Sample records for loci controls resistance

  1. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea

    USDA-ARS?s Scientific Manuscript database

    More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...

  2. Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti

    PubMed Central

    Saavedra-Rodriguez, Karla; Strode, Clare; Flores Suarez, Adriana; Fernandez Salas, Ildefonso; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2008-01-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F3 advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F3 adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure. PMID:18723882

  3. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven

  4. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional

  5. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    PubMed Central

    Raman, Harsh; Raman, Rosy; Coombes, Neil; Song, Jie; Diffey, Simon; Kilian, Andrzej; Lindbeck, Kurt; Barbulescu, Denise M.; Batley, Jacqueline; Edwards, David; Salisbury, Phil A.; Marcroft, Steve

    2016-01-01

    Key message “We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola.” Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in

  6. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-03-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties.

  7. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed Central

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-01-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  8. Quantitative trait loci associated with anthracnose resistance in sorghum

    USDA-ARS?s Scientific Manuscript database

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  9. The Red Queen lives: Epistasis between linked resistance loci.

    PubMed

    Metzger, César M J A; Luijckx, Pepijn; Bento, Gilberto; Mariadassou, Mahendra; Ebert, Dieter

    2016-02-01

    A popular theory explaining the maintenance of genetic recombination (sex) is the Red Queen Theory. This theory revolves around the idea that time-lagged negative frequency-dependent selection by parasites favors rare host genotypes generated through recombination. Although the Red Queen has been studied for decades, one of its key assumptions has remained unsupported. The signature host-parasite specificity underlying the Red Queen, where infection depends on a match between host and parasite genotypes, relies on epistasis between linked resistance loci for which no empirical evidence exists. We performed 13 genetic crosses and tested over 7000 Daphnia magna genotypes for resistance to two strains of the bacterial pathogen Pasteuria ramosa. Results reveal the presence of strong epistasis between three closely linked resistance loci. One locus masks the expression of the other two, while these two interact to produce a single resistance phenotype. Changing a single allele on one of these interacting loci can reverse resistance against the tested parasites. Such a genetic mechanism is consistent with host and parasite specificity assumed by the Red Queen Theory. These results thus provide evidence for a fundamental assumption of this theory and provide a genetic basis for understanding the Red Queen dynamics in the Daphnia-Pasteuria system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  10. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population

    PubMed Central

    Tisné, Sébastien; Pomiès, Virginie; Riou, Virginie; Syahputra, Indra; Cochard, Benoît; Denis, Marie

    2017-01-01

    Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease. PMID:28592650

  11. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants.

    PubMed

    Quenouille, J; Paulhiac, E; Moury, B; Palloix, A

    2014-06-01

    The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.

  12. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population.

    PubMed

    Tisné, Sébastien; Pomiès, Virginie; Riou, Virginie; Syahputra, Indra; Cochard, Benoît; Denis, Marie

    2017-06-07

    Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma , and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease. Copyright © 2017 Tisné et al.

  13. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii

    PubMed Central

    Wisniewski, Michael; Fazio, Gennaro; Burchard, Erik; Gutierrez, Benjamin; Levin, Elena; Droby, Samir

    2017-01-01

    Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple. However, resistance has been described in wild Malus sieversii accessions, including plant introduction (PI)613981. The objective of the present study was to identify the genetic loci controlling resistance to blue mold in this accession. We describe the first quantitative trait loci (QTL) reported in the Rosaceae tribe Maleae conditioning resistance to P. expansum on genetic linkage group 3 (qM-Pe3.1) and linkage group 10 (qM-Pe10.1). These loci were identified in a M.× domestica ‘Royal Gala’ X M. sieversii PI613981 family (GMAL4593) based on blue mold lesion diameter seven days post-inoculation in mature, wounded apple fruit inoculated with P. expansum. Phenotypic analyses were conducted in 169 progeny over a four year period. PI613981 was the source of the resistance allele for qM-Pe3.1, a QTL with a major effect on blue mold resistance, accounting for 27.5% of the experimental variability. The QTL mapped from 67.3 to 74 cM on linkage group 3 of the GMAL4593 genetic linkage map. qM-Pe10.1 mapped from 73.6 to 81.8 cM on linkage group 10. It had less of an effect on resistance, accounting for 14% of the experimental variation. ‘Royal Gala’ was the primary contributor to the resistance effect of this QTL. However, resistance-associated alleles in both parents appeared to contribute to the least square mean blue mold lesion diameter in an additive manner at qM-Pe10.1. A GMAL4593 genetic linkage map composed of simple sequence repeats and ‘Golden Delicious’ single nucleotide polymorphism markers was able to detect qM-Pe10.1, but failed to detect qM-Pe3.1. The subsequent addition of genotyping-by-sequencing markers to the linkage map provided better coverage of the PI613981 genome on linkage group 3 and facilitated discovery of q

  14. Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae.

    PubMed

    Colson, A M; Slonimski, P P

    1979-01-02

    Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous

  15. New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.

    PubMed

    Francki, M G; Shankar, M; Walker, E; Loughman, R; Golzar, H; Ohm, H

    2011-11-01

    Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.

  16. Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes.

    PubMed

    Bokore, Firdissa E; Cuthbert, Richard D; Knox, Ron E; Randhawa, Harpinder S; Hiebert, Colin W; DePauw, Ron M; Singh, Asheesh K; Singh, Arti; Sharpe, Andrew G; N'Diaye, Amidou; Pozniak, Curtis J; McCartney, Curt; Ruan, Yuefeng; Berraies, Samia; Meyer, Brad; Munro, Catherine; Hay, Andy; Ammar, Karim; Huerta-Espino, Julio; Bhavani, Sridhar

    2017-12-01

    Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.

  17. Lessons from a Phenotyping Center Revealed by the Genome-Guided Mapping of Powdery Mildew Resistance Loci.

    PubMed

    Cadle-Davidson, Lance; Gadoury, David; Fresnedo-Ramírez, Jonathan; Yang, Shanshan; Barba, Paola; Sun, Qi; Demmings, Elizabeth M; Seem, Robert; Schaub, Michelle; Nowogrodzki, Anna; Kasinathan, Hema; Ledbetter, Craig; Reisch, Bruce I

    2016-10-01

    The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F 1 family. We applied these methodologies to F 1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.

  18. Reappraisal of known malaria resistance loci in a large multi-centre study

    PubMed Central

    Rockett, Kirk A.; Clarke, Geraldine M.; Fitzpatrick, Kathryn; Hubbart, Christina; Jeffreys, Anna E.; Rowlands, Kate; Craik, Rachel; Jallow, Muminatou; Conway, David J.; Bojang, Kalifa A.; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A.; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D.; Bougouma, Edith C.; Sirima, Sodiomon B.; Modiano, David; Amenga-Etego, Lucas N.; Ghansah, Anita; Koram, Kwadwo A.; Wilson, Michael D.; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M.; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N.; Manjurano, Alphaxard; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J.; Phu, Nguyen Hoan; Ngoc Quyen, Nguyen Thi; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy M. E.; Michon, Pascal; Mueller, Ivo; Green, Angie; Molloy, Sile; Johnson, Kimberly J.; Kerasidou, Angeliki; Cornelius, Victoria; Hart, Lee; Vanderwal, Aaron; SanJoaquin, Miguel; Band, Gavin; Le, Si Quang; Pirinen, Matti; Sepúlveda, Nuno; Spencer, Chris C.A.; Clark, Taane G.; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P.

    2015-01-01

    Many human genetic associations with resistance to malaria have been reported but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. There was strong evidence of association with the HBB, ABO, ATP2B4, G6PD and CD40LG loci but previously reported associations at 22 other loci did not replicate in the multi-centre analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anaemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed. PMID:25261933

  19. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum).

    PubMed

    Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto

    2017-11-01

    SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.

  20. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus

    PubMed Central

    Li, Lixia; Luo, Yujie; Chen, Biyun; Xu, Kun; Zhang, Fugui; Li, Hao; Huang, Qian; Xiao, Xin; Zhang, Tianyao; Hu, Jihong; Li, Feng; Wu, Xiaoming

    2016-01-01

    Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR. PMID:27746804

  1. Identification of loci Associated with Resistance to Root-Rot Diseases in Autotetraploid Alfalfa using Genome-Wide Sequencing and Association Mapping

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is the world-wide forage crop. Changing trends to multipurpose uses increases demand for alfalfa. However, the production of alfalfa is challenged by endemic and emerging diseases. Identification of genes/loci controlling disease resistance will facilitate breeding for i...

  2. Confirming and identifying new loci for rice blast disease resistance using magnaporthe oryzae field isolates in the US

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait loci (QTL) in rice play important roles in controlling rice blast disease. In the present study, 10 field isolates of the races IA1, IB1, IB17, and IC1 of U.S. rice blast fungus Magnaporthe oryzae collected in 1996 and 2009 were used to identify blast resistance QTL with a recombi...

  3. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.

    PubMed

    J Felderhoff, Terry; M McIntyre, Lauren; Saballos, Ana; Vermerris, Wilfred

    2016-07-07

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar 'Bk7', a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing 'Bk7' with the susceptible inbred 'Early Hegari-Sart'. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from 'Bk7'. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between 'Bk7' and sweet sorghum 'Mer81-4' narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases. Copyright © 2016 Felderhoff et al.

  4. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor

    PubMed Central

    J. Felderhoff, Terry; M. McIntyre, Lauren; Saballos, Ana; Vermerris, Wilfred

    2016-01-01

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases. PMID:27194807

  5. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata.

    PubMed

    Lan, Caixia; Zhang, Yelun; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Huerta-Espino, Julio; Lagudah, Evans S; Singh, Ravi P

    2015-03-01

    Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.

  6. Using genotyping by sequencing to map two novel anthracnose resistance Loci in Sorghum bicolor

    DOE PAGES

    Felderhoff, Terry J.; McIntyre, Lauren M.; Saballos, Ana; ...

    2016-05-18

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [ Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistancemore » loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F 3:4 and F 4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. In addition, genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases.« less

  7. Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance.

    PubMed

    Tan, G X; Weng, Q M; Ren, X; Huang, Z; Zhu, L L; He, G C

    2004-03-01

    The whitebacked planthopper (WBPH), Sogatella furcifera, and brown planthopper (BPH) Nilaparvata lugens Stål are important sucking insects of rice (Oryza sativa L.) crops throughout the world. Rice 'B5', which has derived its resistance genes from the wild rice O. officinalis Wall ex Watt, is a line that is highly resistant to both WBPH and BPH. Previously, two resistance genes against BPH, Qbp1, and Qbp2 in 'B5' had been mapped onto chromosome 3 and chromosome 4, respectively. In this study, we employed a mapping population composed of 187 recombinant inbred lines (RILs), produced from a cross between 'B5' and susceptible variety 'Minghui63', to locate the WBPH and BPH resistance genes. A RFLP survey of the bulked extremes from the RIL population identified two genomic regions, one on chromosome 3 and the other on chromosome 4, likely containing the resistance genes to planthoppers. QTL analysis of the RILs further confirmed that two WBPH resistance genes were mapped on the same loci as Qbp1 and Qbp2, using a linkage map with 242 molecular markers distributed on 12 rice chromosomes. Of the two WBPH resistance genes, one designated Wbph7(t) was located within a 1.1-cM region between R1925 and G1318 on chromosome 3, the other designated Wbph8(t) was within a 0.3-cM region flanked by R288 and S11182 on chromosome 4. A two-way analysis of variance showed that two loci acted independently with each other in determining WBPH resistance. The results have significant implications in studying the interactions between sucking insects and plants and in breeding programs of resistance to rice planthoppers.

  8. Genome-wide search of stem rust resistance loci at the seedling stage in durum wheat

    USDA-ARS?s Scientific Manuscript database

    Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known to rapidly evolve new virulence to resistance genes. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few remain effective, particularly against the highly virulent race Ug99 ...

  9. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  10. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengju; Lo, Alvin; Huang, Yurong

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  11. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    PubMed

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  12. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  13. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    PubMed

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  14. Genome-Wide Mapping of Virulence in Brown Planthopper Identifies Loci That Break Down Host Plant Resistance

    PubMed Central

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  15. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome.

    PubMed

    Kazi, S; Shultz, J; Afzal, J; Johnson, J; Njiti, V N; Lightfoot, D A

    2008-05-01

    Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). "Hartwig", a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar "Flyer". Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R2 = 28.1%; Satt115; P = 0.003, R2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R2 = 13%). The loci and markers will provide tagged alleles with which to improve

  16. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping.

    PubMed

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

  17. Location of Vibrio anguillarum resistance-associated trait loci in half-smooth tongue sole Cynoglossus semilaevis at its microsatellite linkage map

    NASA Astrophysics Data System (ADS)

    Tang, Zhihong; Guo, Li; Liu, Yang; Shao, Changwei; Chen, Songlin; Yang, Guanpin

    2016-11-01

    A cultured female half-smooth tongue sole ( Cynoglossus semilaevis) was crossed with a wild male, yielding the first filial generation of pseudo-testcrossing from which 200 fish were randomly selected to locate the Vibrio anguillarum resistance trait in half-smooth tongue sole at its microsatellite linkage map. In total, 129 microsatellites were arrayed into 18 linkage groups, ≥4 each. The map reconstructed was 852.85 cM in length with an average spacing of 7.68 cM, covering 72.07% of that expected (1 183.35 cM). The V. anguillarum resistance trait was a composite rather than a unit trait, which was tentatively partitioned into Survival time in Hours After V. anguillarum Infection (SHAVI) and Immunity of V. Anguillarum Infection (IVAI). Above a logarithm of the odds (LOD) threshold of 2.5, 18 loci relative to SHAVI and 3 relative to IVAI were identified. The 3 loci relative to IVAI explained 18.78%, 5.87% and 6.50% of the total phenotypic variation in immunity. The microsatellites bounding the 3 quantitative trait loci (QTLs) of IVAI may in future aid to the selection of V. anguillarum-immune half-smooth tongue sole varieties, and facilitate cloning the gene(s) controlling such immunity.

  18. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  19. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    PubMed

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  20. Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents.

    PubMed

    Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Shorter, S; Bhavani, S

    2014-11-01

    In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and

  1. Identification and confirmation of greenbug resistance loci in an advanced mapping population of sorghum

    USDA-ARS?s Scientific Manuscript database

    Greenbug infestations to sorghum can cause severe and above economic threshold damage in the Great Plains of the United States. This study was to identify quantitative trait loci (QTL) and potential candidate genes residing within the QTL region responsible for greenbug resistance in an advanced ma...

  2. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations

    PubMed Central

    Vallejo, Roger L.; Liu, Sixin; Gao, Guangtu; Fragomeni, Breno O.; Hernandez, Alvaro G.; Leeds, Timothy D.; Parsons, James E.; Martin, Kyle E.; Evenhuis, Jason P.; Welch, Timothy J.; Wiens, Gregory D.; Palti, Yniv

    2017-01-01

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered. PMID:29109734

  3. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations.

    PubMed

    Vallejo, Roger L; Liu, Sixin; Gao, Guangtu; Fragomeni, Breno O; Hernandez, Alvaro G; Leeds, Timothy D; Parsons, James E; Martin, Kyle E; Evenhuis, Jason P; Welch, Timothy J; Wiens, Gregory D; Palti, Yniv

    2017-01-01

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout ( Oncorhynchus mykiss ). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.

  4. Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines.

    PubMed

    Barba, Paola; Lillis, Jacquelyn; Luce, R Stephen; Travadon, Renaud; Osier, Michael; Baumgartner, Kendra; Wilcox, Wayne F; Reisch, Bruce I; Cadle-Davidson, Lance

    2018-05-01

    Rapid characterization of novel NB-LRR-associated resistance to Phomopsis cane spot on grapevine using high-throughput sampling and low-coverage sequencing for genotyping, locus mapping and transcriptome analysis provides insights into genetic resistance to a hemibiotrophic fungus. Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), reduces the productivity in grapevines. Host resistance was studied on three F 1 families derived from crosses involving resistant genotypes 'Horizon', Illinois 547-1, Vitis cinerea B9 and V. vinifera 'Chardonnay'. All families had progeny with extremely susceptible phenotypes, developing lesions on both dormant canes and maturing fruit clusters. Segregation of symptoms was observed under natural levels of inoculum in the field, while phenotypes on green shoots were confirmed under controlled inoculations in greenhouse. High-density genetic maps were used to localize novel qualitative resistance loci named Rda1 and Rda2 from V. cinerea B9 and 'Horizon', respectively. Co-linearity between reference genetic and physical maps allowed localization of Rda2 locus between 1.5 and 2.4 Mbp on chromosome 7, and Rda1 locus between 19.3 and 19.6 Mbp of chromosome 15, which spans a cluster of five NB-LRR genes. Further dissection of this locus was obtained by QTL mapping of gene expression values 14 h after inoculation across a subset of the 'Chardonnay' × V. cinerea B9 progeny. This provided evidence for the association between transcript levels of two of these NB-LRR genes with Rda1, with increased NB-LRR expression among susceptible progeny. In resistant parent V. cinerea B9, inoculation with D. ampelina was characterized by up-regulation of SA-associated genes and down-regulation of ethylene pathways, suggesting an R-gene-mediated response. With dominant effects associated with disease-free berries and minimal symptoms on canes, Rda1 and Rda2 are promising loci for grapevine

  5. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.)

    PubMed Central

    Yang, Xiping; Islam, Md. S.; Sood, Sushma; Maya, Stephanie; Hanson, Erik A.; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane (Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance (R) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control. PMID:29616061

  6. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.).

    PubMed

    Yang, Xiping; Islam, Md S; Sood, Sushma; Maya, Stephanie; Hanson, Erik A; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane ( Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F 1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance ( R ) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control.

  7. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti.

    PubMed

    Reyes-Solis, Guadalupe Del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C

    2014-10-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

  8. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  9. Loci on chromosomes 1A and 2A affect resistance to tan (yellow) spot in wheat populations not segregating for tsn1.

    PubMed

    Shankar, Manisha; Jorgensen, Dorthe; Taylor, Julian; Chalmers, Ken J; Fox, Rebecca; Hollaway, Grant J; Neate, Stephen M; McLean, Mark S; Vassos, Elysia; Golzar, Hossein; Loughman, Robert; Mather, Diane E

    2017-12-01

    QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only. Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.

  10. Mapping the Rust Resistant Loci MXC3 and MER in P. trichocarpa and Assessing the Intermarker Linkage Disequilibrium in MXC3 Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Tongming; Difazio, Stephen P.; Gunter, Lee E

    In an attempt to elucidate the molecular mechanisms of Melampsora rust resistance in Populus trichocarpa, we have mapped two resistance loci, MXC3 and MER, and intensively characterized the flanking genomic sequence for the MXC3 locus and the level of linkage disequilibrium (LD) in natural populations. We used an interspecific backcross pedigree and a genetic map that was highly saturated with AFLP and SSR markers, and assembled shotgun-sequence data in the region containing markers linked to MXC3. The two loci were mapped to different linkage groups. Linkage disequilibrium for MXC3 was confined to two closely linked regions spanning 34 and 16more » kb, respectively. The MXC3 region also contained six disease-resistance candidate genes. The MER and MXC3 loci are clearly distinct, and may have different mechanisms of resistance, as different classes of putative resistance genes were present near each locus. The suppressed recombination previously observed in the MXC3 region was possibly caused by extensive hemizygous rearrangements confined to the original parent tree. The relatively low observed LD may facilitate association studies using candidate genes for rust resistance, but will probably inhibit marker-aided selection.« less

  11. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds.

    PubMed

    Lan, Caixia; Basnet, Bhoja R; Singh, Ravi P; Huerta-Espino, Julio; Herrera-Foessel, Sybil A; Ren, Yong; Randhawa, Mandeep S

    2017-03-01

    New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds. CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5-60.8%, 9.0-14.3%, 2.8-13.9%, and 11.6-29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.

  12. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    PubMed Central

    Raman, Rosy; Qiu, Yu; Coombes, Neil; Song, Jie; Kilian, Andrzej; Raman, Harsh

    2017-01-01

    Seed lost due to easy pod dehiscence at maturity (pod shatter) is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata) and identified quantitative trait loci (QTL) for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE). In comparison to B. napus (RE = 2.16 mJ), B. carinata accessions had higher RE values (2.53 to 20.82 mJ). A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE) and BC73524 (shatter prone with low RE) comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3) that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools. PMID:29250080

  13. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii.

    PubMed

    Pap, Dániel; Riaz, Summaira; Dry, Ian B; Jermakow, Angelica; Tenscher, Alan C; Cantu, Dario; Oláh, Róbert; Walker, M Andrew

    2016-07-29

    Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species. In this study, we investigated powdery mildew resistance in multiple accessions of the Chinese species Vitis piasezkii that were collected during the 1980 Sino-American botanical expedition to the western Hubei province of China. A framework genetic map was developed using simple sequence repeat markers in 277 seedlings of an F1 mapping population arising from a cross of the powdery mildew susceptible Vitis vinifera selection F2-35 and a resistant accession of V. piasezkii DVIT2027. Quantitative trait locus analyses identified two major powdery mildew resistance loci on chromosome 9 (Ren6) and chromosome 19 (Ren7) explaining 74.8 % of the cumulative phenotypic variation. The quantitative trait locus analysis for each locus, in the absence of the other, explained 95.4 % phenotypic variation for Ren6, while Ren7 accounted for 71.9 % of the phenotypic variation. Screening of an additional 259 seedlings of the F1 population and 910 seedlings from four pseudo-backcross populations with SSR markers defined regions of 22 kb and 330 kb for Ren6 and Ren7 in the V. vinifera PN40024 (12X) genome sequence, respectively. Both R loci operate post-penetration through the induction of programmed cell death, but vary significantly in the speed of response and degree of resistance; Ren6 confers complete resistance whereas Ren7 confers partial resistance to the disease with reduced colony size. A comparison of the kinetics of induction of powdery

  14. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance.

    PubMed

    Nyerges, Ákos; Csörgő, Bálint; Draskovits, Gábor; Kintses, Bálint; Szili, Petra; Ferenc, Györgyi; Révész, Tamás; Ari, Eszter; Nagy, István; Bálint, Balázs; Vásárhelyi, Bálint Márk; Bihari, Péter; Számel, Mónika; Balogh, Dávid; Papp, Henrietta; Kalapis, Dorottya; Papp, Balázs; Pál, Csaba

    2018-06-19

    Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology. Copyright © 2018 the Author(s). Published by PNAS.

  15. Cooperative effects between two acyclovir resistance loci in herpes simplex virus.

    PubMed Central

    Darby, G; Churcher, M J; Larder, B A

    1984-01-01

    The acyclovir-resistant mutant SC16 R9C2 (H.J. Field, G. Darby, and P. Wildy , J. Gen. Virol. 49:115-124, 1980) has been shown to contain two resistance loci which segregate independently on recombination with wild-type virus. One locus is in thymidine kinase, and the other is in DNA polymerase. Both induced enzymes have altered properties, thymidine kinase showing a low affinity for acyclovir and low activity, and DNA polymerase showing a low affinity for acyclovir triphosphate. Other properties of both enzymes are described which distinguish them from their wild-type counterparts. Recombinants containing either mutant thymidine kinase ( RSC -11) or mutant DNA polymerase ( RSC -26), but not both, have been used to investigate the relative contribution of each lesion to resistance and pathogenicity. Although SC16 R9C2 and both recombinants grow as well as does wild-type virus in tissue culture, they are considerably attenuated in vivo, the greatest attenuation of virulence being seen with SC16 R9C2 and RSC -26. With respect to both acyclovir resistance and in vivo growth, the lesions appear to behave synergistically. Cross resistance studies have shown the recombinant RSC -26, which contains mutant DNA polymerase but which evidently expresses wild-type thymidine kinase, to be cross resistant to both 5-iodo-2'-deoxyuridine and 5-trifluoromethyl-2'-deoxyuridine but not to (E)-5-(2-bromovinyl)-2'-deoxyuridine or 9-beta-D-arabinofuranosyladenine. Images PMID:6328014

  16. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance.

    PubMed

    Geffroy, V; Sévignac, M; De Oliveira, J C; Fouilloux, G; Skroch, P; Thoquet, P; Gepts, P; Langin, T; Dron, M

    2000-03-01

    Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.

  17. Molecular Evolution Perspectives on Intraspecific Lateral DNA Transfer of Topoisomerase and Gyrase Loci in Streptococcus pneumoniae, with Implications for Fluoroquinolone Resistance Development and Spread

    PubMed Central

    Stanhope, Michael J.; Walsh, Stacey L.; Becker, Julie A.; Italia, Michael J.; Ingraham, Karen A.; Gwynn, Michael N.; Mathie, Tom; Poupard, James A.; Miller, Linda A.; Brown, James R.; Amrine-Madsen, Heather

    2005-01-01

    Fluoroquinolones are an important class of antibiotics for the treatment of infections arising from the gram-positive respiratory pathogen Streptococcus pneumoniae. Although there is evidence supporting interspecific lateral DNA transfer of fluoroquinolone target loci, no studies have specifically been designed to assess the role of intraspecific lateral transfer of these genes in the spread of fluoroquinolone resistance. This study involves a comparative evolutionary perspective, in which the evolutionary history of a diverse set of S. pneumoniae clinical isolates is reconstructed from an expanded multilocus sequence typing data set, with putative recombinants excluded. This control history is then assessed against networks of each of the four fluoroquinolone target loci from the same isolates. The results indicate that although the majority of fluoroquinolone target loci from this set of 60 isolates are consistent with a clonal dissemination hypothesis, 3 to 10% of the sequences are consistent with an intraspecific lateral transfer hypothesis. Also evident were examples of interspecific transfer, with two isolates possessing a parE-parC gene region arising from viridans group streptococci. The Spain 23F-1 clone is the most dominant fluoroquinolone-nonsusceptible clone in this set of isolates, and the analysis suggests that its members act as frequent donors of fluoroquinolone-nonsusceptible loci. Although the majority of fluoroquinolone target gene sequences in this set of isolates can be explained on the basis of clonal dissemination, a significant number are more parsimoniously explained by intraspecific lateral DNA transfer, and in situations of high S. pneumoniae population density, such events could be an important means of resistance spread. PMID:16189113

  18. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions.

    PubMed

    Muleta, Kebede T; Rouse, Matthew N; Rynearson, Sheri; Chen, Xianming; Buta, Bedada G; Pumphrey, Michael O

    2017-08-04

    The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) <0.10. GWAS also detected 9 additional genomic regions significantly associated (FDR-adjusted P < 0.10) with seedling resistance to stem rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace

  19. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats.

    PubMed

    Sanz, M J; Loarce, Y; Fominaya, A; Vossen, J H; Ferrer, E

    2013-01-01

    Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.

  20. New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple field and controlled environments from France and the United States

    USDA-ARS?s Scientific Manuscript database

    Partial resistances, often controlled by QTL (Quantitative Trait Loci), are considered to be more durable than monogenic resistances. Prior to develop efficient breeding programs for polygenic resistance to pathogens, a higher understanding of genetic diversity and stability of resistance QTL in pla...

  1. Quantitative trait loci detection of Edwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Xu, Wenteng; Liu, Yang; Wang, Lei; Sun, Hejun; Wang, Lei; Chen, Songlin

    2016-11-01

    In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese flounder ( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. olivaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis (BSA) and quantitative trait loci (QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333 (♀: F0768 ×♂: F0915) (Nomenclature rule: F+year+family number) were used to detect simple sequence repeats (SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers (Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group (LG)-1 exhibited a significant difference between DNA, pooled/bulked from the resistant and susceptible groups (P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of significance in LG1, where 17 and 18 SSR markers were identified, respectively. Each model found three resistance-related QTLs by composite interval mapping (CIM). These six QTLs, designated qE1-6, explained 16.0%-89.5% of the phenotypic variance. Two of the QTLs, qE-2 and qE-4, were located at the 66.7 cM region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese flounder in the future.

  2. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    PubMed

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  3. Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean1[W][OA

    PubMed Central

    Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary

    2011-01-01

    Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820

  4. Identification of Quantitative Trait Loci for Resistance to RSIVD in Red Sea Bream (Pagrus major).

    PubMed

    Sawayama, Eitaro; Tanizawa, Shiho; Kitamura, Shin-Ichi; Nakayama, Kei; Ohta, Kohei; Ozaki, Akiyuki; Takagi, Motohiro

    2017-12-01

    Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.

  5. High Density Single Nucleotide Polymorphism (SNP) Mapping and Quantitative Trait Loci (QTL) Analysis in a Biparental Spring Triticale Population Localized Major and Minor Effect Fusarium Head Blight Resistance and Associated Traits QTL

    PubMed Central

    Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh

    2018-01-01

    Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028

  6. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas.

    PubMed

    Scarabel, Laura; Pernin, Fanny; Délye, Christophe

    2015-09-01

    Non-target-site resistance (NTSR) to herbicides is a major issue for the chemical control of weeds. Whilst predominant in grass weeds, NTSR remains largely uninvestigated in dicot weeds. We investigated the occurrence, inheritance and genetic control of NTSR to acetolactate synthase (ALS) inhibitors in Papaver rhoeas (corn poppy) using progenies from plants with potential NTSR to the imidazolinone herbicide imazamox. NTSR to imazamox was inherited from parents over two successive generations. NTSR to tritosulfuron (a sulfonylurea) was observed in F1 generations and inherited in F2 generations. NTSR to florasulam (a triazolopyrimidine) emerged in F2 generations. Our findings suggest NTSR was polygenic and gradually built-up by accumulation over generations of loci with moderate individual effects in single plants. We also demonstrated that ALS alleles conferring herbicide resistance can co-exist with NTSR loci in P. rhoeas plants. Previous research focussed on TSR in P. rhoeas, which most likely caused underestimation of NTSR significance in this species. This may also apply to other dicot species. From our data, resistance to ALS inhibitors in P. rhoeas appears complex, and involves well-known mutant ALS alleles and a set of unknown NTSR loci that confer resistance to ALS inhibitors from different chemical families. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    PubMed Central

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  8. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    PubMed

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r=0.49, P=0.003, N=83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both

  9. Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations.

    PubMed

    Swaminathan, Sivakumar; Abeysekara, Nilwala S; Knight, Joshua M; Liu, Min; Dong, Jia; Hudson, Matthew E; Bhattacharyya, Madan K; Cianzio, Silvia R

    2018-05-01

    Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars. Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing 'A95-684043', a high-yielding maturity group (MG) II line resistant to SCN, with 'LS94-3207' and 'LS98-0582' of MG IV, resistant to both F. virguliforme and SCN. Two hundred F 7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.

  10. The genetic architecture of resistance to virus infection in Drosophila.

    PubMed

    Cogni, Rodrigo; Cao, Chuan; Day, Jonathan P; Bridson, Calum; Jiggins, Francis M

    2016-10-01

    Variation in susceptibility to infection has a substantial genetic component in natural populations, and it has been argued that selection by pathogens may result in it having a simpler genetic architecture than many other quantitative traits. This is important as models of host-pathogen co-evolution typically assume resistance is controlled by a small number of genes. Using the Drosophila melanogaster multiparent advanced intercross, we investigated the genetic architecture of resistance to two naturally occurring viruses, the sigma virus and DCV (Drosophila C virus). We found extensive genetic variation in resistance to both viruses. For DCV resistance, this variation is largely caused by two major-effect loci. Sigma virus resistance involves more genes - we mapped five loci, and together these explained less than half the genetic variance. Nonetheless, several of these had a large effect on resistance. Models of co-evolution typically assume strong epistatic interactions between polymorphisms controlling resistance, but we were only able to detect one locus that altered the effect of the main effect loci we had mapped. Most of the loci we mapped were probably at an intermediate frequency in natural populations. Overall, our results are consistent with major-effect genes commonly affecting susceptibility to infectious diseases, with DCV resistance being a near-Mendelian trait. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  11. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.

    PubMed

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-09-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

  12. Identification of genetic loci that contribute to Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    PubMed Central

    Hoang, Ky Van; Wang, Ying; Lin, Jun

    2012-01-01

    Antimicrobial peptides (AMPs) are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food-borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TN™ Transposome) in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c) that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB) significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81–176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis. PMID:22919624

  13. Quantitative Resistance: More Than Just Perception of a Pathogen.

    PubMed

    Corwin, Jason A; Kliebenstein, Daniel J

    2017-04-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Quantitative Resistance: More Than Just Perception of a Pathogen

    PubMed Central

    2017-01-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. PMID:28302676

  15. Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust (Puccinia Striiformis f. sp. tritici) in a Hard Red Winter Wheat Germplasm IDO444

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...

  16. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing.

    PubMed

    Zhang, Tiejun; Yu, Long-Xi; Zheng, Ping; Li, Yajun; Rivera, Martha; Main, Dorrie; Greene, Stephanie L

    2015-01-01

    Drought resistance is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. Identification of genes involved in drought tolerance will facilitate breeding for improving drought resistance and water use efficiency in alfalfa. Our objective was to use a diversity panel of alfalfa accessions comprised of 198 cultivars and landraces to identify genes involved in drought tolerance. The panel was selected from the USDA-ARS National Plant Germplasm System alfalfa collection and genotyped using genotyping by sequencing. A greenhouse procedure was used for phenotyping two important traits associated with drought tolerance: drought resistance index (DRI) and relative leaf water content (RWC). Marker-trait association identified nineteen and fifteen loci associated with DRI and RWC, respectively. Alignments of target sequences flanking to the resistance loci against the reference genome of M. truncatula revealed multiple chromosomal locations. Markers associated with DRI are located on all chromosomes while markers associated with RWC are located on chromosomes 1, 2, 3, 4, 5, 6 and 7. Co-localizations of significant markers between DRI and RWC were found on chromosomes 3, 5 and 7. Most loci associated with DRI in this work overlap with the reported QTLs associated with biomass under drought in alfalfa. Additional significant markers were targeted to several contigs with unknown chromosomal locations. BLAST search using their flanking sequences revealed homology to several annotated genes with functions in stress tolerance. With further validation, these markers may be used for marker-assisted breeding new alfalfa varieties with drought resistance and enhanced water use efficiency.

  17. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    PubMed

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  18. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations

    PubMed Central

    Jupe, Florian; Witek, Kamil; Verweij, Walter; Śliwka, Jadwiga; Pritchard, Leighton; Etherington, Graham J; Maclean, Dan; Cock, Peter J; Leggett, Richard M; Bryan, Glenn J; Cardle, Linda; Hein, Ingo; Jones, Jonathan DG

    2013-01-01

    Summary RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ∼80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines. PMID:23937694

  19. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    PubMed Central

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  20. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees

    PubMed Central

    Crawford, Allan M; Paterson, Korena A; Dodds, Ken G; Diez Tascon, Cristina; Williamson, Penny A; Roberts Thomson, Meredith; Bisset, Stewart A; Beattie, Anne E; Greer, Gordon J; Green, Richard S; Wheeler, Roger; Shaw, Richard J; Knowler, Kevin; McEwan, John C

    2006-01-01

    Background Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes. Results Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. Conclusion Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL concerned adult parasite

  1. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees.

    PubMed

    Crawford, Allan M; Paterson, Korena A; Dodds, Ken G; Diez Tascon, Cristina; Williamson, Penny A; Roberts Thomson, Meredith; Bisset, Stewart A; Beattie, Anne E; Greer, Gordon J; Green, Richard S; Wheeler, Roger; Shaw, Richard J; Knowler, Kevin; McEwan, John C

    2006-07-18

    Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes. Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL concerned adult parasite burdens at the end of the second

  2. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.

    PubMed

    Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D

    2007-06-01

    Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.

  4. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea.

    PubMed

    Desgroux, Aurore; L'Anthoëne, Virginie; Roux-Duparque, Martine; Rivière, Jean-Philippe; Aubert, Grégoire; Tayeh, Nadim; Moussart, Anne; Mangin, Pierre; Vetel, Pierrick; Piriou, Christophe; McGee, Rebecca J; Coyne, Clarice J; Burstin, Judith; Baranger, Alain; Manzanares-Dauleux, Maria; Bourion, Virginie; Pilet-Nayel, Marie-Laure

    2016-02-20

    Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and

  5. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis.

    PubMed

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick Ma; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent Wv; Pasmans, Suzanne Gma; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe Mr; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla Mt; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, Wh Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan

    2015-12-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.

  6. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III

    Treesearch

    Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale

    2003-01-01

    Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...

  7. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense.

    PubMed

    Shi, Yuzhen; Zhang, Baocai; Liu, Aiying; Li, Wentan; Li, Junwen; Lu, Quanwei; Zhang, Zhen; Li, Shaoqi; Gong, Wankui; Shang, Haihong; Gong, Juwu; Chen, Tingting; Ge, Qun; Wang, Tao; Zhu, Heqin; Liu, Zhi; Yuan, Youlu

    2016-11-05

    Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding. In the present study, BC 1 F 1 , BC 1 S 1 , and BC 2 F 1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC 1 F 1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC 2 F 1 in the artificial disease nursery and one date of BC 1 S 1 and BC 2 F 1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2-10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense. These stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease-resistant

  8. Application of logistic regression to case-control association studies involving two causative loci.

    PubMed

    North, Bernard V; Curtis, David; Sham, Pak C

    2005-01-01

    Models in which two susceptibility loci jointly influence the risk of developing disease can be explored using logistic regression analysis. Comparison of likelihoods of models incorporating different sets of disease model parameters allows inferences to be drawn regarding the nature of the joint effect of the loci. We have simulated case-control samples generated assuming different two-locus models and then analysed them using logistic regression. We show that this method is practicable and that, for the models we have used, it can be expected to allow useful inferences to be drawn from sample sizes consisting of hundreds of subjects. Interactions between loci can be explored, but interactive effects do not exactly correspond with classical definitions of epistasis. We have particularly examined the issue of the extent to which it is helpful to utilise information from a previously identified locus when investigating a second, unknown locus. We show that for some models conditional analysis can have substantially greater power while for others unconditional analysis can be more powerful. Hence we conclude that in general both conditional and unconditional analyses should be performed when searching for additional loci.

  9. Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks.

    PubMed Central

    Byrne, P F; McMullen, M D; Snook, M E; Musket, T A; Theuri, J M; Widstrom, N W; Wiseman, B R; Coe, E H

    1996-01-01

    Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait. PMID:11607699

  10. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.

    PubMed

    Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime; Bossé, Yohan; Shrine, Nick; Artigas, María Soler; Wain, Louise V; Hall, Ian P; Jackson, Victoria E; Wyss, Annah B; London, Stephanie J; North, Kari E; Franceschini, Nora; Strachan, David P; Beaty, Terri H; Hokanson, John E; Crapo, James D; Castaldi, Peter J; Chase, Robert P; Bartz, Traci M; Heckbert, Susan R; Psaty, Bruce M; Gharib, Sina A; Zanen, Pieter; Lammers, Jan W; Oudkerk, Matthijs; Groen, H J; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I; Vestbo, Jørgen; Timens, Wim; Paré, Peter D; Latourelle, Jeanne C; Dupuis, Josée; O'Connor, George T; Wilk, Jemma B; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M; de Koning, Harry J; Leng, Shuguang; Belinsky, Steven A; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Barr, R Graham; Sparrow, David; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lahousse, Lies; Brusselle, Guy G; Stricker, Bruno H; Uitterlinden, André G; Ampleford, Elizabeth J; Bleecker, Eugene R; Woodruff, Prescott G; Meyers, Deborah A; Qiao, Dandi; Lomas, David A; Yim, Jae-Joon; Kim, Deog Kyeom; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Hardin, Megan; Fingerlin, Tasha E; Schwartz, David A; Postma, Dirkje S; MacNee, William; Tobin, Martin D; Silverman, Edwin K; Boezen, H Marike; Cho, Michael H

    2017-03-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10 -6 ) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.

  11. Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize.

    PubMed

    Asea, Godfrey; Vivek, Bindiganavile S; Bigirwa, George; Lipps, Patrick E; Pratt, Richard C

    2009-05-01

    Maize production in sub-Saharan Africa incurs serious losses to epiphytotics of foliar diseases. Quantitative trait loci conditioning partial resistance (rQTL) to infection by causal agents of gray leaf spot (GLS), northern corn leaf blight (NCLB), and maize streak have been reported. Our objectives were to identify simple-sequence repeat (SSR) molecular markers linked to consensus rQTL and one recently identified rQTL associated with GLS, and to determine their suitability as tools for selection of improved host resistance. We conducted evaluations of disease severity phenotypes in separate field nurseries, each containing 410 F2:3 families derived from a cross between maize inbred CML202 (NCLB and maize streak resistant) and VP31 (a GLS-resistant breeding line) that possess complimentary rQTL. F2:3 families were selected for resistance based on genotypic (SSR marker), phenotypic, or combined data and the selected F3:4 families were reevaluated. Phenotypic values associated with SSR markers for consensus rQTL in bins 4.08 for GLS, 5.04 for NCLB, and 1.04 for maize streak significantly reduced disease severity in both generations based on single-factor analysis of variance and marker-interval analysis. These results were consistent with the presence of homozygous resistant parent alleles, except in bin 8.06, where markers were contributed by the NCLB-susceptible parent. Only one marker associated with resistance could be confirmed in bins 2.09 (GLS) and 3.06 (NCLB), illustrating the need for more robust rQTL discovery, fine-mapping, and validation prior to undertaking marker-based selection.

  12. Identification of quantitative trait loci affecting resistance to gastro-intestinal parasites in a double backcross population of Red Maasai and Dorper sheep

    USDA-ARS?s Scientific Manuscript database

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal (GI) nematode resistance was completed using a double backcross sheep population derived from Red Maasai and Dorper ewes bred to F1 rams. These breeds were chosen, because Red Maasai sheep are known to be more tolerant ...

  13. Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply

    PubMed Central

    Zhang, Kunpu; Wang, Junjun; Zhang, Liyi; Rong, Chaowu; Zhao, Fengwu; Peng, Tao; Li, Huimin; Cheng, Dongmei; Liu, Xin; Qin, Huanju; Zhang, Aimin; Tong, Yiping; Wang, Daowen

    2013-01-01

    Grain weight, an essential yield component, is under strong genetic control and markedly influenced by the environment. Here, by genome-wide association analysis with a panel of 94 elite common wheat varieties, 37 loci were found significantly associated with thousand-grain weight (TGW) in one or more environments differing in water and fertiliser levels. Five loci were stably associated with TGW under all 12 environments examined. Their elite alleles had positive effects on TGW. Four, two, three, and two loci were consistently associated with TGW in the irrigated and fertilised (IF), rainfed (RF), reduced nitrogen (RN), and reduced phosphorus (RP) environments. The elite alleles of the IF-specific loci enhanced TGW under well-resourced conditions, whereas those of the RF-, RN-, or RP-specific loci conferred tolerance to the TGW decrease when irrigation, nitrogen, or phosphorus were reduced. Moreover, the elite alleles of the environment-independent and -specific loci often acted additively to enhance TGW. Four additional loci were found associated with TGW in specific locations, one of which was shown to contribute to the TGW difference between two experimental sites. Further analysis of 14 associated loci revealed that nine affected both grain length and width, whereas the remaining loci influenced either grain length or width, indicating that these loci control grain weight by regulating kernel size. Finally, the elite allele of Xpsp3152 frequently co-segregated with the larger grain haplotype of TaGW2-6A, suggesting probable genetic and functional linkages between Xpsp3152 and GW2 that are important for grain weight control in cereal plants. Our study provides new knowledge on TGW control in elite common wheat lines, which may aid the improvement of wheat grain weight trait in further research. PMID:23469248

  14. Multi-ethnic genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    PubMed Central

    Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick MA; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent WV; Pasmans, Suzanne GMA; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe MR; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla MT; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, WH Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis. PMID:26482879

  15. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci.

    PubMed

    Rother, Magdalena B; Palstra, Robert-Jan; Jhunjhunwala, Suchit; van Kester, Kevin A M; van IJcken, Wilfred F J; Hendriks, Rudi W; van Dongen, Jacques J M; Murre, Cornelis; van Zelm, Menno C

    2016-01-08

    Progenitor-B cells recombine their immunoglobulin (Ig) loci to create unique antigen receptors. Despite a common recombination machinery, the Ig heavy and Ig light chain loci rearrange in a stepwise manner. We studied pre-pro-B cells and Rag(-/-) progenitor-B cells to determine whether Ig locus contraction or nuclear positioning is decisive for stepwise rearrangements. We found that both Ig loci were contracted in pro-B and pre-B cells. Igh relocated from the nuclear lamina to central domains only at the pro-B cell stage, whereas, Igκ remained sequestered at the lamina, and only at the pre-B cell stage located to central nuclear domains. Finally, in vitro induced re-positioning of Ig alleles away from the nuclear periphery increased germline transcription of Ig loci in pre-pro-B cells. Thus, Ig locus contraction juxtaposes genomically distant elements to mediate efficient recombination, however, sequential positioning of Ig loci away from the nuclear periphery determines stage-specific accessibility of Ig loci. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges.

