid encoding a…

  18. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis.

    PubMed

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-12-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.

  19. Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis[C][W

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785

  20. Contaminant point source localization error estimates as functions of data quantity and model quality

    DOE PAGES

    Hansen, Scott K.; Vesselinov, Velimir Valentinov

    2016-09-09

    We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulatemore » well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.« less