    PubMed

    Deming, Regan; Manrique-Saide, Pablo; Medina Barreiro, Anuar; Cardeña, Edgar Ulises Koyoc; Che-Mendoza, Azael; Jones, Bryant; Liebman, Kelly; Vizcaino, Lucrecia; Vazquez-Prokopec, Gonzalo; Lenhart, Audrey

    2016-02-04

    Dengue is a major public health problem in Mexico, where the use of chemical insecticides to control the principal dengue vector, Aedes aegypti, is widespread. Resistance to insecticides has been reported in multiple sites, and the frequency of kdr mutations associated with pyrethroid resistance has increased rapidly in recent years. In the present study, we characterized patterns of insecticide resistance in Ae. aegypti populations in five small towns surrounding the city of Merida, Mexico. A cross-sectional, entomological survey was performed between June and August 2013 in 250 houses in each of the five towns. Indoor resting adult mosquitoes were collected in all houses and four ovitraps were placed in each study block. CDC bottle bioassays were conducted using F0-F2 individuals reared from the ovitraps and kdr allele (Ile1016 and Cys1534) frequencies were determined. High, but varying, levels of resistance to chorpyrifos-ethyl was detected in all study towns, complete susceptibility to bendiocarb in all except one town, and variations in resistance to deltamethrin between towns, ranging from 63-88% mortality. Significant associations were detected between deltamethrin resistance and the presence of both kdr alleles. Phenotypic resistance was highly predictive of the presence of both alleles, however, not all mosquitoes containing a mutant allele were phenotypically resistant. An analysis of genotypic differentiation (exact G test) between the five towns based on the adult female Ae. aegypti collected from inside houses showed highly significant differences (p < 0.0001) between genotypes for both loci. When this was further analyzed to look for fine scale differences at the block level within towns, genotypic differentiation was significant for both loci in San Lorenzo (Ile1016, p = 0.018 and Cys1534, p = 0.007) and for Ile1016 in Acanceh (p = 0.013) and Conkal (p = 0.031). The results from this study suggest that 3 years after switching

  17. Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci.

    PubMed

    Dang, Trang Nguyen Doan; Zhang, Lixin; Zöllner, Sebastian; Srinivasan, Usha; Abbas, Khadija; Marrs, Carl F; Foxman, Betsy

    2013-10-01

    CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are short fragments of DNA that act as an adaptive immune system protecting bacteria against invasion by phages, plasmids or other forms of foreign DNA. Bacteria without a CRISPR locus may more readily adapt to environmental changes by acquiring foreign genetic material. Uropathogenic Escherichia coli (UPEC) live in a number of environments suggesting an ability to rapidly adapt to new environments. If UPEC are more adaptive than commensal E. coli we would expect that UPEC would have fewer CRISPR loci, and--if loci are present--that they would harbor fewer spacers than CRISPR loci in fecal E. coli. We tested this in vivo by comparing the number of CRISPR loci and spacers, and sensitivity to antibiotics (resistance is often obtained via plasmids) among 81 pairs of UPEC and fecal E. coli isolated from women with urinary tract infection. Each pair included one uropathogen and one commensal (fecal) sample from the same female patient. Fecal isolates had more repeats (p=0.009) and more unique spacers (p<0.0001) at four CRISPR loci than uropathogens. By contrast, uropathogens were more likely than fecal E. coli to be resistant to ampicillin, cefazolin and trimethoprim/sulfamethoxazole. However, no consistent association between CRISPRs and antibiotic resistance was identified. To our knowledge, this is the first study to compare fecal E. coli and pathogenic E. coli from the same individuals, and to test the association of CRISPR loci with antibiotic resistance. Our results suggest that the absence of CRISPR loci may make UPEC more susceptible to infection by phages or plasmids and allow them to adapt more quickly to various environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula.

    PubMed

    Kamphuis, Lars G; Lichtenzveig, Judith; Oliver, Richard P; Ellwood, Simon R

    2008-03-26

    cluster of Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) genes and disease resistance protein-like genes, while no resistance gene analogues (RGAs) are apparent in the genomic sequence of the reference accession A17 at the rnpm2 locus. The induction of defence responses and cell death in the susceptible interaction following infection by P. medicaginis suggested this pathogen is not negatively affected by these responses and may promote them. A QTL for resistance was revealed in each of two populations derived from crosses between a resistant accession and two different susceptible accessions. Both loci are recessive in nature, and the simplest explanation for the existence of two separate QTLs is the occurrence of host genotype-specific susceptibility loci that may interact with undetermined P. medicaginis virulence factors.

  19. Small brown planthopper resistance loci in wild rice (Oryza officinalis).

    PubMed

    Zhang, Weilin; Dong, Yan; Yang, Ling; Ma, Bojun; Ma, Rongrong; Huang, Fudeng; Wang, Changchun; Hu, Haitao; Li, Chunshou; Yan, Chengqi; Chen, Jianping

    2014-06-01

    Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.

  20. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population.

    PubMed

    Balint-Kurti, P J; Krakowsky, M D; Jines, M P; Robertson, L A; Molnár, T L; Goodman, M M; Holl, J B

    2006-10-01

    ABSTRACT A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03-9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL.

  1. Resisting Mind Control.

    ERIC Educational Resources Information Center

    Anderson, Susan M.; Zimbardo, Philip G.

    1980-01-01

    Provides conceptual analyses of mind control techniques along with practical advice on how to resist these techniques. The authors stress that effective mind control stems more from everyday social relations than from exotic technological gimmicks. Suggestions are given for resisting persuasion, resisting systems, and challenging the system.…

  2. Proactive control of proactive interference using the method of loci.

    PubMed

    Bass, Willa S; Oswald, Karl M

    2014-01-01

    Proactive interferencebuilds up with exposure to multiple lists of similar items with a resulting reduction in recall. This study examined the effectiveness of using a proactive strategy of the method of loci to reduce proactive interference in a list recall paradigm of categorically similar words. While all participants reported using some form of strategy to recall list words, this study demonstrated that young adults were able to proactively use the method of loci after 25 min of instruction to reduce proactive interference as compared with other personal spontaneous strategies. The implications of this study are that top-down proactive strategies such as the method of loci can significantly reduce proactive interference, and that the use of image and sequence or location are especially useful in this regard.

  3. Genome-Wide Delineation of Natural Variation for Pod Shatter Resistance in Brassica napus

    PubMed Central

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Carling, Jason; Coombes, Neil; Diffey, Simon; Kadkol, Gururaj; Edwards, David; McCully, Margaret; Ruperao, Pradeep; Parkin, Isobel A. P.; Batley, Jacqueline; Luckett, David J.; Wratten, Neil

    2014-01-01

    Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified. PMID:25006804

  4. Proactive control of proactive interference using the method of loci

    PubMed Central

    Bass, Willa S.; Oswald, Karl M.

    2014-01-01

    Proactive interferencebuilds up with exposure to multiple lists of similar items with a resulting reduction in recall. This study examined the effectiveness of using a proactive strategy of the method of loci to reduce proactive interference in a list recall paradigm of categorically similar words. While all participants reported using some form of strategy to recall list words, this study demonstrated that young adults were able to proactively use the method of loci after 25 min of instruction to reduce proactive interference as compared with other personal spontaneous strategies. The implications of this study are that top-down proactive strategies such as the method of loci can significantly reduce proactive interference, and that the use of image and sequence or location are especially useful in this regard. PMID:25157300

  5. High-Density Genotyping of Immune Loci in Koreans and Europeans Identifies Eight New Rheumatoid Arthritis Risk Loci

    PubMed Central

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K.; Eyre, Steve; Bowes, John; Pappas, Dimitrios A.; Kremer, Joel M.; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P.; Karlson, Elizabeth W.; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Greenberg, Jeffrey D.; Plenge, Robert M.; Bae, Sang-Cheol

    2015-01-01

    Objective A highly polygenic etiology and high degree of allele-sharing between ancestries have been well-elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. Methods We analyzed Korean rheumatoid arthritis case-control samples using the Immunochip and GWAS array to search for new risk alleles of rheumatoid arthritis with anti-citrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data, for a total sample size of 9,299 Korean and 45,790 European case-control samples. Results We identified 8 new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1–FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10−8), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the 7 new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of SNPs that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. Conclusion This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. PMID:24532676

  6. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci.

    PubMed

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K; Eyre, Steve; Bowes, John; Pappas, Dimitrios A; Kremer, Joel M; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P; Karlson, Elizabeth W; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Greenberg, Jeffrey D; Plenge, Robert M; Bae, Sang-Cheol

    2015-03-01

    A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice

    PubMed Central

    Jia, Limeng; Yan, Wengui; Zhu, Chengsong; Agrama, Hesham A.; Jackson, Aaron; Yeater, Kathleen; Li, Xiaobai; Huang, Bihu; Hu, Biaolin; McClung, Anna; Wu, Dianxing

    2012-01-01

    Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice. PMID:22427867

  8. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  9. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean

    USDA-ARS?s Scientific Manuscript database

    Bi-parental mapping populations have been commonly utilized to identify and characterize quantitative trait loci (QTL) controlling resistance to soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Although this approach successfully mapped a large number of SCN resistance QTL, it captures onl...

  10. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    PubMed

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  11. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    PubMed Central

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596

  12. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  13. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    PubMed Central

    Leal-Bertioli, Soraya C. M.; Moretzsohn, Márcio C.; Roberts, Philip A.; Ballén-Taborda, Carolina; Borba, Tereza C. O.; Valdisser, Paula A.; Vianello, Rosana P.; Araújo, Ana Cláudia G; Guimarães, Patricia M.; Bertioli, David J.

    2015-01-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  14. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    are in a nondividing (G2) state.—Mitotic recombination is at or above control levels in the presence of each of the recombination-defective meiotic mutants examined, suggesting that meiotic and mitotic recombination are under separate genetic control in Drosophila.—Of the six mutants examined that are defective in processes required for regular meiotic chromosome segregation, four (l(1)TW-6cs, cand, mei-S332, ord) affect mitotic chromosome behavior. At semi-restrictive temperatures, the cold sensitive lethal l(1)TW-6cs causes very frequent somatic spots, a substantial proportion of which are attributable to nondisjunction or loss. Thus, this locus specifies a function essential for chromosome segregation at mitosis as well as at the first meiotic division in females. The patterns of mitotic effects caused by cand, mei-S332, and ord suggest that they may be leaky alleles at essential loci that specify functions common to meiosis and mitosis. Mutants at the two remaining loci (nod, pal) do not affect mitotic chromosome stability. PMID:17248870

  15. In silico mapping of quantitative trait loci in maize.

    PubMed

    Parisseaux, B; Bernardo, R

    2004-08-01

    Quantitative trait loci (QTL) are most often detected through designed mapping experiments. An alternative approach is in silico mapping, whereby genes are detected using existing phenotypic and genomic databases. We explored the usefulness of in silico mapping via a mixed-model approach in maize (Zea mays L.). Specifically, our objective was to determine if the procedure gave results that were repeatable across populations. Multilocation data were obtained from the 1995-2002 hybrid testing program of Limagrain Genetics in Europe. Nine heterotic patterns comprised 22,774 single crosses. These single crosses were made from 1,266 inbreds that had data for 96 simple sequence repeat (SSR) markers. By a mixed-model approach, we estimated the general combining ability effects associated with marker alleles in each heterotic pattern. The numbers of marker loci with significant effects--37 for plant height, 24 for smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for grain moisture--were consistent with previous results from designed mapping experiments. Each trait had many loci with small effects and few loci with large effects. For smut resistance, a marker in bin 8.05 on chromosome 8 had a significant effect in seven (out of a maximum of 18) instances. For this major QTL, the maximum effect of an allele substitution ranged from 5.4% to 41.9%, with an average of 22.0%. We conclude that in silico mapping via a mixed-model approach can detect associations that are repeatable across different populations. We speculate that in silico mapping will be more useful for gene discovery than for selection in plant breeding programs. Copyright 2004 Springer-Verlag

  16. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.

    PubMed

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I; Padyukov, Leonid; Toes, Rene E M; Huizinga, Tom W J; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I W; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert M; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-12-01

    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.

  17. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding.

    PubMed

    Brown, James K M; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-06-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).

    PubMed

    Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling

    2014-04-01

    This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.

  19. [Discriminatory power of variable number on tandem repeats loci for genotyping Mycobacterium tuberculosis strains in China].

    PubMed

    Chen, H X; Cai, C; Liu, J Y; Zhang, Z G; Yuan, M; Jia, J N; Sun, Z G; Huang, H R; Gao, J M; Li, W M

    2017-06-10

    Objective: Using the standard genotype method, variable number of tandem repeats (VNTR), we constructed a VNTR database to cover all provinces and proposed a set of optimized VNTR loci combinations for each province, in order to improve the preventive and control programs on tuberculosis, in China. Methods: A total of 15 loci VNTR was used to analyze 4 116 Mycobacterium tuberculosis strains, isolated from national survey of Drug Resistant Tuberculosis, in 2007. Hunter-Gaston Index (HGI) was also used to analyze the discriminatory power of each VNTR site. A set combination of 12-VNTR, 10-VNTR, 8-VNTR and 5-VNTR was respectively constructed for each province, based on 1) epidemic characteristics of M. tuberculosis lineages in China, with high discriminatory power and genetic stability. Results: Through the completed 15 loci VNTR patterns of 3 966 strains under 96.36 % (3 966/4 116) coverage, we found seven high HGI loci (including QUB11b and MIRU26) as well as low stable loci (including QUB26, MIRU16, Mtub21 and QUB11b) in several areas. In all the 31 provinces, we found an optimization VNTR combination as 10-VNTR loci in Inner Mongolia, Chongqing and Heilongjiang, but with 8-VNTR combination shared in other provinces. Conclusions: It is necessary to not only use the VNTR database for tracing the source of infection and cluster of M. tuberculosis in the nation but also using the set of optimized VNTR combinations in monitoring those local epidemics and M. tuberculosis (genetics in local) population.

  20. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans

    PubMed Central

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; de Almeida, Caléo Panhoca; Nucci, Stella Maris; da Silva, Larissa Chariel Domingos; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Abstract Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning. PMID:28222201

  1. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans.

    PubMed

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; Almeida, Caléo Panhoca de; Nucci, Stella Maris; Silva, Larissa Chariel Domingos da; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning.

  2. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georges, M.; Nielsen, D.; Mackinnon, M.

    1995-02-01

    We have exploited {open_quotes}progeny testing{close_quotes} to map quantitative trait loci (QTL) underlying the genetic variation of milk production in a selected dairy cattle population. A total of 1,518 sires, with progeny tests based on the milking performances of >150,000 daughters jointly, was genotyped for 159 autosomal microsatellites bracketing 1645 centimorgan or approximately two thirds of the bovine genome. Using a maximum likelihood multilocus linkage analysis accounting for variance heterogeneity of the phenotypes, we identified five chromosomes giving very strong evidence (LOD score {ge} 3) for the presence of a QTL controlling milk production: chromosomes 1, 6, 9, 10 and 20.more » These findings demonstrate that loci with considerable effects on milk production are still segregating in highly selected populations and pave the way toward marker-assisted selection in dairy cattle breeding. 44 refs., 4 figs., 3 tabs.« less

  3. Identification of Loci Controlling Restriction of Parasite Growth in Experimental Taenia crassiceps Cysticercosis

    PubMed Central

    Fortin, Anny; Sciutto-Conde, Edda; Fragoso-González, Gladis; Gros, Philippe; Aguilar-Delfin, Irma

    2011-01-01

    Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a

  4. Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance

    PubMed Central

    Begley, Máire; Gahan, Cormac G. M.; Hill, Colin

    2002-01-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  5. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.

    PubMed

    Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C; Chen, Xuewei

    2018-03-20

    Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL ( OsPAL1-7 ) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae , supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice. Copyright © 2018 the Author(s). Published by PNAS.

  6. New genetic loci link adipose and insulin biology to body fat distribution.

    PubMed

    Shungin, Dmitry; Winkler, Thomas W; Croteau-Chonka, Damien C; Ferreira, Teresa; Locke, Adam E; Mägi, Reedik; Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M W; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian'an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex Sf; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik Ke; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor Va; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John Rb; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan Jl; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco Jc; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter Eh; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin Na; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J; Kaplan, Robert C; O'Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth Jf; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2015-02-12

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

  7. New genetic loci link adipose and insulin biology to body fat distribution

    PubMed Central

    Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M.W.; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian’an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex SF; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik KE; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor VA; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P.; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John RB; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E.; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco JC; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J.; Kaplan, Robert C; O’Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth JF; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2014-01-01

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. PMID:25673412

  8. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir.II. Spring and fall cold-hardiness

    Treesearch

    K.D. Jermstad; D.L. Bassoni; N.C. Wheeler; T.S. Anekonda; S.N. Aitken; W.T. Adams; D.B. Neale

    2001-01-01

    Abstract Quantitative trait loci (QTLs) affecting fall and spring cold-hardiness were identified in a three-generation outbred pedigree of coastal Douglas-fir [Pseudotsuga meniziesii (Mirb.) Franco var. menziesii]. Eleven QTLs controlling fall cold-hardiness were detected on four linkage groups, and 15 QTLs controlling spring cold-hardiness were detected on four...

  9. Molecular Epidemiology of Mutations in Antimicrobial Resistance Loci of Pseudomonas aeruginosa Isolates from Airways of Cystic Fibrosis Patients.

    PubMed

    Greipel, Leonie; Fischer, Sebastian; Klockgether, Jens; Dorda, Marie; Mielke, Samira; Wiehlmann, Lutz; Cramer, Nina; Tümmler, Burkhard

    2016-11-01

    The chronic airway infections with Pseudomonas aeruginosa in people with cystic fibrosis (CF) are treated with aerosolized antibiotics, oral fluoroquinolones, and/or intravenous combination therapy with aminoglycosides and β-lactam antibiotics. An international strain collection of 361 P. aeruginosa isolates from 258 CF patients seen at 30 CF clinics was examined for mutations in 17 antimicrobial susceptibility and resistance loci that had been identified as hot spots of mutation by genome sequencing of serial isolates from a single CF clinic. Combinatorial amplicon sequencing of pooled PCR products identified 1,112 sequence variants that were not present in the genomes of representative strains of the 20 most common clones of the global P. aeruginosa population. A high frequency of singular coding variants was seen in spuE, mexA, gyrA, rpoB, fusA1, mexZ, mexY, oprD, ampD, parR, parS, and envZ (amgS), reflecting the pressure upon P. aeruginosa in lungs of CF patients to generate novel protein variants. The proportion of nonneutral amino acid exchanges was high. Of the 17 loci, mexA, mexZ, and pagL were most frequently affected by independent stop mutations. Private and de novo mutations seem to play a pivotal role in the response of P. aeruginosa populations to the antimicrobial load and the individual CF host. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway

  11. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice

    PubMed Central

    Nagase, Hiroki; Mao, Jian-Hua; Balmain, Allan

    1999-01-01

    Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans. PMID:10611333

  12. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat.

    PubMed

    Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J

    2013-08-01

    Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat

    PubMed Central

    Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.

    2013-01-01

    Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820

  14. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    PubMed

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  15. Clinical chemistry of congenic mice with quantitative trait loci for predicted responses to Trypanosoma congolense infection.

    PubMed

    Rathkolb, Birgit; Noyes, Harry A; Brass, Andy; Dark, Paul; Fuchs, Helmut; Gailus-Durner, Valérie; Gibson, John; de Angelis, Martin Hrabé; Ogugo, Moses; Iraqi, Fuad; Kemp, Steve J; Naessens, Jan; Pope, Mathew E; Wolf, Eckhard; Agaba, Morris

    2009-09-01

    Trypanosoma congolense is a protozoan parasite that causes severe diseases in livestock. Three major quantative trait loci (QTL), Tir1, Tir2, and Tir3, control the survival time of mice after infection with T. congolense. Congenic mice carrying the C57BL/6 resistance alleles on the A/J background were developed for each of these loci. The congenic mice were used to physically map the regions containing the QTL gene(s) and to investigate the physiological effect of each locus. Clinical chemistry data for infected A/J, C57BL/6, and BALB/c mice were obtained for 15 analytes at five time points. Congenic mice were assessed for survival, parasitemia, and anemia as well as seven clinical-chemical analytes. The survival times were significantly increased in the Tir1 and Tir2 mice but not Tir3 congenic mice. The survival time of the parental inbred mice correlated negatively with parasitemia but positively with alanine aminotransferase activities in serum, suggesting that inflammatory reactions in the liver had a beneficial effect possibly associated with reduced parasitemia. However, there was no difference in parasitemia or liver enzyme activities of Tir1 and Tir2 congenic mice relative to their controls, showing that survival, parasitemia, and degree of liver damage are not associated with each other, despite the correlation in the parental lines. These data suggest that the congenic loci affect survival but do not affect control of parasite number. They may therefore act by limiting the pathological consequences of T. congolense infection.

  16. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees.

    PubMed

    Tian, Baoyu; Fadhil, Nibal H; Powell, J Elijah; Kwong, Waldan K; Moran, Nancy A

    2012-10-30

    Antibiotic treatment can impact nontarget microbes, enriching the pool of resistance genes available to pathogens and altering community profiles of microbes beneficial to hosts. The gut microbiota of adult honeybees, a distinctive community dominated by eight bacterial species, provides an opportunity to examine evolutionary responses to long-term treatment with a single antibiotic. For decades, American beekeepers have routinely treated colonies with oxytetracycline for control of larval pathogens. Using a functional metagenomic screen of bacteria from Maryland bees, we detected a high incidence of tetracycline/oxytetracycline resistance. This resistance is attributable to known resistance loci for which nucleotide sequences and flanking mobility genes were nearly identical to those from human pathogens and from bacteria associated with farm animals. Surveys using diagnostic PCR and sequencing revealed that gut bacteria of honeybees from diverse localities in the United States harbor eight tetracycline resistance loci, including efflux pump genes (tetB, tetC, tetD, tetH, tetL, and tetY) and ribosome protection genes (tetM and tetW), often at high frequencies. Isolates of gut bacteria from Connecticut bees display high levels of tetracycline resistance. Resistance genes were ubiquitous in American samples, though rare in colonies unexposed for 25 years. In contrast, only three resistance loci, at low frequencies, occurred in samples from countries not using antibiotics in beekeeping and samples from wild bumblebees. Thus, long-term antibiotic treatment has caused the bee gut microbiota to accumulate resistance genes, drawn from a widespread pool of highly mobile loci characterized from pathogens and agricultural sites. We found that 50 years of using antibiotics in beekeeping in the United States has resulted in extensive tetracycline resistance in the gut microbiota. These bacteria, which form a distinctive community present in healthy honeybees worldwide, may

  17. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    PubMed Central

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga; Saxena, Richa; Soranzo, Nicole; Jackson, Anne U; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Gloyn, Anna L; Lindgren, Cecilia M; Mägi, Reedik; Morris, Andrew P; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Thorleifsson, Gudmar; Steinthorsdottir, Valgerdur; Henneman, Peter; Grallert, Harald; Dehghan, Abbas; Hottenga, Jouke Jan; Franklin, Christopher S; Navarro, Pau; Song, Kijoung; Goel, Anuj; Perry, John R B; Egan, Josephine M; Lajunen, Taina; Grarup, Niels; Sparsø, Thomas; Doney, Alex; Voight, Benjamin F; Stringham, Heather M; Li, Man; Kanoni, Stavroula; Shrader, Peter; Cavalcanti-Proença, Christine; Kumari, Meena; Qi, Lu; Timpson, Nicholas J; Gieger, Christian; Zabena, Carina; Rocheleau, Ghislain; Ingelsson, Erik; An, Ping; O’Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Payne, Felicity; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ardlie, Kristin; Ariyurek, Yavuz; Balkau, Beverley; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Benediktsson, Rafn; Bennett, Amanda J; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bonnefond, Amélie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Cornelis, Marilyn; Crawford, Gabe; Crisponi, Laura; Day, Ian N M; de Geus, Eco; Delplanque, Jerome; Dina, Christian; Erdos, Michael R; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Fox, Caroline S; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Groves, Christopher J; Grundy, Scott; Gwilliam, Rhian; Gyllensten, Ulf; Hadjadj, Samy; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Herder, Christian; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hofman, Albert; Hui, Jennie; Hung, Joe; Isomaa, Bo; Johnson, Paul R V; Jørgensen, Torben; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Lyssenko, Valeriya; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McCulloch, Laura J; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Morken, Mario A; Mukherjee, Sutapa; Naitza, Silvia; Narisu, Narisu; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Palmer, Colin N A; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L.; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rathmann, Wolfgang; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Roden, Michael; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Scott, Laura J; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sigurðsson, Gunnar; Sijbrands, Erik J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Thorand, Barbara; Tichet, Jean; Tönjes, Anke; Tuomi, Tiinamaija; Uitterlinden, André G; van Dijk, Ko Willems; van Hoek, Mandy; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Walters, G Bragi; Ward, Kim L; Watkins, Hugh; Weedon, Michael N; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zeggini, Eleftheria; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Hattersley, Andrew T; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Morris, Andrew D; Lind, Lars; Palmer, Lyle J; Hu, Frank B.; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pankow, James S; Sampson, Michael J; Kuusisto, Johanna; Laakso, Markku; Hansen, Torben; Pedersen, Oluf; Pramstaller, Peter Paul; Wichmann, H Erich; Illig, Thomas; Rudan, Igor; Wright, Alan F; Stumvoll, Michael; Campbell, Harry; Wilson, James F; Hamsten, Anders; Bergman, Richard N; Buchanan, Thomas A; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Valle, Timo T; Altshuler, David; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret; Deloukas, Panos; Spector, Timothy D; Frayling, Timothy M; Ferrucci, Luigi; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; van Duijn, Cornelia M; Aulchenko, Yurii S; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Abecasis, Goncalo R; Wareham, Nicholas J; Sladek, Robert; Froguel, Philippe; Watanabe, Richard M; Meigs, James B; Groop, Leif; Boehnke, Michael; McCarthy, Mark I; Florez, Jose C; Barroso, Inês

    2010-01-01

    Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes. PMID:20081858

  18. Isoniazid resistant tuberculosis- a cause for concern?

    PubMed Central

    HR, Stagg; MC, Lipman; TD, McHugh; HE, Jenkins

    2017-01-01

    SUMMARY The drug isoniazid (INH) is a key component of global tuberculosis (TB) control programmes. It is estimated, however, that 16.1% of TB disease cases in Former Soviet Union countries and 7.5% of cases outside of those settings have non-multidrug resistant (MDR) INH resistance. Resistance has been linked to poorer treatment outcomes, post-treatment relapse and death, at least for specific sites of disease. Multiple genetic loci are associated with phenotypic resistance, but the relationship between genotype and phenotype is complex. This restricts the use of rapid sequencing techniques as part of the diagnostic process to determine the most appropriate treatment regimens for patients. The burden of resistance also influences the usefulness of INH preventative therapy (IPT). Despite seven decades of the use of INH our knowledge in key areas- such as the epidemiology of resistant strains, their clinical consequences, and their exact role in fuelling the MDR TB epidemic- is limited. The importance of non-MDR INH resistance needs to be re-evaluated both globally and by national TB control programmes. PMID:28234075

  19. Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticum turgidum ssp. durum)

    PubMed Central

    Liu, Weizhen; Maccaferri, Marco; Rynearson, Sheri; Letta, Tesfaye; Zegeye, Habtemariam; Tuberosa, Roberto; Chen, Xianming; Pumphrey, Michael

    2017-01-01

    Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production, and has been increasingly destructive in Ethiopia, as well as in the United States and in many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat germplasm harbors potentially valuable resistance loci. Moreover, the Ethiopian germplasm has been historically underutilized in breeding of modern wheat worldwide and thus the resistance alleles from the Ethiopian germplasm represent potentially novel sources. The objective of this study was to identify loci conferring resistance to predominant Pst races in Ethiopia and the United States. Using a high-density 90 K wheat single nucleotide polymorphism array, a genome-wide association analysis (GWAS) was conducted on 182 durum wheat landrace accessions and contemporary varieties originating from Ethiopia. Landraces were detected to be more resistant at the seedling stage while cultivars were more resistant at the adult-plant stages. GWAS identified 68 loci associated with seedling resistance to one or more races. Six loci on chromosome arms 1AS, 1BS, 3AS, 4BL, and 5BL were associated with resistance against at least two races at the seedling stage, and five loci were previously undocumented. GWAS analysis of field resistance reactions identified 12 loci associated with resistance on chromosomes 1A, 1B, 2BS, 3BL, 4AL, 4B and 5AL, which were detected in at least two of six field screening nurseries at the adult-plant stage. Comparison with previously mapped resistance loci indicates that six of the 12 resistance loci are newly documented. This study reports effective sources of resistance to contemporary races in Ethiopia and the United States and reveals that Ethiopian durum wheat landraces are abundant in novel Pst resistance loci that may be transferred into adapted cultivars to provide resistance against Pst. PMID:28553306

  20. Gene pyramiding enhances durable blast disease resistance in rice

    PubMed Central

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-01

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary “arms race” between a crop and its pathogen. PMID:25586962

  1. Gene pyramiding enhances durable blast disease resistance in rice.

    PubMed

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  2. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17

    PubMed Central

    Betsiashvili, Mariam; Ahern, Kevin R.; Jander, Georg

    2015-01-01

    Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. PMID:25249072

  3. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    PubMed

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  4. Genome-Wide Association Studies of Drug-Resistance Determinants.

    PubMed

    Volkman, Sarah K; Herman, Jonathan; Lukens, Amanda K; Hartl, Daniel L

    2017-03-01

    Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance. Copyright © 2016. Published by Elsevier Ltd.

  5. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.

    PubMed

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-04-27

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.

  6. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    PubMed Central

    Couch, Fergus J.; Kuchenbaecker, Karoline B.; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A.; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W.; Benitez, Javier; Blank, Stephanie V.; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J.; Chung, Wendy K.; Claes, Kathleen B. M.; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C.; Dolcetti, Riccardo; Domchek, Susan M.; Dorfling, Cecilia M.; dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M.; Eccles, Diana M.; Ehrencrona, Hans; Ekici, Arif B.; Eliassen, Heather; Ellis, Steve; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D.; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D.; Ganz, Patricia A.; Gapstur, Susan M.; Garber, Judy; Gaudet, Mia M.; Gayther, Simon A.; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G.; Glendon, Gord; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Greene, Mark H.; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hansen, Thomas V. O.; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E.; Herzog, Josef; Hogervorst, Frans B. L.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Humphreys, Keith; Hunter, David J.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M.; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y.; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G.; Knight, Julia A.; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L.; Makalic, Enes; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W. M.; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L.; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M.; Muranen, Taru A.; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Nordestgaard, Børge G.; Nussbaum, Robert L.; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Osorio, Ana; Park, Sue K.; Peeters, Petra H.; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M.; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J.; Sanchez, Maria-Jose; Santella, Regina M.; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F.; Sinilnikova, Olga M.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I.; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary B.; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E.; Tollenaar, Robert A. E. M.; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H. M.; van Rensburg, Elizabeth J.; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N.; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R.; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Monteiro, Alvaro A. N.; García-Closas, Montserrat; Easton, Douglas F.; Antoniou, Antonis C.

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction. PMID:27117709

  7. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    PubMed Central

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  8. Two genetic loci control syllable sequences of ultrasonic courtship vocalizations in inbred mice

    PubMed Central

    2011-01-01

    Background The ultrasonic vocalizations (USV) of courting male mice are known to possess a phonetic structure with a complex combination of several syllables. The genetic mechanisms underlying the syllable sequence organization were investigated. Results This study compared syllable sequence organization in two inbred strains of mice, 129S4/SvJae (129) and C57BL6J (B6), and demonstrated that they possessed two mutually exclusive phenotypes. The 129S4/SvJae (129) strain frequently exhibited a "chevron-wave" USV pattern, which was characterized by the repetition of chevron-type syllables. The C57BL/6J strain produced a "staccato" USV pattern, which was characterized by the repetition of short-type syllables. An F1 strain obtained by crossing the 129S4/SvJae and C57BL/6J strains produced only the staccato phenotype. The chevron-wave and staccato phenotypes reappeared in the F2 generations, following the Mendelian law of independent assortment. Conclusions These results suggest that two genetic loci control the organization of syllable sequences. These loci were occupied by the staccato and chevron-wave alleles in the B6 and 129 mouse strains, respectively. Recombination of these alleles might lead to the diversity of USV patterns produced by mice. PMID:22018021

  9. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites

    PubMed Central

    Routtu, J; Ebert, D

    2015-01-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host–parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host–parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host–parasite systems. Only the Pasteuria–Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium–Daphnia system remains unclear. PMID:25335558

  10. Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database.

    PubMed

    Glenn, Travis C; Lance, Stacey L; McKee, Anna M; Webster, Bonnie L; Emery, Aidan M; Zerlotini, Adhemar; Oliveira, Guilherme; Rollinson, David; Faircloth, Brant C

    2013-10-17

    Urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across Africa and is increasingly being targeted for control. Genome sequences and population genetic parameters can give insight into the potential for population- or species-level drug resistance. Microsatellite DNA loci are genetic markers in wide use by Schistosoma researchers, but there are few primers available for S. haematobium. We sequenced 1,058,114 random DNA fragments from clonal cercariae collected from a snail infected with a single Schistosoma haematobium miracidium. We assembled and aligned the S. haematobium sequences to the genomes of S. mansoni and S. japonicum, identifying microsatellite DNA loci across all three species and designing primers to amplify the loci in S. haematobium. To validate our primers, we screened 32 randomly selected primer pairs with population samples of S. haematobium. We designed >13,790 primer pairs to amplify unique microsatellite loci in S. haematobium, (available at http://www.cebio.org/projetos/schistosoma-haematobium-genome). The three Schistosoma genomes contained similar overall frequencies of microsatellites, but the frequency and length distributions of specific motifs differed among species. We identified 15 primer pairs that amplified consistently and were easily scored. We genotyped these 15 loci in S. haematobium individuals from six locations: Zanzibar had the highest levels of diversity; Malawi, Mauritius, Nigeria, and Senegal were nearly as diverse; but the sample from South Africa was much less diverse. About half of the primers in the database of Schistosoma haematobium microsatellite DNA loci should yield amplifiable and easily scored polymorphic markers, thus providing thousands of potential markers. Sequence conservation among S. haematobium, S. japonicum, and S. mansoni is relatively high, thus it should now be possible to identify markers that are universal among Schistosoma species (i.e., using DNA sequences

  11. Qualitative and quantitative trait loci conditioning resistance to Puccinia coronata pathotypes NQMG and LGCG in the oat (Avena sativa L.) cultivars Ogle and TAM O-301.

    PubMed

    Jackson, E W; Obert, D E; Menz, M; Hu, G; Bonman, J M

    2008-02-01

    Mapping disease resistance loci relies on the type and precision of phenotypic measurements. For crown rust of oat, disease severity is commonly assessed based on visual ratings of infection types (IT) and/or diseased leaf area (DLA) of infected plants in the greenhouse or field. These data can be affected by several variables including; (i) non-uniform disease development in the field; (ii) atypical symptom development in the greenhouse; (iii) the presence of multiple pathogenic races or pathotypes in the field, and (iv) rating bias. To overcome these limitations, we mapped crown rust resistance to single isolates in the Ogle/TAM O-301 (OT) recombinant inbred line (RIL) population using detailed measurements of IT, uredinia length (UL) and relative fungal DNA (FDNA) estimates determined by q-PCR. Measurements were taken on OT parents and recombinant inbred lines (RIL) inoculated with Puccinia coronata pathotypes NQMG and LGCG in separate greenhouse and field tests. Qualitative mapping identified an allele conferred by TAM O-301 on linkage group (LG) OT-11, which produced a bleached fleck phenotype to both NQMG and LGCG. Quantitative mapping identified two major quantitative trait loci (QTL) originating from TAM O-301 on LGs OT-11 and OT-32 which reduced UL and FDNA of both isolates in all experiments. Additionally, minor QTLs that reduced UL and FDNA were detected on LGs OT-15 and OT-8, originating from TAM O-301, and on LG OT-27, originating from Ogle. Detailed assessments of the OT population using two pathotypes in both the greenhouse and field provided comprehensive information to effectively map the genes responsible for crown rust resistance in Ogle and TAM O-301 to NQMG and LGCG.

  12. High Diversity of Genes for Nonhost Resistance of Barley to Heterologous Rust Fungi

    PubMed Central

    Jafary, Hossein; Albertazzi, Giorgia; Marcel, Thierry C.; Niks, Rients E.

    2008-01-01

    Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley–Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping populations by crossing the line SusPtrit, with exceptional susceptibility to heterologous rust species, with the immune barley cultivars Vada and Cebada Capa. These two mapping populations along with the Oregon Wolfe Barley population, which showed unexpected segregation for resistance to heterologous rusts, were phenotyped with four heterologous rust fungal species. Positions of QTL conferring nonhost resistance in the three mapping populations were compared using an integrated consensus map. The results confirmed that nonhost resistance in barley to heterologous rust species is controlled by QTL with different and overlapping specificities and by an occasional contribution of an R-gene for hypersensitivity. In each population, different sets of loci were implicated in resistance. Few genes were common between the populations, suggesting a high diversity of genes conferring nonhost resistance to heterologous pathogens. These loci were significantly associated with QTL for partial resistance to the pathogen Puccinia hordei and with defense-related genes. PMID:18430953

  13. Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses

    PubMed Central

    Liu, Jia; Wang, Jun; Wang, Hui; Wang, Wenxiang; Zhou, Rijin; Mei, Desheng; Cheng, Hongtao; Yang, Juan; Raman, Harsh; Hu, Qiong

    2016-01-01

    The majority of rapeseed cultivars shatter seeds upon maturity especially under hot-dry and windy conditions, reducing yield and gross margin return to growers. Here, we identified quantitative trait loci (QTL) for resistance to pod shatter in an unstructured diverse panel of 143 rapeseed accessions, and two structured populations derived from bi-parental doubled haploid (DH) and inter-mated (IF2) crosses derived from R1 (resistant to pod shattering) and R2 (prone to pod shattering) accessions. Genome-wide association analysis identified six significant QTL for resistance to pod shatter located on chromosomes A01, A06, A07, A09, C02, and C05. Two of the QTL, qSRI.A09 delimited with the SNP marker Bn-A09-p30171993 (A09) and qSRI.A06 delimited with the SNP marker Bn-A06-p115948 (A06) could be repeatedly detected across environments in a diversity panel, DH and IF2 populations, suggesting that at least two loci on chromosomes A06 and A09 were the main contributors to pod shatter resistance in Chinese germplasm. Significant SNP markers identified in this study especially those that appeared repeatedly across environments provide a cost-effective and an efficient method for introgression and pyramiding of favorable alleles for pod shatter resistance via marker-assisted selection in rapeseed improvement programs. PMID:27493651

  14. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103.

    PubMed

    Feng, Junyan; Wang, Meinan; See, Deven R; Chao, Shiaoman; Zheng, Youliang; Chen, Xianming

    2018-06-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.

  15. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  16. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks.

    PubMed

    Demenais, Florence; Margaritte-Jeannin, Patricia; Barnes, Kathleen C; Cookson, William O C; Altmüller, Janine; Ang, Wei; Barr, R Graham; Beaty, Terri H; Becker, Allan B; Beilby, John; Bisgaard, Hans; Bjornsdottir, Unnur Steina; Bleecker, Eugene; Bønnelykke, Klaus; Boomsma, Dorret I; Bouzigon, Emmanuelle; Brightling, Christopher E; Brossard, Myriam; Brusselle, Guy G; Burchard, Esteban; Burkart, Kristin M; Bush, Andrew; Chan-Yeung, Moira; Chung, Kian Fan; Couto Alves, Alexessander; Curtin, John A; Custovic, Adnan; Daley, Denise; de Jongste, Johan C; Del-Rio-Navarro, Blanca E; Donohue, Kathleen M; Duijts, Liesbeth; Eng, Celeste; Eriksson, Johan G; Farrall, Martin; Fedorova, Yuliya; Feenstra, Bjarke; Ferreira, Manuel A; Freidin, Maxim B; Gajdos, Zofia; Gauderman, Jim; Gehring, Ulrike; Geller, Frank; Genuneit, Jon; Gharib, Sina A; Gilliland, Frank; Granell, Raquel; Graves, Penelope E; Gudbjartsson, Daniel F; Haahtela, Tari; Heckbert, Susan R; Heederik, Dick; Heinrich, Joachim; Heliövaara, Markku; Henderson, John; Himes, Blanca E; Hirose, Hiroshi; Hirschhorn, Joel N; Hofman, Albert; Holt, Patrick; Hottenga, Jouke; Hudson, Thomas J; Hui, Jennie; Imboden, Medea; Ivanov, Vladimir; Jaddoe, Vincent W V; James, Alan; Janson, Christer; Jarvelin, Marjo-Riitta; Jarvis, Deborah; Jones, Graham; Jonsdottir, Ingileif; Jousilahti, Pekka; Kabesch, Michael; Kähönen, Mika; Kantor, David B; Karunas, Alexandra S; Khusnutdinova, Elza; Koppelman, Gerard H; Kozyrskyj, Anita L; Kreiner, Eskil; Kubo, Michiaki; Kumar, Rajesh; Kumar, Ashish; Kuokkanen, Mikko; Lahousse, Lies; Laitinen, Tarja; Laprise, Catherine; Lathrop, Mark; Lau, Susanne; Lee, Young-Ae; Lehtimäki, Terho; Letort, Sébastien; Levin, Albert M; Li, Guo; Liang, Liming; Loehr, Laura R; London, Stephanie J; Loth, Daan W; Manichaikul, Ani; Marenholz, Ingo; Martinez, Fernando J; Matheson, Melanie C; Mathias, Rasika A; Matsumoto, Kenji; Mbarek, Hamdi; McArdle, Wendy L; Melbye, Mads; Melén, Erik; Meyers, Deborah; Michel, Sven; Mohamdi, Hamida; Musk, Arthur W; Myers, Rachel A; Nieuwenhuis, Maartje A E; Noguchi, Emiko; O'Connor, George T; Ogorodova, Ludmila M; Palmer, Cameron D; Palotie, Aarno; Park, Julie E; Pennell, Craig E; Pershagen, Göran; Polonikov, Alexey; Postma, Dirkje S; Probst-Hensch, Nicole; Puzyrev, Valery P; Raby, Benjamin A; Raitakari, Olli T; Ramasamy, Adaikalavan; Rich, Stephen S; Robertson, Colin F; Romieu, Isabelle; Salam, Muhammad T; Salomaa, Veikko; Schlünssen, Vivi; Scott, Robert; Selivanova, Polina A; Sigsgaard, Torben; Simpson, Angela; Siroux, Valérie; Smith, Lewis J; Solodilova, Maria; Standl, Marie; Stefansson, Kari; Strachan, David P; Stricker, Bruno H; Takahashi, Atsushi; Thompson, Philip J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiesler, Carla M T; Torgerson, Dara G; Tsunoda, Tatsuhiko; Uitterlinden, André G; van der Valk, Ralf J P; Vaysse, Amaury; Vedantam, Sailaja; von Berg, Andrea; von Mutius, Erika; Vonk, Judith M; Waage, Johannes; Wareham, Nick J; Weiss, Scott T; White, Wendy B; Wickman, Magnus; Widén, Elisabeth; Willemsen, Gonneke; Williams, L Keoki; Wouters, Inge M; Yang, James J; Zhao, Jing Hua; Moffatt, Miriam F; Ober, Carole; Nicolae, Dan L

    2018-01-01

    We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new asthma loci, found two new associations at two known asthma loci, established asthma associations at two loci previously implicated in the comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy showed large overlaps in genetic variants with autoimmune and inflammatory diseases. The enrichment in enhancer marks at asthma risk loci, especially in immune cells, suggested a major role of these loci in the regulation of immunologically related mechanisms.

  17. Identification of Quantitative Trait Loci Conditioning the Main Biomass Yield Components and Resistance to Melampsora spp. in Salix viminalis × Salix schwerinii Hybrids

    PubMed Central

    Sulima, Paweł; Przyborowski, Jerzy A.; Kuszewska, Anna; Załuski, Dariusz; Jędryczka, Małgorzata; Irzykowski, Witold

    2017-01-01

    The biomass of Salix viminalis is the most highly valued source of green energy, followed by S. schwerinii, S. dasyclados and other species. Significant variability in productivity and leaf rust resistance are noted both within and among willow species, which creates new opportunities for improving willow yield parameters through selection of desirable recombinants supported with molecular markers. The aim of this study was to identify quantitative trait loci (QTLs) linked with biomass yield-related traits and the resistance/susceptibility of Salix mapping population to leaf rust. The experimental material comprised a mapping population developed based on S. viminalis × S. schwerinii hybrids. Phenotyping was performed on plants grown in a field experiment that had a balanced incomplete block design with 10 replications. Based on a genetic map, 11 QTLs were identified for plant height, 9 for shoot diameter, 3 for number of shoots and 11 for resistance/susceptibility to leaf rust. The QTLs identified in our study explained 3%–16% of variability in the analyzed traits. Our findings make significant contributions to the development of willow breeding programs and research into shrubby willow crops grown for energy. PMID:28327519

  18. A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.)

    PubMed Central

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-01

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748

  19. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.).

    PubMed

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-20

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. Copyright © 2015 Maccaferri et al.

  20. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains.

    PubMed

    Zhang, Xiao-Wei; Jiang, Qian-Tao; Wei, Yu-Ming; Liu, Chunji

    2017-01-01

    Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  1. Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces

    PubMed Central

    Silvar, Cristina; Perovic, Dragan; Nussbaumer, Thomas; Spannagl, Manuel; Usadel, Björn; Casas, Ana; Igartua, Ernesto; Ordon, Frank

    2013-01-01

    Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family. PMID:23826271

  2. BPS Jumping Loci are Automorphic

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  3. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    PubMed

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  4. Multiple loci on 8q24 associated with prostate cancer susceptibility.

    PubMed

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Giles, Graham G; Guy, Michelle; Morrison, Jonathan; Severi, Gianluca; Leongamornlert, Daniel A; Tymrakiewicz, Malgorzata; Jhavar, Sameer; Saunders, Ed; Hopper, John L; Southey, Melissa C; Muir, Kenneth R; English, Dallas R; Dearnaley, David P; Ardern-Jones, Audrey T; Hall, Amanda L; O'Brien, Lynne T; Wilkinson, Rosemary A; Sawyer, Emma; Lophatananon, Artitaya; Horwich, Alan; Huddart, Robert A; Khoo, Vincent S; Parker, Christopher C; Woodhouse, Christopher J; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin; Donovan, Jenny L; Hamdy, Freddie C; Neal, David E; Eeles, Rosalind A; Easton, Douglas F

    2009-10-01

    Previous studies have identified multiple loci on 8q24 associated with prostate cancer risk. We performed a comprehensive analysis of SNP associations across 8q24 by genotyping tag SNPs in 5,504 prostate cancer cases and 5,834 controls. We confirmed associations at three previously reported loci and identified additional loci in two other linkage disequilibrium blocks (rs1006908: per-allele OR = 0.87, P = 7.9 x 10(-8); rs620861: OR = 0.90, P = 4.8 x 10(-8)). Eight SNPs in five linkage disequilibrium blocks were independently associated with prostate cancer susceptibility.

  5. Seven newly identified loci for autoimmune thyroid disease.

    PubMed

    Cooper, Jason D; Simmonds, Matthew J; Walker, Neil M; Burren, Oliver; Brand, Oliver J; Guo, Hui; Wallace, Chris; Stevens, Helen; Coleman, Gillian; Franklyn, Jayne A; Todd, John A; Gough, Stephen C L

    2012-12-01

    Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P < 1.12 × 10(-6); a permutation test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.

  6. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  7. Loci-STREAM Version 0.9

    NASA Technical Reports Server (NTRS)

    Wright, Jeffrey; Thakur, Siddharth

    2006-01-01

    Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.

  8. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance

    PubMed Central

    Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio

    2013-01-01

    Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism. PMID:24223277

  9. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.

    PubMed

    Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I

    2018-05-01

    Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.

  10. Genome-wide association analysis identifies three new breast cancer susceptibility loci.

    PubMed

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; dos Santos Silva, Isabel; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans B L; Fasching, Peter A; Lux, Michael P; Beckmann, Matthias W; Ekici, Arif B; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Alonso, M Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V; Antonenkova, Natalia N; Rogov, Yuri I; Karstens, Johann H; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnaes, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J; Tollenaar, Rob A E M; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J; Hollestelle, Antoinette; Oldenburg, Rogier A; van den Ouweland, Ans M W; Cox, Angela; Reed, Malcolm W R; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A J; Chenevix-Trench, Georgia; Pharoah, Paul D P; Lathrop, Mark; Dunning, Alison M; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2012-01-22

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.

  11. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    PubMed Central

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; Silva, Isabel dos Santos; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans BL; Fasching, Peter A.; Lux, Michael P.; Beckmann, Matthias W.; Ekici, Arif B.; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L.; Alonso, M. Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Rogov, Yuri I.; Karstens, Johann H.; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J.; Tollenaar, Rob A.E.M.; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J.; Hollestelle, Antoinette; Oldenburg, Rogier A.; van den Ouweland, Ans M.W.; Cox, Angela; Reed, Malcolm WR; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A. J.; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Lathrop, Mark; Dunning, Alison M.; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We followed up 72 promising associations from two independent Genome Wide Association Studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 × 10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast cancer cell growth. PMID:22267197

  12. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw.

    PubMed

    Hu, Zhen; Zhang, Guifen; Muhammad, Ali; Samad, Rana Abdul; Wang, Youmei; Walton, Jonathan D; He, Yuqing; Peng, Liangcai; Wang, Lingqiang

    2018-02-26

    Lignin content and composition are crucial factors affecting biomass digestibility. Exploring the genetic loci simultaneously affecting lignin-relevant traits and biomass digestibility is a precondition for lignin genetic manipulation towards energy crop breeding. In this study, a high-throughput platform was employed to assay the lignin content, lignin composition and biomass enzymatic digestibility of a rice recombinant inbred line population. Correlation analysis indicated that the absolute content of lignin monomers rather than lignin content had negative effects on biomass saccharification, whereas the relative content of p-hydroxyphenyl unit and the molar ratio of p-hydroxyphenyl unit to guaiacyl unit exhibited positive roles. Eight QTL clusters were identified and four of them affecting both lignin composition and biomass digestibility. The additive effects of clustered QTL revealed consistent relationships between lignin-relevant traits and biomass digestibility. Pyramiding rice lines containing the above four positive alleles for increasing biomass digestibility were selected and showed comparable lignin content, decreased syringyl or guaiacyl unit and increased molar percentage of p-hydroxyphenyl unit, the molar ratio of p-hydroxyphenyl unit to guaiacyl unit and sugar releases. More importantly, the lodging resistance and eating/cooking quality of pyramiding lines were not sacrificed, indicating the QTL information could be applied to select desirable energy rice lines.

  13. 52 Genetic Loci Influencing Myocardial Mass

    PubMed Central

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.

    2017-01-01

    BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466

  14. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    PubMed

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.

    PubMed

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2016-08-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

  16. Genetic Control of Resistance to the Sterol 14α-Demethylase Inhibitor Fungicide Prochloraz in the Cereal Eyespot Pathogen Tapesia yallundae

    PubMed Central

    Dyer, Paul S.; Hansen, Jacqueline; Delaney; Lucas, John A.

    2000-01-01

    Sexual crosses were used to determine the genetic basis of resistance to the sterol 14 α-demethylase inhibitor fungicide prochloraz in the cereal eyespot pathogen Tapesia yallundae. Three different crosses between sensitive parental strains (22-432 and 22-433 [the concentration required to inhibit growth by 50% {IG50} for each was ≤0.03 mg/liter]) and field isolates from France and New Zealand with differing levels of resistance (PR11 [IG50 = 0.5 mg/liter], PR1 [IG50 = 1.0 mg/liter], and 11-3-18 [IG50 = 2.4 mg/liter]) yielded progeny showing a bimodal distribution, with an even number of sensitive and resistant progeny. This indicated the segregation of a single major gene for resistance in each cross, which was confirmed by the use of backcrosses, crosses between F1 progeny, and control crosses between sensitive parents. However, there was also evidence of additional quantitative genetic components responsible for the increased IG50s of the more resistant isolates. A further cross was made between isolate PR11 and an F1 progeny arising from isolate 11-3-18, and this also yielded progeny which were entirely prochloraz resistant. This suggested that resistance genes were allelic in these two isolates, with resistance conferred by a gene at the same locus (or closely linked loci), despite the fact that the isolates (PR11 and 11-3-18) originated from different continents. PMID:11055899

  17. Ideal and resistive plasma resistive wall modes and control: linear and nonlinear

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2004-11-01

    Our recent work* on control of linear and nonlinear resistive wall modes (RWM) showed that if there is an ideal plasma mode and a resistive plasma mode, and if the beta limit for the latter is lower (as is typical), then nonlinear resistive wall modes behave basically as nonlinear tearing-like modes locked to the wall. We investigate here the effect of plasma rotation sufficient to stabilize the resistive-plasma RWM but not the ideal plasma RWM. We also review results** showing the effect of normal and poloidal magnetic field sensing, and describe a simple model which is amenable to analytic solution, and which makes previously obtained simulation results transparent. *J. Finn and L. Chacon, 'Control of linear and nonlinear resistive wall modes', Phys. Plas 11, 1866 (2004). **J. Finn, 'Control of resistive wall modes in a cylindrical tokamak with radial and poloidal magnetic field sensors', to appear in Phys. Plasmas, 2004.

  18. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dębniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.

  19. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  20. Constructing high-density genetic maps for polypoid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust had long been a major disease impacting sugarcane production world widely. Resistance resource and markers linked to the resistance are valuable tools for disease resistance improvement. An...

  1. Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust had long been a major disease impacting sugarcane production world widely. Resistance resource and markers linked to the resistance are valuable tools for disease resistance improvement. An...

  2. The Loci Multidisciplinary Simulation System

    NASA Technical Reports Server (NTRS)

    Luke, Ed

    2002-01-01

    Contents include the following: 1. An overview of the Loci Multidisciplinary Simulation System. 2. Topologically adaptive mesh generation. 3. Multidisciplinary simulations using Loci with the CHEM chemically reacting flow solver.

  3. Mapping quantitative trait loci controlling early growth in a (longleaf pine × slash pine) × slash pine BC1 family

    Treesearch

    C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine

    2002-01-01

    Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. × P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine × slash pine...

  4. Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis

    PubMed Central

    Mayes, Maureen D.; Bossini-Castillo, Lara; Gorlova, Olga; Martin, José Ezequiel; Zhou, Xiaodong; Chen, Wei V.; Assassi, Shervin; Ying, Jun; Tan, Filemon K.; Arnett, Frank C.; Reveille, John D.; Guerra, Sandra; Teruel, María; Carmona, Francisco David; Gregersen, Peter K.; Lee, Annette T.; López-Isac, Elena; Ochoa, Eguzkine; Carreira, Patricia; Simeón, Carmen Pilar; Castellví, Iván; González-Gay, Miguel Ángel; Ortego-Centeno, Norberto; Ríos, Raquel; Callejas, José Luis; Navarrete, Nuria; García Portales, Rosa; Camps, María Teresa; Fernández-Nebro, Antonio; González-Escribano, María F.; Sánchez-Román, Julio; García-Hernández, Francisco José; Castillo, María Jesús; Aguirre, María Ángeles; Gómez-Gracia, Inmaculada; Fernández-Gutiérrez, Benjamín; Rodríguez-Rodríguez, Luis; Vicente, Esther; Andreu, José Luis; Fernández de Castro, Mónica; García de la Peña, Paloma; López-Longo, Francisco Javier; Martínez, Lina; Fonollosa, Vicente; Espinosa, Gerard; Tolosa, Carlos; Pros, Anna; Rodríguez Carballeira, Mónica; Narváez, Francisco Javier; Rubio Rivas, Manel; Ortiz Santamaría, Vera; Díaz, Bernardino; Trapiella, Luis; Freire, María del Carmen; Sousa, Adrián; Egurbide, María Victoria; Fanlo Mateo, Patricia; Sáez-Comet, Luis; Díaz, Federico; Hernández, Vanesa; Beltrán, Emma; Román-Ivorra, José Andrés; Grau, Elena; Alegre Sancho, Juan José; Blanco García, Francisco J.; Oreiro, Natividad; Fernández Sueiro, Luis; Zhernakova, Alexandra; Padyukov, Leonid; Alarcón-Riquelme, Marta; Wijmenga, Cisca; Brown, Matthew; Beretta, Lorenzo; Riemekasten, Gabriela; Witte, Torsten; Hunzelmann, Nicolas; Kreuter, Alexander; Distler, Jörg H.W.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Hesselstrand, Roger; Nordin, Annika; Airó, Paolo; Lunardi, Claudio; Shiels, Paul; van Laar, Jacob M.; Herrick, Ariane; Worthington, Jane; Denton, Christopher; Wigley, Fredrick M.; Hummers, Laura K.; Varga, John; Hinchcliff, Monique E.; Baron, Murray; Hudson, Marie; Pope, Janet E.; Furst, Daniel E.; Khanna, Dinesh; Phillips, Kristin; Schiopu, Elena; Segal, Barbara M.; Molitor, Jerry A.; Silver, Richard M.; Steen, Virginia D.; Simms, Robert W.; Lafyatis, Robert A.; Fessler, Barri J.; Frech, Tracy M.; AlKassab, Firas; Docherty, Peter; Kaminska, Elzbieta; Khalidi, Nader; Jones, Henry Niall; Markland, Janet; Robinson, David; Broen, Jasper; Radstake, Timothy R.D.J.; Fonseca, Carmen; Koeleman, Bobby P.; Martin, Javier

    2014-01-01

    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci. PMID:24387989

  5. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci.

    PubMed

    Sabri, Suriana; Steen, Jennifer A; Bongers, Mareike; Nielsen, Lars K; Vickers, Claudia E

    2013-06-24

    Metabolic engineering projects often require integration of multiple genes in order to control the desired phenotype. However, this often requires iterative rounds of engineering because many current insertion approaches are limited by the size of the DNA that can be transferred onto the chromosome. Consequently, construction of highly engineered strains is very time-consuming. A lack of well-characterised insertion loci is also problematic. A series of knock-in/knock-out (KIKO) vectors was constructed for integration of large DNA sequences onto the E. coli chromosome at well-defined loci. The KIKO plasmids target three nonessential genes/operons as insertion sites: arsB (an arsenite transporter); lacZ (β-galactosidase); and rbsA-rbsR (a ribose metabolism operon). Two homologous 'arms' target each insertion locus; insertion is mediated by λ Red recombinase through these arms. Between the arms is a multiple cloning site for the introduction of exogenous sequences and an antibiotic resistance marker (either chloramphenicol or kanamycin) for selection of positive recombinants. The resistance marker can subsequently be removed by flippase-mediated recombination. The insertion cassette is flanked by hairpin loops to isolate it from the effects of external transcription at the integration locus. To characterize each target locus, a xylanase reporter gene (xynA) was integrated onto the chromosomes of E. coli strains W and K-12 using the KIKO vectors. Expression levels varied between loci, with the arsB locus consistently showing the highest level of expression. To demonstrate the simultaneous use of all three loci in one strain, xynA, green fluorescent protein (gfp) and a sucrose catabolic operon (cscAKB) were introduced into lacZ, arsB and rbsAR respectively, and shown to be functional. The KIKO plasmids are a useful tool for efficient integration of large DNA fragments (including multiple genes and pathways) into E. coli. Chromosomal insertion provides stable

  6. Mapping of a novel QTL for resistance to cereal cyst nematode in wheat.

    PubMed

    Williams, K J; Willsmore, K L; Olson, S; Matic, M; Kuchel, H

    2006-05-01

    Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereals that can cause severe yield losses in intolerant wheat cultivars. Loci for resistance to CCN, measured by a seedling bioassay, were identified by creating a genetic map based on a Trident/Molineux doubled haploid population of 182 lines. A novel locus accounting for up to 14% of the resistance to CCN was mapped to chromosome 1B of Molineux by association with microsatellite marker loci Xwmc719 and Xgwm140. This locus acts additively with the previously identified CCN resistance loci identified on chromosomes 6B (Cre8) and 2A (Cre5 on the VPM1 segment) in this population to explain 44% of the genetic variance for this major wheat pathogen.

  7. Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci.

    PubMed

    Yang, Q; Khoury, M J; Atkinson, M; Sun, F; Cheng, R; Flanders, W D

    1999-01-01

    We used a case-control design to scan the genome for any associations between genetic markers and disease susceptibility loci using the first two replicates of the Mycenaean population from the GAW11 (Problem 2) data. Using a case-control approach, we constructed a series of 2-by-3 tables for each allele of every marker on all six chromosomes. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated for all alleles of every marker. We selected the one allele for which the estimated OR had the minimum p-value to plot in the graph. Among these selected ORs, we calculated 95% CI for those that had a p-value < or = adjusted alpha level. Significantly high ORs were taken to indicate an association between a marker locus and a suspected disease-susceptibility gene. For the Mycenaean population, the case-control design identified allele number 1 of marker 24 on chromosome 1 to be associated with a disease susceptibility gene, OR = 2.10 (95% CI 1.66-2.62). Our approach failed to show any other significant association between case-control status and genetic markers. Stratified analysis on the environmental risk factor (E1) provided no further evidence of significant association other than allele 1 of marker 24 on chromosome 1. These data indicate the absence of linkage disequilibrium for markers flanking loci A, B, and C. Finally, we examined the effect of gene x environment (G x E) interaction for the identified allele. Our results provided no evidence of G x E interaction, but suggested that the environmental exposure alone was a risk factor for the disease.

  8. Identification of genomic region controlling resistance to aflatoxin contamination in a peanut recombinant inbred line population (Tifrunner x GT-C20)

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut is a significant threat to global food safety. In this study we performed quantitative trait loci (QTL) analysis to identify peanut genomic regions contributing to aflatoxin contamination resistance in a recombinant inbred line (RIL) population derived from the Tifr...

  9. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    PubMed

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  10. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping

    PubMed Central

    Yu, Long-Xi

    2017-01-01

    Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses. PMID:28706532

  11. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    PubMed Central

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  12. A genome-wide association meta-analysis identifies new childhood obesity loci

    PubMed Central

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627

  13. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    PubMed Central

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa; Hara, Kazuo; Yasuda, Kazuki; Grarup, Niels; Zhao, Wei; Wang, Xu; Huerta-Chagoya, Alicia; Hu, Cheng; Moon, Sanghoon; Long, Jirong; Kwak, Soo Heon; Rasheed, Asif; Saxena, Richa; Ma, Ronald C. W.; Okada, Yukinori; Iwata, Minoru; Hosoe, Jun; Shojima, Nobuhiro; Iwasaki, Minaka; Fujita, Hayato; Suzuki, Ken; Danesh, John; Jørgensen, Torben; Jørgensen, Marit E.; Witte, Daniel R.; Brandslund, Ivan; Christensen, Cramer; Hansen, Torben; Mercader, Josep M.; Flannick, Jason; Moreno-Macías, Hortensia; Burtt, Noël P.; Zhang, Rong; Kim, Young Jin; Zheng, Wei; Singh, Jai Rup; Tam, Claudia H. T.; Hirose, Hiroshi; Maegawa, Hiroshi; Ito, Chikako; Kaku, Kohei; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kawamori, Ryuzo; Kubo, Michiaki; Cho, Yoon Shin; Chan, Juliana C. N.; Sanghera, Dharambir; Frossard, Philippe; Park, Kyong Soo; Shu, Xiao-Ou; Kim, Bong-Jo; Florez, Jose C.; Tusié-Luna, Teresa; Jia, Weiping; Tai, E Shyong; Pedersen, Oluf; Saleheen, Danish; Maeda, Shiro; Kadowaki, Takashi

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P<5 × 10−8), rs1116357 near CCDC85A, rs147538848 in FAM60A, rs1575972 near DMRTA1, rs9309245 near ASB3, rs67156297 near ATP8B2, rs7107784 near MIR4686 and rs67839313 near INAFM2. Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P<0.007). These results indicate that expansion of single ethnic GWAS is still useful to identify novel susceptibility loci to complex traits not only for ethnicity-specific loci but also for common loci across different ethnicities. PMID:26818947

  14. The association of 22 Y chromosome short tandem repeat loci with initiative-aggressive behavior.

    PubMed

    Yang, Chun; Ba, Huajie; Zhang, Wei; Zhang, Shuyou; Zhao, Hanqing; Yu, Haiying; Gao, Zhiqin; Wang, Binbin

    2018-05-15

    Aggressive behavior represents an important public concern and a clinical challenge to behaviorists and psychiatrists. Aggression in humans is known to have an important genetic basis, so to investigate the association of Y chromosome short tandem repeat (Y-STR) loci with initiative-aggressive behavior, we compared allelic and haplotypic distributions of 22 Y-STRs in a group of Chinese males convicted of premeditated extremely violent crimes (n = 271) with a normal control group (n = 492). Allelic distributions of DYS533 and DYS437 loci differed significantly between the two groups (P < 0.05). The case group had higher frequencies of DYS533 allele 14, DYS437 allele 14, and haplotypes 11-14 of DYS533-DYS437 compared with the control group. Additionally, the DYS437 allele 15 frequency was significantly lower in cases than controls. No frequency differences were observed in the other 20 Y-STR loci between these two groups. Our results indicate a genetic role for Y-STR loci in the development of initiative aggression in non-psychiatric subjects. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    PubMed

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  16. RFLP Mapping of Genes Conferring Complete and Partial Resistance to Blast in a Durably Resistant Rice Cultivar

    PubMed Central

    Wang, G. L.; Mackill, D. J.; Bonman, J. M.; McCouch, S. R.; Champoux, M. C.; Nelson, R. J.

    1994-01-01

    Moroberekan, a japonica rice cultivar with durable resistance to blast disease in Asia, was crossed to the highly susceptible indica cultivar, CO39, and 281 F(7) recombinant inbred (RI) lines were produced by single seed descent. The population was evaluated for blast resistance in the greenhouse and the field, and was analyzed with 127 restriction fragment length polymorphism (RFLP) markers. Two dominant loci associated with qualitative resistance to five isolates of the fungus were tentatively named Pi-5(t) and Pi-7(t). They were mapped on chromosomes 4 and 11, respectively. To identify quantitative trait loci (QTLs) affecting partial resistance, RI lines were inoculated with isolate PO6-6 of Pyricularia oryzae in polycyclic tests. Ten chromosomal segments were found to be associated with effects on lesion number (P < 0.0001 and LOD > 6.0). Three of the markers associated with QTLs for partial resistance had been reported to be linked to complete blast resistance in previous studies. QTLs identified in greenhouse tests were good predictors of blast resistance at two field sites. This study illustrates the usefulness of RI lines for mapping a complex trait such as blast resistance and suggests that durable resistance in the traditional variety, Moroberekan, involves a complex of genes associated with both partial and complete resistance. PMID:7912216

  17. Origin of negative resistance in anion migration controlled resistive memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Wu, Facai; Hu, Yuan; Wu, Quantan; Wu, Zuheng; Liu, Qi; Liu, Ming

    2018-03-01

    Resistive random access memory (RRAM) is one of the most promising emerging nonvolatile technologies for the futuristic memory devices. Resistive switching behavior often shows negative resistance (NR), either voltage controlled or current controlled. In this work, the origin of a current compliance dependent voltage controlled NR effect during the resetting of anion migration based RRAM devices is discussed. The N-type voltage controlled NR is a high field driven phenomena. The current conduction within the range of a certain negative voltage is mostly dominated by space charge limited current. But with the higher negative voltage, a field induced tunneling effect is generated in the NR region. The voltage controlled NR is strongly dependent on the compliance current. The area independent behavior indicates the filamentary switching. The peak to valley ratio (PVR) is > 5. The variation of PVR as a function of the conduction band offset is achieved. Compared to other reported works, based on the PVR, it is possible to distinguish the RRAM types. Generally, due to the higher electric field effect on the metallic bridge during RESET, the electrochemical metallization type RRAM shows much higher PVR than the valance change type RRAM.

  18. Large-scale association analyses identifies 13 new susceptibility loci for coronary artery disease

    PubMed Central

    Schunkert, Heribert; König, Inke R.; Kathiresan, Sekar; Reilly, Muredach P.; Assimes, Themistocles L.; Holm, Hilma; Preuss, Michael; Stewart, Alexandre F. R.; Barbalic, Maja; Gieger, Christian; Absher, Devin; Aherrahrou, Zouhair; Allayee, Hooman; Altshuler, David; Anand, Sonia S.; Andersen, Karl; Anderson, Jeffrey L.; Ardissino, Diego; Ball, Stephen G.; Balmforth, Anthony J.; Barnes, Timothy A.; Becker, Diane M.; Becker, Lewis C.; Berger, Klaus; Bis, Joshua C.; Boekholdt, S. Matthijs; Boerwinkle, Eric; Braund, Peter S.; Brown, Morris J.; Burnett, Mary Susan; Buysschaert, Ian; Carlquist, Cardiogenics, John F.; Chen, Li; Cichon, Sven; Codd, Veryan; Davies, Robert W.; Dedoussis, George; Dehghan, Abbas; Demissie, Serkalem; Devaney, Joseph M.; Do, Ron; Doering, Angela; Eifert, Sandra; El Mokhtari, Nour Eddine; Ellis, Stephen G.; Elosua, Roberto; Engert, James C.; Epstein, Stephen E.; Faire, Ulf de; Fischer, Marcus; Folsom, Aaron R.; Freyer, Jennifer; Gigante, Bruna; Girelli, Domenico; Gretarsdottir, Solveig; Gudnason, Vilmundur; Gulcher, Jeffrey R.; Halperin, Eran; Hammond, Naomi; Hazen, Stanley L.; Hofman, Albert; Horne, Benjamin D.; Illig, Thomas; Iribarren, Carlos; Jones, Gregory T.; Jukema, J.Wouter; Kaiser, Michael A.; Kaplan, Lee M.; Kastelein, John J.P.; Khaw, Kay-Tee; Knowles, Joshua W.; Kolovou, Genovefa; Kong, Augustine; Laaksonen, Reijo; Lambrechts, Diether; Leander, Karin; Lettre, Guillaume; Li, Mingyao; Lieb, Wolfgang; Linsel-Nitschke, Patrick; Loley, Christina; Lotery, Andrew J.; Mannucci, Pier M.; Maouche, Seraya; Martinelli, Nicola; McKeown, Pascal P.; Meisinger, Christa; Meitinger, Thomas; Melander, Olle; Merlini, Pier Angelica; Mooser, Vincent; Morgan, Thomas; Mühleisen, Thomas W.; Muhlestein, Joseph B.; Münzel, Thomas; Musunuru, Kiran; Nahrstaedt, Janja; Nelson, Christopher P.; Nöthen, Markus M.; Olivieri, Oliviero; Patel, Riyaz S.; Patterson, Chris C.; Peters, Annette; Peyvandi, Flora; Qu, Liming; Quyyumi, Arshed A.; Rader, Daniel J.; Rallidis, Loukianos S.; Rice, Catherine; Rosendaal, Frits R.; Rubin, Diana; Salomaa, Veikko; Sampietro, M. Lourdes; Sandhu, Manj S.; Schadt, Eric; Schäfer, Arne; Schillert, Arne; Schreiber, Stefan; Schrezenmeir, Jürgen; Schwartz, Stephen M.; Siscovick, David S.; Sivananthan, Mohan; Sivapalaratnam, Suthesh; Smith, Albert; Smith, Tamara B.; Snoep, Jaapjan D.; Soranzo, Nicole; Spertus, John A.; Stark, Klaus; Stirrups, Kathy; Stoll, Monika; Tang, W. H. Wilson; Tennstedt, Stephanie; Thorgeirsson, Gudmundur; Thorleifsson, Gudmar; Tomaszewski, Maciej; Uitterlinden, Andre G.; van Rij, Andre M.; Voight, Benjamin F.; Wareham, Nick J.; Wells, George A.; Wichmann, H.-Erich; Wild, Philipp S.; Willenborg, Christina; Witteman, Jaqueline C. M.; Wright, Benjamin J.; Ye, Shu; Zeller, Tanja; Ziegler, Andreas; Cambien, Francois; Goodall, Alison H.; Cupples, L. Adrienne; Quertermous, Thomas; März, Winfried; Hengstenberg, Christian; Blankenberg, Stefan; Ouwehand, Willem H.; Hall, Alistair S.; Deloukas, Panos; Thompson, John R.; Stefansson, Kari; Roberts, Robert; Thorsteinsdottir, Unnur; O’Donnell, Christopher J.; McPherson, Ruth; Erdmann, Jeanette; Samani, Nilesh J.

    2011-01-01

    We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 cases and 64,762 controls of European descent, followed by genotyping of top association signals in 60,738 additional individuals. This genomic analysis identified 13 novel loci harboring one or more SNPs that were associated with CAD at P<5×10−8 and confirmed the association of 10 of 12 previously reported CAD loci. The 13 novel loci displayed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6 to 17 percent increase in the risk of CAD per allele. Notably, only three of the novel loci displayed significant association with traditional CAD risk factors, while the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the novel CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits. PMID:21378990

  19. CD uniformity control for thick resist process

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2017-03-01

    In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.

  20. Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans.

    PubMed

    Yang, Suk-Kyun; Hong, Myunghee; Choi, Hyunchul; Zhao, Wanting; Jung, Yusun; Haritunians, Talin; Ye, Byong Duk; Kim, Kyung-Jo; Park, Sang Hyoung; Lee, Inchul; Kim, Won Ho; Cheon, Jae Hee; Kim, Young-Ho; Jang, Byung Ik; Kim, Hyun-Soo; Choi, Jai Hyun; Koo, Ja Seol; Lee, Ji Hyun; Jung, Sung-Ae; Shin, Hyoung Doo; Kang, Daehee; Youn, Hee-Shang; Taylor, Kent D; Rotter, Jerome I; Liu, Jianjun; McGovern, Dermot P B; Song, Kyuyoung

    2015-01-01

    Crohn's disease (CD) is an intractable inflammatory bowel disease of unknown cause. Recent genome-wide association studies of CD in Korean and Japanese populations suggested marginal sharing of susceptibility loci between Caucasian and Asian populations. As the 7 identified loci altogether explain 5.31% of the risk for CD, the objective of this study was to identify additional CD susceptibility loci in the Korean population. Using the ImmunoChip custom single-nucleotide polymorphism array designed for dense genotyping of 186 loci identified through GWAS, we analyzed 722 individuals with CD and 461 controls for 96,048 SNP markers in the discovery stage, followed by validation in an additional 948 affected individuals and 977 controls. We confirmed 6 previously reported loci in Caucasian: GPR35 at 2q37 (rs3749172; P = 5.30 × 10, odds ratio [OR] = 1.45), ZNF365 at 10q21 (rs224143; P = 2.20 × 10, OR = 1.38), ZMIZ1 at 10q22 (rs1250569; P = 3.05 × 10, OR = 1.30), NKX2-3 at 10q24 (rs4409764; P = 7.93 × 10, OR = 1.32), PTPN2 at 18p11 (rs514000; P = 9.00 × 10, OR = 1.33), and USP25 at 21q11 (rs2823256; P = 2.49 × 10, OR = 1.35), bringing the number of known CD loci (including 3 in the HLA) in Koreans to 15. The 6 additional loci increased the total genetic variance for CD risk from 5.31% to 7.27% in Koreans. Although the different genetic backgrounds of CD between Asian and Western countries has been well established for the major susceptibility genes, our findings of overlapping associations offer new insights into the genetic architecture of CD.

  1. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes

    PubMed Central

    Dimkpa, Stanley O. N.; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H.

    2016-01-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. PMID:26552884

  2. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn disease susceptibility

    PubMed Central

    Parkes, Miles; Barrett, Jeffrey C; Prescott, Natalie; Tremelling, Mark; Anderson, Carl A; Fisher, Sheila A; Roberts, Roland G; Nimmo, Elaine R; Cummings, Fraser R; Soars, Dianne; Drummond, Hazel; Lees, Charlie W; Khawaja, Saud A; Bagnall, Richard; Burke, Denis A; Todhunter, Catherine E; Ahmad, Tariq; Onnie, Clive M; McArdle, Wendy; Strachan, David; Bethel, Graeme; Bryan, Claire; Deloukas, Panos; Forbes, Alastair; Sanderson, Jeremy; Jewell, Derek P; Satsangi, Jack; Mansfield, John C; Cardon, Lon; Mathew, Christopher G

    2008-01-01

    A genome-wide association scan in Crohn disease by the Wellcome Trust Case Control Consortium1 detected strong association at 6 novel loci. We tested 37 SNPs from these and other loci for association in an independent case control sample. Replication was obtained for the IRGM gene on chromosome 5q33.1 which induces autophagy (replication P = 6.6 × 10−4, combined P = 2.1 × 10−10), and for 9 other loci including NKX2-3 and gene deserts on chromosomes 1q and 5p13. PMID:17554261

  3. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    PubMed Central

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  4. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.

    PubMed

    Andlauer, Till F M; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A; Loleit, Verena; Luessi, Felix; Meuth, Sven G; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-06-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.

  5. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    PubMed Central

    Andlauer, Till F. M.; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A.; Loleit, Verena; Luessi, Felix; Meuth, Sven G.; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H.; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K.; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O.; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B.; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M.; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M.; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-01-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis. PMID:27386562

  6. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    PubMed

    Carhuatanta, Kimberly A K; Shea, Chloe J A; Herman, James P; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  7. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    PubMed Central

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516

  8. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum

    PubMed Central

    Sallam, Ahmad H.; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J.; Hulse, Alex; Steffenson, Brian J.

    2017-01-01

    Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1, losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici, Pgt) and one isolate (92-MN-90) of the rye stem rust pathogen (P. graminis f. sp. secalis, Pgs). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis. A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. PMID:28855281

  9. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum.

    PubMed

    Sallam, Ahmad H; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J; Hulse, Alex; Steffenson, Brian J

    2017-10-05

    Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1 , losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum ) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen ( Puccinia graminis f. sp. tritici , Pgt ) and one isolate (92-MN-90) of the rye stem rust pathogen ( P. graminis f. sp. secalis , Pgs ). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. Copyright © 2017 Sallam et al.

  10. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer.

    PubMed

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J; Phelan, Catherine M; Goode, Ellen L; Lawrenson, Kate; Buckley, Melissa; Fridley, Brooke L; Tyrer, Jonathan P; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C; Song, Honglin; Tessier, Daniel C; Bacot, François; Vincent, Daniel; Cunningham, Julie M; Dennis, Joe; Dicks, Ed; Aben, Katja K; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M; Baglietto, Laura; Bandera, Elisa V; Beckmann, Matthias W; Birrer, Michael J; Bloom, Greg; Bogdanova, Natalia; Brenton, James D; Brinton, Louise A; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S; Chang-Claude, Jenny; Chen, Y Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S; Coetzee, Gerhard; Cook, Linda S; Cramer, Daniel W; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B; Fasching, Peter A; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne Krüger; Konecny, Gottfried E; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Nakanishi, Toru; Narod, Steven A; Ness, Roberta B; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; van Altena, Anne M; van den Berg, David; Vergote, Ignace; Vierkant, Robert A; Vitonis, Allison F; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N A; Gayther, Simon A; Schildkraut, Joellen M; Sellers, Thomas A

    2013-04-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.

  11. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    PubMed Central

    Pharoah, Paul D. P.; Tsai, Ya-Yu; Ramus, Susan J.; Phelan, Catherine M.; Goode, Ellen L.; Lawrenson, Kate; Price, Melissa; Fridley, Brooke L.; Tyrer, Jonathan P.; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C.; Song, Honglin; Tessier, Daniel C.; Bacot, François; Vincent, Daniel; Cunningham, Julie M.; Dennis, Joe; Dicks, Ed; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M.; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brenton, James D.; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S.; Chang-Claude, Jenny; Chen, Y. Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S.; Coetzee, Gerhard; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K.; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne Krüger; Konecny, Gottfried E.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C.; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S.; van Altena, Anne M.; Berg, David Van Den; Vergote, Ignace; Vierkant, Robert A.; Vitonis, Allison F.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T.; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N.A.; Gayther, Simon A.; Schildkraut, Joellen M.; Sellers, Thomas A.

    2013-01-01

    Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer. PMID:23535730

  12. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47.

    PubMed

    Anderson, Carl A; Boucher, Gabrielle; Lees, Charlie W; Franke, Andre; D'Amato, Mauro; Taylor, Kent D; Lee, James C; Goyette, Philippe; Imielinski, Marcin; Latiano, Anna; Lagacé, Caroline; Scott, Regan; Amininejad, Leila; Bumpstead, Suzannah; Baidoo, Leonard; Baldassano, Robert N; Barclay, Murray; Bayless, Theodore M; Brand, Stephan; Büning, Carsten; Colombel, Jean-Frédéric; Denson, Lee A; De Vos, Martine; Dubinsky, Marla; Edwards, Cathryn; Ellinghaus, David; Fehrmann, Rudolf S N; Floyd, James A B; Florin, Timothy; Franchimont, Denis; Franke, Lude; Georges, Michel; Glas, Jürgen; Glazer, Nicole L; Guthery, Stephen L; Haritunians, Talin; Hayward, Nicholas K; Hugot, Jean-Pierre; Jobin, Gilles; Laukens, Debby; Lawrance, Ian; Lémann, Marc; Levine, Arie; Libioulle, Cecile; Louis, Edouard; McGovern, Dermot P; Milla, Monica; Montgomery, Grant W; Morley, Katherine I; Mowat, Craig; Ng, Aylwin; Newman, William; Ophoff, Roel A; Papi, Laura; Palmieri, Orazio; Peyrin-Biroulet, Laurent; Panés, Julián; Phillips, Anne; Prescott, Natalie J; Proctor, Deborah D; Roberts, Rebecca; Russell, Richard; Rutgeerts, Paul; Sanderson, Jeremy; Sans, Miquel; Schumm, Philip; Seibold, Frank; Sharma, Yashoda; Simms, Lisa A; Seielstad, Mark; Steinhart, A Hillary; Targan, Stephan R; van den Berg, Leonard H; Vatn, Morten; Verspaget, Hein; Walters, Thomas; Wijmenga, Cisca; Wilson, David C; Westra, Harm-Jan; Xavier, Ramnik J; Zhao, Zhen Z; Ponsioen, Cyriel Y; Andersen, Vibeke; Torkvist, Leif; Gazouli, Maria; Anagnou, Nicholas P; Karlsen, Tom H; Kupcinskas, Limas; Sventoraityte, Jurgita; Mansfield, John C; Kugathasan, Subra; Silverberg, Mark S; Halfvarson, Jonas; Rotter, Jerome I; Mathew, Christopher G; Griffiths, Anne M; Gearry, Richard; Ahmad, Tariq; Brant, Steven R; Chamaillard, Mathias; Satsangi, Jack; Cho, Judy H; Schreiber, Stefan; Daly, Mark J; Barrett, Jeffrey C; Parkes, Miles; Annese, Vito; Hakonarson, Hakon; Radford-Smith, Graham; Duerr, Richard H; Vermeire, Séverine; Weersma, Rinse K; Rioux, John D

    2011-03-01

    Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P < 5 × 10(-8)), increasing the number of ulcerative colitis-associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association signals between Crohn's disease and ulcerative colitis.

  13. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.

    PubMed

    Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal

    2016-04-01

    The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.

  14. LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris.

    PubMed

    Castelblanque, Lourdes; Balaguer, Begoña; Marti, Cristina; Orozco, Marianela; Vera, Pablo

    2018-06-07

    Laticifers are specialized plant cells capable of indefinite elongation that ramify extensively and are responsible for latex biosynthesis and accumulation. However, the mechanisms underlying laticifer cell differentiation, growth and production of latex remain largely unknown. In a search for mutants showing enhanced accumulation of latex we identified two LOT OF LATEX (LOL) loci in Euphorbia lathyris. lol2 and lol5 mutants show enhanced production of latex contained within laticifer cells. The recessive lol2 mutant carries increased biosynthesis of the plant hormone jasmonoyl-isoleucine (JA-Ile) and therefore establishes a genetic link between jasmonic acid (JA) signaling and latex production in laticifers. Instead, heightened production of latex in lol5 plants obeys to enhanced proliferation of laticifer cells. Phylogenetic analysis of laticifer-expressed genes in E. lathyris and in two other latex-bearing species, Euphorbia corallioides and Euphorbia palustris, allowed the identification of canonical JA responsive elements present in the gene promoter regions of laticifer marker genes. Moreover, we identified that the hormone JA functions not as a morphogen for laticifer differentiation but as a trigger for the fill out of laticifers with latex and the associated triterpenoids. The identification of LOL loci represents a further step towards the understanding of mechanisms controlling latex production in laticifer cells. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  15. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    PubMed Central

    Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur; Morris, Andrew P; Dina, Christian; Welch, Ryan P; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S; Thorleifsson, Gudmar; McCulloch, Laura J; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J; Raychaudhuri, Soumya; McCarroll, Steve A; Langenberg, Claudia; Hofmann, Oliver M; Dupuis, Josée; Qi, Lu; Segrè, Ayellet V; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L; Boström, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noisël P; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn; Couper, David J; Crawford, Gabe; Doney, Alex S F; Elliott, Katherine S; Elliott, Amanda L; Erdos, Michael R; Fox, Caroline S; Franklin, Christopher S; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U; Johnson, Paul R V; Jørgensen, Torben; Kao, Wen H L; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Payne, Felicity; Perry, John R B; Petersen, Ann-Kristin; Platou, Carl; Proença, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N William; Robertson, Neil R; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J; Saxena, Richa; Shields, Beverley M; Shrader, Peter; Sigurdsson, Gunnar; Sparsø, Thomas; Strassburger, Klaus; Stringham, Heather M; Sun, Qi; Swift, Amy J; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M; van Haeften, Timon W; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V; Walters, G Bragi; Weedon, Michael N; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N; Cauchi, Stephane; Collins, Francis S; Gloyn, Anna L; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A; Hitman, Graham A; Hofman, Albert; Hunter, David J; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L; Morris, Andrew D; Palmer, Colin N A; Pramstaller, Peter P; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J; Watanabe, Richard M; Abecasis, Gonçalo R; Boehm, Bernhard O; Campbell, Harry; Daly, Mark J; Hattersley, Andrew T; Hu, Frank B; Meigs, James B; Pankow, James S; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Inês; Florez, Jose C; Frayling, Timothy M; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I

    2011-01-01

    By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits. PMID:20581827

  16. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal.

    PubMed

    Poudel, Ajay; Maharjan, Bhagwan; Nakajima, Chie; Fukushima, Yukari; Pandey, Basu D; Beneke, Antje; Suzuki, Yasuhiko

    2013-01-01

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    PubMed

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  18. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    PubMed

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  19. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  20. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry.

    PubMed

    Sun, Celi; Molineros, Julio E; Looger, Loren L; Zhou, Xu-Jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-Yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M; Wren, Jonathan D; Harley, John B; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K

    2016-03-01

    Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.

  1. Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management

    PubMed Central

    Hemmings, Kay; Hughes, Angela J.; Chanda, Emmanuel; Musapa, Mulenga; Kamuliwo, Mulakwa; Phiri, Faustina N.; Muzia, Lucy; Chanda, Javan; Kandyata, Alister; Chirwa, Brian; Poer, Kathleen; Hemingway, Janet; Wondji, Charles S.; Ranson, Hilary; Coleman, Michael

    2014-01-01

    Background There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan. PMID:24932861

  2. Genetic Mapping of Quantitative Trait Loci for Grain Yield under Drought in Rice under Controlled Greenhouse Conditions

    NASA Astrophysics Data System (ADS)

    Solis, Julio; Gutierrez, Andres; Mangu, Venkata; Sanchez, Eduardo; Bedre, Renesh; Linscombe, Steve; Baisakh, Niranjan

    2017-12-01

    Drought stress is a constant threat to rice production worldwide. Most Mmodern rice cultivars are sensitive to drought, and the effect is severe at the reproductive stage. Conventional breeding for drought resistant (DR) rice varieties is slow and limited due to the quantitative nature of the DR traits. Identification of genes (QTLs)/markers associated with DR traits is a prerequisite for marker-assisted breeding. Grain yield is the most important trait and to this end drought yield QTLs have been identified under field conditions. The present study reports identification of drought yield QTLs under controlled conditions without confounding effects of other factors prevalent under natural conditions. A linkage map covering 1,781.5 cM with an average resolution of 9.76 cM was constructed using an F2 population from a cross between two Japonica cultivars, Cocodrie (drought sensitive) and Vandana (drought tolerant) with 213 markers distributed over 12 rice chromosomes. A subset of 59 markers (22 genic SSRs and 37 SNPs) derived from the transcriptome of the parents were also placed in the map. Single marker analysis using 187 F2:3 progeny identified 6 markers distributed on chromosomes 1, 5, and 8 to be associated with grain yield under drought (GYD). Composite interval mapping identified six genomic regions/quantitative trait loci (QTL) on chromosome 1, 5, 8, and 9 to be associated with GYD. QTLs located on chromosome 1 (qGYD1.2, qGYD1.3), chromosome 5 (qGYD5.1) and chromosome 8 (qGYD8.1) were contributed by Vandana alleles, whereas the QTLs, qGYD1.1 and qQYD9.1 were contributed by Cocodrie alelles. The additive positive phenotypic variance explained by the QTLs ranged from 30.0% to 34.0%. Candidate genes annotation within QTLs suggested the role of transcription factors and genes involved in osmotic potential regulation through catalytic/metabolic pathways in drought resistance tolerance mechanism contributing to yield.

  3. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  4. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  5. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    PubMed Central

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson LS; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances MK; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-01-01

    Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility. PMID:22504420

  6. Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems.

    PubMed

    Zvinorova, P I; Halimani, T E; Muchadeyi, F C; Matika, O; Riggio, V; Dzama, K

    2016-07-30

    The control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium

  7. A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease

    PubMed Central

    2011-01-01

    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5×10−10, PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci. PMID:21738488

  8. Genome-wide Analysis of Genetic Loci Associated with Alzheimer’s Disease

    PubMed Central

    Seshadri, Sudha; Fitzpatrick, Annette L.; Arfan Ikram, M; DeStefano, Anita L.; Gudnason, Vilmundur; Boada, Merce; Bis, Joshua C.; Smith, Albert V.; Carassquillo, Minerva M.; Charles Lambert, Jean; Harold, Denise; Schrijvers, Elisabeth M. C.; Ramirez-Lorca, Reposo; Debette, Stephanie; Longstreth, W.T.; Janssens, A. Cecile J.W.; Shane Pankratz, V.; Dartigues, Jean François; Hollingworth, Paul; Aspelund, Thor; Hernandez, Isabel; Beiser, Alexa; Kuller, Lewis H.; Koudstaal, Peter J.; Dickson, Dennis W.; Tzourio, Christophe; Abraham, Richard; Antunez, Carmen; Du, Yangchun; Rotter, Jerome I.; Aulchenko, Yurii S.; Harris, Tamara B.; Petersen, Ronald C.; Berr, Claudine; Owen, Michael J.; Lopez-Arrieta, Jesus; Varadarajan, Badri N.; Becker, James T.; Rivadeneira, Fernando; Nalls, Michael A.; Graff-Radford, Neill R.; Campion, Dominique; Auerbach, Sanford; Rice, Kenneth; Hofman, Albert; Jonsson, Palmi V.; Schmidt, Helena; Lathrop, Mark; Mosley, Thomas H.; Au, Rhoda; Psaty, Bruce M.; Uitterlinden, Andre G.; Farrer, Lindsay A.; Lumley, Thomas; Ruiz, Agustin; Williams, Julie; Amouyel, Philippe; Younkin, Steve G.; Wolf, Philip A.; Launer, Lenore J.; Lopez, Oscar L.; van Duijn, Cornelia M.; Breteler, Monique M. B.

    2010-01-01

    Context Genome wide association studies (GWAS) have recently identified CLU, PICALM and CR1 as novel genes for late-onset Alzheimer’s disease (AD). Objective In a three-stage analysis of new and previously published GWAS on over 35000 persons (8371 AD cases), we sought to identify and strengthen additional loci associated with AD and confirm these in an independent sample. We also examined the contribution of recently identified genes to AD risk prediction. Design, Setting, and Participants We identified strong genetic associations (p<10−3) in a Stage 1 sample of 3006 AD cases and 14642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium (1367 AD cases (973 incident)) with previously reported results from the Translational Genomics Research Institute (TGEN) and Mayo AD GWAS. We identified 2708 single nucleotide polymorphisms (SNPs) with p-values<10−3, and in Stage 2 pooled results for these SNPs with the European AD Initiative (2032 cases, 5328 controls) to identify ten loci with p-values<10−5. In Stage 3, we combined data for these ten loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases, 6995 controls) to identify four SNPs with a p-value<1.7×10−8. These four SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Main outcome measure Alzheimer’s Disease. Results We showed genome-wide significance for two new loci: rs744373 near BIN1 (OR:1.13; 95%CI:1.06–1.21 per copy of the minor allele; p=1.6×10−11) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR:1.18; 95%CI1.07–1.29; p=6.5×10−9). Associations of CLU, PICALM, BIN1 and EXOC3L2 with AD were confirmed in the Spanish sample (p<0.05). However, CLU and PICALM did not improve incident AD prediction beyond age, sex, and APOE (improvement in area under receiver-operating-characteristic curve <0.003). Conclusions Two novel genetic loci for AD are reported

  9. Remote Symbolic Computation of Loci

    ERIC Educational Resources Information Center

    Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco

    2010-01-01

    This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…

  10. Genome-wide association study of colorectal cancer identifies six new susceptibility loci.

    PubMed

    Schumacher, Fredrick R; Schmit, Stephanie L; Jiao, Shuo; Edlund, Christopher K; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P; Harju, John F; Idos, Gregory E; Lejbkowicz, Flavio; Manion, Frank J; McDonnell, Kevin; McNeil, Caroline E; Melas, Marilena; Rennert, Hedy S; Shi, Wei; Thomas, Duncan C; Van Den Berg, David J; Hutter, Carolyn M; Aragaki, Aaron K; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Chanock, Stephen J; Curtis, Keith R; Fuchs, Charles S; Gala, Manish; Giovannucc, Edward L; Giocannucci, Edward L; Gogarten, Stephanie M; Hayes, Richard B; Henderson, Brian; Hunter, David J; Jackson, Rebecca D; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Kury, Sebastian; LaCroix, Andrea; Laurie, Cathy C; Laurie, Cecelia A; Lemire, Mathieu; Lemire, Mathiew; Levine, David; Ma, Jing; Makar, Karen W; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M; Wu, Kana; Kono, Suminori; West, Dee W; Berndt, Sonja I; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Coetzee, Gerhard A; Conti, David V; Duggan, David; Figueiredo, Jane C; Fortini, Barbara K; Gallinger, Steven J; Gauderman, W James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A; Potter, John D; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B; Peters, Ulrike

    2015-07-07

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.

  11. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus.

    PubMed

    Julià, Antonio; López-Longo, Francisco Javier; Pérez Venegas, José J; Bonàs-Guarch, Silvia; Olivé, Àlex; Andreu, José Luís; Aguirre-Zamorano, Mª Ángeles; Vela, Paloma; Nolla, Joan M; de la Fuente, José Luís Marenco; Zea, Antonio; Pego-Reigosa, José María; Freire, Mercedes; Díez, Elvira; Rodríguez-Almaraz, Esther; Carreira, Patricia; Blanco, Ricardo; Taboada, Víctor Martínez; López-Lasanta, María; Corbeto, Mireia López; Mercader, Josep M; Torrents, David; Absher, Devin; Marsal, Sara; Fernández-Nebro, Antonio

    2018-05-30

    Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10 - 8 ): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10 - 6 ), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10 - 5 ), interleukin-4 signaling (p = 3.97 × 10 - 5 ) and cell surface interactions at the vascular wall (p = 4.63 × 10 - 5 ). Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.

  12. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V.

    PubMed

    Achenbach, Ute; Paulo, Joao; Ilarionova, Evgenyia; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2009-02-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the 'HC' marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family.

  13. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.).

    PubMed

    Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D

    2014-07-01

    Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.

  14. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii

    USDA-ARS?s Scientific Manuscript database

    Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple; however, resistance has been described in wild Malus sieversii accessions...

  15. Refining Susceptibility Loci of Chronic Obstructive Pulmonary Disease with Lung eqtls

    PubMed Central

    Lamontagne, Maxime; Couture, Christian; Postma, Dirkje S.; Timens, Wim; Sin, Don D.; Paré, Peter D.; Hogg, James C.; Nickle, David; Laviolette, Michel; Bossé, Yohan

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found. The goal of this study was to identify causal genes/variants within susceptibility loci associated with COPD. In the discovery cohort, genome-wide gene expression profiles of 500 non-tumor lung specimens were obtained from patients undergoing lung surgery. Blood-DNA from the same patients were genotyped for 1,2 million SNPs. Following genotyping and gene expression quality control filters, 409 samples were analyzed. Lung expression quantitative trait loci (eQTLs) were identified and overlaid onto three COPD susceptibility loci derived from GWAS; 4q31 (HHIP), 4q22 (FAM13A), and 19q13 (RAB4B, EGLN2, MIA, CYP2A6). Significant eQTLs were replicated in two independent datasets (n = 363 and 339). SNPs previously associated with COPD and lung function on 4q31 (rs1828591, rs13118928) were associated with the mRNA expression of HHIP. An association between mRNA expression level of FAM13A and SNP rs2045517 was detected at 4q22, but did not reach statistical significance. At 19q13, significant eQTLs were detected with EGLN2. In summary, this study supports HHIP, FAM13A, and EGLN2 as the most likely causal COPD genes on 4q31, 4q22, and 19q13, respectively. Strong lung eQTL SNPs identified in this study will need to be tested for association with COPD in case-control studies. Further functional studies will also be needed to understand the role of genes regulated by disease-related variants in COPD. PMID:23936167

  16. Investigation of Crohn’s Disease Risk Loci in Ulcerative Colitis Further Defines Their Molecular Relationship

    PubMed Central

    ANDERSON, CARL A.; MASSEY, DUNECAN C. O.; BARRETT, JEFFREY C.; PRESCOTT, NATALIE J.; TREMELLING, MARK; FISHER, SHEILA A.; GWILLIAM, RHIAN; JACOB, JEMIMA; NIMMO, ELAINE R.; DRUMMOND, HAZEL; LEES, CHARLIE W.; ONNIE, CLIVE M.; HANSON, CATHERINE; BLASZCZYK, KATARZYNA; RAVINDRARAJAH, RADHI; HUNT, SARAH; VARMA, DHIRAJ; HAMMOND, NAOMI; LEWIS, GREGORY; ATTLESEY, HEATHER; WATKINS, NICK; OUWEHAND, WILLEM; STRACHAN, DAVID; MCARDLE, WENDY; LEWIS, CATHRYN M.; LOBO, ALAN; SANDERSON, JEREMY; JEWELL, DEREK P.; DELOUKAS, PANOS; MANSFIELD, JOHN C.; MATHEW, CHRISTOPHER G.; SATSANGI, JACK; PARKES, MILES

    2009-01-01

    Background & Aims Identifying shared and disease-specific susceptibility loci for Crohn’s disease (CD) and ulcerative colitis (UC) would help define the biologic relationship between the inflammatory bowel diseases. More than 30 CD susceptibility loci have been identified. These represent important candidate susceptibility loci for UC. Loci discovered by the index genome scans in CD have previously been tested for association with UC, but those identified in the recent meta-analysis await such investigation. Furthermore, the recently identified UC locus at ECM1 requires formal testing for association with CD. Methods We analyzed 45 single nucleotide polymorphisms, tagging 29 of the loci recently associated with CD in 2527 UC cases and 4070 population controls. We also genotyped the UC-associated ECM1 variant rs11205387 in 1560 CD patients and 3028 controls. Results Nine regions showed association with UC at a threshold corrected for the 29 loci tested (P < .0017). The strongest association (P = 4.13 × 10-8; odds ratio = 1.27) was identified with a 170-kilobase region on chromosome 1q32 that contains 3 genes. We also found association with JAK2 and replicated a recently reported association with STAT3, further implicating the role of this signaling pathway in inflammatory bowel disease. Additional novel UC susceptibility genes were LYRM4 and CDKAL1. Twenty of the loci were not associated with UC, and several appear to be specific to CD. ECM1 variation was not associated with CD. Conclusions Collectively, these data help define the genetic relationship between CD and UC and characterize common, as well as disease-specific mechanisms of pathogenesis. PMID:19068216

  17. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    PubMed

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes

    PubMed Central

    Lalić, Jasna; Agudelo-Romero, Patricia; Carrasco, Purificación; Elena, Santiago F.

    2010-01-01

    Viral pathogens continue to emerge among humans, domesticated animals and cultivated crops. The existence of genetic variance for resistance in the host population is crucial to the spread of an emerging virus. Models predict that rapid spread decreases with the frequency and diversity of resistance alleles in the host population. However, empirical tests of this hypothesis are scarce. Arabiodpsis thaliana—tobacco etch potyvirus (TEV) provides an experimentally suitable pathosystem to explore the interplay between genetic variation in host's susceptibility and virus diversity. Systemic infection of A. thaliana with TEV is controlled by three dominant loci, with different ecotypes varying in susceptibility depending on the genetic constitution at these three loci. Here, we show that the TEV adaptation to a susceptible ecotype allowed the virus to successfully infect, replicate and induce symptoms in ecotypes that were fully resistant to the ancestral virus. The value of these results is twofold. First, we showed that the existence of partially susceptible individuals allows for the emerging virus to bypass resistance alleles that the virus has never encountered. Second, the concept of resistance genes may only be valid for a well-defined viral genotype but not for polymorphic viral populations. PMID:20478894

  19. Malaria Vector Control Still Matters despite Insecticide Resistance.

    PubMed

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Large-scale genotyping identifies 41 new loci associated with breast cancer risk.

    PubMed

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Dos Santos Silva, Isabel; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Veer, Laura J Van't; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-04-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10(-8)). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility.

  1. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    PubMed Central

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Silva, Isabel dos Santos; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Van’t Veer, Laura J; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility. PMID:23535729

  2. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci

    PubMed Central

    2013-01-01

    Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon

  3. Host susceptibility to malaria in human and mice: compatible approaches to identify potential resistant genes.

    PubMed

    Hernandez-Valladares, Maria; Rihet, Pascal; Iraqi, Fuad A

    2014-01-01

    There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.

  4. Shades of gray: The world of quantitative disease resistance

    USDA-ARS?s Scientific Manuscript database

    Quantitative disease resistance, conditioned by many loci of relatively small effect, is important in ecological and agricultural systems. The importance of quantitative resistance in agricultural systems has lead to much applied research in this area and the accumulation of a building body of kno...

  5. Genome-wide association study identifies three novel loci for type 2 diabetes.

    PubMed

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A; Yamauchi, Toshimasa; Yasuda, Kazuki; Horikoshi, Momoko; Peng, Chen; Hu, Cheng; Ma, Ronald C W; Imamura, Minako; Iwata, Minoru; Tsunoda, Tatsuhiko; Morizono, Takashi; Shojima, Nobuhiro; So, Wing Yee; Leung, Ting Fan; Kwan, Patrick; Zhang, Rong; Wang, Jie; Yu, Weihui; Maegawa, Hiroshi; Hirose, Hiroshi; Kaku, Kohei; Ito, Chikako; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kashiwagi, Atsunori; Kawamori, Ryuzo; Jia, Weiping; Chan, Juliana C N; Teo, Yik Ying; Shyong, Tai E; Kamatani, Naoyuki; Kubo, Michiaki; Maeda, Shiro; Kadowaki, Takashi

    2014-01-01

    Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly genotyped or imputed using East Asian references from the 1000 Genomes Project (June 2011 release) in 5976 Japanese patients with T2D and 20 829 nondiabetic individuals. Nineteen unreported loci were selected and taken forward to follow-up analyses. Combined discovery and follow-up analyses (30 392 cases and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13 (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases.

  6. Editing plants for virus resistance using CRISPR-Cas.

    PubMed

    Green, J C; Hu, J S

    This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).

  7. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.

    PubMed

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson L S; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances M K; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-04-15

    Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

  8. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    PubMed Central

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  9. Identification of quantitative trait loci affecting resistance to gastrointestinal parasites in a double backcross population of Red Maasai and Dorper sheep.

    PubMed

    Silva, M V B; Sonstegard, T S; Hanotte, O; Mugambi, J M; Garcia, J F; Nagda, S; Gibson, J P; Iraqi, F A; McClintock, A E; Kemp, S J; Boettcher, P J; Malek, M; Van Tassell, C P; Baker, R L

    2012-02-01

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F(1) rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume - PCV and faecal egg count - FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included Box-Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box-Cox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  10. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry

    PubMed Central

    Sun, Celi; Molineros, Julio E.; Looger, Loren L.; Zhou, Xu-jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M.; Wren, Jonathan D.; Harley, John B.; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K.

    2016-01-01

    Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,492 SLE cases and 12,675 controls from six East-Asian cohorts, to identify novel and better localize known SLE susceptibility loci. We identified 10 novel loci as well as 20 known loci with genome-wide significance. Among the novel loci, the most significant was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta=3.75×10−117, OR=2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We localized the most likely functional variants for each locus by analyzing epigenetic marks and gene regulation data. Ten putative variants are known to alter cis- or trans-gene expression. Enrichment analysis highlights the importance of these loci in B- and T-cell biology. Together with previously known loci, the explained heritability of SLE increases to 24%. Novel loci share functional and ontological characteristics with previously reported loci, and are possible drug targets for SLE therapeutics. PMID:26808113

  11. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations.

    PubMed Central

    Kohn, Michael H; Pelz, Hans-Joachim; Wayne, Robert K

    2003-01-01

    Populations may diverge at fitness-related genes as a result of adaptation to local conditions. The ability to detect this divergence by marker-based genomic scans depends on the relative magnitudes of selection, recombination, and migration. We survey rat (Rattus norvegicus) populations to assess the effect that local selection with anticoagulant rodenticides has had on microsatellite marker variation and differentiation at the warfarin resistance gene (Rw) relative to the effect on the genomic background. Initially, using a small sample of 16 rats, we demonstrate tight linkage of microsatellite D1Rat219 to Rw by association mapping of genotypes expressing an anticoagulant-rodenticide-insensitive vitamin K 2,3-epoxide reductase (VKOR). Then, using allele frequencies at D1Rat219, we show that predicted and observed resistance levels in 27 populations correspond, suggesting intense and recent selection for resistance. A contrast of F(ST) values between D1Rat219 and the genomic background revealed that rodenticide selection has overwhelmed drift-mediated population structure only at Rw. A case-controlled design distinguished these locus-specific effects of selection at Rw from background levels of differentiation more effectively than a population-controlled approach. Our results support the notion that an analysis of locus-specific population genetic structure may assist the discovery and mapping of novel candidate loci that are the object of selection or may provide supporting evidence for previously identified loci. PMID:12871915

  12. Assembly of the mitochondrial membrane system. XVIII. Genetic loci on mitochondrial DNA involved in cytochrome b biosynthesis.

    PubMed

    Tzagoloff, A; Foury, F; Akai, A

    1976-11-24

    1. Fourteen cytoplasmic mutants of Saccharomyces cerevisiae with a specific deficiency of cytochrome b have been studied. The mutations have been shown to occur in two separate genetic loci, COB 1 and COB 2. These loci can be distinguished by mit- X mit- crosses. Pairwise crosses of cytochrome b mutants belonging to different loci yield 4-6% wild type recombinants corresponding to recombinational frequencies of 8-12%. In intra-locus crosses, the recombinational frequencies range from 1% to less than 0.01%. The two loci can also be distinguished by mit- X rho- crosses. Twenty rho- testers have been isolated of which ten preferentially restore mutations in COB 1 and ten others in COB 2. 2. The COB 1 and COB 2 loci have been localized on mitochondrial DNA between the two antibiotic resistance loci OLI 1 and OLI 2 in the order OLI 2-COB 2-COB 1-OLI 1. The results of mit- X mit- and mit- X rho- crosses have also been used to map the cytochrome b mutations relative to each other. The maps obtained by the two independent methods are in good agreement. 3. Mutations in COB 1 have been found to be linked to the OLI1 locus in some but not in other strains of S. cervisiae. This evidence suggests that there may be a spacer region between the two loci whose length varies from strain to strain. 4. Two mutations in COB 2 have been found to cause a loss of a mitochondrial translation product corresponding to the cytochrome b apoprotein. Instead of the wild type protein the mutants have a new low-molecular weight product which is probably a fragment of cytochrome b. The fact that the mutations revert suggests that they are nonsense mutations in the structural gene of cytochrome b.

  13. Multidrug-Resistant Gram-Negative Bacilli: Infection Control Implications.

    PubMed

    Adler, Amos; Friedman, N Deborah; Marchaim, Dror

    2016-12-01

    Antimicrobial resistance is a common iatrogenic complication of both modern life and medical care. Certain multidrug resistant and extensively drug resistant Gram-negative organisms pose the biggest challenges to health care today, predominantly owing to a lack of therapeutic options. Containing the spread of these organisms is challenging, and in reality, the application of multiple control measures during an evolving outbreak makes it difficult to measure the relative impact of each measure. This article reviews the usefulness of various infection control measures in containing the spread of multidrug-resistant Gram-negative bacilli. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chromosomal mapping of quantitative trait loci controlling elastin content in rat aorta.

    PubMed

    Gauguier, Dominique; Behmoaras, Jacques; Argoud, Karène; Wilder, Steven P; Pradines, Christelle; Bihoreau, Marie Thérèse; Osborne-Pellegrin, Mary; Jacob, Marie Paule

    2005-03-01

    Extracellular matrix molecules such as elastin and collagens provide mechanical support to the vessel wall. In addition to its structural role, elastin is a regulator that maintains homeostasis through biologic signaling. Genetically determined minor modifications in elastin and collagen in the aorta could influence the onset and evolution of arterial pathology, such as hypertension and its complications. We previously demonstrated that the inbred Brown Norway (BN) rat shows an aortic elastin deficit in both abdominal and thoracic segments, partly because of a decrease in tropoelastin synthesis when compared with the LOU rat, that elastin gene polymorphisms in these strains do not significantly account for. After a genome-wide search for quantitative trait loci (QTL) influencing the aortic elastin, collagen, and cell protein contents in an F2 population derived from BN and LOU rats, we identified on chromosomes 2 and 14, 3 QTL specifically controlling elastin levels, and a further highly significant QTL on chromosome 17 linked to the level of cell proteins. We also mapped 3 highly significant QTL linked to body weight (on chromosomes 1 and 3) and heart weight (on chromosome 1) in the cross. This study demonstrates the polygenic control of the content of key components of the arterial wall. Such information represents a first step in understanding possible mechanisms involved in dysregulation of these parameters in arterial pathology.

  15. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    PubMed

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  16. Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium.

    PubMed Central

    Aliabadi, Z; Park, Y K; Slonczewski, J L; Foster, J W

    1988-01-01

    Three new loci were discovered, each of which participates in the regulation of anaerobic gene expression. The regulatory gene earA negatively regulates the expression of the anaerobiosis-inducible gene aniG as well as that of at least three other genes, as determined by two-dimensional polyacrylamide gel electrophoresis. The earA locus maps at 86 min. The expression of aniG was also shown to be controlled by changes in external pH under aerobic and anaerobic conditions. Maximal expression was observed under anaerobic conditions at an external pH of 6.0. Significant transcriptional activity was also observed under aerobic conditions at pH 6.0. This was in contrast to hyd, whose expression was dependent upon anaerobiosis and varied with external pH. The pH dependence disappeared under fully aerobic conditions. Mutations in earA had no effect upon hyd expression. The two other regulators identified were oxrF, which controls aniH, and oxrG, which, in concert with oxrA and oxrB, controls aniC and aniI. The oxrG locus was mapped to 88 min and appears to code for a positive regulator. Various oxr mutants were subjected to two-dimensional polyacrylamide electrophoretic analysis of anaerobiosis-inducible proteins. Several pathways of anaerobic control were observed by means of these techniques. Images PMID:3276666

  17. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea.

    PubMed

    Ullrich, M S; Schergaut, M; Boch, J; Ullrich, B

    2000-10-01

    Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, preferentially produces the phytotoxin coronatine at 18 degrees C and infects the host plant under conditions of low temperature and high humidity. A miniTn5-based promoterless glucuronidase (uidA) reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 degrees C. Out of 7500 transposon mutants, 61 showed thermoregulated uidA expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 degrees C whilst the remainder exhibited higher uidA expression at 28 degrees C. MiniTn5-uidA insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 degrees C contained the miniTn5-uidA insertion within the 32.8 kb coronatine biosynthetic gene cluster. Among the other mutants with increased uidA expression at 18 degrees C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the hrpT locus, involved in pathogenicity of P. syringae. Among the mutants induced at 28 degrees C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and in planta multiplication rates

  18. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum

    PubMed Central

    Adeyanju, Adedayo; Little, Christopher; Yu, Jianming; Tesso, Tesfaye

    2015-01-01

    Stalk rots are important biotic constraints to sorghum production worldwide. Several pathogens may be associated with the disease, but Macrophomina phaseolina and Fusarium thapsinum are recognized as the major causal organisms. The diseases become more aggressive when drought and high-temperature stress occur during grain filling. Progress in genetic improvement efforts has been slow due to lack of effective phenotyping protocol and the strong environmental effect on disease incidence and severity. Deployment of modern molecular tools is expected to accelerate efforts to develop resistant hybrids. This study was aimed at identifying genomic regions associated with resistance to both causal organisms. A sorghum diversity panel consisting of 300 genotypes assembled from different parts of the world was evaluated for response to infection by both pathogens. Community resources of 79,132 single nucleotide polymorphic (SNP) markers developed on the panel were used in association studies using a multi-locus mixed model to map loci associated with stalk rot resistance. Adequate genetic variation was observed for resistance to both pathogens. Structure analysis grouped the genotypes into five subpopulations primarily based on the racial category of the genotypes. Fourteen loci and a set of candidate genes appear to be involved in connected functions controlling plant defense response. However, each associated SNP had relatively small effect on the traits, accounting for 19–30% of phenotypic variation. Linkage disequilibrium analyses suggest that significant SNPs are genetically independent. Estimation of frequencies of associated alleles revealed that durra and caudatum subpopulations were enriched for resistant alleles, but the results suggest complex molecular mechanisms underlying resistance to both pathogens. PMID:25882062

  19. Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap.

    PubMed

    Hinks, Anne; Cobb, Joanna; Sudman, Marc; Eyre, Stephen; Martin, Paul; Flynn, Edward; Packham, Jonathon; Barton, Anne; Worthington, Jane; Langefeld, Carl D; Glass, David N; Thompson, Susan D; Thomson, Wendy

    2012-07-01

    Rheumatoid arthritis (RA) shares some similar clinical and pathological features with juvenile idiopathic arthritis (JIA); indeed, the strategy of investigating whether RA susceptibility loci also confer susceptibility to JIA has already proved highly successful in identifying novel JIA loci. A plethora of newly validated RA loci has been reported in the past year. Therefore, the aim of this study was to investigate these single nucleotide polymorphisms (SNP) to determine if they were also associated with JIA. Thirty-four SNP that showed validated association with RA and had not been investigated previously in the UK JIA cohort were genotyped in JIA cases (n=1242), healthy controls (n=4281), and data were extracted for approximately 5380 UK Caucasian controls from the Wellcome Trust Case-Control Consortium 2. Genotype and allele frequencies were compared between cases with JIA and controls using PLINK. A replication cohort of 813 JIA cases and 3058 controls from the USA was available for validation of any significant findings. Thirteen SNP showed significant association (p<0.05) with JIA and for all but one the direction of association was the same as in RA. Of the eight loci that were tested, three showed significant association in the US cohort. A novel JIA susceptibility locus was identified, CD247, which represents another JIA susceptibility gene whose protein product is important in T-cell activation and signalling. The authors have also confirmed association of the PTPN2 and IL2RA genes with JIA, both reaching genome-wide significance in the combined analysis.

  20. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci.

    PubMed

    Knäbel, Mareike; Friend, Adam P; Palmer, John W; Diack, Robert; Wiedow, Claudia; Alspach, Peter; Deng, Cecilia; Gardiner, Susan E; Tustin, D Stuart; Schaffer, Robert; Foster, Toshi; Chagné, David

    2015-09-22

    The vigour and precocity of trees highly influences their efficiency in commercial production. In apple, dwarfing rootstocks allow high-density plantings while their precocious flowering enables earlier fruit production. Currently, there is a lack of pear (Pyrus communis L.) rootstocks that are equivalent to the high yielding apple rootstock 'M9'. For the efficient breeding of new Pyrus rootstocks it is crucial to understand the genetic determinants of vigour control and precocity. In this study we used quantitative trait loci (QTLs) analysis to identify genetic loci associated with the desired traits, using a segregating population of 405 F1 P. communis seedlings from a cross between 'Old Home' and 'Louise Bonne de Jersey' (OHxLBJ). The seedlings were grafted as rootstocks with 'Doyenne du Comice' scions and comprehensively phenotyped over four growing seasons for traits related to tree architecture and flowering, in order to describe the growth of the scions. A high density single nucleotide polymorphism (SNP)-based genetic map comprising 597 polymorphic pear and 113 apple markers enabled the detection of QTLs influencing expression of scion vigour and precocity located on linkage groups (LG)5 and LG6 of 'Old Home'. The LG5 QTL maps to a position that is syntenic to the apple 'Malling 9' ('M9') Dw1 locus at the upper end of LG5. An allele of a simple sequence repeat (SSR) associated with apple Dw1 segregated with dwarfing and precocity in pear and was identified in other pear germplasm accessions. The orthology of the vigour-controlling LG5 QTL between apple and pear raises the possibility that the dwarfing locus Dw1 arose before the divergence of apple and pear, and might therefore be present in other Rosaceae species. We report the first QTLs associated with vigour control and flowering traits in pear rootstocks. Orthologous loci were found to control scion growth and precocity in apple and pear rootstocks. The application of our results may assist in the

  1. The McMillan and Newton polygons of a feedback system and the construction of root loci

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.; Stevens, P. K.

    1982-01-01

    The local behaviour of root loci around zeros and poles is investigated. This is done by relating the Newton diagrams which arise in the local analysis to the McMillan structure of the open-loop system, by means of what we shall call the McMillan polygon. This geometric construct serves to clarify the precise relationship between the McMillan structure, the principal structure, and the branching patterns of the root loci. In addition, several rules are obtained which are useful in the construction of the root loci of multivariable control systems.

  2. Characteristics of Japanese inflammatory bowel disease susceptibility loci.

    PubMed

    Arimura, Yoshiaki; Isshiki, Hiroyuki; Onodera, Kei; Nagaishi, Kanna; Yamashita, Kentaro; Sonoda, Tomoko; Matsumoto, Takayuki; Takahashi, Atsushi; Takazoe, Masakazu; Yamazaki, Keiko; Kubo, Michiaki; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-08-01

    There are substantial differences in inflammatory bowel disease (IBD) genetics depending on the populations examined. We aimed to identify Japanese population-specific or true culprit susceptibility genes through a meta-analysis of past genetic studies of Japanese IBD. For this study, we reviewed 2,703 articles. The review process consisted of three screening stages: we initially searched for relevant studies and then relevant single nucleotide polymorphisms (SNPs). Finally, we adjusted them for the meta-analysis. To maximize our chances of analysis, we introduced proxy SNPs during the first stage. To minimize publication bias, no significant SNPs and solitary SNPs without pairs were combined to be reconsidered during the third stage. Additionally, two SNPs were newly genotyped. Finally, we conducted a meta-analysis of 37 published studies in 50 SNPs located at 22 loci corresponding to the total number of 4,853 Crohn's disease (CD), 5,612 ulcerative colitis (UC) patients, and 14,239 healthy controls. We confirmed that the NKX2-3 polymorphism is associated with common susceptibility to IBD and that HLA-DRB1*0450 alleles increase susceptibility to CD but reduce risk for UC while HLA-DRB1*1502 alleles increase susceptibility to UC but reduce CD risk. Moreover, we found individual disease risk loci: TNFSF15 and TNFα to CD and HLA-B*5201, and NFKBIL1 to UC. The genetic risk of HLA was substantially high (odds ratios ranged from 1.54 to 2.69) while that of common susceptibility loci to IBD was modest (odds ratio ranged from 1.13 to 1.24). Results indicate that Japanese IBD susceptibility loci identified by the meta-analysis are closely associated with the HLA regions.

  3. Analysis of copy number variations at 15 schizophrenia-associated loci.

    PubMed

    Rees, Elliott; Walters, James T R; Georgieva, Lyudmila; Isles, Anthony R; Chambert, Kimberly D; Richards, Alexander L; Mahoney-Davies, Gerwyn; Legge, Sophie E; Moran, Jennifer L; McCarroll, Steven A; O'Donovan, Michael C; Owen, Michael J; Kirov, George

    2014-02-01

    A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. To determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. We found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader-Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10(-4)). We strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.

  4. Characterization of Genetic Loci That Affect Susceptibility to Inflammatory Bowel Diseases in African Americans

    PubMed Central

    Cutler, David J.; Zwick, Michael E.; Taylor, Kent D.; Datta, Lisa W.; Maranville, Joseph C.; Liu, Zhenqiu; Ellis, Shannon; Chopra, Pankaj; Alexander, Jonathan S.; Baldassano, Robert N.; Cross, Raymond K.; Dassopoulos, Themistocles; Dhere, Tanvi A.; Duerr, Richard H.; Hanson, John S.; Hou, Jason K.; Hussain, Sunny Z.; Isaacs, Kim L.; Kachelries, Kelly E; Kader, Howard; Kappelman, Michael D.; Katz, Jeffrey; Kellermayer, Richard; Kirschner, Barbara S.; Kuemmerle, John F.; Kumar, Archana; Kwon, John H.; Lazarev, Mark; Mannon, Peter; Moulton, Dedrick E.; Osuntokun, Bankole O.; Patel, Ashish; Rioux, John D.; Rotter, Jerome I.; Saeed, Shehzad; Scherl, Ellen J.; Silverberg, Mark S.; Silverman, Ann; Targan, Stephan R.; Valentine, John F.; Wang, Ming-Hsi; Simpson, Claire L.; Bridges, S. Louis; Kimberly, Robert P.; Rich, Stephen S.; Cho, Judy H.; Rienzo, Anna Di; Kao, Linda W.H.

    2015-01-01

    Background & Aims Inflammatory bowel disease (IBD) has familial aggregation in African Americans (AAs), but little is known about the molecular genetic susceptibility. Mapping studies using the Immunochip genotyping array expand the number of susceptibility loci for IBD in Caucasians to 163, but the contribution of the 163 loci and European admixture to IBD risk in AAs is unclear. We performed a genetic mapping study using the Immunochip to determine whether IBD susceptibility loci in Caucasians also affect risk in AAs and identify new associated loci. Methods We recruited AAs with IBD and without IBD (controls) from 34 IBD centers in the US; additional controls were collected from 4 other immunochip studies. Association and admixture loci were mapped for 1088 patients with Crohn's disease (CD), 361 with ulcerative colitis (UC), 62 with IBD type-unknown (IBDU), and 1797 controls; 130,241 autosomal single-nucleotide polymorphisms (SNPs) were analyzed. Results The strongest associations were observed between UC and HLA rs9271366 (P=7.5e–6), CD and 5p13.1 rs4286721 (P=3.0e–6), and IBD and KAT2A rs730086 (P=2.3e–6). Additional suggestive associations (P<4.2e-5) were observed between CD and IBD and African-specific SNPs in STAT5A and STAT3; between IBD and SNPs in IL23R, IL12B, and C2 open reading frame 43; and between UC and SNPs near HDAC11 and near LINC00994. The latter 3 loci have not been previously associated with IBD, but require replication. Established Caucasian associations were replicated in AAs (P<3.1e-4) at NOD2, IL23R, 5p15.3, and IKZF3. Significant admixture (P<3.9e–4) was observed for 17q12-17q21.31 (IZKF3 through STAT3), 10q11.23-10q21.2, 15q22.2–15q23, and 16p12.2–16p12.1. Network analyses showed significant enrichment (false discovery rate <1e–5) in genes that encode members of the JAK–STAT, cytokine, and chemokine signaling pathways, as well those involved in pathogenesis of measles. Conclusions In a genetic analysis of 3308 AA IBD

  5. Effects of SNPs at newly identified lipids loci on blood lipid levels and risk of coronary heart disease in Chinese Han population: a case control study.

    PubMed

    Zhuang, Ke; Zhang, Wencai; Zhang, Xiaobo; Wu, Fangqin; Cheng, Longxian

    2011-08-01

    Associations between "lipid-related" candidate genes, blood lipid concentrations and coronary artery disease (CHD) risk are not clear. We aimed to investigate the effect of three newly identified lipids loci from genome-wide association studies on CHD and blood lipid levels in Chinese Han population. The genotypes of SNPs at three newly identified lipid loci and blood lipids concentrations were examined in 1360 CHD patients and 1360 age- and sex-frequency matched controls from an unrelated Chinese Han population. Allele T of rs16996148 occurred less frequently in CHD patients with the odds ratio (OR) being 0.64 (95% CI 0.50 to 0.81), after adjusting for conventional risk factors and was associated with a 33% decreased CHD risk (P<0.01) comparing with the major allele G. Individuals with GT genotype had the lowest CHD risk. No associations were found between the polymorphisms of other two loci with CHD risk and all three SNPs had no effect on lipid profile in this population. SNP rs16996148 on chromosome 19p13 is significantly associated with lower risk for CHD in Chinese Han population. However, it remains unresolved why these lipid-related loci had significantly less effects than the correspondingly expected effects on blood lipids levels in this population.

  6. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk

    PubMed Central

    Zeng, Chenjie; Matsuda, Koichi; Jia, Wei-Hua; Chang, Jiang; Kweon, Sun-Seog; Xiang, Yong-Bing; Shin, Aesun; Jee, Sun Ha; Kim, Dong-Hyun; Zhang, Ben; Cai, Qiuyin; Guo, Xingyi; Long, Jirong; Wang, Nan; Courtney, Regina; Pan, Zhi-Zhong; Wu, Chen; Takahashi, Atsushi; Shin, Min-Ho; Matsuo, Keitaro; Matsuda, Fumihiko; Gao, Yu-Tang; Oh, Jae Hwan; Kim, Soriul; Jung, Keum Ji; Ahn, Yoon-Ok; Ren, Zefang; Li, Hong-Lan; Wu, Jie; Shi, Jiajun; Wen, Wanqing; Yang, Gong; Li, Bingshan; Ji, Bu-Tian; Brenner, Hermann; Schoen, Robert E.; Küry, Sébastien; Gruber, Stephen B.; Schumacher, Fredrick R.; Stenzel, Stephanie L.; Casey, Graham; Hopper, John L.; Jenkins, Mark A.; Kim, Hyeong-Rok; Jeong, Jin-Young; Park, Ji Won; Tajima, Kazuo; Cho, Sang-Hee; Kubo, Michiaki; Shu, Xiao-Ou; Lin, Dongxin; Zeng, Yi-Xin; Zheng, Wei

    2016-01-01

    Background & Aims Known Genetic factors explain only a small fraction of genetic variation in colorectal cancer (CRC). We conducted a genome-wide association study (GWAS) to identify risk loci for CRC. Methods This discovery stage included 8027 cases and 22577 controls of East-Asian ancestry. Promising variants were evaluated in studies including as many as 11044 cases and 12047 controls. Tumor-adjacent normal tissues from 188 patients were analyzed to evaluate correlations of risk variants with expression levels of nearby genes. Potential functionality of risk variants were evaluated using public genomic and epigenomic databases. Results We identified 4 loci associated with CRC risk; P values for the most significant variant in each locus ranged from 3.92×10−8 to 1.24×10−12: 6p21.1 (rs4711689), 8q23.3 (rs2450115, rs6469656), 10q24.3 (rs4919687), and 12p13.3 (rs11064437). We also identified 2 risk variants at loci previously associated with CRC: 10q25.2 (rs10506868) and 20q13.3 (rs6061231). These risk variants, conferring an approximate 10%–18% increase in risk per allele, are located either inside or near protein-coding genes that include TFEB (lysosome biogenesis and autophagy), EIF3H (initiation of translation), CYP17A1 (steroidogenesis), SPSB2 (proteasome degradation), and RPS21 (ribosome biogenesis). Gene expression analyses showed a significant association (P <.05) for rs4711689 with TFEB, rs6469656 with EIF3H, rs11064437 with SPSB2, and rs6061231 with RPS21. Conclusions We identified susceptibility loci and genes associated with CRC risk, linking CRC predisposition to steroid hormone, protein synthesis and degradation, and autophagy pathways and providing added insight into the mechanism of CRC pathogenesis. PMID:26965516

  7. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.

    PubMed

    van der Harst, Pim; Verweij, Niek

    2018-02-02

    Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view

  8. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    USDA-ARS?s Scientific Manuscript database

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  9. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    PubMed Central

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O’Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D’Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Study, LifeLines Cohort; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Leach, Irene Mateo; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Consortium, CARDIoGRAM; Consortium, DIAGRAM; Consortium, ICBP; Consortium, MAGIC; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout. PMID:23263486

  10. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  11. Effects produced by CDU improvement of resist pattern with PEB temperature control for wiring resistance variation reduction

    NASA Astrophysics Data System (ADS)

    Tadokoro, Masahide; Shinozuka, Shinichi; Ogata, Kunie; Morimoto, Tamotsu

    2008-03-01

    Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving CDU of resist pattern is to control the temperature of post-exposure bake (PEB). When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. We have already applied this method to Resist Pattern CDU improvement and have achieved these results. In this evaluation, we aim at: 1. Clarifying the relationship between the improvement in Resist Pattern CDU through PEB temperature control and the improvement in Etching Pattern CDU. 2. Verifying whether Resist Pattern CDU improvement through PEB temperature control has any effect on the reduction in wiring resistance variation. The evaluation procedure is: 1. Preparation of wafers with base film of doped Poly-Si (D-Poly). 2. Creation of two sets of samples on the base, a set of samples with good Resist Pattern CDU and a set of samples with poor Resist Pattern CDU. 3. Etching of the two sets under the same conditions. 4. Measurements of CD and wiring resistance. We used Optical CD Measurement (OCD) for measurement of resist pattern and etching pattern for the reason that OCD is minimally affected by Line Edge Roughness (LER). As a result, we found that; 1. The improvement in Resist Pattern CDU leads to the improvement in Etching Pattern CDU . 2. The improvement in Resist Pattern CDU has an effect on the reduction in wiring resistance variation. There is a cause-and-effect relationship between wiring resistance variation and transistor characteristics. From this relationship, we expect that the improvement in Resist Pattern CDU through PEB temperature control can contribute to device performance improvement.

  12. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study

    PubMed Central

    Li, Xiaokai; Guo, Zilong; Lv, Yan; Cen, Xiang; Ding, Xipeng; Wu, Hua; Li, Xianghua; Huang, Jianping

    2017-01-01

    A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance. PMID:28686596

  13. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.

    PubMed

    Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine

    2017-01-01

    Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  14. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.

    PubMed

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; Wietze van der Veen, J P; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R; Santorico, Stephanie A; Spritz, Richard A

    2016-11-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.

  15. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese

    PubMed Central

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-01-01

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10−13, BCAS3), 9p24.2 (rs12236871, P=1.48 × 10−10, RFX3) and 11p15.5 (rs179785, P=1.28 × 10−8, KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis. PMID:25967671

  16. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese.

    PubMed

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-05-13

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10(-13), BCAS3), 9p24.2 (rs12236871, P=1.48 × 10(-10), RFX3) and 11p15.5 (rs179785, P=1.28 × 10(-8), KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis.

  17. [Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].

    PubMed

    Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie

    2012-12-01

    To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.

  18. Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population

    PubMed Central

    Giancaspro, Angelica; Giove, Stefania L.; Zito, Daniela; Blanco, A.; Gadaleta, Agata

    2016-01-01

    Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed. PMID:27746787

  19. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.

    PubMed

    Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Bis, Joshua C; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E; Koplev, Simon; Björkegren, Johan L M; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L; Trégouët, David A; Christophersen, Ingrid E; Roselli, Carolina; Lubitz, Steven A; Ellinor, Patrick T; Tai, E Shyong; Kooner, Jaspal S; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C; Takeuchi, Fumihiko; Johnson, Andrew D; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin; Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; Hoed, Marcel den; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Amin, Najaf; Aparicio, Hugo S; Arnett, Donna K; Attia, John; Beiser, Alexa S; Berr, Claudine; Buring, Julie E; Bustamante, Mariana; Caso, Valeria; Cheng, Yu-Ching; Choi, Seung Hoan; Chowhan, Ayesha; Cullell, Natalia; Dartigues, Jean-François; Delavaran, Hossein; Delgado, Pilar; Dörr, Marcus; Engström, Gunnar; Ford, Ian; Gurpreet, Wander S; Hamsten, Anders; Heitsch, Laura; Hozawa, Atsushi; Ibanez, Laura; Ilinca, Andreea; Ingelsson, Martin; Iwasaki, Motoki; Jackson, Rebecca D; Jood, Katarina; Jousilahti, Pekka; Kaffashian, Sara; Kalra, Lalit; Kamouchi, Masahiro; Kitazono, Takanari; Kjartansson, Olafur; Kloss, Manja; Koudstaal, Peter J; Krupinski, Jerzy; Labovitz, Daniel L; Laurie, Cathy C; Levi, Christopher R; Li, Linxin; Lind, Lars; Lindgren, Cecilia M; Lioutas, Vasileios; Liu, Yong Mei; Lopez, Oscar L; Makoto, Hirata; Martinez-Majander, Nicolas; Matsuda, Koichi; Minegishi, Naoko; Montaner, Joan; Morris, Andrew P; Muiño, Elena; Müller-Nurasyid, Martina; Norrving, Bo; Ogishima, Soichi; Parati, Eugenio A; Peddareddygari, Leema Reddy; Pedersen, Nancy L; Pera, Joanna; Perola, Markus; Pezzini, Alessandro; Pileggi, Silvana; Rabionet, Raquel; Riba-Llena, Iolanda; Ribasés, Marta; Romero, Jose R; Roquer, Jaume; Rudd, Anthony G; Sarin, Antti-Pekka; Sarju, Ralhan; Sarnowski, Chloe; Sasaki, Makoto; Satizabal, Claudia L; Satoh, Mamoru; Sattar, Naveed; Sawada, Norie; Sibolt, Gerli; Sigurdsson, Ásgeir; Smith, Albert; Sobue, Kenji; Soriano-Tárraga, Carolina; Stanne, Tara; Stine, O Colin; Stott, David J; Strauch, Konstantin; Takai, Takako; Tanaka, Hideo; Tanno, Kozo; Teumer, Alexander; Tomppo, Liisa; Torres-Aguila, Nuria P; Touze, Emmanuel; Tsugane, Shoichiro; Uitterlinden, Andre G; Valdimarsson, Einar M; van der Lee, Sven J; Völzke, Henry; Wakai, Kenji; Weir, David; Williams, Stephen R; Wolfe, Charles D A; Wong, Quenna; Xu, Huichun; Yamaji, Taiki; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin

    2018-04-01

    Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

  20. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes

    PubMed Central

    Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W.; Gretarsdottir, Solveig; Anderson, Christopher D.; Chong, Michael; Adams, Hieab H. H.; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M.; Benavente, Oscar R.; Bevan, Steve; Boncoraglio, Giorgio B.; Brown, Robert D.; Butterworth, Adam S.; Carrera, Caty; Carty, Cara L.; Chasman, Daniel I.; Chen, Wei-Min; Cole, John W.; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I. W.; DeStefano, Anita L.; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T.; Falcone, Guido J.; Gottesman, Rebecca F.; Grewal, Raji P.; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B.; Hassan, Ahamad; Havulinna, Aki S.; Heckbert, Susan R.; Holliday, Elizabeth G.; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I.; Ikram, M. Arfan; ingelsson, Erik; Irvin, Marguerite R.; Jian, Xueqiu; Jimenez-Conde, Jordi; Johnson, Julie A.; Jukema, J. Wouter; Kanai, Masahiro; Keene, Keith L.; Kissela, Brett M.; Kleindorfer, Dawn O.; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A.; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M.; Lin, Wei-Yu; Lindgren, Arne G.; Lorentzen, Erik; Magnusson, Patrik K.; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F.; Meschia, James F.; Mitchell, Braxton D.; Mosley, Thomas H.; Nalls, Michael A.; Ninomiya, Toshiharu; O’Donnell, Martin J.; Psaty, Bruce M.; Pulit, Sara L.; Rannikmäe, Kristiina; Reiner, Alexander P.; Rexrode, Kathryn M.; Rice, Kenneth; Rich, Stephen S.; Ridker, Paul M.; Rost, Natalia S.; Rothwell, Peter M.; Rotter, Jerome I.; Rundek, Tatjana; Sacco, Ralph L.; Sakaue, Saori; Sale, Michele M.; Salomaa, Veikko; Sapkota, Bishwa R.; Schmidt, Reinhold; Schmidt, Carsten O.; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L. M.; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D.; Thijs, Vincent N. S.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M.; Walters, Matthew; Wareham, Nicholas J.; Wassertheil-Smoller, Sylvia; Wilson, James G.; Wiggins, Kerri L.; Yang, Qiong; Yusuf, Salim; Bis, Joshua C.; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E.; Koplev, Simon; Björkegren, Johan L. M.; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L.; Tregouet, David A.; Christophersen, Ingrid E.; Roselli, Carolina; Lubitz, Steven A.; Ellinor, Patrick T.; Tai, E. Shyong; Kooner, Jaspal S.; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C.; Takeuchi, Fumihiko; Johnson, Andrew D.; Sanghera, Dharambir K.; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W. T.; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C.; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B.; Kittner, Steven J.; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S.; Howson, Joanna M. M.; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin

    2018-01-01

    Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy. PMID:29531354

  1. The Loci Multidisciplinary Simulation System Overview and Status

    NASA Technical Reports Server (NTRS)

    Luke, Edward A.; Tong, Xiao-Ling; Tang, Lin

    2002-01-01

    This paper will discuss the Loci system, an innovative tool for developing tightly coupled multidisciplinary three dimensional simulations. This presentation will overview some of the unique capabilities of the Loci system to automate the assembly of numerical simulations from libraries of fundamental computational components. We will discuss the demonstration of the Loci system on coupled fluid-structure problems related to RBCC propulsion systems.

  2. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma.

    PubMed

    Chahal, Harvind S; Lin, Yuan; Ransohoff, Katherine J; Hinds, David A; Wu, Wenting; Dai, Hong-Ji; Qureshi, Abrar A; Li, Wen-Qing; Kraft, Peter; Tang, Jean Y; Han, Jiali; Sarin, Kavita Y

    2016-07-18

    Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7-11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10(-8)) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma.

  3. Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Crawley, Alexandra B.; Sanchez, Borja; Barrangou, Rodolphe

    2017-01-01

    Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various Bifidobacterium longum strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis, and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in B. longum, and show that these sequences are useful for typing across three subspecies. PMID:29033911

  4. Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum.

    PubMed

    Hidalgo-Cantabrana, Claudio; Crawley, Alexandra B; Sanchez, Borja; Barrangou, Rodolphe

    2017-01-01

    Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various Bifidobacterium longum strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis , and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in B. longum , and show that these sequences are useful for typing across three subspecies.

  5. Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus.

    PubMed

    Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt

    2017-10-18

    The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.

  6. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance.

    PubMed

    Cerqueira, Gustavo C; Cheeseman, Ian H; Schaffner, Steve F; Nair, Shalini; McDew-White, Marina; Phyo, Aung Pyae; Ashley, Elizabeth A; Melnikov, Alexandre; Rogov, Peter; Birren, Bruce W; Nosten, François; Anderson, Timothy J C; Neafsey, Daniel E

    2017-04-28

    Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We used longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to artemisinin or partner drug resistance. We retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, over the period of a rapid increase in the emergence of artemisinin resistance (2001-2014). We evaluate statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance increase in frequency over this period. After Kelch13-C580Y, the strongest temporal change is seen at a SNP in phosphatidylinositol 4-kinase, which is involved in a pathway recently implicated in artemisinin resistance. Furthermore, other loci exhibit strong temporal signatures which warrant further investigation for involvement in artemisinin resistance evolution. Through genome-wide association analysis we identify a variant in a kelch domain-containing gene on chromosome 10 that may epistatically modulate artemisinin resistance. This analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated gene loci to improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with artemisinin-resistant parasites may yield new molecular markers for resistance surveillance, which may be useful in efforts to reduce the emergence or spread of artemisinin resistance in African parasite populations.

  7. Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm.

    PubMed

    Zhou, H; Steffenson, B J; Muehlbauer, Gary; Wanyera, Ruth; Njau, Peter; Ndeda, Sylvester

    2014-06-01

    Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach. African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding.

  8. Identification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population

    PubMed Central

    Zhang, Xu; Wang, Jirui; Luo, Mingcheng; Yang, Mujun; Wang, Hua; Xiang, Libo; Zeng, Fansong; Yu, Dazhao; Fu, Daolin

    2017-01-01

    Deployment of cultivars with genetic resistance is an effective approach to control the diseases of powdery mildew (PM) and yellow rust (YR). Chinese wheat cultivar XK0106 exhibits high levels of resistance to both diseases, while cultivar E07901 has partial, adult plant resistance (APR). The aim of this study was to map resistance loci derived from the two cultivars and analyze their effects against PM and YR in a range of environments. A doubled haploid population (388 lines) was used to develop a framework map consisting of 117 SSR markers, while a much higher density map using the 90K Illumina iSelect SNP array was produced with a subset of 80 randomly selected lines. Seedling resistance was characterized against a range of PM and YR isolates, while field scores in multiple environments were used to characterize APR. Composite interval mapping (CIM) of seedling PM scores identified two QTLs (QPm.haas-6A and QPm.haas-2A), the former being located at the Pm21 locus. These QTLs were also significant in field scores, as were Qpm.haas-3A and QPm.haas-5A. QYr.haas-1B-1 and QYr.haas-2A were identified in field scores of YR and were located at the Yr24/26 and Yr17 chromosomal regions respectively. A second 1B QTL, QYr.haas-1B-2 was also identified. QPm.haas-2A and QYr.haas-1B-2 are likely to be new QTLs that have not been previously identified. Effects of the QTLs were further investigated in multiple environments through the testing of selected lines predicted to contain various QTL combinations. Significant additive interactions between the PM QTLs highlighted the ability to pyramid these loci to provide higher level of resistance. Interactions between the YR QTLs gave insights into the pathogen populations in the different locations as well as showing genetic interactions between these loci. PMID:28542459

  9. Pervasive antagonistic interactions among hybrid incompatibility loci

    PubMed Central

    Josway, Sarah

    2017-01-01

    Species barriers, expressed as hybrid inviability and sterility, are often due to epistatic interactions between divergent loci from two lineages. Theoretical models indicate that the strength, direction, and complexity of these genetic interactions can strongly affect the expression of interspecific reproductive isolation and the rates at which new species evolve. Nonetheless, empirical analyses have not quantified the frequency with which loci are involved in interactions affecting hybrid fitness, and whether these loci predominantly interact synergistically or antagonistically, or preferentially involve loci that have strong individual effects on hybrid fitness. We systematically examined the prevalence of interactions between pairs of short chromosomal regions from one species (Solanum habrochaites) co-introgressed into a heterospecific genetic background (Solanum lycopersicum), using lines containing pairwise combinations of 15 chromosomal segments from S. habrochaites in the background of S. lycopersicum (i.e., 95 double introgression lines). We compared the strength of hybrid incompatibility (either pollen sterility or seed sterility) expressed in each double introgression line to the expected additive effect of its two component single introgressions. We found that epistasis was common among co-introgressed regions. Interactions for hybrid dysfunction were substantially more prevalent in pollen fertility compared to seed fertility phenotypes, and were overwhelmingly antagonistic (i.e., double hybrids were less unfit than expected from additive single introgression effects). This pervasive antagonism is expected to attenuate the rate at which hybrid infertility accumulates among lineages over time (i.e., giving diminishing returns as more reproductive isolation loci accumulate), as well as decouple patterns of accumulation of sterility loci and hybrid incompatibility phenotypes. This decoupling effect might explain observed differences between pollen and

  10. Identification of new loci involved in the host susceptibility to Salmonella Typhimurium in collaborative cross mice.

    PubMed

    Zhang, Jing; Malo, Danielle; Mott, Richard; Panthier, Jean-Jacques; Montagutelli, Xavier; Jaubert, Jean

    2018-04-27

    Salmonella is a Gram-negative bacterium causing a wide range of clinical syndromes ranging from typhoid fever to diarrheic disease. Non-typhoidal Salmonella (NTS) serovars infect humans and animals, causing important health burden in the world. Susceptibility to salmonellosis varies between individuals under the control of host genes, as demonstrated by the identification of over 20 genetic loci in various mouse crosses. We have investigated the host response to S. Typhimurium infection in 35 Collaborative Cross (CC) strains, a genetic population which involves wild-derived strains that had not been previously assessed. One hundred and forty-eight mice from 35 CC strains were challenged intravenously with 1000 colony-forming units (CFUs) of S. Typhimurium. Bacterial load was measured in spleen and liver at day 4 post-infection. CC strains differed significantly (P < 0.0001) in spleen and liver bacterial loads, while sex and age had no effect. Two significant quantitative trait loci (QTLs) on chromosomes 8 and 10 and one suggestive QTL on chromosome 1 were found for spleen bacterial load, while two suggestive QTLs on chromosomes 6 and 17 were found for liver bacterial load. These QTLs are caused by distinct allelic patterns, principally involving alleles originating from the wild-derived founders. Using sequence variations between the eight CC founder strains combined with database mining for expression in target organs and known immune phenotypes, we were able to refine the QTLs intervals and establish a list of the most promising candidate genes. Furthermore, we identified one strain, CC042/GeniUnc (CC042), as highly susceptible to S. Typhimurium infection. By exploring a broader genetic variation, the Collaborative Cross population has revealed novel loci of resistance to Salmonella Typhimurium. It also led to the identification of CC042 as an extremely susceptible strain.

  11. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  12. Discovery and refinement of loci associated with lipid levels.

    PubMed

    Willer, Cristen J; Schmidt, Ellen M; Sengupta, Sebanti; Peloso, Gina M; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L; Mora, Samia; Beckmann, Jacques S; Bragg-Gresham, Jennifer L; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M; Do, Ron; Donnelly, Louise A; Ehret, Georg B; Esko, Tõnu; Feitosa, Mary F; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M; Freitag, Daniel F; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U; Johansson, Åsa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K E; Mangino, Massimo; Mihailov, Evelin; Montasser, May E; Müller-Nurasyid, Martina; Nolte, Ilja M; O'Connell, Jeffrey R; Palmer, Cameron D; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M; Thorleifsson, Gudmar; Van den Herik, Evita G; Voight, Benjamin F; Volcik, Kelly A; Waite, Lindsay L; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F; Bolton, Jennifer L; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S F; Döring, Angela; Elliott, Paul; Epstein, Stephen E; Ingi Eyjolfsson, Gudmundur; Gigante, Bruna; Goodarzi, Mark O; Grallert, Harald; Gravito, Martha L; Groves, Christopher J; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R; Kaleebu, Pontiano; Kastelein, John J P; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J F; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V M; Nsubuga, Rebecca N; Olafsson, Isleifur; Ong, Ken K; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J; Reilly, Muredach P; Ridker, Paul M; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J; Tiret, Laurence; Uitterlinden, Andre G; van Pelt, L Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F; Young, Elizabeth H; Zhao, Jing Hua; Adair, Linda S; Arveiler, Dominique; Assimes, Themistocles L; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O; Boomsma, Dorret I; Borecki, Ingrid B; Bornstein, Stefan R; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C; Chen, Yii-Der Ida; Collins, Francis S; Cooper, Richard S; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B; Gieger, Christian; Groop, Leif C; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hingorani, Aroon; Hirschhorn, Joel N; Hofman, Albert; Hovingh, G Kees; Hsiung, Chao Agnes; Humphries, Steve E; Hunt, Steven C; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S; Koudstaal, Peter J; Krauss, Ronald M; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O; Laakso, Markku; Lakka, Timo A; Lind, Lars; Lindgren, Cecilia M; Martin, Nicholas G; März, Winfried; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D; Munroe, Patricia B; Njølstad, Inger; Pedersen, Nancy L; Power, Chris; Pramstaller, Peter P; Price, Jackie F; Psaty, Bruce M; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K; Saramies, Jouko; Schwarz, Peter E H; Sheu, Wayne H-H; Shuldiner, Alan R; Siegbahn, Agneta; Spector, Tim D; Stefansson, Kari; Strachan, David P; Tayo, Bamidele O; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J; Whitfield, John B; Wolffenbuttel, Bruce H R; Ordovas, Jose M; Boerwinkle, Eric; Palmer, Colin N A; Thorsteinsdottir, Unnur; Chasman, Daniel I; Rotter, Jerome I; Franks, Paul W; Ripatti, Samuli; Cupples, L Adrienne; Sandhu, Manjinder S; Rich, Stephen S; Boehnke, Michael; Deloukas, Panos; Kathiresan, Sekar; Mohlke, Karen L; Ingelsson, Erik; Abecasis, Gonçalo R

    2013-11-01

    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.

  13. Discovery and Refinement of Loci Associated with Lipid Levels

    PubMed Central

    Peloso, Gina M.; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L.; Mora, Samia; Beckmann, Jacques S.; Bragg-Gresham, Jennifer L.; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M.; Do, Ron; Donnelly, Louise A.; Ehret, Georg B.; Esko, Tõnu; Feitosa, Mary F.; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M.; Freitag, Daniel F.; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U.; Johansson, Åsa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E.; Li, Xiaohui; Luan, Jian’an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K.E.; Mangino, Massimo; Mihailov, Evelin; Montasser, May E.; Müller-Nurasyid, Martina; Nolte, Ilja M.; O’Connell, Jeffrey R.; Palmer, Cameron D.; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K.; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J.; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M.; Thorleifsson, Gudmar; Van den Herik, Evita G.; Voight, Benjamin F.; Volcik, Kelly A.; Waite, Lindsay L.; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F.; Bolton, Jennifer L.; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S.; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S.F.; Döring, Angela; Elliott, Paul; Epstein, Stephen E.; Ingi Eyjolfsson, Gudmundur; Gigante, Bruna; Goodarzi, Mark O.; Grallert, Harald; Gravito, Martha L.; Groves, Christopher J.; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A.; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R.; Kaleebu, Pontiano; Kastelein, John J.P.; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J.F.; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D.; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V.M.; Nsubuga, Rebecca N.; Olafsson, Isleifur; Ong, Ken K.; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J.; Reilly, Muredach P.; Ridker, Paul M.; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J.; Tiret, Laurence; Uitterlinden, Andre G.; van Pelt, L. Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H.; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F.; Young, Elizabeth H.; Zhao, Jing Hua; Adair, Linda S.; Arveiler, Dominique; Assimes, Themistocles L.; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O.; Boomsma, Dorret I.; Borecki, Ingrid B.; Bornstein, Stefan R.; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C.; Chen, Yii-Der Ida; Collins, Francis S.; Cooper, Richard S.; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B.; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B.; Gieger, Christian; Groop, Leif C.; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hingorani, Aroon; Hirschhorn, Joel N.; Hofman, Albert; Hovingh, G. Kees; Hsiung, Chao Agnes; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S.; Koudstaal, Peter J.; Krauss, Ronald M.; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O.; Laakso, Markku; Lakka, Timo A.; Lind, Lars; Lindgren, Cecilia M.; Martin, Nicholas G.; März, Winfried; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D.; Munroe, Patricia B.; Njølstad, Inger; Pedersen, Nancy L.; Power, Chris; Pramstaller, Peter P.; Price, Jackie F.; Psaty, Bruce M.; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K.; Saramies, Jouko; Schwarz, Peter E.H.; Sheu, Wayne H-H; Shuldiner, Alan R.; Siegbahn, Agneta; Spector, Tim D.; Stefansson, Kari; Strachan, David P.; Tayo, Bamidele O.; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M.; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J.; Whitfield, John B.; Wolffenbuttel, Bruce H.R.; Ordovas, Jose M.; Boerwinkle, Eric; Palmer, Colin N.A.; Thorsteinsdottir, Unnur; Chasman, Daniel I.; Rotter, Jerome I.; Franks, Paul W.; Ripatti, Samuli; Cupples, L. Adrienne; Sandhu, Manjinder S.; Rich, Stephen S.

    2013-01-01

    Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and total cholesterol are heritable, modifiable, risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,578 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5×10−8, including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian, and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipids are often associated with cardiovascular and metabolic traits including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results illustrate the value of genetic data from individuals of diverse ancestries and provide insights into biological mechanisms regulating blood lipids to guide future genetic, biological, and therapeutic research. PMID:24097068

  14. MicroRNA genes are frequently located near mouse cancer susceptibility loci

    PubMed Central

    Sevignani, Cinzia; Calin, George A.; Nnadi, Stephanie C.; Shimizu, Masayoshi; Davuluri, Ramana V.; Hyslop, Terry; Demant, Peter; Croce, Carlo M.; Siracusa, Linda D.

    2007-01-01

    MicroRNAs (miRNAs) are short 19- to 24-nt RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. Abnormal expression of miRNAs has been observed in several human cancers, and furthermore, germ-line and somatic mutations in human miRNAs were recently identified in patients with chronic lymphocytic leukemia. Thus, human miRNAs can act as tumor suppressor genes or oncogenes, where mutations, deletions, or amplifications can underlie the development of certain types of leukemia. In addition, previous studies have shown that miRNA expression profiles can distinguish among human solid tumors from different organs. Because a single miRNA can simultaneously influence the expression of two or more protein-coding genes, we hypothesized that miRNAs could be candidate genes for cancer risk. Research in complex trait genetics has demonstrated that genetic background determines cancer susceptibility or resistance in various tissues, such as colon and lung, of different inbred mouse strains. We compared the genome positions of mouse tumor susceptibility loci with those of mouse miRNAs. Here, we report a statistically significant association between the chromosomal location of miRNAs and those of mouse cancer susceptibility loci that influence the development of solid tumors. Furthermore, we identified distinct patterns of flanking DNA sequences for several miRNAs located at or near susceptibility loci in inbred strains with different tumor susceptibilities. These data provide a catalog of miRNA genes in inbred strains that could represent genes involved in the development and penetrance of solid tumors. PMID:17470785

  15. Ethnic specificity of lupus-associated loci identified in a genome-wide association study in Korean women.

    PubMed

    Lee, Hye-Soon; Kim, Taehyeung; Bang, So Young; Na, Young Ji; Kim, Il; Kim, Kwangwoo; Kim, Jae-Hoon; Chung, Yeun-Jun; Shin, Hyoung Doo; Kang, Young Mo; Shim, Seung-Cheol; Suh, Chang-Hee; Park, Yong-Beom; Kim, Jong-Sung; Kang, Changwon; Bae, Sang-Cheol

    2014-06-01

    To identify novel genetic candidates for systemic lupus erythematosus (SLE) in the Korean population, and to validate the risk loci for SLE identified in previous genome-wide association studies (GWAS). We performed a GWAS in 400 Korean female SLE patients and 445 controls. Selected single-nucleotide polymorphisms (SNP) were then replicated in an independent cohort of 385 SLE patients and 583 controls (replication cohort 1), and in a further 811 SLE patients and 1502 controls (replication cohort 2). In the GWAS phase, rs9275428 located near HLA-DQB1 showed the strongest association with SLE (OR 0.50, false discovery rate (FDR) p=3.07×10(-6)). Although no loci reached genome-wide significance outside major histocompatibility complex (MHC), C8orf13-BLK, STAT4, CSMD1, DIAPH3, GLDC and TNFSF4 showed FDR p < 0.05. Our results suggest that STAT4, BLK, IRF5, PTTG1-miR-146a, UBE2L3 and TNFAIP3 are shared susceptibility loci among Caucasians and Asians, while ETS1, IKZF1, SLC15A4 are likely to be Asian-specific loci. In a combined analysis of 1596 SLE patients and 2540 controls for selected 22 candidate SNP, STAT4 and BLK as positive controls showed a strong association with SLE (FDR p=9.85×10(-13) and 2.28×10(-8), respectively). Of these, 16 candidates (PEX5L, TRAJ50, MYO18B, SOS1, ARHGAP26, SMURF1, CADPS, HAND1, FAM78B, DIAPH3, TBL1XR1, CSMD1, ZBTB20, C3orf21, HIPK1 and AP001042.1) showed only nominal significance (7.05×10(-4)≤FDR p≤4.38×10(-2)). There are similarities and differences in genetic susceptibility for SLE between Caucasian and Asian ethnic groups. Although 16 putative novel loci for SLE have been suggested in the Korean population, further research on a larger sample is required to discriminate truth from error.

  16. SMAD7 loci contribute to risk of hepatocellular carcinoma and clinicopathologic development among Chinese Han population.

    PubMed

    Ji, Jiansong; Xu, Min; Zhao, Zhongwei; Tu, Jianfei; Gao, Jun; Lu, Chenying; Song, Jingjing; Chen, Weiqian; Chen, Minjiang; Fan, Xiaoxi; Cheng, Xingyao; Lan, Xilin; Li, Jie

    2016-04-19

    Genome-wide association studies (GWAS) have identified three loci at 18q21 (rs4939827, rs7240004, and rs7229639), which maps to SMAD7 loci, were associated with risk of diseases of the digestive system. However, their associations with hepatocellular carcinoma (HCC) risk remain unknown. A case-control study was conducted to assess genetic associations with HCC risk and clinicopathologic development among Chinese Han population. Three SNPs were genotyped among 1,000 HCC cases and 1,000 controls using Sequenom Mass-ARRAY technology. We observed statistically significant associations for the three SMAD7 loci and HCC risk. Each copy of minor allele was associated with a 1.24-1.36 fold increased risk of HCC. We also found that significant differences were observed between rs4939827 and clinical TNM stage and vascular invasion, as well as rs7240004 and vascular invasion. We also established a genetic risk score (GRS) by summing the risk alleles. The GRS was significantly associated with increased risk of HCC and vascular invasion. Our data revealed the SMAD7 loci is associated with HCC susceptibility and its clinicopathologic development.

  17. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder

    PubMed Central

    Hou, Liping; Bergen, Sarah E.; Akula, Nirmala; Song, Jie; Hultman, Christina M.; Landén, Mikael; Adli, Mazda; Alda, Martin; Ardau, Raffaella; Arias, Bárbara; Aubry, Jean-Michel; Backlund, Lena; Badner, Judith A.; Barrett, Thomas B.; Bauer, Michael; Baune, Bernhard T.; Bellivier, Frank; Benabarre, Antonio; Bengesser, Susanne; Berrettini, Wade H.; Bhattacharjee, Abesh Kumar; Biernacka, Joanna M.; Birner, Armin; Bloss, Cinnamon S.; Brichant-Petitjean, Clara; Bui, Elise T.; Byerley, William; Cervantes, Pablo; Chillotti, Caterina; Cichon, Sven; Colom, Francesc; Coryell, William; Craig, David W.; Cruceanu, Cristiana; Czerski, Piotr M.; Davis, Tony; Dayer, Alexandre; Degenhardt, Franziska; Del Zompo, Maria; DePaulo, J. Raymond; Edenberg, Howard J.; Étain, Bruno; Falkai, Peter; Foroud, Tatiana; Forstner, Andreas J.; Frisén, Louise; Frye, Mark A.; Fullerton, Janice M.; Gard, Sébastien; Garnham, Julie S.; Gershon, Elliot S.; Goes, Fernando S.; Greenwood, Tiffany A.; Grigoroiu-Serbanescu, Maria; Hauser, Joanna; Heilbronner, Urs; Heilmann-Heimbach, Stefanie; Herms, Stefan; Hipolito, Maria; Hitturlingappa, Shashi; Hoffmann, Per; Hofmann, Andrea; Jamain, Stephane; Jiménez, Esther; Kahn, Jean-Pierre; Kassem, Layla; Kelsoe, John R.; Kittel-Schneider, Sarah; Kliwicki, Sebastian; Koller, Daniel L.; König, Barbara; Lackner, Nina; Laje, Gonzalo; Lang, Maren; Lavebratt, Catharina; Lawson, William B.; Leboyer, Marion; Leckband, Susan G.; Liu, Chunyu; Maaser, Anna; Mahon, Pamela B.; Maier, Wolfgang; Maj, Mario; Manchia, Mirko; Martinsson, Lina; McCarthy, Michael J.; McElroy, Susan L.; McInnis, Melvin G.; McKinney, Rebecca; Mitchell, Philip B.; Mitjans, Marina; Mondimore, Francis M.; Monteleone, Palmiero; Mühleisen, Thomas W.; Nievergelt, Caroline M.; Nöthen, Markus M.; Novák, Tomas; Nurnberger, John I.; Nwulia, Evaristus A.; Ösby, Urban; Pfennig, Andrea; Potash, James B.; Propping, Peter; Reif, Andreas; Reininghaus, Eva; Rice, John; Rietschel, Marcella; Rouleau, Guy A.; Rybakowski, Janusz K.; Schalling, Martin; Scheftner, William A.; Schofield, Peter R.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schweizer, Barbara W.; Severino, Giovanni; Shekhtman, Tatyana; Shilling, Paul D.; Simhandl, Christian; Slaney, Claire M.; Smith, Erin N.; Squassina, Alessio; Stamm, Thomas; Stopkova, Pavla; Streit, Fabian; Strohmaier, Jana; Szelinger, Szabolcs; Tighe, Sarah K.; Tortorella, Alfonso; Turecki, Gustavo; Vieta, Eduard; Volkert, Julia; Witt, Stephanie H.; Wright, Adam; Zandi, Peter P.; Zhang, Peng; Zollner, Sebastian; McMahon, Francis J.

    2016-01-01

    Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behaviour. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, P =  5.87 × 10 − 9; odds ratio (OR) = 1.12) and markers within ERBB2 (rs2517959, P =  4.53 × 10 − 9; OR = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS. PMID:27329760

  18. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    PubMed Central

    Berndt, Sonja I.; Camp, Nicola J.; Skibola, Christine F.; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S.; Smedby, Karin E.; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S.; Lan, Qing; Teras, Lauren R.; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R.; Hartge, Patricia; Purdue, Mark P.; Birmann, Brenda M.; Vajdic, Claire M.; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G.; Shanafelt, Tait D.; Novak, Anne J.; Kay, Neil E.; Liebow, Mark; Cunningham, Julie M.; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T.; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A.; Diver, W Ryan; Link, Brian K.; Weiner, George J.; Conde, Lucia; Bracci, Paige M.; Riby, Jacques; Arnett, Donna K.; Zhi, Degui; Leach, Justin M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G.; Achenbach, Sara J.; Vachon, Celine M.; Goldin, Lynn R.; Strom, Sara S.; Leis, Jose F.; Weinberg, J. Brice; Caporaso, Neil E.; Norman, Aaron D.; De Roos, Anneclaire J.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María- Dolores; Vermeulen, Roel C. H.; Travis, Ruth C.; Southey, Melissa C.; Milne, Roger L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R.; Villano, Danylo J.; Maria, Ann; Spinelli, John J.; Gascoyne, Randy D.; Connors, Joseph M.; Bertrand, Kimberly A.; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M.; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E.; Snowden, John A.; Wright, Josh; Fraumeni, Joseph F.; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R.; Chanock, Stephen J.; Rothman, Nathaniel; Slager, Susan L.

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility. PMID:26956414

  19. Obesity-Related Genomic Loci Are Associated with Type 2 Diabetes in a Han Chinese Population

    PubMed Central

    Zhao, Qi; He, Jiang; Chen, Li; Zhao, Zhigang; Li, Qiang; Ge, Jiapu; Chen, Gang; Guo, Xiaohui; Lu, Juming; Weng, Jianping; Jia, Weiping; Ji, Linong; Xiao, Jianzhong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Zhou, Zhiguang; Shan, Guangliang; Yang, Wenying

    2014-01-01

    Background and Aims Obesity is a well-known risk factor for type 2 diabetes. Genome-wide association studies have identified a number of genetic loci associated with obesity. The aim of this study is to examine the contribution of obesity-related genomic loci to type 2 diabetes in a Chinese population. Methods We successfully genotyped 18 obesity-related single nucleotide polymorphisms among 5338 type 2 diabetic patients and 4663 controls. Both individual and joint effects of these single nucleotide polymorphisms on type 2 diabetes and quantitative glycemic traits (assessing β-cell function and insulin resistance) were analyzed using logistic and linear regression models, respectively. Results Two single nucleotide polymorphisms near MC4R and GNPDA2 genes were significantly associated with type 2 diabetes before adjusting for body mass index and waist circumference (OR (95% CI) = 1.14 (1.06, 1.22) for the A allele of rs12970134, P = 4.75×10−4; OR (95% CI) = 1.10 (1.03, 1.17) for the G allele of rs10938397, P = 4.54×10−3). When body mass index and waist circumference were further adjusted, the association of MC4R with type 2 diabetes remained significant (P = 1.81×10−2) and that of GNPDA2 was attenuated (P = 1.26×10−1), suggesting the effect of the locus including GNPDA2 on type 2 diabetes may be mediated through obesity. Single nucleotide polymorphism rs2260000 within BAT2 was significantly associated with type 2 diabetes after adjusting for body mass index and waist circumference (P = 1.04×10−2). In addition, four single nucleotide polymorphisms (near or within SEC16B, BDNF, MAF and PRL genes) showed significant associations with quantitative glycemic traits in controls even after adjusting for body mass index and waist circumference (all P values<0.05). Conclusions This study indicates that obesity-related genomic loci were associated with type 2 diabetes and glycemic traits in the Han Chinese population. PMID:25093408

  20. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci

    PubMed Central

    Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C.; Simeon, Carmen P.; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A.; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M.; D'alfonso, Sandra; Vonk, Madelon C.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K.; Arnett, Frank; Zhou, Xiaodong; Reveille, John D.; Gorlova, Olga; Koeleman, Bobby P.C.; Radstake, Timothy R.D.J.; Vyse, Timothy; Mayes, Maureen D.; Alarcón-Riquelme, Marta E.; Martin, Javier

    2013-01-01

    Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21 109 (6835 cases and 14 274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10−11, OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10−11, OR = 1.20) and JAZF1 (P = 1.11 × 10−8, OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity. PMID:23740937

  1. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci.

    PubMed

    Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C; Simeon, Carmen P; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M; D'alfonso, Sandra; Vonk, Madelon C; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K; Arnett, Frank; Zhou, Xiaodong; Reveille, John D; Gorlova, Olga; Koeleman, Bobby P C; Radstake, Timothy R D J; Vyse, Timothy; Mayes, Maureen D; Alarcón-Riquelme, Marta E; Martin, Javier

    2013-10-01

    Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21,109 (6835 cases and 14,274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10(-11), OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10(-11), OR = 1.20) and JAZF1 (P = 1.11 × 10(-8), OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity.

  2. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae).

    PubMed

    Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.

  3. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae)

    PubMed Central

    Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608

  4. Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Perseguini, Juliana Morini Küpper Cardoso; Oblessuc, Paula Rodrigues; Rosa, João Ricardo Bachega Feijó; Gomes, Kleber Alves; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Garcia, Antonio Augusto Franco; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2016-01-01

    The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more

  5. Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.).

    PubMed

    Perseguini, Juliana Morini Küpper Cardoso; Oblessuc, Paula Rodrigues; Rosa, João Ricardo Bachega Feijó; Gomes, Kleber Alves; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Garcia, Antonio Augusto Franco; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2016-01-01

    The common bean (Phaseolus vulgaris L.) is the world's most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more

  6. Quantitative trait loci controlling leaf venation in Arabidopsis.

    PubMed

    Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten

    2017-08-01

    Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.

  7. Automatic control and detector for three-terminal resistance measurement

    DOEpatents

    Fasching, George E.

    1976-10-26

    A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.

  8. Genome-wide association analysis identifies 13 new risk loci for schizophrenia.

    PubMed

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L; Kähler, Anna K; Akterin, Susanne; Bergen, Sarah E; Collins, Ann L; Crowley, James J; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K E; Sanchez, Nick; Stahl, Eli A; Williams, Stephanie; Wray, Naomi R; Xia, Kai; Bettella, Francesco; Borglum, Anders D; Bulik-Sullivan, Brendan K; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L; Holmans, Peter; Hougaard, David M; Kendler, Kenneth S; Lin, Kuang; Morris, Derek W; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; O'Neill, Francis A; Owen, Michael J; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L; Riley, Brien P; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T; Levinson, Douglas F; Gejman, Pablo V; Kendler, Kenneth S; Laurent, Claudine; Mowry, Bryan J; O'Donovan, Michael C; Owen, Michael J; Pulver, Ann E; Riley, Brien P; Schwab, Sibylle G; Wildenauer, Dieter B; Dudbridge, Frank; Holmans, Peter; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A; Nestadt, Gerald; Norton, Nadine; O'Neill, Francis A; Papadimitriou, George N; Ribble, Robert; Sanders, Alan R; Silverman, Jeremy M; Walsh, Dermot; Williams, Nigel M; Wormley, Brandon; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M; Lin, Kuang; Linszen, Don H; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M; Ophoff, Roel A; Powell, John; Rujescu, Dan; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden P; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Spencer, Chris C A; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T; Liddle, Jennifer; Potter, Simon C; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G; Blackwell, Jenefer M; Brown, Matthew A; Corvin, Aiden P; McCarthy, Mark I; Spencer, Chris C A; Bramon, Elvira; Corvin, Aiden P; O'Donovan, Michael C; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A; Sklar, Pamela; Hultman, Christina M; Sullivan, Patrick F

    2013-10-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

  9. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper ( Nilaparvata lugens).

    PubMed

    Xu, X. F.; Mei, H. W.; Luo, L. J.; Cheng, X. N.; Li, Z. K.

    2002-02-01

    Quantitative trait loci (QTLs), conferring quantitative resistance to rice brown planthopper (BPH), were investigated using 160 F(11) recombinant inbred lines (RILs) from the Lemont/Teqing cross, a complete RFLP map, and replicated phenotyping of seedbox inoculation. The paternal indica parent, Teqing, was more-resistant to BPH than the maternal japonica parent, Lemont. The RILs showed transgressive segregation for resistance to BPH. Seven main-effect QTLs and many epistatic QTL pairs were identified and mapped on the 12 rice chromosomes. Collectively, the main-effect and epistatic QTLs accounted for over 70% of the total variation in damage scores. Teqing has the resistance allele at four main-effect QTLs, and the Lemont allele resulted in resistance at the other three. Of the main-effect QTLs identified, QBphr5b was mapped to the vicinity of gl1, a major gene controlling leaf and stem pubescence. The Teqing allele controlling leaf and stem pubescence was associated with resistance, while the Lemont allele for glabrous stem and leaves was associated with susceptibility, indicating that this gene may have contributed to resistance through antixenosis. Similar to the reported BPH resistance genes, the other six detected main-effect QTLs were all mapped to regions where major disease resistance genes locate, suggesting they might have contributed either to antibiosis or tolerance. Our results indicated that marker-aided pyramiding of major resistance genes and QTLs should provide effective and stable control over this devastating pest.

  10. Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus.

    PubMed

    Gyawali, Sanjaya; Harrington, Myrtle; Durkin, Jonathan; Horner, Kyla; Parkin, Isobel A P; Hegedus, Dwayne D; Bekkaoui, Diana; Buchwaldt, Lone

    The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape ( Brassica napus ) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus , 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated ( r  = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.

  11. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  12. Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting.

    PubMed

    Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J; Ho, Julie; Reisen, Peter; Samac, Deborah A

    2014-01-01

    Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.

  13. Applications of biological control in resistant host-pathogen systems.

    PubMed

    White, Steven M; White, K A Jane

    2005-09-01

    Insect pest species can have devastating effects on crops. Control of these insect pests is usually achieved by using chemical insecticides. However, there has been much cause for concern with their overuse. Consequently, research has been carried out into alternative forms of control, in particular biological control methods. Recent laboratory studies have indicated that these natural forms of control can induce resistant strains of insect pest. In this paper we present a discrete-time host-pathogen model to describe the interaction between a host (insect species) that can develop a resistant strain and a pathogen (biological control) that can be externally applied to the system. For this model we use a single-state variable for the host population. We show that the proportion of resistance in the population impacts on the viability of the host population. Moreover, when the host population does persist, we explore the interaction between host susceptibility and host population levels. The different scenarios which arise are explained ecologically in terms of trade-offs in intrinsic growth rates, disease susceptibility and intraspecific host competition for the resistant subclass.

  14. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae.

    PubMed

    Stotz, Henrik U; Harvey, Pascoe J; Haddadi, Parham; Mashanova, Alla; Kukol, Andreas; Larkan, Nicholas J; Borhan, M Hossein; Fitt, Bruce D L

    2018-01-01

    Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.

  15. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    PubMed Central

    Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

    2013-01-01

    Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while

  16. Development of eighteen microsatellite loci in walleye (Sander vitreus)

    USGS Publications Warehouse

    Coykendall, D. Katharine; Morrison, Cheryl L.; Stott, Wendylee; Springmann, Marcus J.

    2014-01-01

    A suite of tri- and tetra-nucleotide microsatellite loci were developed for walleye (Sander vitreus) from 454 pyrosequencing data. Eighteen of the 50 primer sets tested amplified consistently in 35 walleye from two lakes on Isle Royale, Lake Superior: Chickenbone Lake and Whittlesey Lake. The loci displayed moderate levels of allelic diversity (average 5.5 alleles/locus) and heterozygosity (average 35.8 %). Levels of genetic diversity were sufficient to produce unique multi-locus genotypes and detect phylogeographic structuring as individuals assigned back to their population of origin. Cross-species amplification within S. canadensis(sauger) was successful for 15 loci, and 11 loci were diagnostic to species. The loci characterized here will be useful for detecting fine-scale spatial structuring, resolving the taxonomic status of Sander species and sub-species, and detecting walleye/sauger hybrids.

  17. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    PubMed Central

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A; Spritz, Richard A

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment. PMID:27723757

  18. Mycobacterial interspersed repetitive unit typing and mutational profile for multidrug-resistant and extensively drug-resistant tuberculosis surveillance in Portugal: a 3-year period overview.

    PubMed

    Silva, Carla; Perdigão, João; Jordão, Luísa; Portugal, Isabel

    2014-12-01

    Multidrug tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) cases constitute a serious health problem in Portugal, of which the majority of isolates belong to the Lisboa family and the Q1 cluster, highly related to the Lisboa family. Here we sought to investigate the molecular basis of resistant TB as well as to determine the prevalence of specific drug resistance mutations and their association with MDR-TB and/or XDR-TB. In total, 74 Mycobacterium tuberculosis clinical isolates collected in Lisbon Health Region were genotyped by 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), and the mutational profile associated with first- and second-line drug resistance was studied. Seven new mutations were found, whilst the remaining 28 mutations had been previously associated with drug resistance. None of the mutations was specifically associated with MDR-TB. The mutational patterns observed among isolates belonging to Lisboa3 and Q1 clusters were also observed in isolates with unique MIRU-VNTR patterns but closely related to these strains. Such data suggest that the genotyping technique employed discriminates isolates with the same mutational profile. To establish the most adequate genotyping technique, the discriminatory power of three different MIRU-VNTR sets was analysed. The 15-loci MIRU-VNTR set showed adequate discriminatory power, comparable with the 24-loci set, allowing clustering of 60% and 86% of the MDR-TB and XDR-TB isolates, respectively, the majority of which belonged to the Lisboa3 and Q1 clusters. From an epidemiological standpoint, this study suggests combined mutational and genotyping analysis as a valuable tool for drug resistance surveillance. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Reflections on Speech Motor Control Based on Phonatory and DDK Tasks in Dysarthric Subjects with Lesions in Different Cerebellar Loci

    ERIC Educational Resources Information Center

    Vandana, V. P.

    2007-01-01

    There are very few acoustic studies reflecting on the localization of speech function within the different loci of the cerebellum. Task based performance profile of subjects with lesion in different cerebellar loci is not reported. Also, the findings on nonfocal cerebellar lesions cannot be generalized to lesions restricted to the cerebellum.…

  20. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria

    PubMed Central

    2012-01-01

    Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short

  1. Replication of Caucasian loci associated with bone mineral density in Koreans.

    PubMed

    Kim, Y A; Choi, H J; Lee, J Y; Han, B G; Shin, C S; Cho, N H

    2013-10-01

    Most bone mineral density (BMD) loci were reported in Caucasian genome-wide association studies (GWAS). This study investigated the association between 59 known BMD loci (+200 suggestive SNPs) and DXA-derived BMD in East Asian population with respect to sex and site specificity. We also identified four novel BMD candidate loci from the suggestive SNPs. Most GWAS have reported BMD-related variations in Caucasian populations. This study investigates whether the BMD loci discovered in Caucasian GWAS are also associated with BMD in East Asian ethnic samples. A total of 2,729 unrelated Korean individuals from a population-based cohort were analyzed. We selected 747 single-nucleotide polymorphisms (SNPs). These markers included 547 SNPs from 59 loci with genome-wide significance (GWS, p value less than 5 × 10(-8)) levels and 200 suggestive SNPs that showed weaker BMD association with p value less than 5 × 10(-5). After quality control, 535 GWS SNPs and 182 suggestive SNPs were included in the replication analysis. Of the 535 GWS SNPs, 276 from 25 loci were replicated (p < 0.05) in the Korean population with 51.6 % replication rate. Of the 182 suggestive variants, 16 were replicated (p < 0.05, 8.8 % of replication rate), and five reached a significant combined p value (less than 7.0 × 10(-5), 0.05/717 SNPs, corrected for multiple testing). Two markers (rs11711157, rs3732477) are for the same signal near the gene CPN2 (carboxypeptidase N, polypeptide 2). The other variants, rs6436440 and rs2291296, were located in the genes AP1S3 (adaptor-related protein complex 1, sigma 3 subunit) and RARB (retinoic acid receptor, beta). Our results illustrate ethnic differences in BMD susceptibility genes and underscore the need for further genetic studies in each ethnic group. We were also able to replicate some SNPs with suggestive associations. These SNPs may be BMD-related genetic markers and should be further investigated.

  2. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk.

    PubMed

    Zeng, Chenjie; Matsuda, Koichi; Jia, Wei-Hua; Chang, Jiang; Kweon, Sun-Seog; Xiang, Yong-Bing; Shin, Aesun; Jee, Sun Ha; Kim, Dong-Hyun; Zhang, Ben; Cai, Qiuyin; Guo, Xingyi; Long, Jirong; Wang, Nan; Courtney, Regina; Pan, Zhi-Zhong; Wu, Chen; Takahashi, Atsushi; Shin, Min-Ho; Matsuo, Keitaro; Matsuda, Fumihiko; Gao, Yu-Tang; Oh, Jae Hwan; Kim, Soriul; Jung, Keum Ji; Ahn, Yoon-Ok; Ren, Zefang; Li, Hong-Lan; Wu, Jie; Shi, Jiajun; Wen, Wanqing; Yang, Gong; Li, Bingshan; Ji, Bu-Tian; Brenner, Hermann; Schoen, Robert E; Küry, Sébastien; Gruber, Stephen B; Schumacher, Fredrick R; Stenzel, Stephanie L; Casey, Graham; Hopper, John L; Jenkins, Mark A; Kim, Hyeong-Rok; Jeong, Jin-Young; Park, Ji Won; Tajima, Kazuo; Cho, Sang-Hee; Kubo, Michiaki; Shu, Xiao-Ou; Lin, Dongxin; Zeng, Yi-Xin; Zheng, Wei

    2016-06-01

    Known genetic factors explain only a small fraction of genetic variation in colorectal cancer (CRC). We conducted a genome-wide association study to identify risk loci for CRC. This discovery stage included 8027 cases and 22,577 controls of East-Asian ancestry. Promising variants were evaluated in studies including as many as 11,044 cases and 12,047 controls. Tumor-adjacent normal tissues from 188 patients were analyzed to evaluate correlations of risk variants with expression levels of nearby genes. Potential functionality of risk variants were evaluated using public genomic and epigenomic databases. We identified 4 loci associated with CRC risk; P values for the most significant variant in each locus ranged from 3.92 × 10(-8) to 1.24 × 10(-12): 6p21.1 (rs4711689), 8q23.3 (rs2450115, rs6469656), 10q24.3 (rs4919687), and 12p13.3 (rs11064437). We also identified 2 risk variants at loci previously associated with CRC: 10q25.2 (rs10506868) and 20q13.3 (rs6061231). These risk variants, conferring an approximate 10%-18% increase in risk per allele, are located either inside or near protein-coding genes that include transcription factor EB (lysosome biogenesis and autophagy), eukaryotic translation initiation factor 3, subunit H (initiation of translation), cytochrome P450, family 17, subfamily A, polypeptide 1 (steroidogenesis), splA/ryanodine receptor domain and SOCS box containing 2 (proteasome degradation), and ribosomal protein S2 (ribosome biogenesis). Gene expression analyses showed a significant association (P < .05) for rs4711689 with transcription factor EB, rs6469656 with eukaryotic translation initiation factor 3, subunit H, rs11064437 with splA/ryanodine receptor domain and SOCS box containing 2, and rs6061231 with ribosomal protein S2. We identified susceptibility loci and genes associated with CRC risk, linking CRC predisposition to steroid hormone, protein synthesis and degradation, and autophagy pathways and providing added insight into the

  3. Association analysis identifies 65 new breast cancer risk loci

    PubMed Central

    Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K.; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D.; Chen, Xiao Qing; Fachal, Laura; McCue, Karen; McCart Reed, Amy E.; Ghoussaini, Maya; Carroll, Jason; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N.; Arndt, Volker; Aronson, Kristan J.; Arun, Banu; Auer, Paul L.; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W.; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W.; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y.; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D.; Castelao, Jose E.; Chan, Tsun L.; Cheng, Ting-Yuan David; Chia, Kee Seng; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L.; Collée, Margriet; Conroy, Don M.; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Devilee, Peter; Doheny, Kimberly F.; Dörk, Thilo; dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M.; Ekici, Arif B.; Eliassen, A. Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M.; García-Sáenz, José A.; Gaudet, Mia M.; Georgoulias, Vassilios; Giles, Graham G.; Glendon, Gord; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Grenaker Alnæs, Grethe I.; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N.; Hartikainen, Jaana M.; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M.; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J.; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I.; Kim, Sung-Won; Knight, Julia A.; Kosma, Veli-Matti; Kristensen, Vessela N.; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Marchand, Loic Le; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Lee, Chuen Neng; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P.; Ma, Edmond S.K.; MacInnis, Robert J.; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E.; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Mohd Taib, Nur Aishah; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F.; Noh, Dong-Young; Nordestgaard, Børge G.; Norman, Aaron; Olopade, Olufunmilayo I.; Olson, Janet E.; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V. Shane; Park, Sue K.; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I.A.; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofieva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S.; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J. Th.; Saloustros, Emmanouil; Sandler, Dale P.; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmutzler, Rita K.; Schneeweiss, Andreas; Schoemaker, Minouk J.; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J.; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E.; Shrubsole, Martha J.; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C.; Spinelli, John J.; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O.; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A.; Tengström, Maria; Teo, Soo H.; Terry, Mary Beth; Tessier, Daniel C.; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J.; Van Den Berg, David; van den Ouweland, Ans M.W.; van der Kolk, Lizet; van der Luijt, Rob B.; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R.; Wendt, Camilla; Whittemore, Alice S.; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H.; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R.; Yip, Cheng Har; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R.; Antoniou, Antonis C.; Droit, Arnaud; Andrulis, Irene L.; Amos, Christopher I.; Couch, Fergus J.; Pharoah, Paul D.P.; Chang-Claude, Jenny; Hall, Per; Hunter, David J.; Milne, Roger L.; García-Closas, Montserrat; Schmidt, Marjanka K.; Chanock, Stephen J.; Dunning, Alison M.; Edwards, Stacey L.; Bader, Gary D.; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F.

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes such as BRCA1 and many common, mainly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. We report results from a genome-wide association study (GWAS) of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci associated with overall breast cancer at p<5x10-8. The majority of credible risk SNPs in the new loci fall in distal regulatory elements, and by integrating in-silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all SNPs in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the utility of genetic risk scores for individualized screening and prevention. PMID:29059683

  4. Genetic resistance to smallpox: lessons from mousepox.

    PubMed

    Karupiah, Gunasegaran; Panchanathan, Vijay; Sakala, Isaac G; Chaudhri, Geeta

    2007-01-01

    There is increased interest in understanding protective immunity to smallpox for two principal reasons. First, it is the only disease that has been successfully eradicated using a live virus vaccine and, second, there exists a potential threat of intentional or unintentional release of variola virus, the causative agent of smallpox. Although mortality rates associated with smallpox were as high as 40%, a significant subset of those infected recovered. The basis of susceptibility or resistance, and the immune parameters associated with recovery, are still unknown. Animal models of poxvirus infections are being employed to understand what constitutes an effective host response. Ectromelia virus is closely related to variola virus and it causes a disease similar to smallpox in mice. This model is well established, resistant and susceptible strains of mice are defined and four genetic loci associated with resistance have been identified. Susceptibility to infec tion and disease severity is also influenced by virus immune evasion strategies. The outcome of infection is clearly dictated by several factors including host and viral genes, both of which influence the immune response. Here we present data on one virus-encoded immune modifier and its effect on the functions of two host genetic loci associ ated with resistance.

  5. Genome-wide association studies identify susceptibility loci affecting respiratory disease in Chinese Erhualian pigs under natural conditions.

    PubMed

    Huang, X; Huang, T; Deng, W; Yan, G; Qiu, H; Huang, Y; Ke, S; Hou, Y; Zhang, Y; Zhang, Z; Fang, S; Zhou, L; Yang, B; Ren, J; Ai, H; Huang, L

    2017-02-01

    Prevalence of swine respiratory disease causes poor growth performance in and serious economic losses to the swine industry. In this study, a categorical trait of enzootic pneumonia-like (EPL) score representing the infection gradient of a respiratory disease, more likely enzootic pneumonia, was recorded in a herd of 332 Chinese Erhualian pigs. According to their EPL scores and the disease effect on weight gains, these pigs were grouped into controls (EPL score ≤ 1) and cases (EPL score > 1). The weight gain of the case group reduced significantly at days 180, 210, 240 and 300 as compared to the control group. The heritability of EPL score was estimated to be 0.24 based on the pedigree information using a linear mixed model. All 332 Erhualian pigs and their nine sire parents were genotyped with Illumina Porcine 60K SNP chips. Two genome-wide association studies were performed under a generalized linear mixed model and a case-control model respectively. In total, five loci surpassed the suggestive significance level (P = 2.98 × 10 -5 ) on chromosomes 2, 8, 12 and 14. CXCL6, CXCL8, KIT and CTBP2 were highlighted as candidate genes that might play important roles in determining resistance/susceptibility to swine EP-like respiratory disease. The findings advance understanding of the genetic basis of resistance/susceptibility to respiratory disease in pigs. © 2016 Stichting International Foundation for Animal Genetics.

  6. Genome-Wide Search for Quantitative Trait Loci Controlling Important Plant and Flower Traits in Petunia Using an Interspecific Recombinant Inbred Population of Petunia axillaris and Petunia exserta.

    PubMed

    Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao

    2018-05-15

    A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.

  7. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    PubMed Central

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi; Shimizu, Seiko; Higashino, Toshihide; Kawamura, Yusuke; Ogata, Hiraku; Kawaguchi, Makoto; Ohkawa, Yasuyuki; Danjoh, Inaho; Tokumasu, Atsumi; Ooyama, Keiko; Ito, Toshimitsu; Kondo, Takaaki; Wakai, Kenji; Stiburkova, Blanka; Pavelka, Karel; Stamp, Lisa K; Dalbeth, Nicola; Sakurai, Yutaka; Suzuki, Hiroshi; Hosoyamada, Makoto; Fujimori, Shin; Yokoo, Takashi; Hosoya, Tatsuo; Inoue, Ituro; Takahashi, Atsushi; Kubo, Michiaki; Ooyama, Hiroshi; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi; Merriman, Tony R; Matsuo, Hirotaka

    2017-01-01

    Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. Results In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10−8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (pmeta=3.58×10−8). Conclusions Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia. PMID:27899376

  8. Are herbicide-resistant crops the answer to controlling Cuscuta?

    PubMed

    Nadler-Hassar, Talia; Shaner, Dale L; Nissen, Scott; Westra, Phill; Rubin, Baruch

    2009-07-01

    Herbicide-resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate-resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone-resistant host. The growth of C. campestris on glyphosate-resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3-4 weeks. The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite-resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. (c) 2009 by John Wiley & Sons, Ltd.

  9. Multidrug-resistant enterococci lack CRISPR-cas.

    PubMed

    Palmer, Kelli L; Gilmore, Michael S

    2010-10-12

    Clustered, regularly interspaced short palindromic repeats (CRISPR) provide bacteria and archaea with sequence-specific, acquired defense against plasmids and phage. Because mobile elements constitute up to 25% of the genome of multidrug-resistant (MDR) enterococci, it was of interest to examine the codistribution of CRISPR and acquired antibiotic resistance in enterococcal lineages. A database was built from 16 Enterococcus faecalis draft genome sequences to identify commonalities and polymorphisms in the location and content of CRISPR loci. With this data set, we were able to detect identities between CRISPR spacers and sequences from mobile elements, including pheromone-responsive plasmids and phage, suggesting that CRISPR regulates the flux of these elements through the E. faecalis species. Based on conserved locations of CRISPR and CRISPR-cas loci and the discovery of a new CRISPR locus with associated functional genes, CRISPR3-cas, we screened additional E. faecalis strains for CRISPR content, including isolates predating the use of antibiotics. We found a highly significant inverse correlation between the presence of a CRISPR-cas locus and acquired antibiotic resistance in E. faecalis, and examination of an additional eight E. faecium genomes yielded similar results for that species. A mechanism for CRISPR-cas loss in E. faecalis was identified. The inverse relationship between CRISPR-cas and antibiotic resistance suggests that antibiotic use inadvertently selects for enterococcal strains with compromised genome defense.

  10. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study

    PubMed Central

    Eeles, Rosalind A.; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G.; Guy, Michelle; Severi, Gianluca; Muir, Kenneth; Hopper, John L.; Henderson, Brian E.; Haiman, Christopher A.; Schleutker, Johanna; Hamdy, Freddie C.; Neal, David E.; Donovan, Jenny L.; Stanford, Janet L.; Ostrander, Elaine A.; Ingles, Sue A.; John, Esther M.; Thibodeau, Stephen N.; Schaid, Daniel; Park, Jong Y.; Spurdle, Amanda; Clements, Judith; Dickinson, Joanne L.; Maier, Christiane; Vogel, Walther; Dörk, Thilo; Rebbeck, Timothy R.; Cooney, Kathleen A.; Cannon-Albright, Lisa; Chappuis, Pierre O.; Hutter, Pierre; Zeegers, Maurice; Kaneva, Radka; Zhang, Hong-Wei; Lu, Yong-Jie; Foulkes, William D.; English, Dallas R.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Morrison, Jonathan; Ardern-Jones, Audrey T.; Hall, Amanda L.; O’Brien, Lynne T.; Wilkinson, Rosemary A.; Saunders, Edward J.; Page, Elizabeth C.; Sawyer, Emma J.; Edwards, Stephen M.; Dearnaley, David P.; Horwich, Alan; Huddart, Robert A.; Khoo, Vincent S.; Parker, Christopher C.; Van As, Nicholas; Woodhouse, Christopher J.; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin S.; Southey, Melissa C.; Lophatananon, Artitaya; Liu, Jo-Fen; Kolonel, Laurence N.; Le Marchand, Loic; Wahlfors, Tiina; Tammela, Teuvo L.; Auvinen, Anssi; Lewis, Sarah J.; Cox, Angela; FitzGerald, Liesel M.; Koopmeiners, Joseph S.; Karyadi, Danielle M.; Kwon, Erika M.; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Shahabi, Ahva; McDonnell, Shannon K.; Sellers, Thomas A; Pow-Sang, Julio; Chambers, Suzanne; Aitken, Joanne; Gardiner, R.A. (Frank); Batra, Jyotsna; Kedda, Mary Anne; Lose, Felicity; Polanowski, Andrea; Patterson, Briony; Serth, Jürgen; Meyer, Andreas; Luedeke, Manuel; Stefflova, Klara; Ray, Anna M.; Lange, Ethan M.; Farnham, Jim; Khan, Humera; Slavov, Chavdar; Mitkova, Atanaska; Cao, Guangwen; Easton, Douglas F.

    2010-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we have previously conducted a genome-wide association study in which 541, 129 SNPs were genotyped in 1,854 PrCa cases with clinically detected disease and 1,894 controls. We have now evaluated promising associations in a second stage, in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls, and a third stage, involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to previously identified loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2, 4, 8, 11, and 22 (P=1.6×10−8 to P=2.7×10−33). PMID:19767753

  11. Common genetic variation and novel loci associated with volumetric mammographic density.

    PubMed

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P < 5 × 10 - 8 ): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  12. Intensified agriculture favors evolved resistance to biological control.

    PubMed

    Tomasetto, Federico; Tylianakis, Jason M; Reale, Marco; Wratten, Steve; Goldson, Stephen L

    2017-04-11

    Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest ( Listronotus bonariensis ; Argentine stem weevil) by an introduced parasitoid ( Microctonus hyperodae ) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne , which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass ( Lolium multiflorum ), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.

  13. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean

    PubMed Central

    Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan

    2016-01-01

    Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272

  14. Genomic dissection of anthracnose resistant response in sorghum [Sorghum bicolor (L.)

    USDA-ARS?s Scientific Manuscript database

    The goal of this project is to use a genomics-based approaches to identify anthracnose resistance loci from diverse sorghum germplasm as an effort to the disease resistance mechanism of at least one of these genes. This information will provide plant breeders with a tool kit that can be used to maxi...

  15. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    PubMed

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia

    PubMed Central

    Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan

    2017-01-01

    Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE—petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations. PMID:28399170

  17. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia.

    PubMed

    Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan

    2017-01-01

    Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE-petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations.

  18. Identification of Molecular Markers Associated with Verticillium Wilt Resistance in Alfalfa (Medicago Sativa L.) Using High-Resolution Melting

    PubMed Central

    Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J.; Ho, Julie; Reisen, Peter; Samac, Deborah A.

    2014-01-01

    Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs. PMID:25536106

  19. Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.).

    PubMed

    Qiu, Y C; Zhou, R H; Kong, X Y; Zhang, S S; Jia, J Z

    2005-11-01

    A powdery mildew resistance gene from Triticum urartu Tum. accession UR206 was successfully transferred into hexaploid wheat (Triticum aestivum L.) through crossing and backcrossing. The F1 plants, which had 28 chromosomes and an average of 5.32 bivalents and 17.36 univalents in meiotic pollen mother cells (PMC), were obtained through embryos rescued owing to shriveling of endosperm in hybrid seed of cross Chinese Spring (CS) x UR206. Hybrid seeds were produced through backcrossing F1 with common wheat parents. The derivative lines had normal chromosome numbers and powdery mildew resistance similar to the donor UR206, indicating that the powdery mildew resistance gene originating from T. urartu accession UR206 was successfully transferred and expressed in a hexaploid wheat background. Genetic analysis indicated that a single dominant gene controlled the powdery mildew resistance at the seedling stage. To map and tag the powdery mildew resistance gene, 143 F2 individuals derived from a cross UR206 x UR203 were used to construct a linkage map. The resistant gene was mapped on the chromosome 7AL based on the mapped microsatellite makers. The map spanned 52.1 cM and the order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 7AL. The resistance gene was flanked by the microsatellite loci Xwmc273 and Xpsp3003, with the genetic distances of 2.2 cM and 3.8 cM, respectively. On the basis of the origin and chromosomal location of the gene, it was temporarily designated PmU.

  20. Microsatellite loci discovery from next-generation sequencing data and loci characterization in the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758)

    PubMed Central

    Zardus, John D.; Wares, John P.

    2016-01-01

    Microsatellite markers remain an important tool for ecological and evolutionary research, but are unavailable for many non-model organisms. One such organism with rare ecological and evolutionary features is the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758). Chelonibia testudinaria appears to be a host generalist, and has an unusual sexual system, androdioecy. Genetic studies on host specificity and mating behavior are impeded by the lack of fine-scale, highly variable markers, such as microsatellite markers. In the present study, we discovered thousands of new microsatellite loci from next-generation sequencing data, and characterized 12 loci thoroughly. We conclude that 11 of these loci will be useful markers in future ecological and evolutionary studies on C. testudinaria. PMID:27231653

  1. An evolutionary reduction principle for mutation rates at multiple Loci.

    PubMed

    Altenberg, Lee

    2011-06-01

    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.

  2. Distribution of antimicrobial resistance determinants, virulence-associated factors and clustered regularly interspaced palindromic repeats loci in isolates of Enterococcus faecalis from various settings and genetic lineages

    PubMed Central

    Gawryszewska, Iwona; Malinowska, Katarzyna; Kuch, Alicja; Chrobak-Chmiel, Dorota; Trokenheim, Łucja Łaniewska-; Hryniewicz, Waleria; Sadowy, Ewa

    2017-01-01

    Abstract Enterococcus faecalis represents an important factor of hospital-associated infections (HAIs). The knowledge on its evolution from a commensal to an opportunistic pathogen is still limited; thus, we performed a study to characterise distribution of factors that may contribute to this adaptation. Using a collection obtained from various settings (hospitalised patients, community carriers, animals, fresh food, sewage, water), we investigated differences in antimicrobial susceptibility, distribution of antimicrobial resistance genes, virulence-associated determinants and phenotypes, and CRISPR loci in the context of the clonal relatedness of isolates. Bayesian Analysis of Population Structure revealed the presence of three major groups; two subgroups comprised almost exclusively HAI isolates, belonging to previously proposed enterococcal high-risk clonal complexes (HiRECCs) 6 and 28. Isolates of these two subgroups were significantly enriched in antimicrobial resistance genes, presumably produced a polysaccharide capsule and often carried the aggregation substance asa1; distribution of other virulence-associated genes, such as esp and cyl, formation of a biofilm and gelatinase production were more variable. Moreover, both subgroups showed a low prevalence of CRISPR-Cas 1 and 3 and presence of small CRISPR2 variants. Our study confirms the importance of HiRECCs in the population of E. faecalis and their confinement to the hospital settings. PMID:28334141

  3. Genetic analyses of resistance against Leptopilina victoriae in Drosophila bipectinata.

    PubMed

    Takigahira, Tomohiro; Kohyama, Tetsuo I; Suwito, Awit; Kimura, Masahito T

    2015-06-01

    Drosophila bipectinata from Iriomote-jima (IR) is susceptible to the endoparasitoid Leptopilina victoriae from Kota Kinabalu (L. victoriae KK), but D. bipectinata from Kota Kinabalu (KK) and Bogor (BG) is resistant. The cross experiments between the resistant (KK) and susceptible (IR) populations of D. bipectinata suggested that the resistance to this parasitoid is a dominant trait and controlled by a single locus or few linked loci on an autosome. In the AFLP analysis using the IR, KK and BG populations of D. bipectinata and the resistant and susceptible populations derived from a mixed population of these three geographic populations, a DNA fragment almost specific to susceptible flies was detected. It also revealed that genes from the IR population were more frequently maintained in the mixed population compared with those from the KK and BG populations, suggesting that at least a number of genes from the IR population are more advantageous under the laboratory conditions. This explains our previous results that the resistance was lowered in the mixed population although the resistance itself is suggested to incur only low costs; i.e., the resistance gene(s) from the KK and BG populations would have been linked with some genes that are disadvantageous under the laboratory conditions.

  4. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci.

    PubMed

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan; Hazelett, Dennis; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bogdanova, Natalia; Brinton, Louise; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Dansonka-Mieszkowska, Agnieszka; Doherty, Jennifer Anne; Dörk, Thilo; Dürst, Matthias; Eccles, Diana; Fasching, Peter A; Flanagan, James; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Heitz, Florian; Hildebrandt, Michelle A T; Høgdall, Estrid; Høgdall, Claus K; Huntsman, David G; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Levine, Douglas A; Li, Qiyuan; Lissowska, Jolanta; Lu, Karen H; Lubiński, Jan; Massuger, Leon F A G; McGuire, Valerie; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Permuth, Jennifer B; Phelan, Catherine; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rossing, Mary Anne; Salvesen, Helga B; Schildkraut, Joellen M; Sellers, Thomas A; Sherman, Mark; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa; Terry, Kathryn L; Tworoger, Shelley S; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P; Lawrenson, Kate

    2017-02-14

    Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). The PAX8-target gene set was ranked 1/615 in the discovery (P GSEA <0.001; FDR=0.21), 7/615 in the replication (P GSEA =0.004; FDR=0.37), and 1/615 in the combined (P GSEA <0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10 -5 (including six with P<5 × 10 -8 ). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (P GSEA =0.025) and IGROV1 (P GSEA =0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC.

  5. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    PubMed Central

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan; Hazelett, Dennis; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bogdanova, Natalia; Brinton, Louise; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Dansonka-Mieszkowska, Agnieszka; Doherty, Jennifer Anne; Dörk, Thilo; Dürst, Matthias; Eccles, Diana; Fasching, Peter A; Flanagan, James; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Heitz, Florian; Hildebrandt, Michelle A T; Høgdall, Estrid; Høgdall, Claus K; Huntsman, David G; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Levine, Douglas A; Li, Qiyuan; Lissowska, Jolanta; Lu, Karen H; Lubiński, Jan; Massuger, Leon F A G; McGuire, Valerie; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Permuth, Jennifer B; Phelan, Catherine; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rossing, Mary Anne; Salvesen, Helga B; Schildkraut, Joellen M; Sellers, Thomas A; Sherman, Mark; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa; Terry, Kathryn L; Tworoger, Shelley S; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P; Lawrenson, Kate

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. Methods: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). Results: The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10−5 (including six with P<5 × 10−8). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Conclusions: Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC. PMID:28103614

  6. Assessment of Parkinson’s disease risk loci in Greece

    PubMed Central

    Kara, Eleanna; Xiromerisiou, Georgia; Spanaki, Cleanthe; Bozi, Maria; Koutsis, Georgios; Panas, Marios; Dardiotis, Efthimios; Ralli, Styliani; Bras, Jose; Letson, Christopher; Edsall, Connor; Pliner, Hannah; Arepali, Sampath; Kalinderi, Kallirhoe; Fidani, Liana; Bostanjopoulou, Sevasti; Keller, Margaux F; Wood, Nicholas W; Hardy, John; Houlden, Henry; Stefanis, Leonidas; Plaitakis, Andreas; Hernandez, Dena; Hadjigeorgiou, Georgios M; Nalls, Mike A; Singleton, Andrew B

    2013-01-01

    Genome wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson’s disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and controls from Greece. We showed that previously published risk profiles for Northern European and American populations are also applicable to the Greek population. In addition, while we were largely underpowered to detect individual associations we replicated 5 of 32 previously published risk variants with nominal p-values <0.05. Genome-wide complex trait analysis (GCTA) revealed that known risk loci explain disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a substantial genetic component to PD in Greece similarly to other worldwide populations that remains to be discovered. PMID:24080174

  7. Inheritance of Carboxin Resistance in a European Field Isolate of Ustilago nuda.

    PubMed

    Newcombe, G; Thomas, P L

    2000-02-01

    ABSTRACT Two carboxin-resistant field isolates of Ustilago nuda from Europe were crossed with a carboxin-sensitive field isolate from North America. Meiotic tetrads isolated from germinating F(1) teliospores of one of the hybrids were tested for carboxin resistance and mating type. Carboxin resistance was shown to be controlled by a single gene (CBX1R), because a 1:1 segregation of carboxin resistance was observed in all 27 tetrads. Tetrad analysis indicated that the loci for carboxin resistance (Cbx1) and mating type (MAT1) segregate independently but may be located on the same chromosome. Tetrad analysis was not possible with the F(1) hybrid of he other field isolate, and its resistance cannot yet be attributed to CBX1R. Carboxin resistance was qualitatively dominant to sensitivity in vitro, as demonstrated by triad analysis of germinating F(1) teliospores. Quantitative in planta infection percents supported the conclusion that CBX1R is dominant, although incompletely, in the F(1) hybrid of one of the field isolates. Also, fewer than expected carboxin-sensitive F(2) individuals were observed in planta. However, inoculations of host plants with U. nuda have resulted in similar, unexpected variation in the past.

  8. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr.

    PubMed

    Wei, Min; Yokoyama, Tadashi; Minamisawa, Kiwamu; Mitsui, Hisayuki; Itakura, Manabu; Kaneko, Takakazu; Tabata, Satoshi; Saeki, Kazuhiko; Omori, Hirofumi; Tajima, Shigeyuki; Uchiumi, Toshiki; Abe, Mikiko; Ohwada, Takuji

    2008-08-01

    Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.

  9. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize.

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...

  10. Rehabilitation device with variable resistance and intelligent control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J.Q.; Rudolph, Katherine

    2008-01-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents an optimal design of magneto-rheological fluid dampers for variable resistance exercise device in the form of a knee brace. An intelligent supervisory control for regulating the resistive force or torque of the knee brace has also been studied. The device provides both isometric and isokinetic strength training for the knee. PMID:15694609

  11. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    PubMed Central

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  12. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing.

    PubMed

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.

  13. Changes in Malaria Parasite Drug Resistance in an Endemic Population Over a 25-Year Period With Resulting Genomic Evidence of Selection

    PubMed Central

    Nwakanma, Davis C.; Duffy, Craig W.; Amambua-Ngwa, Alfred; Oriero, Eniyou C.; Bojang, Kalifa A.; Pinder, Margaret; Drakeley, Chris J.; Sutherland, Colin J.; Milligan, Paul J.; MacInnis, Bronwyn; Kwiatkowski, Dominic P.; Clark, Taane G.; Greenwood, Brian M.; Conway, David J.

    2014-01-01

    Background. Analysis of genome-wide polymorphism in many organisms has potential to identify genes under recent selection. However, data on historical allele frequency changes are rarely available for direct confirmation. Methods. We genotyped single nucleotide polymorphisms (SNPs) in 4 Plasmodium falciparum drug resistance genes in 668 archived parasite-positive blood samples of a Gambian population between 1984 and 2008. This covered a period before antimalarial resistance was detected locally, through subsequent failure of multiple drugs until introduction of artemisinin combination therapy. We separately performed genome-wide sequence analysis of 52 clinical isolates from 2008 to prospect for loci under recent directional selection. Results. Resistance alleles increased from very low frequencies, peaking in 2000 for chloroquine resistance-associated crt and mdr1 genes and at the end of the survey period for dhfr and dhps genes respectively associated with pyrimethamine and sulfadoxine resistance. Temporal changes fit a model incorporating likely selection coefficients over the period. Three of the drug resistance loci were in the top 4 regions under strong selection implicated by the genome-wide analysis. Conclusions. Genome-wide polymorphism analysis of an endemic population sample robustly identifies loci with detailed documentation of recent selection, demonstrating power to prospectively detect emerging drug resistance genes. PMID:24265439

  14. Impact of pyrethroid resistance on operational malaria control in Malawi

    PubMed Central

    Wondji, Charles S.; Coleman, Michael; Kleinschmidt, Immo; Mzilahowa, Themba; Irving, Helen; Ndula, Miranda; Rehman, Andrea; Morgan, John; Barnes, Kayla G.; Hemingway, Janet

    2012-01-01

    The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country. PMID:23118337

  15. radEq Add-On Module for CFD Solver Loci-CHEM

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    Loci-CHEM to be applied to flow velocities where surface radiation due to heating from compression and friction becomes significant. The module adds a radiation equilibrium boundary condition to the computational fluid dynamics (CFD) code to produce accurate results. The module expanded the upper limit for accurate CFD solutions of Loci-CHEM from Mach 4 to Mach 10 based on Space Shuttle Orbiter Re-Entry trajectories. Loci-CHEM already has a very promising architecture and performance, but absence of radiation equilibrium boundary condition limited the application of Loci-CHEM to below Mach 4. The immediate advantage of the add-on module is that it allows Loci-CHEM to work with supersonic flows up to Mach 10. This transformed Loci-CHEM from a rocket engine- heritage CFD code with general subsonic and low-supersonic applications, to an aeroheating code with hypersonic applications. The follow-on advantage of the module is that it is a building block for additional add-on modules that will solve for the heating generated at Mach numbers higher than 10.

  16. Association analysis identifies 65 new breast cancer risk loci.

    PubMed

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D; Qing Chen, Xiao; Fachal, Laura; McCue, Karen; McCart Reed, Amy E; Ghoussaini, Maya; Carroll, Jason S; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N; Arndt, Volker; Aronson, Kristan J; Arun, Banu; Auer, Paul L; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D; Castelao, Jose E; Chan, Tsun L; David Cheng, Ting-Yuan; Seng Chia, Kee; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Conroy, Don M; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M; Ekici, Arif B; Eliassen, A Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M; García-Sáenz, José A; Gaudet, Mia M; Georgoulias, Vassilios; Giles, Graham G; Glendon, Gord; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Grenaker Alnæs, Grethe I; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A; Kosma, Veli-Matti; Kristensen, Vessela N; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Le Marchand, Loic; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Neng Lee, Chuen; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; Ma, Edmond S K; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Taib, Nur Aishah Mohd; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Noh, Dong-Young; Nordestgaard, Børge G; Norman, Aaron; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V Shane; Park, Sue K; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I A; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofyeva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J T; Saloustros, Emmanouil; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Daniel F; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E; Shrubsole, Martha J; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C; Spinelli, John J; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A; Tengström, Maria; Teo, Soo H; Beth Terry, Mary; Tessier, Daniel C; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-Chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J; Van Den Berg, David; van den Ouweland, Ans M W; van der Kolk, Lizet; van der Luijt, Rob B; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R; Har Yip, Cheng; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R; Antoniou, Antonis C; Droit, Arnaud; Andrulis, Irene L; Amos, Christopher I; Couch, Fergus J; Pharoah, Paul D P; Chang-Claude, Jenny; Hall, Per; Hunter, David J; Milne, Roger L; García-Closas, Montserrat; Schmidt, Marjanka K; Chanock, Stephen J; Dunning, Alison M; Edwards, Stacey L; Bader, Gary D; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F

    2017-11-02

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10 -8 . The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.

  17. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

    PubMed

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra

    2017-07-01

    Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

  18. Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3-5.

    PubMed

    Fricke, W Florian; Wright, Meredith S; Lindell, Angela H; Harkins, Derek M; Baker-Austin, Craig; Ravel, Jacques; Stepanauskas, Ramunas

    2008-10-01

    The increasing occurrence of multidrug-resistant pathogens of clinical and agricultural importance is a global public health concern. While antimicrobial use in human and veterinary medicine is known to contribute to the dissemination of antimicrobial resistance, the impact of microbial communities and mobile resistance genes from the environment in this process is not well understood. Isolated from an industrially polluted aquatic environment, Escherichia coli SMS-3-5 is resistant to a record number of antimicrobial compounds from all major classes, including two front-line fluoroquinolones (ciprofloxacin and moxifloxacin), and in many cases at record-high concentrations. To gain insights into antimicrobial resistance in environmental bacterial populations, the genome of E. coli SMS-3-5 was sequenced and compared to the genome sequences of other E. coli strains. In addition, selected genetic loci from E. coli SMS-3-5 predicted to be involved in antimicrobial resistance were phenotypically characterized. Using recombinant vector clones from shotgun sequencing libraries, resistance to tetracycline, streptomycin, and sulfonamide/trimethoprim was assigned to a single mosaic region on a 130-kb plasmid (pSMS35_130). The remaining plasmid backbone showed similarity to virulence plasmids from avian-pathogenic E. coli (APEC) strains. Individual resistance gene cassettes from pSMS35_130 are conserved among resistant bacterial isolates from multiple phylogenetic and geographic sources. Resistance to quinolones was assigned to several chromosomal loci, mostly encoding transport systems that are also present in susceptible E. coli isolates. Antimicrobial resistance in E. coli SMS-3-5 is therefore dependent both on determinants acquired from a mobile gene pool that is likely available to clinical and agricultural pathogens, as well, and on specifically adapted multidrug efflux systems. The association of antimicrobial resistance with APEC virulence genes on pSMS35

  19. Why sensitive bacteria are resistant to hospital infection control

    PubMed Central

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio ( IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community

  20. Why sensitive bacteria are resistant to hospital infection control.

    PubMed

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while community acquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally. This follows from differences in their adaptation to hospital- and community-based transmission. Observed lack of

  1. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  2. Association Analysis of the Extended MHC Region in Celiac Disease Implicates Multiple Independent Susceptibility Loci

    PubMed Central

    Ahn, Richard; Ding, Yuan Chun; Murray, Joseph; Fasano, Alessio; Green, Peter H. R.; Neuhausen, Susan L.; Garner, Chad

    2012-01-01

    Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region. PMID:22615847

  3. Quantitative trait loci for response to ethanol in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.

    PubMed

    Defays, Raquel; Bertoli, Carlos Ignacio

    2012-12-01

    Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Mapping Quantitative Field Resistance Against Apple Scab in a 'Fiesta' x 'Discovery' Progeny.

    PubMed

    Liebhard, R; Koller, B; Patocchi, A; Kellerhals, M; Pfammatter, W; Jermini, M; Gessler, C

    2003-04-01

    ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to the resistance of a genotype. Such a genetic linkage map was constructed, based on a segregating population of the cross between apple cvs. Fiesta (syn. Red Pippin) and Discovery. The progeny was observed for 3 years at three different sites in Switzerland and field resistance against apple scab (Venturia inaequalis) was assessed. Only a weak correlation was detected between leaf scab and fruit scab. A QTL analysis was performed, based on the genetic linkage map consisting of 804 molecular markers and covering all 17 chromosomes of apple. With the maximum likelihood-based interval mapping method, eight genomic regions were identified, six conferring resistance against leaf scab and two conferring fruit scab resistance. Although cv. Discovery showed a much stronger resistance against scab in the field, most QTL identified were attributed to the more susceptible parent 'Fiesta'. This indicated a high degree of homozygosity at the scab resistance loci in 'Discovery', preventing their detection in the progeny due to the lack of segregation.

  5. Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion.

    PubMed

    Collin, Roxanne; Doyon, Kathy; Mullins-Dansereau, Victor; Karam, Martin; Chabot-Roy, Geneviève; Hillhouse, Erin E; Orthwein, Alexandre; Lesage, Sylvie

    2018-04-25

    Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4 - CD8 - double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.

  6. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

    PubMed Central

    Eeles, Rosalind A; Olama, Ali Amin Al; Benlloch, Sara; Saunders, Edward J; Leongamornlert, Daniel A; Tymrakiewicz, Malgorzata; Ghoussaini, Maya; Luccarini, Craig; Dennis, Joe; Jugurnauth-Little, Sarah; Dadaev, Tokhir; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Muir, Ken; Giles, Graham G; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J; Gapstur, Susan; Chanock, Stephen J; Berndt, Sonja I; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J; Travis, Ruth; Campa, Daniele; Ingles, Sue A; John, Esther M; Hayes, Richard B; Pharoah, Paul DP; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet; Ostrander, Elaine A; Signorello, Lisa B; Thibodeau, Stephen N; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright; Brenner, Hermann; Park, Jong Y; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda B; Clements, Judith A; Teixeira, Manuel R; Dicks, Ed; Lee, Andrew; Dunning, Alison; Baynes, Caroline; Conroy, Don; Maranian, Melanie J; Ahmed, Shahana; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A; Sawyer, Emma J; Morgan, Angela; Dearnaley, David P; Horwich, Alan; Huddart, Robert A; Khoo, Vincent S; Parker, Christopher C; Van As, Nicholas J; Woodhouse, J; Thompson, Alan; Dudderidge, Tim; Ogden, Chris; Cooper, Colin; Lophatananon, Artitaya; Cox, Angela; Southey, Melissa; Hopper, John L; English, Dallas R; Aly, Markus; Adolfsson, Jan; Xu, Jiangfeng; Zheng, Siqun; Yeager, Meredith; Kaaks, Rudolf; Diver, W Ryan; Gaudet, Mia M; Stern, Mariana; Corral, Roman; Joshi, Amit D; Shahabi, Ahva; Wahlfors, Tiina; Tammela, Teuvo J; Auvinen, Anssi; Virtamo, Jarmo; Klarskov, Peter; Nordestgaard, Børge G; Røder, Andreas; Nielsen, Sune F; Bojesen, Stig E; Siddiq, Afshan; FitzGerald, Liesel; Kolb, Suzanne; Kwon, Erika; Karyadi, Danielle; Blot, William J; Zheng, Wei; Cai, Qiuyin; McDonnell, Shannon K; Rinckleb, Antje; Drake, Bettina; Colditz, Graham; Wokolorczyk, Dominika; Stephenson, Robert A; Teerlink, Craig; Muller, Heiko; Rothenbacher, Dietrich; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Mitev, Vanio; Lose, Felicity; Srinivasan, Srilakshmi; Maia, Sofia; Paulo, Paula; Lange, Ethan; Cooney, Kathleen A; Antoniou, Antonis; Vincent, Daniel; Bacot, François; Tessier; Kote-Jarai, Zsofia; Easton, Douglas F

    2013-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies. PMID:23535732

  7. The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility.

    PubMed

    Castaldi, Peter J; Cho, Michael H; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lomas, David A; Anderson, Wayne; Beaty, Terri H; Hokanson, John E; Crapo, James D; Laird, Nan; Silverman, Edwin K

    2011-12-01

    Two recent metaanalyses of genome-wide association studies conducted by the CHARGE and SpiroMeta consortia identified novel loci yielding evidence of association at or near genome-wide significance (GWS) with FEV(1) and FEV(1)/FVC. We hypothesized that a subset of these markers would also be associated with chronic obstructive pulmonary disease (COPD) susceptibility. Thirty-two single-nucleotide polymorphisms (SNPs) in or near 17 genes in 11 previously identified GWS spirometric genomic regions were tested for association with COPD status in four COPD case-control study samples (NETT/NAS, the Norway case-control study, ECLIPSE, and the first 1,000 subjects in COPDGene; total sample size, 3,456 cases and 1,906 controls). In addition to testing the 32 spirometric GWS SNPs, we tested a dense panel of imputed HapMap2 SNP markers from the 17 genes located near the 32 GWS SNPs and in a set of 21 well studied COPD candidate genes. Of the previously identified GWS spirometric genomic regions, three loci harbored SNPs associated with COPD susceptibility at a 5% false discovery rate: the 4q24 locus including FLJ20184/INTS12/GSTCD/NPNT, the 6p21 locus including AGER and PPT2, and the 5q33 locus including ADAM19. In conclusion, markers previously associated at or near GWS with spirometric measures were tested for association with COPD status in data from four COPD case-control studies, and three loci showed evidence of association with COPD susceptibility at a 5% false discovery rate.

  8. Replication of prostate cancer risk loci in a Japanese case-control association study.

    PubMed

    Yamada, Hiroki; Penney, Kathryn L; Takahashi, Hiroyuki; Katoh, Takahiko; Yamano, Yuko; Yamakado, Minoru; Kimura, Takahiro; Kuruma, Hidetoshi; Kamata, Yuko; Egawa, Shin; Freedman, Matthew L

    2009-10-07

    Two prostate cancer genome-wide scans in populations of European ancestry identified several genetic variants that are strongly associated with prostate cancer risk. The effect of these risk variants and their cumulative effect in other populations are unknown. We evaluated the association of 23 risk single-nucleotide polymorphisms (SNPs) with prostate cancer risk and clinical covariates (Gleason score, tumor aggressiveness, and age at diagnosis) in men of Japanese ancestry (311 case subjects and 1035 control subjects) using unconditional logistic regression. We also used logistic regression to test the association between increasing numbers of independently associated risk alleles and the risk of prostate cancer, prostate cancer aggressiveness, and age at diagnosis. All statistical tests were two-sided. Seven of the 23 SNPs (five independent loci) were associated with prostate cancer risk (P values ranged from .0084 to 2.3 x 10(-8) and effect sizes [estimated as odds ratios, ORs] ranged from 1.35 to 1.82). None of the seven SNPs was associated with Gleason score or aggressive disease. rs6983561 and rs4430796 were associated with age at diagnosis (Ps = .0188 and .0339, respectively). Men with six or more risk alleles (27% of case patients and 11% of control subjects) had a higher risk of prostate cancer than men with two or fewer risk alleles (7% of case patients and 20% of control subjects) (OR = 6.22, P = 1.5 x 10(-12)). These results highlight the critical importance of considering ancestry in understanding how risk alleles influence disease and suggest that risk estimates and variants differ across populations. It is important to perform studies in multiple ancestral populations so that the composite genetic architecture of prostate cancer can be rigorously addressed.

  9. Genome-wide association study identifies three new melanoma susceptibility loci.

    PubMed

    Barrett, Jennifer H; Iles, Mark M; Harland, Mark; Taylor, John C; Aitken, Joanne F; Andresen, Per Arne; Akslen, Lars A; Armstrong, Bruce K; Avril, Marie-Francoise; Azizi, Esther; Bakker, Bert; Bergman, Wilma; Bianchi-Scarrà, Giovanna; Bressac-de Paillerets, Brigitte; Calista, Donato; Cannon-Albright, Lisa A; Corda, Eve; Cust, Anne E; Dębniak, Tadeusz; Duffy, David; Dunning, Alison M; Easton, Douglas F; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Giles, Graham G; Hansson, Johan; Hocevar, Marko; Höiom, Veronica; Hopper, John L; Ingvar, Christian; Janssen, Bart; Jenkins, Mark A; Jönsson, Göran; Kefford, Richard F; Landi, Giorgio; Landi, Maria Teresa; Lang, Julie; Lubiński, Jan; Mackie, Rona; Malvehy, Josep; Martin, Nicholas G; Molven, Anders; Montgomery, Grant W; van Nieuwpoort, Frans A; Novakovic, Srdjan; Olsson, Håkan; Pastorino, Lorenza; Puig, Susana; Puig-Butille, Joan Anton; Randerson-Moor, Juliette; Snowden, Helen; Tuominen, Rainer; Van Belle, Patricia; van der Stoep, Nienke; Whiteman, David C; Zelenika, Diana; Han, Jiali; Fang, Shenying; Lee, Jeffrey E; Wei, Qingyi; Lathrop, G Mark; Gillanders, Elizabeth M; Brown, Kevin M; Goldstein, Alisa M; Kanetsky, Peter A; Mann, Graham J; Macgregor, Stuart; Elder, David E; Amos, Christopher I; Hayward, Nicholas K; Gruis, Nelleke A; Demenais, Florence; Bishop, Julia A Newton; Bishop, D Timothy

    2011-10-09

    We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 × 10(-9)), an SNP in MX2 (rs45430, P = 2.9 × 10(-9)) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 × 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 × 10(-7) under a fixed-effects model and P = 1.2 × 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.

  10. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.

    PubMed

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi; Shimizu, Seiko; Higashino, Toshihide; Kawamura, Yusuke; Ogata, Hiraku; Kawaguchi, Makoto; Ohkawa, Yasuyuki; Danjoh, Inaho; Tokumasu, Atsumi; Ooyama, Keiko; Ito, Toshimitsu; Kondo, Takaaki; Wakai, Kenji; Stiburkova, Blanka; Pavelka, Karel; Stamp, Lisa K; Dalbeth, Nicola; Sakurai, Yutaka; Suzuki, Hiroshi; Hosoyamada, Makoto; Fujimori, Shin; Yokoo, Takashi; Hosoya, Tatsuo; Inoue, Ituro; Takahashi, Atsushi; Kubo, Michiaki; Ooyama, Hiroshi; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi; Merriman, Tony R; Matsuo, Hirotaka

    2017-05-01

    A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10 -8 ): urate transporter genes ( SLC22A12 and SLC17A1 ) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10 -8 ). Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca).

    PubMed

    Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique

    2016-01-01

    In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm. © 2015 INRA, UMR 1332 BFP New Phytologist © 2015 New Phytologist Trust.

  12. Isolation and characterization of microsatellite Loci for Cornus sanguniea (Cornaceae) 1

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Microsatellite loci were developed for Cornus sanguinea and will permit genetic and conservation studies of the species. Methods and Results: A microsatellite-enriched library was used to develop 16 polymorphic microsatellite loci for C. sanguinea. The loci amplified 5-11 allel...

  13. Phenotyping at hot spots and tagging of QTLs conferring spot blotch resistance in bread wheat.

    PubMed

    Singh, Virender; Singh, Gyanendra; Chaudhury, A; Ojha, Ashish; Tyagi, B S; Chowdhary, A K; Sheoran, Sonia

    2016-11-01

    Spot blotch is a major foliar disease of wheat caused by Bipolaris sorokiniana in warm and humid environments of the world including South Asian countries. In India, it has a larger impact in Indo-Gangetic plains of the country. Therefore, the present study was undertaken to phenotype a mapping population at different hot spots of India and to detect quantitative trait loci (QTL) for resistance to spot blotch in wheat. For this study, 209 single seed descent (SSD) derived F 8 , F 9 , F 10 recombinant inbred lines (RILs) of the cross 'Sonalika' (an Indian susceptible cultivar)/'BH 1146' (a Brazilian resistant cultivar) were assessed for spot blotch resistance at two hot spot locations (Coochbehar and Kalyani) for three years and for two years under controlled conditions in the polyhouse (Karnal). The population showed large variation in spot blotch reaction for disease severity in all the environments indicating polygenic nature of the disease. Microsatellite markers were used to create the linkage maps. Joint and/or individual year analysis by composite interval mapping (CIM) and likelihood of odds ratio (LOD) >2.1, detected two consistent QTLs mapped on chromosome 7BL and 7DL and these explained phenotypic variation of 11.4 percent and 9.5 percent over the years and locations, respectively. The resistance at these loci was contributed by the parent 'BH 1146' and shown to be independent of plant height and earliness. Besides, association of some agro-morphological traits has also been observed with percent disease severity. These identified genomic regions may be used in future wheat breeding programs through marker assisted selection for developing spot blotch resistant cultivars.

  14. Compact, Controlled Resistance Exercise Device

    NASA Technical Reports Server (NTRS)

    Paulus, David C.; DeWitt, John K.; Reich, Alton J.; Shaw, James E.; Deaconu, Stelu S.

    2011-01-01

    Spaceflight leads to muscle and bone atrophy. Isoinertial (free-weight) exercises provide a sufficient stimulus to elicit increases in both muscle strength and bone mineral density in Earth-based studies. While exercise equipment is in use on the International Space Station for crewmember health maintenance, current devices are too large to place in a transport vehicle or small spacecraft. Therefore, a portable computer controlled resistance exercise device is being developed that is able to simulate the inertial loading experienced when lifting a mass on Earth. This portable device weighs less than 50 lb and can simulate the resistance of lifting and lowering up to 600 lb of free-weights. The objective is to allow crewmembers to perform resistance exercise with loads capable of maintaining muscle and bone health. The device is reconfigurable and allows for the performance of typical Earth-based free-weight exercises. Forces exerted, volume of work, range of motion, time-under-tension, and speed/ acceleration of movement are recorded and can be remotely monitored to track progress and modify individual protocols based on exercise session data. A performance evaluation will be completed and data will be presented that include ground-reaction force comparisons between the device and free-weight dead-lifts over a spectrum of resistance levels. Movement biomechanics will also be presented.

  15. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.

    PubMed

    Lu, Yang; Lee, Jong Ho; Chen, I-Wei

    2017-08-31

    Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.

  16. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    PubMed Central

    Kamphuis, Lars G.; Lichtenzveig, Judith; Peng, Kefan; Guo, Su-Min; Klingler, John P.

    2013-01-01

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions. PMID:24058162

  17. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) do not provide a full account of the heritability of genetic diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address this problem, a considerable number of methods have been developed for identifying disease-associated gene-gene interactions. However, these methods typically fail to identify interacting markers explaining more of the disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by uninformative marker interactions e.g., linkage disequilibrium (LD). Results In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci). This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated interactions are then prioritized according to a novel ranking score calculated from the difference in marker dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can be completed in less than a day on a standard workstation with parallel processing capability. The proposed framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case Control Consortium (WTCCC) data. The results from simulated data showed the ability of iLOCi to identify various types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease, and interestingly, other previously unreported genes with biologically related roles. Conclusion iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more complete understanding of the genetic basis underlying complex disease. The program is available for download at http://www4a.biotec.or.th/GI/tools/iloci. PMID:23281813

  18. Rap1 and Rap2 Antagonistically Control Endothelial Barrier Resistance

    PubMed Central

    Pannekoek, Willem-Jan; Linnemann, Jelena R.; Brouwer, Patricia M.; Bos, Johannes L.; Rehmann, Holger

    2013-01-01

    Rap1 and Rap2 are closely related proteins of the Ras family of small G-proteins. Rap1 is well known to regulate cell-cell adhesion. Here, we have analysed the effect of Rap-mediated signalling on endothelial permeability using electrical impedance measurements of HUVEC monolayers and subsequent determination of the barrier resistance, which is a measure for the ease with which ions can pass cell junctions. In line with its well-established effect on cell-cell junctions, depletion of Rap1 decreases, whereas activation of Rap1 increases barrier resistance. Despite its high sequence homology with Rap1, depletion of Rap2 has an opposite, enhancing, effect on barrier resistance. This effect can be mimicked by depletion of the Rap2 specific activator RasGEF1C and the Rap2 effector MAP4K4, establishing Rap2 signalling as an independent pathway controlling barrier resistance. As simultaneous depletion or activation of both Rap1 and Rap2 results in a barrier resistance comparable to control cells, Rap1 and Rap2 control barrier resistance in a reciprocal manner. This Rap1-antagonizing effect of Rap2 is established independent of junctional actin formation. These data establish that endothelial barrier resistance is determined by the combined antagonistic actions of Rap1 and Rap2. PMID:23469100

  19. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

    PubMed

    Moscou, Matthew J; Lauter, Nick; Steffenson, Brian; Wise, Roger P

    2011-07-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement

  20. Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons

    PubMed Central

    Moscou, Matthew J.; Lauter, Nick; Steffenson, Brian; Wise, Roger P.

    2011-01-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement

  1. The Genetics of Resistance to Morinda Fruit Toxin During the Postembryonic Stages in Drosophila sechellia

    PubMed Central

    Huang, Yan; Erezyilmaz, Deniz

    2015-01-01

    Although a great deal has been learned regarding the genetic changes that give rise to adaptation in bacteria and yeast, an understanding of how new complex traits arise in multicellular organisms is far less complete. Many phytophagous insect species are ecological specialists that have adapted to utilize a single host plant. Drosophila sechellia is a specialist that utilizes the ripe fruit of Morinda citrifolia, which is toxic to its sibling species, D. simulans. Here we apply multiplexed shotgun genotyping and QTL analysis to examine the genetic basis of resistance to M. citrifolia fruit toxin in interspecific hybrids. We identify a locus of large effect on the third chromosome (QTL-IIIsima) in the D. simulans backcross that was not detected in previous analyses. We also identify a highly significant QTL of large effect on the X chromosome, QTL-Xsim. Additional smaller-effect loci were also identified in the D. simulans and D. sechellia backcrosses. We did not detect significant epistasis between loci. Instead, our analysis reveals large and smaller-effect loci that contribute to M. citrifolia resistance additively. The additive effect of each locus suggests that partial resistance to lower levels of M. citrifolia toxin could be passed through introgression from D. sechellia to D. simulans in nature. The identification of the major effect loci, QTL-IIIsima and QTL-Xsim, is an important step toward identifying the molecular basis of adaptation in a multicellular organism. PMID:26224784

  2. Meta-analysis identifies seven susceptibility loci involved in the atopic march.

    PubMed

    Marenholz, Ingo; Esparza-Gordillo, Jorge; Rüschendorf, Franz; Bauerfeind, Anja; Strachan, David P; Spycher, Ben D; Baurecht, Hansjörg; Margaritte-Jeannin, Patricia; Sääf, Annika; Kerkhof, Marjan; Ege, Markus; Baltic, Svetlana; Matheson, Melanie C; Li, Jin; Michel, Sven; Ang, Wei Q; McArdle, Wendy; Arnold, Andreas; Homuth, Georg; Demenais, Florence; Bouzigon, Emmanuelle; Söderhäll, Cilla; Pershagen, Göran; de Jongste, Johan C; Postma, Dirkje S; Braun-Fahrländer, Charlotte; Horak, Elisabeth; Ogorodova, Ludmila M; Puzyrev, Valery P; Bragina, Elena Yu; Hudson, Thomas J; Morin, Charles; Duffy, David L; Marks, Guy B; Robertson, Colin F; Montgomery, Grant W; Musk, Bill; Thompson, Philip J; Martin, Nicholas G; James, Alan; Sleiman, Patrick; Toskala, Elina; Rodriguez, Elke; Fölster-Holst, Regina; Franke, Andre; Lieb, Wolfgang; Gieger, Christian; Heinzmann, Andrea; Rietschel, Ernst; Keil, Thomas; Cichon, Sven; Nöthen, Markus M; Pennell, Craig E; Sly, Peter D; Schmidt, Carsten O; Matanovic, Anja; Schneider, Valentin; Heinig, Matthias; Hübner, Norbert; Holt, Patrick G; Lau, Susanne; Kabesch, Michael; Weidinger, Stefan; Hakonarson, Hakon; Ferreira, Manuel A R; Laprise, Catherine; Freidin, Maxim B; Genuneit, Jon; Koppelman, Gerard H; Melén, Erik; Dizier, Marie-Hélène; Henderson, A John; Lee, Young Ae

    2015-11-06

    Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.

  3. Meta-analysis identifies seven susceptibility loci involved in the atopic march

    PubMed Central

    Marenholz, Ingo; Esparza-Gordillo, Jorge; Rüschendorf, Franz; Bauerfeind, Anja; Strachan, David P.; Spycher, Ben D.; Baurecht, Hansjörg; Margaritte-Jeannin, Patricia; Sääf, Annika; Kerkhof, Marjan; Ege, Markus; Baltic, Svetlana; Matheson, Melanie C.; Li, Jin; Michel, Sven; Ang, Wei Q.; McArdle, Wendy; Arnold, Andreas; Homuth, Georg; Demenais, Florence; Bouzigon, Emmanuelle; Söderhäll, Cilla; Pershagen, Göran; de Jongste, Johan C.; Postma, Dirkje S.; Braun-Fahrländer, Charlotte; Horak, Elisabeth; Ogorodova, Ludmila M.; Puzyrev, Valery P.; Bragina, Elena Yu; Hudson, Thomas J.; Morin, Charles; Duffy, David L.; Marks, Guy B.; Robertson, Colin F.; Montgomery, Grant W.; Musk, Bill; Thompson, Philip J.; Martin, Nicholas G.; James, Alan; Sleiman, Patrick; Toskala, Elina; Rodriguez, Elke; Fölster-Holst, Regina; Franke, Andre; Lieb, Wolfgang; Gieger, Christian; Heinzmann, Andrea; Rietschel, Ernst; Keil, Thomas; Cichon, Sven; Nöthen, Markus M.; Pennell, Craig E.; Sly, Peter D.; Schmidt, Carsten O.; Matanovic, Anja; Schneider, Valentin; Heinig, Matthias; Hübner, Norbert; Holt, Patrick G.; Lau, Susanne; Kabesch, Michael; Weidinger, Stefan; Hakonarson, Hakon; Ferreira, Manuel A. R.; Laprise, Catherine; Freidin, Maxim B.; Genuneit, Jon; Koppelman, Gerard H.; Melén, Erik; Dizier, Marie- Hélène; Henderson, A John; Lee, Young Ae

    2015-01-01

    Eczema often precedes the development of asthma in a disease course called the ‘atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10−8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10−9). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema. PMID:26542096

  4. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries

    PubMed Central

    Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian; Pillalamarri, Vamsee; Chiang, Colby; Heilbut, Adrian; Ernst, Carl; Hanscom, Carrie; Rossin, Elizabeth; Lindgren, Amelia; Pereira, Shahrin; Ruderfer, Douglas; Kirby, Andrew; Ripke, Stephan; Harris, David; Lee, Ji-Hyun; Ha, Kyungsoo; Kim, Hyung-Goo; Solomon, Benjamin D.; Gropman, Andrea L.; Lucente, Diane; Sims, Katherine; Ohsumi, Toshiro K.; Borowsky, Mark L.; Loranger, Stephanie; Quade, Bradley; Lage, Kasper; Miles, Judith; Wu, Bai-Lin; Shen, Yiping; Neale, Benjamin; Shaffer, Lisa G.; Daly, Mark J.; Morton, Cynthia C.; Gusella, James F.

    2012-01-01

    SUMMARY Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5), 2) single gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, SNURF-SNRPN), 3) novel risk loci (e.g., CHD8, KIRREL3, ZNF507), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10−47) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. PMID:22521361

  5. Biology and applications of human minisatellite loci.

    PubMed

    Armour, J A; Jeffreys, A J

    1992-12-01

    Highly repetitive minisatellites' include the most variable human loci described to date. They have proved invaluable in a wide variety of genetic analyses, and despite some controversies surrounding their practical implementation, have been extensively adopted in civil and forensic casework. Molecular analysis of internal allelic structure has provided detailed insights into the repeat-unit turnover mechanisms operating in germline mutations, which are ultimately responsible for the extreme variability seen at these loci.

  6. Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control

    PubMed Central

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination. PMID:25738838

  7. Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies

    PubMed Central

    Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah

    2018-01-01

    HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620

  8. Temperature control during regeneration of activated carbon fiber cloth with resistance-feedback.

    PubMed

    Johnsen, David L; Rood, Mark J

    2012-10-16

    Electrothermal swing adsorption (ESA) of organic compounds from gas streams with activated carbon fiber cloth (ACFC) reduces emissions to the atmosphere and recovers feedstock for reuse. Local temperature measurement (e.g., with a thermocouple) is typically used to monitor/control adsorbent regeneration cycles. Remote electrical resistance measurement is evaluated here as an alternative to local temperature measurement. ACFC resistance that was modeled based on its physical properties was within 10.5% of the measured resistance values during electrothermal heating. Resistance control was developed based on this measured relationship and used to control temperature to within 2.3% of regeneration set-point temperatures. Isobutane-laden adsorbent was then heated with resistance control. After 2 min of heating, the temperature of the adsorbent with isobutane was 13% less than the adsorbent without isobutane. This difference decreased to 2.1% after 9 min of heating, showing desorption of isobutane. An ACFC cartridge was also heated to 175 °C for 900 cycles with its resistance and adsorption capacity values remaining within 3% and 2%, respectively. This new method to control regeneration power application based on rapid sensing of the adsorbent's resistance removes the need for direct-contact temperature sensors providing a simple, cost-efficient, and long-term regeneration technique for ESA systems.

  9. Symmetric voltage-controlled variable resistance

    NASA Technical Reports Server (NTRS)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  10. Distribution of antimicrobial resistance determinants, virulence-associated factors and clustered regularly interspaced palindromic repeats loci in isolates of Enterococcus faecalis from various settings and genetic lineages.

    PubMed

    Gawryszewska, Iwona; Malinowska, Katarzyna; Kuch, Alicja; Chrobak-Chmiel, Dorota; Trokenheim, Lucja Laniewska-; Hryniewicz, Waleria; Sadowy, Ewa

    2017-03-01

    Enterococcus faecalis represents an important factor of hospital-associated infections (HAIs). The knowledge on its evolution from a commensal to an opportunistic pathogen is still limited; thus, we performed a study to characterise distribution of factors that may contribute to this adaptation. Using a collection obtained from various settings (hospitalised patients, community carriers, animals, fresh food, sewage, water), we investigated differences in antimicrobial susceptibility, distribution of antimicrobial resistance genes, virulence-associated determinants and phenotypes, and CRISPR loci in the context of the clonal relatedness of isolates. Bayesian Analysis of Population Structure revealed the presence of three major groups; two subgroups comprised almost exclusively HAI isolates, belonging to previously proposed enterococcal high-risk clonal complexes (HiRECCs) 6 and 28. Isolates of these two subgroups were significantly enriched in antimicrobial resistance genes, presumably produced a polysaccharide capsule and often carried the aggregation substance asa1; distribution of other virulence-associated genes, such as esp and cyl, formation of a biofilm and gelatinase production were more variable. Moreover, both subgroups showed a low prevalence of CRISPR-Cas 1 and 3 and presence of small CRISPR2 variants. Our study confirms the importance of HiRECCs in the population of E. faecalis and their confinement to the hospital settings. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer.

    PubMed

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I; Conti, David V; Schumacher, Fredrick; Han, Ying; Benlloch, Sara; Hazelett, Dennis J; Wang, Zhaoming; Saunders, Ed; Leongamornlert, Daniel; Lindstrom, Sara; Jugurnauth-Little, Sara; Dadaev, Tokhir; Tymrakiewicz, Malgorzata; Stram, Daniel O; Rand, Kristin; Wan, Peggy; Stram, Alex; Sheng, Xin; Pooler, Loreall C; Park, Karen; Xia, Lucy; Tyrer, Jonathan; Kolonel, Laurence N; Le Marchand, Loic; Hoover, Robert N; Machiela, Mitchell J; Yeager, Merideth; Burdette, Laurie; Chung, Charles C; Hutchinson, Amy; Yu, Kai; Goh, Chee; Ahmed, Mahbubl; Govindasami, Koveela; Guy, Michelle; Tammela, Teuvo L J; Auvinen, Anssi; Wahlfors, Tiina; Schleutker, Johanna; Visakorpi, Tapio; Leinonen, Katri A; Xu, Jianfeng; Aly, Markus; Donovan, Jenny; Travis, Ruth C; Key, Tim J; Siddiq, Afshan; Canzian, Federico; Khaw, Kay-Tee; Takahashi, Atsushi; Kubo, Michiaki; Pharoah, Paul; Pashayan, Nora; Weischer, Maren; Nordestgaard, Borge G; Nielsen, Sune F; Klarskov, Peter; Røder, Martin Andreas; Iversen, Peter; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Stanford, Janet L; Kolb, Suzanne; Holt, Sarah; Knudsen, Beatrice; Coll, Antonio Hurtado; Gapstur, Susan M; Diver, W Ryan; Stevens, Victoria L; Maier, Christiane; Luedeke, Manuel; Herkommer, Kathleen; Rinckleb, Antje E; Strom, Sara S; Pettaway, Curtis; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; Cannon-Albright, Lisa; Cybulski, Cezary; Wokołorczyk, Dominika; Kluźniak, Wojciech; Park, Jong; Sellers, Thomas; Lin, Hui-Yi; Isaacs, William B; Partin, Alan W; Brenner, Hermann; Dieffenbach, Aida Karina; Stegmaier, Christa; Chen, Constance; Giovannucci, Edward L; Ma, Jing; Stampfer, Meir; Penney, Kathryn L; Mucci, Lorelei; John, Esther M; Ingles, Sue A; Kittles, Rick A; Murphy, Adam B; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej M; Blot, William; Signorello, Lisa B; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, Cristina; Wu, Suh-Yuh; Hennis, Anselm; Kibel, Adam S; Rybicki, Benjamin A; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Zheng, S Lilly; Batra, Jyotsna; Clements, Judith; Spurdle, Amanda; Teixeira, Manuel R; Paulo, Paula; Maia, Sofia; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Witte, John S; Casey, Graham; Gillanders, Elizabeth M; Seminara, Daniella; Riboli, Elio; Hamdy, Freddie C; Coetzee, Gerhard A; Li, Qiyuan; Freedman, Matthew L; Hunter, David J; Muir, Kenneth; Gronberg, Henrik; Neal, David E; Southey, Melissa; Giles, Graham G; Severi, Gianluca; Cook, Michael B; Nakagawa, Hidewaki; Wiklund, Fredrik; Kraft, Peter; Chanock, Stephen J; Henderson, Brian E; Easton, Douglas F; Eeles, Rosalind A; Haiman, Christopher A

    2014-10-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P < 5 × 10(-8); 15 variants were identified among men of European ancestry, 7 were identified in multi-ancestry analyses and 1 was associated with early-onset prostate cancer. These 23 variants, in combination with known prostate cancer risk variants, explain 33% of the familial risk for this disease in European-ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the usefulness of combining ancestrally diverse populations to discover risk loci for disease.

  12. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5' accessions

    USDA-ARS?s Scientific Manuscript database

    Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...

  13. Quantitative Trait Loci Differentiating the Outbreeding Mimulus Guttatus from the Inbreeding M. Platycalyx

    PubMed Central

    Lin, J. Z.; Ritland, K.

    1997-01-01

    Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912

  14. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  15. Characterization of candidate genes in inflammatory bowel disease–associated risk loci

    PubMed Central

    Peloquin, Joanna M.; Sartor, R. Balfour; Newberry, Rodney D.; McGovern, Dermot P.; Yajnik, Vijay; Lira, Sergio A.

    2016-01-01

    GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis. PMID:27668286

  16. Knockdown Resistance Mutations in Aedes aegypti (Diptera: Culicidae) From Puerto Rico.

    PubMed

    Ponce-García, Gustavo; Del Río-Galvan, Samantha; Barrera, Roberto; Saavedra-Rodriguez, Karla; Villanueva-Segura, Karina; Felix, Gilberto; Amador, Manuel; Flores, Adriana E

    2016-11-01

    Permethrin resistance is widespread in Aedes aegypti (L.), the main dengue, zika, and chikungunya virus vector in Latin America and the Caribbean. A common mechanism of resistance to pyrethroids-knockdown resistance (kdr)-is conferred through mutations in the insect's voltage-dependent sodium channel. In this mosquito, around 10 replacement substitutions in the voltage-gated sodium channel gene (vgsc) have been reported in pyrethroid-resistant strains. Two of these mutations, named Ile1,016 and Cys1,534, are widespread in mosquito populations from Latin America and the Caribbean. This study assessed the levels of permethrin resistance and the frequency of two kdr mutations in eight Ae. aegypti populations collected in Puerto Rico in 2013. Permethrin resistance factors ranged from 33-214-fold relative to the New Orleans reference strain. The frequency of kdr mutation Ile1,016 ranged from 0.65 to fixation (1.0), and for Cys1,534 frequencies varied from 0.8 to fixation. Alarmingly, two populations-Carolina and Caguas-reached fixation at both loci. Our results suggest that permethrin effectiveness for Ae. aegypti control is compromised in these collections from Puerto Rico. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal)

    PubMed Central

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John

    2017-01-01

    Background Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. Methodology/Principal findings WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Conclusions/Significance Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control. PMID:28742096

  18. Insecticide Resistance and Malaria Vector Control: The Importance of Fitness Cost Mechanisms in Determining Economically Optimal Control Trajectories

    PubMed Central

    Brown, Zachary S.; Dickinson, Katherine L.; Kramer, Randall A.

    2014-01-01

    The evolutionary dynamics of insecticide resistance in harmful arthropods has economic implications, not only for the control of agricultural pests (as has been well studied), but also for the control of disease vectors, such as malaria-transmitting Anopheles mosquitoes. Previous economic work on insecticide resistance illustrates the policy relevance of knowing whether insecticide resistance mutations involve fitness costs. Using a theoretical model, this article investigates economically optimal strategies for controlling malaria-transmitting mosquitoes when there is the potential for mosquitoes to evolve resistance to insecticides. Consistent with previous literature, we find that fitness costs are a key element in the computation of economically optimal resistance management strategies. Additionally, our models indicate that different biological mechanisms underlying these fitness costs (e.g., increased adult mortality and/or decreased fecundity) can significantly alter economically optimal resistance management strategies. PMID:23448053

  19. Resistivity control of unintentionally doped GaN films

    NASA Astrophysics Data System (ADS)

    Grzegorczyk, A. P.; Macht, L.; Hageman, P. R.; Rudzinski, M.; Larsen, P. K.

    2005-05-01

    GaN epilayers were grown on sapphire substrates via low temperature GaN and AlN nucleation layers (NL) by metalorganic chemical vapor phase epitaxy (MOCVD). The morphology of the individual NLs strongly depends on the carrier gas used during the growth and recrystallization and this is the key factor for control of the resistivity of the GaN layer grown on it. The GaN nucleation layer grown in presence of N2 has a higher density of islands with a statistically smaller diameter than the samples grown in H2 atmosphere. The NL grown in N2 enables the growth GaN with a sheet resistivity higher than 3×104 cm as opposed to a 0.5 cm value obtained for the NL grown in H2. Introduction of an additional intermediate (IL) low temperature (GaN or AlN) nucleation layer changes the GaN epilayer resistivity to about 50 cm, regardless of the carrier gas used during the growth of the IL. Defect selective etching demonstrated that control of the type and density of the dislocations in GaN enables the growth of highly resistive layers without any intentional acceptor doping (Mg, Zn). It will be demonstrated that by changing the ratio of edge type to screw dislocations the resistivity of the layer can be changed by a few orders of magnitude.

  20. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  1. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value.

    PubMed

    Farhat, Maha R; Sultana, Razvan; Iartchouk, Oleg; Bozeman, Sam; Galagan, James; Sisk, Peter; Stolte, Christian; Nebenzahl-Guimaraes, Hanna; Jacobson, Karen; Sloutsky, Alexander; Kaur, Devinder; Posey, James; Kreiswirth, Barry N; Kurepina, Natalia; Rigouts, Leen; Streicher, Elizabeth M; Victor, Tommie C; Warren, Robin M; van Soolingen, Dick; Murray, Megan

    2016-09-01

    The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs.

  2. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    PubMed

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Evaluation of 19 susceptibility loci of breast cancer in women of African ancestry

    PubMed Central

    Huo, Dezheng; Zheng, Yonglan; Ogundiran, Temidayo O.; Adebamowo, Clement; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Simon, Michael S.; John, Esther M.; Hennis, Anselm; Nemesure, Barbara; Wu, Suh-Yuh; Leske, M.Cristina; Ambs, Stefan; Niu, Qun; Zhang, Jing; Cox, Nancy J.; Olopade, Olufunmilayo I.

    2012-01-01

    Multiple breast cancer susceptibility loci have been identified in genome-wide association studies (GWAS) in populations of European and Asian ancestry using array chips optimized for populations of European ancestry. It is important to examine whether these loci are associated with breast cancer risk in women of African ancestry. We evaluated 25 single nucleotide polymorphisms (SNPs) at 19 loci in a pooled case–control study of breast cancer, which included 1509 cases and 1383 controls. Cases and controls were enrolled in Nigeria, Barbados and the USA; all women were of African ancestry. We found significant associations for three SNPs, which were in the same direction and of similar magnitude as those reported in previous fine-mapping studies in women of African ancestry. The allelic odds ratios were 1.24 [95% confidence interval (CI): 1.04–1.47; P = 0.018] for the rs2981578-G allele (10q26/FGFR2), 1.34 (95% CI: 1.10–1.63; P = 0.0035) for the rs9397435-G allele (6q25) and 1.12 (95% CI: 1.00–1.25; P = 0.04) for the rs3104793-C allele (16q12). Although a significant association was observed for an additional index SNP (rs3817198), it was in the opposite direction to prior GWAS studies. In conclusion, this study highlights the complexity of applying current GWAS findings across racial/ethnic groups, as none of GWAS-identified index SNPs could be replicated in women of African ancestry. Further fine-mapping studies in women of African ancestry will be needed to reveal additional and causal variants for breast cancer. PMID:22357627

  4. Mapping of four distinct BCR-related loci to chromosome region 22q11: order of BCR loci relative to chronic myelogenous leukemia and acute lymphoblastic leukemia breakpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, C.M.; Huebner, K.; Isobe, M.

    1987-10-01

    A probe derived from the 3' region of the BCR gene (breakpoint cluster region gene) detects four distinct loci in the human genome. One of the loci corresponds to the complete BCR gene, whereas the other contain a 3' segment of the gene. After HindIII cleavage of human DNA, these four loci are detected as 23-, 19-, 13-, and 9-kikobase-pair fragments, designated BCR4, BCR3, BCR2, and BCR1, respectively, with BCR1 deriving from the original complete BCR gene. All four BCR loci segregate 100% concordantly with human chromosome 22 in a rodent-human somatic cell hybrid panel and are located at chromosomemore » region 22q11.2 by chromosomal in situ hybridization. The BCR2 and BCR4 loci are amplified in leukemia cell line K562 cells, indicating that they fall within the amplification unit that includes immunoglobulin lambda light chain locus (IGL) and ABL locus on the K562 Philadelphia chromosome (Ph/sup 1/). Similarly, in mouse-human hybrids retaining a Ph/sup 1/ chromosome derived from an acute lymphoblastic leukemia-in the absence of the 9q/sup +/ and 22, only BCR2 and BCR4 loci are retained. Thus, the order of loci on chromosome 22 is centromere ..-->.. BCR2, BCR4, and IGL ..-->.. BCR1 ..-->.. BCR3 ..-->.. SIS, possibly eliminating BCR2 and BCR4 loci as candidate targets for juxtaposition to the ABL gene in the acute lymphoblastic leukemia Ph/sup 1/ chromosome.« less

  5. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  6. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  7. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci

    PubMed Central

    Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia

    2017-01-01

    Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant

  8. PCR primers for microsatellite loci in the desert tortoise (Gopherus agassizii, Testudinidae)

    USGS Publications Warehouse

    Edwards, T.; Goldberg, C.S.; Kaplan, M.E.; Schwalbe, C.R.; Swann, D.E.

    2003-01-01

    The desert tortoise, Gopherus agassizii, is a threatened species native to the North American desert southwest and is recognized as having distinct Mojave and Sonoran populations. We identified six polymorphic microsatellite loci in the desert tortoise. All six loci were polymorphic in Sonoran samples. Five of the loci were variable in Mojave samples with varying degrees of amplification success. Two of the loci exhibited low allelic variation (2-3 alleles) while four were highly variable (8-27 alleles).

  9. Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses.

    PubMed

    Xiao, Xiao; Luo, Xiong-Jian; Chang, Hong; Liu, Zichao; Li, Ming

    2017-08-01

    Schizophrenia is a severe and highly heritable neuropsychiatric disorder. Recent genetic analyses including genome-wide association studies (GWAS) have implicated multiple genome-wide significant variants for schizophrenia among European populations. However, many of these risk variants were not largely validated in other populations of different ancestry such as Asians. To validate whether these European GWAS significant loci are associated with schizophrenia in Asian populations, we conducted a systematic literature search and meta-analyses on 19 single nucleotide polymorphisms (SNPs) in Asian populations by combining all available case-control and family-based samples, including up to 30,000 individuals. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (ORs) and 95 % confidence intervals (CIs). Among the 19 GWAS loci, we replicated the risk associations of nine markers (e.g., SNPs at VRK2, ITIH3/4, NDST3, NOTCH4) surpassing significance level (two-tailed P < 0.05), and three additional SNPs in MIR137 and ZNF804A also showed trend associations (one-tailed P < 0.05). These risk associations are in the same directions of allelic effects between Asian replication samples and initial European GWAS findings, and the successful replications of these GWAS loci in a different ethnic group provide stronger evidence for their clinical associations with schizophrenia. Further studies, focusing on the molecular mechanisms of these GWAS significant loci, will become increasingly important for understanding of the pathogenesis to schizophrenia.

  10. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood.

    PubMed

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  11. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    PubMed

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  12. Development of microsatellite loci for the endangered species Pityopsis ruthii (Asteraceae)1

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Microsatellite loci were developed for the endangered species Pityopsis ruthii and will permit genetic and conservation studies of the species. Methods and Results:A microsatellite enriched library was used to develop 12 polymorphic microsatellite loci for P. ruthii. The loci ...

  13. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value

    PubMed Central

    Sultana, Razvan; Iartchouk, Oleg; Bozeman, Sam; Galagan, James; Sisk, Peter; Stolte, Christian; Nebenzahl-Guimaraes, Hanna; Jacobson, Karen; Sloutsky, Alexander; Kaur, Devinder; Posey, James; Kreiswirth, Barry N.; Kurepina, Natalia; Rigouts, Leen; Streicher, Elizabeth M.; Victor, Tommie C.; Warren, Robin M.; van Soolingen, Dick; Murray, Megan

    2016-01-01

    Rationale: The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance–conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. Objectives: To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. Methods: We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. Measurements and Main Results: The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. Conclusions: These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs. PMID:26910495

  14. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.

    PubMed

    Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi

    2013-03-01

    The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

  15. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    PubMed Central

    Mitchell, Jonathan S.; Li, Ni; Weinhold, Niels; Försti, Asta; Ali, Mina; van Duin, Mark; Thorleifsson, Gudmar; Johnson, David C.; Chen, Bowang; Halvarsson, Britt-Marie; Gudbjartsson, Daniel F.; Kuiper, Rowan; Stephens, Owen W.; Bertsch, Uta; Broderick, Peter; Campo, Chiara; Einsele, Hermann; Gregory, Walter A.; Gullberg, Urban; Henrion, Marc; Hillengass, Jens; Hoffmann, Per; Jackson, Graham H.; Johnsson, Ellinor; Jöud, Magnus; Kristinsson, Sigurður Y.; Lenhoff, Stig; Lenive, Oleg; Mellqvist, Ulf-Henrik; Migliorini, Gabriele; Nahi, Hareth; Nelander, Sven; Nickel, Jolanta; Nöthen, Markus M.; Rafnar, Thorunn; Ross, Fiona M.; da Silva Filho, Miguel Inacio; Swaminathan, Bhairavi; Thomsen, Hauke; Turesson, Ingemar; Vangsted, Annette; Vogel, Ulla; Waage, Anders; Walker, Brian A.; Wihlborg, Anna-Karin; Broyl, Annemiek; Davies, Faith E.; Thorsteinsdottir, Unnur; Langer, Christian; Hansson, Markus; Kaiser, Martin; Sonneveld, Pieter; Stefansson, Kari; Morgan, Gareth J.; Goldschmidt, Hartmut; Hemminki, Kari; Nilsson, Björn; Houlston, Richard S.

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10−8), 6q21 (rs9372120, P=9.09 × 10−15), 7q36.1 (rs7781265, P=9.71 × 10−9), 8q24.21 (rs1948915, P=4.20 × 10−11), 9p21.3 (rs2811710, P=1.72 × 10−13), 10p12.1 (rs2790457, P=1.77 × 10−8), 16q23.1 (rs7193541, P=5.00 × 10−12) and 20q13.13 (rs6066835, P=1.36 × 10−13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development. PMID:27363682

  16. Genome-Wide Association Mapping Reveals Novel QTL for Seedling Leaf Rust Resistance in a Worldwide Collection of Winter Wheat.

    PubMed

    Li, Genqiao; Xu, Xiangyang; Bai, Guihua; Carver, Brett F; Hunger, Robert; Bonman, J Michael; Kolmer, James; Dong, Hongxu

    2016-11-01

    Leaf rust of wheat ( L.) is a major disease that causes significant yield losses worldwide. The short-lived nature of leaf rust resistance () genes necessitates a continuous search for novel sources of resistance. We performed a genome-wide association study (GWAS) on a panel of 1596 wheat accessions. The panel was evaluated for leaf rust reaction by testing with a bulk of Eriks. () isolates collected from multiple fields of Oklahoma in 2013 and two predominant races in the fields of Oklahoma in 2015. The panel was genotyped with a set of 5011 single-nucleotide polymorphism (SNP) markers. A total of 14 quantitative trait loci (QTL) for leaf rust resistance were identified at a false discovery rate (FDR) of 0.01 using the mixed linear model (MLM). Of these, eight QTL reside in the vicinity of known genes or QTL, and more studies are needed to determine their relationship with known loci. is a new QTL to bread wheat but is close to a locus previously identified in durum wheat [ L. subsp. (Desf.) Husn.]. The other five QTL, including , , , , and , are likely novel loci for leaf rust resistance. The uneven distribution of the 14 QTL in the six subpopulations of the panel suggests that wheat breeders can enhance leaf rust resistance by selectively introgressing some of these QTL into their breeding materials. In addition, another 31 QTL were significantly associated with leaf rust resistance at a FDR of 0.05. Copyright © 2016 Crop Science Society of America.

  17. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma.

    PubMed

    Khor, Chiea Chuen; Do, Tan; Jia, Hongyan; Nakano, Masakazu; George, Ronnie; Abu-Amero, Khaled; Duvesh, Roopam; Chen, Li Jia; Li, Zheng; Nongpiur, Monisha E; Perera, Shamira A; Qiao, Chunyan; Wong, Hon-Tym; Sakai, Hiroshi; Barbosa de Melo, Mônica; Lee, Mei-Chin; Chan, Anita S; Azhany, Yaakub; Dao, Thi Lam Huong; Ikeda, Yoko; Perez-Grossmann, Rodolfo A; Zarnowski, Tomasz; Day, Alexander C; Jonas, Jost B; Tam, Pancy O S; Tran, Tuan Anh; Ayub, Humaira; Akhtar, Farah; Micheal, Shazia; Chew, Paul T K; Aljasim, Leyla A; Dada, Tanuj; Luu, Tam Thi; Awadalla, Mona S; Kitnarong, Naris; Wanichwecharungruang, Boonsong; Aung, Yee Yee; Mohamed-Noor, Jelinar; Vijayan, Saravanan; Sarangapani, Sripriya; Husain, Rahat; Jap, Aliza; Baskaran, Mani; Goh, David; Su, Daniel H; Wang, Huaizhou; Yong, Vernon K; Yip, Leonard W; Trinh, Tuyet Bach; Makornwattana, Manchima; Nguyen, Thanh Thu; Leuenberger, Edgar U; Park, Ki-Ho; Wiyogo, Widya Artini; Kumar, Rajesh S; Tello, Celso; Kurimoto, Yasuo; Thapa, Suman S; Pathanapitoon, Kessara; Salmon, John F; Sohn, Yong Ho; Fea, Antonio; Ozaki, Mineo; Lai, Jimmy S M; Tantisevi, Visanee; Khaing, Chaw Chaw; Mizoguchi, Takanori; Nakano, Satoko; Kim, Chan-Yun; Tang, Guangxian; Fan, Sujie; Wu, Renyi; Meng, Hailin; Nguyen, Thi Thuy Giang; Tran, Tien Dat; Ueno, Morio; Martinez, Jose Maria; Ramli, Norlina; Aung, Yin Mon; Reyes, Rigo Daniel; Vernon, Stephen A; Fang, Seng Kheong; Xie, Zhicheng; Chen, Xiao Yin; Foo, Jia Nee; Sim, Kar Seng; Wong, Tina T; Quek, Desmond T; Venkatesh, Rengaraj; Kavitha, Srinivasan; Krishnadas, Subbiah R; Soumittra, Nagaswamy; Shantha, Balekudaru; Lim, Boon-Ang; Ogle, Jeanne; de Vasconcellos, José P C; Costa, Vital P; Abe, Ricardo Y; de Souza, Bruno B; Sng, Chelvin C; Aquino, Maria C; Kosior-Jarecka, Ewa; Fong, Guillermo Barreto; Tamanaja, Vania Castro; Fujita, Ricardo; Jiang, Yuzhen; Waseem, Naushin; Low, Sancy; Pham, Huan Nguyen; Al-Shahwan, Sami; Craven, E Randy; Khan, Muhammad Imran; Dada, Rrima; Mohanty, Kuldeep; Faiq, Muneeb A; Hewitt, Alex W; Burdon, Kathryn P; Gan, Eng Hui; Prutthipongsit, Anuwat; Patthanathamrongkasem, Thipnapa; Catacutan, Mary Ann T; Felarca, Irene R; Liao, Chona S; Rusmayani, Emma; Istiantoro, Vira Wardhana; Consolandi, Giulia; Pignata, Giulia; Lavia, Carlo; Rojanapongpun, Prin; Mangkornkanokpong, Lerprat; Chansangpetch, Sunee; Chan, Jonathan C H; Choy, Bonnie N K; Shum, Jennifer W H; Than, Hlaing May; Oo, Khin Thida; Han, Aye Thi; Yong, Victor H; Ng, Xiao-Yu; Goh, Shuang Ru; Chong, Yaan Fun; Hibberd, Martin L; Seielstad, Mark; Png, Eileen; Dunstan, Sarah J; Chau, Nguyen Van Vinh; Bei, Jinxin; Zeng, Yi Xin; Karkey, Abhilasha; Basnyat, Buddha; Pasutto, Francesca; Paoli, Daniela; Frezzotti, Paolo; Wang, Jie Jin; Mitchell, Paul; Fingert, John H; Allingham, R Rand; Hauser, Michael A; Lim, Soon Thye; Chew, Soo Hong; Ebstein, Richard P; Sakuntabhai, Anavaj; Park, Kyu Hyung; Ahn, Jeeyun; Boland, Greet; Snippe, Harm; Stead, Richard; Quino, Raquel; Zaw, Su Nyunt; Lukasik, Urszula; Shetty, Rohit; Zahari, Mimiwati; Bae, Hyoung Won; Oo, Nay Lin; Kubota, Toshiaki; Manassakorn, Anita; Ho, Wing Lau; Dallorto, Laura; Hwang, Young Hoon; Kiire, Christine A; Kuroda, Masako; Djamal, Zeiras Eka; Peregrino, Jovell Ian M; Ghosh, Arkasubhra; Jeoung, Jin Wook; Hoan, Tung S; Srisamran, Nuttamon; Sandragasu, Thayanithi; Set, Saw Htoo; Doan, Vi Huyen; Bhattacharya, Shomi S; Ho, Ching-Lin; Tan, Donald T; Sihota, Ramanjit; Loon, Seng-Chee; Mori, Kazuhiko; Kinoshita, Shigeru; Hollander, Anneke I den; Qamar, Raheel; Wang, Ya-Xing; Teo, Yik Y; Tai, E-Shyong; Hartleben-Matkin, Curt; Lozano-Giral, David; Saw, Seang Mei; Cheng, Ching-Yu; Zenteno, Juan C; Pang, Chi Pui; Bui, Huong T T; Hee, Owen; Craig, Jamie E; Edward, Deepak P; Yonahara, Michiko; Neto, Jamil Miguel; Guevara-Fujita, Maria L; Xu, Liang; Ritch, Robert; Liza-Sharmini, Ahmad Tajudin; Wong, Tien Y; Al-Obeidan, Saleh; Do, Nhu Hon; Sundaresan, Periasamy; Tham, Clement C; Foster, Paul J; Vijaya, Lingam; Tashiro, Kei; Vithana, Eranga N; Wang, Ningli; Aung, Tin

    2016-05-01

    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG.

  18. Transferability of genome-wide associated loci for asthma in African Americans

    PubMed Central

    Faruque, Mezbah U.; Chen, Guanjie; Doumatey, Ayo P.; Zhou, Jie; Huang, Hanxia; Shriner, Daniel; Adeyemo, Adebowale A.; Rotimi, Charles N.; Dunston, Georgia M.

    2017-01-01

    Objective Transferability of significantly associated loci or GWAS “hits” adds credibility to genotype-disease associations and provides evidence for generalizability across different ancestral populations. We sought evidence of association of known asthma-associated single nucleotide polymorphisms (SNPs) in an African American population. Methods Subjects comprised 661 participants (261 asthma cases and 400 controls) from the Howard University Family Study. Forty-eight SNPs previously reported to be associated with asthma by GWAS were selected for testing. We adopted a combined strategy by first adopting an “exact” approach where we looked-up only the reported index SNP. For those index SNPs missing form our dataset, we used a “local” approach that examined all the regional SNPs in LD with the index SNP. Results Out of the 48 SNPs, our cohort had genotype data available for 27, which were examined for exact replication. Of these, two SNPs were found positively associated with asthma. These included: rs10508372 (OR = 1.567 [95%CI, 1.133–2.167], P = 0.0066) and rs2378383 (OR = 2.147 [95%CI, 1.149–4.013], P = 0.0166), located on chromosomal bands 10p14 and 9q21.31, respectively. Local replication of the remaining 21 loci showed association at two chromosomal loci (9p24.1-rs2381413 and 6p21.32-rs3132947; Bonferroni-corrected P values: 0.0033 and 0.0197, respectively). Of note, multiple SNPs in LD with rs2381413 located upstream of IL33 were significantly associated with asthma. Conclusions This study has successfully transferred four reported asthma-associated loci in an independent African American population. Identification of several asthma-associated SNPs in the upstream of the IL33, a gene previously implicated in allergic inflammation of asthmatic airway, supports the generalizability of this finding. PMID:27177148

  19. Transferability of genome-wide associated loci for asthma in African Americans.

    PubMed

    Faruque, Mezbah U; Chen, Guanjie; Doumatey, Ayo P; Zhou, Jie; Huang, Hanxia; Shriner, Daniel; Adeyemo, Adebowale A; Rotimi, Charles N; Dunston, Georgia M

    2017-01-02

    Transferability of significantly associated loci or GWAS "hits" adds credibility to genotype-disease associations and provides evidence for generalizability across different ancestral populations. We sought evidence of association of known asthma-associated single nucleotide polymorphisms (SNPs) in an African American population. Subjects comprised 661 participants (261 asthma cases and 400 controls) from the Howard University Family Study. Forty-eight SNPs previously reported to be associated with asthma by GWAS were selected for testing. We adopted a combined strategy by first adopting an "exact" approach where we looked-up only the reported index SNP. For those index SNPs missing form our dataset, we used a "local" approach that examined all the regional SNPs in LD with the index SNP. Out of the 48 SNPs, our cohort had genotype data available for 27, which were examined for exact replication. Of these, two SNPs were found positively associated with asthma. These included: rs10508372 (OR = 1.567 [95%CI, 1.133-2.167], P = 0.0066) and rs2378383 (OR = 2.147 [95%CI, 1.149-4.013], P = 0.0166), located on chromosomal bands 10p14 and 9q21.31, respectively. Local replication of the remaining 21 loci showed association at two chromosomal loci (9p24.1-rs2381413 and 6p21.32-rs3132947; Bonferroni-corrected P values: 0.0033 and 0.0197, respectively). Of note, multiple SNPs in LD with rs2381413 located upstream of IL33 were significantly associated with asthma. This study has successfully transferred four reported asthma-associated loci in an independent African American population. Identification of several asthma-associated SNPs in the upstream of the IL33, a gene previously implicated in allergic inflammation of asthmatic airway, supports the generalizability of this finding.

  20. Isolation and characterization of microsatellite loci in Alasmidonta heterodon (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Shaw, K.M.; King, T.L.; Lellis, W.A.; Eackles, M.S.

    2006-01-01

    We developed 13 species-specific microsatellite markers for the federally endangered Atlantic slope unionid Alasmidonta heterodon. Four to 18 alleles per locus were observed among 30 individuals. Observed heterozygosity throughout the loci ranged from 26.9 to 86.2% and averaged 63.6%. Estimates of individual pairwise genetic distances indicated that levels of genetic diversity among loci were sufficient to produce unique multilocus genotypes for all animals surveyed. Randomization tests showed that genotypes for this collection were consistent with Hardy-Weinberg expectations, and no significant linkage disequilibrium was observed between loci. These loci therefore appear suitable for population surveys, kinship assessment and other such applications. ?? 2006 Blackwell Publishing Ltd.

  1. Isolation and characterization of microsatellite loci for mountain mullet (Agonostomus monticola).

    PubMed

    Feldheim, Kevin A; Sanchez, Patrick J; Matamoros, Wilfredo A; Schaefer, Jacob F; Kreiser, Brian R

    2009-11-01

    We report on the isolation of 15 polymorphic microsatellite loci from mountain mullet (Agonostomus monticola). In the two populations sampled, loci exhibited two to 21 alleles and observed heterozygosity values ranged from 0.222 to 1.000. All loci conformed to Hardy-Weinberg equilibrium expectations, and none exhibited linkage disequilibrium. Although A. monticola is an important subsistence fishery in parts of its range, little is known about its ecology and many populations appear to be experiencing declines. These microsatellite loci should prove useful in the study of population structure of A. monticola and aid in other potential conservation efforts such as the management of hatchery broodstock. © 2009 Blackwell Publishing Ltd.

  2. Differential detection of genetic Loci underlying stem and root lignin content in Populus.

    PubMed

    Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Wullschleger, Stan D; Tuskan, Gerald A

    2010-11-22

    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  3. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    PubMed Central

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm WR; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; TAN, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John WM; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dmitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert AEM; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul PDP; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-01-01

    Genome wide association studies (GWAS) and large scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to be driven by an amino-acid substitution in EXO1. PMID:25751625

  4. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    PubMed

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  5. An Enhanced Linkage Map of the Sheep Genome Comprising More Than 1000 Loci

    PubMed Central

    Maddox, Jillian F.; Davies, Kizanne P.; Crawford, Allan M.; Hulme, Dennis J.; Vaiman, Daniel; Cribiu, Edmond P.; Freking, Bradley A.; Beh, Ken J.; Cockett, Noelle E.; Kang, Nina; Riffkin, Christopher D.; Drinkwater, Roger; Moore, Stephen S.; Dodds, Ken G.; Lumsden, Joanne M.; van Stijn, Tracey C.; Phua, Sin H.; Adelson, David L.; Burkin, Heather R.; Broom, Judith E.; Buitkamp, Johannes; Cambridge, Lisa; Cushwa, William T.; Gerard, Emily; Galloway, Susan M.; Harrison, Blair; Hawken, Rachel J.; Hiendleder, Stefan; Henry, Hannah M.; Medrano, Juan F.; Paterson, Korena A.; Schibler, Laurent; Stone, Roger T.; van Hest, Beryl

    2001-01-01

    A medium-density linkage map of the ovine genome has been developed. Marker data for 550 new loci were generated and merged with the previous sheep linkage map. The new map comprises 1093 markers representing 1062 unique loci (941 anonymous loci, 121 genes) and spans 3500 cM (sex-averaged) for the autosomes and 132 cM (female) on the X chromosome. There is an average spacing of 3.4 cM between autosomal loci and 8.3 cM between highly polymorphic [polymorphic information content (PIC) ≥ 0.7] autosomal loci. The largest gap between markers is 32.5 cM, and the number of gaps of >20 cM between loci, or regions where loci are missing from chromosome ends, has been reduced from 40 in the previous map to 6. Five hundred and seventy-three of the loci can be ordered on a framework map with odds of >1000 : 1. The sheep linkage map contains strong links to both the cattle and goat maps. Five hundred and seventy-two of the loci positioned on the sheep linkage map have also been mapped by linkage analysis in cattle, and 209 of the loci mapped on the sheep linkage map have also been placed on the goat linkage map. Inspection of ruminant linkage maps indicates that the genomic coverage by the current sheep linkage map is comparable to that of the available cattle maps. The sheep map provides a valuable resource to the international sheep, cattle, and goat gene mapping community. PMID:11435411

  6. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9.

    PubMed

    Janse, Marcel; Lamberts, Laetitia E; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J M; Fehrmann, Rudolf S N; Smolonska, Joanna; van den Berg, Leonard H; Ophoff, Roel A; Porte, Robert J; Weismüller, Tobias J; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y; Schreiber, Stefan; Karlsen, Tom H; Franke, Andre; Weersma, Rinse K

    2011-06-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently identified for ulcerative colitis (UC) in a large cohort of 1,186 PSC patients and 1,748 controls. Single nucleotide polymorphisms (SNPs) tagging 13 UC susceptibility loci were initially genotyped in 854 PSC patients and 1,491 controls from Benelux (331 cases, 735 controls), Germany (265 cases, 368 controls), and Scandinavia (258 cases, 388 controls). Subsequently, a joint analysis was performed with an independent second Scandinavian cohort (332 cases, 257 controls). SNPs at chromosomes 2p16 (P-value 4.12 × 10(-4) ), 4q27 (P-value 4.10 × 10(-5) ), and 9q34 (P-value 8.41 × 10(-4) ) were associated with PSC in the joint analysis after correcting for multiple testing. In PSC patients without inflammatory bowel disease (IBD), SNPs at 4q27 and 9q34 were nominally associated (P < 0.05). We applied additional in silico analyses to identify likely candidate genes at PSC susceptibility loci. To identify nonrandom, evidence-based links we used GRAIL (Gene Relationships Across Implicated Loci) analysis showing interconnectivity between genes in six out of in total nine PSC-associated regions. Expression quantitative trait analysis from 1,469 Dutch and UK individuals demonstrated that five out of nine SNPs had an effect on cis-gene expression. These analyses prioritized IL2, CARD9, and REL as novel candidates. We have identified three UC susceptibility loci to be associated with PSC, harboring the putative candidate genes REL, IL2, and CARD9. These results add to the scarce knowledge on the genetic background of PSC and imply an important role for both innate and adaptive immunological factors. Copyright © 2011 American Association for the Study of Liver Diseases.

  7. Polymorphic microsatellite loci identified through development and cross-species amplification within shorebirds

    USGS Publications Warehouse

    Williams, I.; Guzzetti, B.M.; Gust, Judy R.; Sage, G.K.; Gill, Robert E.; Tibbitts, T.L.; Sonsthagen, S.A.; Talbot, S.L.

    2012-01-01

    We developed microsatellite loci for demographic assessments of shorebirds, a group with limited markers. First, we isolated five dinucleotide repeat microsatellite loci from the Black Oystercatcher (Haematopodidae: Haematopus bachmani), and three from the Bristle-thighed Curlew (Scolopacidae: Numenius tahitiensis); both species are of conservation concern. All eight loci were polymorphic in their respective target species. Hbaμ loci were characterized by two to three alleles with observed heterozygosity ranging from 0.07 to 0.33, and two to nine alleles were detected for Nut loci with observed heterozygosity ranging from 0.08 to 0.72. No linkage disequilibrium or departures from Hardy–Weinberg equilibrium were observed. The eight loci were also tested for cross-species amplification in 12 other species within Charadriidae and Scolopacidae, and the results demonstrated transferability across several genera. We further tested all 14 species at 12 additional microsatellite markers developed for other shorebirds: Dunlin (Calidris alpina; four loci) and Ruff (Philomachus pugnax; eight loci). Two markers (Hbaμ4 and Ruff6) were polymorphic in 13 species, while two (Calp6 and Ruff9) were monomorphic. The remaining eight markers revealed polymorphism in one to nine species each. Our results provide further evidence that locus Ruff10 is sex-linked, contrary to the initial description. These markers can be used to enhance our understanding of shorebird biology by, for example, helping to determine migratory connectivity among breeding and wintering populations and detecting relatedness among individuals.

  8. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia.

    PubMed

    Li, Zhiqiang; Chen, Jianhua; Yu, Hao; He, Lin; Xu, Yifeng; Zhang, Dai; Yi, Qizhong; Li, Changgui; Li, Xingwang; Shen, Jiawei; Song, Zhijian; Ji, Weidong; Wang, Meng; Zhou, Juan; Chen, Boyu; Liu, Yahui; Wang, Jiqiang; Wang, Peng; Yang, Ping; Wang, Qingzhong; Feng, Guoyin; Liu, Benxiu; Sun, Wensheng; Li, Baojie; He, Guang; Li, Weidong; Wan, Chunling; Xu, Qi; Li, Wenjin; Wen, Zujia; Liu, Ke; Huang, Fang; Ji, Jue; Ripke, Stephan; Yue, Weihua; Sullivan, Patrick F; O'Donovan, Michael C; Shi, Yongyong

    2017-11-01

    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.

  9. Isolation and Characterization of Microsatellite Loci for Cotesia plutellae (Hymenoptera: Braconidae)

    PubMed Central

    Liu, Tiansheng; Ke, Fushi; You, Shijun; Chen, Wenbin; He, Weiyi; You, Minsheng

    2017-01-01

    Fourteen polymorphic microsatellite loci were isolated in this transcriptome-based data analysis for Cotesia plutellae, which is an important larval parasitoid of the worldwide pest Plutella xylostella. A subsequent test was performed for a wild C. plutellae population (N = 32) from Fuzhou, Fujian, southeastern China, to verify the effectiveness of the 14 microsatellite loci in future studies on C. plutellae genetic diversity. The observed number of alleles ranged from two to six. The expected and observed heterozygosity ranged from 0.123 to 0.316 and from 0.141 to 0.281, respectively. The polymorphism information content (PIC) value ranged from 0.272 to 0.622. Potentially due to the substructure of the sampled population, three of the 14 microsatellite loci deviated from Hardy—Weinberg equilibrium (HWE). Further, loci C6, C22, and C31 could be amplified in Cocobius fulvus and Encarsia japonica, suggesting the transferability of these three polymorphic loci to other species of Hymenoptera. PMID:28632152

  10. Haplogroup-specific deviation from the stepwise mutation model at the microsatellite loci DYS388 and DYS392.

    PubMed

    Nebel, A; Filon, D; Hohoff, C; Faerman, M; Brinkmann, B; Oppenheim, A

    2001-01-01

    Deviation from the stepwise mutation model (SMM) at specific human microsatellite loci has implications for population genetic and forensic investigations. In the present study, data on six Y chromosome-specific microsatellites were pooled for 455 paternally unrelated males from six Middle Eastern populations. All chromosomes were assigned to three haplogroups defined by six binary polymorphisms. Two of the microsatellite loci tested, DYS388 and DYS392, displayed marked haplogroup-specific differences in their allele variability. A bimodal distribution of short and long alleles was observed for DYS388 in haplogroup 1 and for DYS392 in haplogroups 1 and 2. Further investigation showed that the short/long alleles segregated almost completely between genealogically distinct haplogroups defined by additional binary markers. Thus, these two loci have a discriminatory power similar to a binary polymorphism. DYS388 was characterised by an extremely low mutation rate in haplogroups 2 and 3, as was DYS392 in haplogroup 3. Sequence analysis of the repeat regions at the two loci revealed no irregularities, indicating that the triplet expansion in these loci is not controlled by sequence variation at the repeat level. A high frequency of long DYS388 alleles has, so far, been found only in populations originating in the Middle East, suggesting that this microsatellite is useful as a region-specific marker.

  11. Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    PubMed

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-12-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.

  12. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE).

    PubMed

    Goodman, K E; Simner, P J; Tamma, P D; Milstone, A M

    2016-01-01

    The Centers for Disease Control and Prevention (CDC) defines carbapenem-resistant Enterobacteriaceae (CRE) based upon a phenotypic demonstration of carbapenem resistance. However, considerable heterogeneity exists within this definitional umbrella. CRE may mechanistically differ by whether they do or do not produce carbapenemases. Moreover, patients can acquire CRE through multiple pathways: endogenously through antibiotic selective pressure on intestinal microbiota, exogenously through horizontal transmission or through a combination of these factors. Some evidence suggests that non-carbapenemase-producing CRE may be more frequently acquired by antibiotic exposure and carbapenemase-producing CRE via horizontal transmission, but definitive data are lacking. This review examines types of CRE resistance mechanisms, antibiotic exposure and horizontal transmission pathways of CRE acquisition, and the implications of these heterogeneities to the development of evidence-based CRE healthcare epidemiology policies. In our Expert Commentary & Five-Year View, we outline specific nosocomial CRE knowledge gaps and potential methodological approaches for their resolution.

  13. Isolation and characterization of microsatellite loci from the Arctic cisco (Coregonus autumnalis)

    USGS Publications Warehouse

    Ramey, A.; Graziano, S.L.; Nielsen, J.L.

    2008-01-01

    Eight polymorphic microsatellite loci were isolated and characterized for the Arctic cisco, Coregonus autumnalis. Loci were evaluated in 21 samples from the Colville River subsistence fishery. The number of alleles per locus ranged from two to 18. Observed heterozygosity of loci varied from 0.10 to 1.00, and expected heterozygosity ranged from 0.09 to 0.92. All eight microsatellite markers were in Hardy-Weinberg equilibrium. The loci presented here will be useful in describing population structure and exploring populations of origin for Arctic cisco. ?? 2007 Blackwell Publishing Ltd.

  14. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region.

    PubMed

    Ricciardi, Walter; Giubbini, Gabriele; Laurenti, Patrizia

    2016-01-01

    Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant microorganisms in healthcare settings is a worrisome threat, raising length to stay (LOS), morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance of antibiotic resistance in the countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015) show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe. It is of particular concern the phenomenon of resistance carried out by some gram-negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and aminoglycosides. Is particularly high the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included). The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus) continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant microbes does support

  15. Genetic control of disease resistance and immunoresponsiveness.

    PubMed

    Kelm, S C; Freeman, A E; Kehrli, M E

    2001-11-01

    A great deal of evidence points to substantial genetic control over at least some of the immune responses, although genetic parameters for clinical disease have been less favorable. The past two decades have illustrated that single genes with a large impact on food animal health do exist and can be used to improve the health of domestic populations. The current focus on molecular genetics within food animal species will likely unveil numerous other examples of single genes with large effects, although the use of animals possessing favorable genotypes for disease resistance may represent a compromise in selection for increased production of raw product. Moreover, it is also clear that genetic control over the immune system is not limited to a few genes but is more likely influenced by many genes, each with small effects. The use of this information in animal improvement programs is not straightforward because of factors complicating the identification of superior individuals within the population. The scarcity of information dealing with phenotypic and genetic relationships between measures of disease resistance and aspects of immune response complicates the situation even further. Despite these potential hurdles, the potential for permanent improvement of disease resistance within food animal species in the future is tantalizing and merits intensified future study.

  16. Characterization of EST-based SSR loci in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae)

    Treesearch

    B.M.T. Brunet; D. Doucet; B.R. Sturtevant; F.A.H. Sperling

    2013-01-01

    After identifying 114 microsatellite loci from Choristoneura fumiferana expressed sequence tags, 87 loci were assayed in a panel of 11 wild-caught individuals, giving 29 polymorphic loci. Further analysis of 20 of these loci on 31 individuals collected from a single population in northern Minnesota identified 14 in Hardy-Weinberg equilibrium.

  17. Sparse whole genome sequencing identifies two loci for major depressive disorder

    PubMed Central

    2015-01-01

    Major depressive disorder (MDD), one of the most frequently encountered forms of mental illness and a leading cause of disability worldwide1, poses a major challenge to genetic analysis. To date no robustly replicated genetic loci have been identified 2, despite analysis of more than 9,000 cases3. Using low coverage genome sequence of 5,303 Chinese women with recurrent MDD selected to reduce phenotypic heterogeneity, and 5,337 controls screened to exclude MDD, we identified and replicated two genome-wide significant loci contributing to risk of MDD on chromosome 10: one near the SIRT1 gene (P-value = 2.53×10−10) the other in an intron of the LHPP gene (P = 6.45×10−12). Analysis of 4,509 cases with a severe subtype of MDD, melancholia, yielded an increased genetic signal at the SIRT1 locus. We attribute our success to the recruitment of relatively homogeneous cases with severe illness. PMID:26176920

  18. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52.

    PubMed

    Myint, Khin Khin Marlar; Fujita, Daisuke; Matsumura, Masaya; Sonoda, Tomohiro; Yoshimura, Atsushi; Yasui, Hideshi

    2012-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthopper (Sogatella furcifera [Horváth]). An F(2) population derived from a cross between ADR52 and a susceptible cultivar, Taichung 65 (T65), was used for quantitative trait locus (QTL) analysis. Antibiosis testing showed that multiple loci controlled the high level of BPH resistance in this F(2) population. Further linkage analysis using backcross populations resulted in the identification of BPH-resistance (antibiosis) gene loci from ADR52. BPH25 co-segregated with marker S00310 on the distal end of the short arm of chromosome 6, and BPH26 co-segregated with marker RM5479 on the long arm of chromosome 12. To characterize the virulence of the most recently migrated BPH strain in Japan, preliminary near-isogenic lines (pre-NILs) and a preliminary pyramided line (pre-PYL) carrying BPH25 and BPH26 were evaluated. Although both pre-NILs were susceptible to the virulent BPH strain, the pre-PYL exhibited a high level of resistance. The pyramiding of resistance genes is therefore likely to be effective for increasing the durability of resistance against the new virulent BPH strain in Japan.

  19. Hyper-Methylated Loci Persisting from Sessile Serrated Polyps to Serrated Cancers.

    PubMed

    Andrew, Angeline S; Baron, John A; Butterly, Lynn F; Suriawinata, Arief A; Tsongalis, Gregory J; Robinson, Christina M; Amos, Christopher I

    2017-03-02

    Although serrated polyps were historically considered to pose little risk, it is now understood that progression down the serrated pathway could account for as many as 15%-35% of colorectal cancers. The sessile serrated adenoma/polyp (SSA/P) is the most prevalent pre-invasive serrated lesion. Our objective was to identify the CpG loci that are persistently hyper-methylated during serrated carcinogenesis, from the early SSA/P lesion through the later cancer phases of neoplasia development. We queried the loci hyper-methylated in serrated cancers within our rightsided SSA/Ps from the New Hampshire Colonoscopy Registry, using the Illumina Infinium Human Methylation 450 k panel to comprehensively assess the DNA methylation status. We identified CpG loci and regions consistently hyper-methylated throughout the serrated carcinogenesis spectrum, in both our SSA/P specimens and in serrated cancers. Hyper-methylated CpG loci included the known the tumor suppressor gene RET (p = 5.72 x 10-10), as well as loci in differentially methylated regions for GSG1L, MIR4493, NTNG1, MCIDAS, ZNF568, and RERG. The hyper-methylated loci that we identified help characterize the biology of SSA/P development, and could be useful as therapeutic targets, or for future identification of patients who may benefit from shorter surveillance intervals.

  20. Validation of prostate cancer risk-related loci identified from genome-wide association studies using family-based association analysis: evidence from the International Consortium for Prostate Cancer Genetics (ICPCG).

    PubMed

    Jin, Guangfu; Lu, Lingyi; Cooney, Kathleen A; Ray, Anna M; Zuhlke, Kimberly A; Lange, Ethan M; Cannon-Albright, Lisa A; Camp, Nicola J; Teerlink, Craig C; Fitzgerald, Liesel M; Stanford, Janet L; Wiley, Kathleen E; Isaacs, Sarah D; Walsh, Patrick C; Foulkes, William D; Giles, Graham G; Hopper, John L; Severi, Gianluca; Eeles, Ros; Easton, Doug; Kote-Jarai, Zsofia; Guy, Michelle; Rinckleb, Antje; Maier, Christiane; Vogel, Walther; Cancel-Tassin, Geraldine; Egrot, Christophe; Cussenot, Olivier; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Wiklund, Fredrik; Grönberg, Henrik; Emanuelsson, Monica; Whittemore, Alice S; Oakley-Girvan, Ingrid; Hsieh, Chih-Lin; Wahlfors, Tiina; Tammela, Teuvo; Schleutker, Johanna; Catalona, William J; Zheng, S Lilly; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng

    2012-07-01

    Multiple prostate cancer (PCa) risk-related loci have been discovered by genome-wide association studies (GWAS) based on case-control designs. However, GWAS findings may be confounded by population stratification if cases and controls are inadvertently drawn from different genetic backgrounds. In addition, since these loci were identified in cases with predominantly sporadic disease, little is known about their relationships with hereditary prostate cancer (HPC). The association between seventeen reported PCa susceptibility loci was evaluated with a family-based association test using 1,979 hereditary PCa families of European descent collected by members of the International Consortium for Prostate Cancer Genetics, with a total of 5,730 affected men. The risk alleles for 8 of the 17 loci were significantly over-transmitted from parents to affected offspring, including SNPs residing in 8q24 (regions 1, 2 and 3), 10q11, 11q13, 17q12 (region 1), 17q24 and Xp11. In subgroup analyses, three loci, at 8q24 (regions 1 and 2) plus 17q12, were significantly over-transmitted in hereditary PCa families with five or more affected members, while loci at 3p12, 8q24 (region 2), 11q13, 17q12 (region 1), 17q24 and Xp11 were significantly over-transmitted in HPC families with an average age of diagnosis at 65 years or less. Our results indicate that at least a subset of PCa risk-related loci identified by case-control GWAS are also associated with disease risk in HPC families.

  1. Validation of prostate cancer risk-related loci identified from genome-wide association studies using family-based association analysis: evidence from the International Consortium for Prostate Cancer Genetics (ICPCG)

    PubMed Central

    Jin, Guangfu; Lu, Lingyi; Cooney, Kathleen A.; Ray, Anna M.; Zuhlke, Kimberly A.; Lange, Ethan M.; Cannon-Albright, Lisa A.; Camp, Nicola J.; Teerlink, Craig C.; FitzGerald, Liesel M.; Stanford, Janet L.; Wiley, Kathleen E.; Walsh, Patrick C.; Foulkes, William D.; Giles, Graham G.; Hopper, John L.; Severi, Gianluca; Eeles, Ros; Easton, Doug; Kote-Jarai, Zsofia; Guy, Michelle; Rinckleb, Antje; Maier, Christiane; Vogel, Walther; Cancel-Tassin, Geraldine; Egrot, Christophe; Cussenot, Olivier; Thibodeau, Stephen N.; McDonnell, Shannon K.; Schaid, Daniel J.; Wiklund, Fredrik; Grönberg, Henrik; Emanuelsson, Monica; Whittemore, Alice S.; Oakley-Girvan, Ingrid; Hsieh, Chih-Lin; Wahlfors, Tiina; Tammela, Teuvo; Schleutker, Johanna; Catalona, William J.; Zheng, S. Lilly; Isaacs, William B.

    2012-01-01

    Multiple prostate cancer (PCa) risk-related loci have been discovered by genome-wide association studies (GWAS) based on case–control designs. However, GWAS findings may be confounded by population stratification if cases and controls are inadvertently drawn from different genetic backgrounds. In addition, since these loci were identified in cases with predominantly sporadic disease, little is known about their relationships with hereditary prostate cancer (HPC). The association between seventeen reported PCa susceptibility loci was evaluated with a family-based association test using 1,979 hereditary PCa families of European descent collected by members of the International Consortium for Prostate Cancer Genetics, with a total of 5,730 affected men. The risk alleles for 8 of the 17 loci were significantly over-transmitted from parents to affected offspring, including SNPs residing in 8q24 (regions 1, 2 and 3), 10q11, 11q13, 17q12 (region 1), 17q24 and Xp11. In subgroup analyses, three loci, at 8q24 (regions 1 and 2) plus 17q12, were significantly over-transmitted in hereditary PCa families with five or more affected members, while loci at 3p12, 8q24 (region 2), 11q13, 17q12 (region 1), 17q24 and Xp11 were significantly over-transmitted in HPC families with an average age of diagnosis at 65 years or less. Our results indicate that at least a subset of PCa risk-related loci identified by case–control GWAS are also associated with disease risk in HPC families. PMID:22198737

  2. Genetic diversity for Russian wheat aphid resistance as determined by genome-wide association mapping and inheritance in progeny

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA) is an increasing problem on barley throughout the world. Genetic resistance has been identified and used to create barley germplasm and cultivars adapted to the US. Several mapping studies have been conducted to identify loci associated with resistance, but questions remain...

  3. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy

    PubMed Central

    Afshari, Natalie A.; Igo, Robert P.; Morris, Nathan J.; Stambolian, Dwight; Sharma, Shiwani; Pulagam, V. Lakshmi; Dunn, Steven; Stamler, John F.; Truitt, Barbara J.; Rimmler, Jacqueline; Kuot, Abraham; Croasdale, Christopher R.; Qin, Xuejun; Burdon, Kathryn P.; Riazuddin, S. Amer; Mills, Richard; Klebe, Sonja; Minear, Mollie A.; Zhao, Jiagang; Balajonda, Elmer; Rosenwasser, George O.; Baratz, Keith H; Mootha, V. Vinod; Patel, Sanjay V.; Gregory, Simon G.; Bailey-Wilson, Joan E.; Price, Marianne O.; Price, Francis W.; Craig, Jamie E.; Fingert, John H.; Gottsch, John D.; Aldave, Anthony J.; Klintworth, Gordon K.; Lass, Jonathan H.; Li, Yi-Ju; Iyengar, Sudha K.

    2017-01-01

    The structure of the cornea is vital to its transparency, and dystrophies that disrupt corneal organization are highly heritable. To understand the genetic aetiology of Fuchs endothelial corneal dystrophy (FECD), the most prevalent corneal disorder requiring transplantation, we conducted a genome-wide association study (GWAS) on 1,404 FECD cases and 2,564 controls of European ancestry, followed by replication and meta-analysis, for a total of 2,075 cases and 3,342 controls. We identify three novel loci meeting genome-wide significance (P<5 × 10−8): KANK4 rs79742895, LAMC1 rs3768617 and LINC00970/ATP1B1 rs1200114. We also observe an overwhelming effect of the established TCF4 locus. Interestingly, we detect differential sex-specific association at LAMC1, with greater risk in women, and TCF4, with greater risk in men. Combining GWAS results with biological evidence we expand the knowledge of common FECD loci from one to four, and provide a deeper understanding of the underlying pathogenic basis of FECD. PMID:28358029

  4. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    PubMed Central

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  5. Partner-Drug Resistance and Population Substructuring of Artemisinin-Resistant Plasmodium falciparum in Cambodia

    PubMed Central

    Parobek, Christian M.; Parr, Jonathan B.; Brazeau, Nicholas F.; Lon, Chanthap; Chaorattanakawee, Suwanna; Gosi, Panita; Barnett, Eric J.; Norris, Lauren D.; Meshnick, Steven R.; Spring, Michele D.; Lanteri, Charlotte A.; Bailey, Jeffrey A.; Saunders, David L.; Lin, Jessica T.

    2017-01-01

    Abstract Plasmodium falciparum in western Cambodia has developed resistance to artemisinin and its partner drugs, causing frequent treatment failure. Understanding this evolution can inform the deployment of new therapies. We investigated the genetic architecture of 78 falciparum isolates using whole-genome sequencing, correlating results to in vivo and ex vivo drug resistance and exploring the relationship between population structure, demographic history, and partner drug resistance. Principle component analysis, network analysis and demographic inference identified a diverse central population with three clusters of clonally expanding parasite populations, each associated with specific K13 artemisinin resistance alleles and partner drug resistance profiles which were consistent with the sequential deployment of artemisinin combination therapies in the region. One cluster displayed ex vivo piperaquine resistance and mefloquine sensitivity with a high rate of in vivo failure of dihydroartemisinin-piperaquine. Another cluster displayed ex vivo mefloquine resistance and piperaquine sensitivity with high in vivo efficacy of dihydroartemisinin-piperaquine. The final cluster was clonal and displayed intermediate sensitivity to both drugs. Variations in recently described piperaquine resistance markers did not explain the difference in mean IC90 or clinical failures between the high and intermediate piperaquine resistance groups, suggesting additional loci may be involved in resistance. The results highlight an important role for partner drug resistance in shaping the P. falciparum genetic landscape in Southeast Asia and suggest that further work is needed to evaluate for other mutations that drive piperaquine resistance. PMID:28854635

  6. Allele Distributions at Hybrid Incompatibility Loci Facilitate the Potential for Gene Flow between Cultivated and Weedy Rice in the US

    PubMed Central

    Craig, Stephanie M.; Reagon, Michael; Resnick, Lauren E.; Caicedo, Ana L.

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds. PMID:24489758

  7. Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14

    PubMed Central

    Ruark, Elise; Seal, Sheila; McDonald, Heather; Zhang, Feng; Elliot, Anna; Lau, KingWai; Perdeaux, Elizabeth; Rapley, Elizabeth; Eeles, Rosalind; Peto, Julian; Kote-Jarai, Zsofia; Muir, Kenneth; Nsengimana, Jeremie; Shipley, Janet; Bishop, D. Timothy; Stratton, Michael R; Easton, Douglas F; Huddart, Robert A; Rahman, Nazneen; Turnbull, Clare

    2013-01-01

    Testicular germ cell tumor (TGCT) is the most common cancer in young men and is notable for its high familial risks1,2. To date, six loci associated with TGCT have been reported3-7. From GWAS analysis of 307,291 SNPs in 986 cases and 4,946 controls, we selected for follow-up 694 SNPs, which we genotyped in a further 1,064 TGCT cases and 10,082 controls from the UK. We identified SNPs at nine new loci showing association with TGCT (P<5×10−8), at 1q22, 1q24.1, 3p24.3, 4q24, 5q31.1, 8q13.3, 16q12.1, 17q22 and 21q22.3, which together account for an additional 4-6% of the familial risk of TGCT. The loci include genes plausibly related to TGCT development. PRDM14, at 8q13.3, is essential for early germ cell specification8 whilst DAZL, at 3p24.3, is required for regulation of germ cell development9. Furthermore, PITX1, at 5q31.1 regulates TERT expression, and is the third TGCT locus implicated in telomerase regulation10. PMID:23666240

  8. A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease

    PubMed Central

    Boucher, Gabrielle; Beauchamp, Claudine; Trynka, Gosia; Dubois, Patrick C.; Lagacé, Caroline; Stokkers, Pieter C. F.; Hommes, Daan W.; Barisani, Donatella; Palmieri, Orazio; Annese, Vito; van Heel, David A.; Weersma, Rinse K.; Daly, Mark J.; Wijmenga, Cisca; Rioux, John D.

    2011-01-01

    Crohn's disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS) datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls) and CD (3,230 cases, 4,829 controls) were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0×10−5 in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value <1×10−2 in CelD and <1×10−3 in CD). These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37×10−8 and 6.39×10−9, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls) and CD (1,835 cases and 1,669 controls) cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071) in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55×10−10 and 1.38×10−11 respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a relatively small effect. PMID:21298027

  9. Evidence of Recessive Alzheimer Disease Loci in a Caribbean Hispanic Data Set

    PubMed Central

    Ghani, Mahdi; Sato, Christine; Lee, Joseph H.; Reitz, Christiane; Moreno, Danielle; Mayeux, Richard; St George-Hyslop, Peter; Rogaeva, Ekaterina

    2014-01-01

    IMPORTANCE The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding. OBJECTIVE To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations. DESIGN We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses. SETTING A whole-genome case-control ROH study. PARTICIPANTS A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants. EXPOSURE Alzheimer disease risk genes. MAIN OUTCOMES AND MEASURES We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection. RESULTS In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for

  10. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    PubMed Central

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  11. The ribosomal protein genes and Minute loci of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R

    2007-01-01

    Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810

  12. Genetic diversity and antimicrobial resistance pattern of Salmonella enterica serovar Enteritidis clinical isolates in Thailand.

    PubMed

    Utrarachkij, Fuangfa; Nakajima, Chie; Siripanichgon, Kanokrat; Changkaew, Kanjana; Thongpanich, Yuwanda; Pornraungwong, Srirat; Suthienkul, Orasa; Suzuki, Yasuhiko

    2016-04-01

    To trace the history of antimicrobial resistance in Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) circulating in Thailand, we characterised clinical isolates obtained during 2004-2007. Antimicrobial resistance profiles, multi-locus variable number tandem repeat analysis (MLVA) types and 3 representative virulence determinants (spvA, sodCI and sopE) were established from SE isolates (n = 192) collected from stool and blood of patients throughout Thailand during the period 2004-2007. Resistance was found in SE against 10 out of 11 antimicrobials studied. The highest resistance ratios were observed for nalidixic acid (83.2%), ciprofloxacin (51.1%) and ampicillin (50.5%), and 25.5% were multidrug resistant. Based on five polymorphic tandem repeat loci analysis, MLVA identified 20 distinct types with three closely related predominant types. A significant increase of AMP resistance from 2004 to 2006 was strongly correlated with that of a MLVA type, 5-5-11-7-3. The usage of antimicrobials in human medicine or farm settings might act as selective pressures and cause the spread of resistant strains. Hence, a strict policy on antimicrobial usage needs to be implemented to achieve the control of resistant SE in Thailand. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    PubMed Central

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J.M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St. Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T.V.M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Rahi, Jugnoo S.; Hysi, Pirro G.; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Delcourt, Cécile; Maubaret, Cecilia; Williams, Cathy; Guggenheim, Jeremy A.; Northstone, Kate; Ring, Susan M.; Davey-Smith, George; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Stambolian, Dwight; Wilson, Joan E. Bailey; MacGregor, Stuart; Lu, Yi; Jonas, Jost B.; Xu, Liang; Saw, Seang-Mei; Baird, Paul N.; Rochtchina, Elena; Mitchell, Paul; Wang, Jie Jin; Jonas, Jost B.; Nangia, Vinay; Hayward, Caroline; Wright, Alan F.; Vitart, Veronique; Polasek, Ozren; Campbell, Harry; Vitart, Veronique; Rudan, Igor; Vatavuk, Zoran; Vitart, Veronique; Paterson, Andrew D.; Hosseini, S. Mohsen; Iyengar, Sudha K.; Igo, Robert P.; Fondran, Jeremy R.; Young, Terri L.; Feng, Sheng; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Metspalu, Andres; Haller, Toomas; Mihailov, Evelin; Pärssinen, Olavi; Wedenoja, Juho; Wilson, Joan E. Bailey; Wojciechowski, Robert; Baird, Paul N.; Schache, Maria; Pfeiffer, Norbert; Höhn, René; Pang, Chi Pui; Chen, Peng; Meitinger, Thomas; Oexle, Konrad; Wegner, Aharon; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Pärssinen, Olavi; Yip, Shea Ping; Ho, Daniel W.H.; Pirastu, Mario; Murgia, Federico; Portas, Laura; Biino, Genevra; Wilson, James F.; Fleck, Brian; Vitart, Veronique; Stambolian, Dwight; Wilson, Joan E. Bailey; Hewitt, Alex W.; Ang, Wei; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Tai, E-Shyong; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Mackey, David A.; MacGregor, Stuart; Hammond, Christopher J.; Hysi, Pirro G.; Deangelis, Margaret M.; Morrison, Margaux; Zhou, Xiangtian; Chen, Wei; Paterson, Andrew D.; Hosseini, S. Mohsen; Mizuki, Nobuhisa; Meguro, Akira; Lehtimäki, Terho; Mäkelä, Kari-Matti; Raitakari, Olli; Kähönen, Mika; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Reinhart, William; Belin, Michael W.; Schultze, Robert L.; Morason, Todd; Sugar, Alan; Mian, Shahzad; Soong, Hunson Kaz; Colby, Kathryn; Jurkunas, Ula; Yee, Richard; Vital, Mark; Alfonso, Eduardo; Karp, Carol; Lee, Yunhee; Yoo, Sonia; Hammersmith, Kristin; Cohen, Elisabeth; Laibson, Peter; Rapuano, Christopher; Ayres, Brandon; Croasdale, Christopher; Caudill, James; Patel, Sanjay; Baratz, Keith; Bourne, William; Maguire, Leo; Sugar, Joel; Tu, Elmer; Djalilian, Ali; Mootha, Vinod; McCulley, James; Bowman, Wayne; Cavanaugh, H. Dwight; Verity, Steven; Verdier, David; Renucci, Ann; Oliva, Matt; Rotkis, Walter; Hardten, David R.; Fahmy, Ahmad; Brown, Marlene; Reeves, Sherman; Davis, Elizabeth A.; Lindstrom, Richard; Hauswirth, Scott; Hamilton, Stephen; Lee, W. Barry; Price, Francis; Price, Marianne; Kelly, Kathleen; Peters, Faye; Shaughnessy, Michael; Steinemann, Thomas; Dupps, B.J.; Meisler, David M.; Mifflin, Mark; Olson, Randal; Aldave, Anthony; Holland, Gary; Mondino, Bartly J.; Rosenwasser, George; Gorovoy, Mark; Dunn, Steven P.; Heidemann, David G.; Terry, Mark; Shamie, Neda; Rosenfeld, Steven I.; Suedekum, Brandon; Hwang, David; Stone, Donald; Chodosh, James; Galentine, Paul G.; Bardenstein, David; Goddard, Katrina; Chin, Hemin; Mannis, Mark; Varma, Rohit; Borecki, Ingrid; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C.A.; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M.; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E.; Hosseini, S. Mohsen; Paterson, Andrew D.; Genuth, S.; Nathan, D.M.; Zinman, B.; Crofford, O.; Crandall, J.; Reid, M.; Brown-Friday, J.; Engel, S.; Sheindlin, J.; Martinez, H.; Shamoon, H.; Engel, H.; Phillips, M.; Gubitosi-Klug, R.; Mayer, L.; Pendegast, S.; Zegarra, H.; Miller, D.; Singerman, L.; Smith-Brewer, S.; Novak, M.; Quin, J.; Dahms, W.; Genuth, Saul; Palmert, M.; Brillon, D.; Lackaye, M.E.; Kiss, S.; Chan, R.; Reppucci, V.; Lee, T.; Heinemann, M.; Whitehouse, F.; Kruger, D.; Jones, J.K.; McLellan, M.; Carey, J.D.; Angus, E.; Thomas, A.; Galprin, A.; Bergenstal, R.; Johnson, M.; Spencer, M.; Morgan, K.; Etzwiler, D.; Kendall, D.; Aiello, Lloyd Paul; Golden, E.; Jacobson, A.; Beaser, R.; Ganda, O.; Hamdy, O.; Wolpert, H.; Sharuk, G.; Arrigg, P.; Schlossman, D.; Rosenzwieg, J.; Rand, L.; Nathan, D.M.; Larkin, M.; Ong, M.; Godine, J.; Cagliero, E.; Lou, P.; Folino, K.; Fritz, S.; Crowell, S.; Hansen, K.; Gauthier-Kelly, C.; Service, J.; Ziegler, G.; Luttrell, L.; Caulder, S.; Lopes-Virella, M.; Colwell, J.; Soule, J.; Fernandes, J.; Hermayer, K.; Kwon, S.; Brabham, M.; Blevins, A.; Parker, J.; Lee, D.; Patel, N.; Pittman, C.; Lindsey, P.; Bracey, M.; Lee, K.; Nutaitis, M.; Farr, A.; Elsing, S.; Thompson, T.; Selby, J.; Lyons, T.; Yacoub-Wasef, S.; Szpiech, M.; Wood, D.; Mayfield, R.; Molitch, M.; Schaefer, B.; Jampol, L.; Lyon, A.; Gill, M.; Strugula, Z.; Kaminski, L.; Mirza, R.; Simjanoski, E.; Ryan, D.; Kolterman, O.; Lorenzi, G.; Goldbaum, M.; Sivitz, W.; Bayless, M.; Counts, D.; Johnsonbaugh, S.; Hebdon, M.; Salemi, P.; Liss, R.; Donner, T.; Gordon, J.; Hemady, R.; Kowarski, A.; Ostrowski, D.; Steidl, S.; Jones, B.; Herman, W.H.; Martin, C.L.; Pop-Busui, R.; Sarma, A.; Albers, J.; Feldman, E.; Kim, K.; Elner, S.; Comer, G.; Gardner, T.; Hackel, R.; Prusak, R.; Goings, L.; Smith, A.; Gothrup, J.; Titus, P.; Lee, J.; Brandle, M.; Prosser, L.; Greene, D.A.; Stevens, M.J.; Vine, A.K.; Bantle, J.; Wimmergren, N.; Cochrane, A.; Olsen, T.; Steuer, E.; Rath, P.; Rogness, B.; Hainsworth, D.; Goldstein, D.; Hitt, S.; Giangiacomo, J.; Schade, D.S.; Canady, J.L.; Chapin, J.E.; Ketai, L.H.; Braunstein, C.S.; Bourne, P.A.; Schwartz, S.; Brucker, A.; Maschak-Carey, B.J.; Baker, L.; Orchard, T.; Silvers, N.; Ryan, C.; Songer, T.; Doft, B.; Olson, S.; Bergren, R.L.; Lobes, L.; Rath, P. Paczan; Becker, D.; Rubinstein, D.; Conrad, P.W.; Yalamanchi, S.; Drash, A.; Morrison, A.; Bernal, M.L.; Vaccaro-Kish, J.; Malone, J.; Pavan, P.R.; Grove, N.; Iyer, M.N.; Burrows, A.F.; Tanaka, E.A.; Gstalder, R.; Dagogo-Jack, S.; Wigley, C.; Ricks, H.; Kitabchi, A.; Murphy, M.B.; Moser, S.; Meyer, D.; Iannacone, A.; Chaum, E.; Yoser, S.; Bryer-Ash, M.; Schussler, S.; Lambeth, H.; Raskin, P.; Strowig, S.; Zinman, B.; Barnie, A.; Devenyi, R.; Mandelcorn, M.; Brent, M.; Rogers, S.; Gordon, A.; Palmer, J.; Catton, S.; Brunzell, J.; Wessells, H.; de Boer, I.H.; Hokanson, J.; Purnell, J.; Ginsberg, J.; Kinyoun, J.; Deeb, S.; Weiss, M.; Meekins, G.; Distad, J.; Van Ottingham, L.; Dupre, J.; Harth, J.; Nicolle, D.; Driscoll, M.; Mahon, J.; Canny, C.; May, M.; Lipps, J.; Agarwal, A.; Adkins, T.; Survant, L.; Pate, R.L.; Munn, G.E.; Lorenz, R.; Feman, S.; White, N.; Levandoski, L.; Boniuk, I.; Grand, G.; Thomas, M.; Joseph, D.D.; Blinder, K.; Shah, G.; Boniuk; Burgess; Santiago, J.; Tamborlane, W.; Gatcomb, P.; Stoessel, K.; Taylor, K.; Goldstein, J.; Novella, S.; Mojibian, H.; Cornfeld, D.; Lima, J.; Bluemke, D.; Turkbey, E.; van der Geest, R.J.; Liu, C.; Malayeri, A.; Jain, A.; Miao, C.; Chahal, H.; Jarboe, R.; Maynard, J.; Gubitosi-Klug, R.; Quin, J.; Gaston, P.; Palmert, M.; Trail, R.; Dahms, W.; Lachin, J.; Cleary, P.; Backlund, J.; Sun, W.; Braffett, B.; Klumpp, K.; Chan, K.; Diminick, L.; Rosenberg, D.; Petty, B.; Determan, A.; Kenny, D.; Rutledge, B.; Younes, Naji; Dews, L.; Hawkins, M.; Cowie, C.; Fradkin, J.; Siebert, C.; Eastman, R.; Danis, R.; Gangaputra, S.; Neill, S.; Davis, M.; Hubbard, L.; Wabers, H.; Burger, M.; Dingledine, J.; Gama, V.; Sussman, R.; Steffes, M.; Bucksa, J.; Nowicki, M.; Chavers, B.; O’Leary, D.; Polak, J.; Harrington, A.; Funk, L.; Crow, R.; Gloeb, B.; Thomas, S.; O’Donnell, C.; Soliman, E.; Zhang, Z.M.; Prineas, R.; Campbell, C.; Ryan, C.; Sandstrom, D.; Williams, T.; Geckle, M.; Cupelli, E.; Thoma, F.; Burzuk, B.; Woodfill, T.; Low, P.; Sommer, C.; Nickander, K.; Budoff, M.; Detrano, R.; Wong, N.; Fox, M.; Kim, L.; Oudiz, R.; Weir, G.; Espeland, M.; Manolio, T.; Rand, L.; Singer, D.; Stern, M.; Boulton, A.E.; Clark, C.; D’Agostino, R.; Lopes-Virella, M.; Garvey, W.T.; Lyons, T.J.; Jenkins, A.; Virella, G.; Jaffa, A.; Carter, Rickey; Lackland, D.; Brabham, M.; McGee, D.; Zheng, D.; Mayfield, R.K.; Boright, A.; Bull, S.; Sun, L.; Scherer, S.; Zinman, B.; Natarajan, R.; Miao, F.; Zhang, L.; Chen;, Z.; Nathan, D.M.; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K.H.; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J.; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G.; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W.; Williams, Cathy; Oostra, Ben A.; Teo, Yik-Ying; Hammond, Christopher J.; Stambolian, Dwight; Mackey, David A.; Klaver, Caroline C.W.; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N.

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. PMID:24144296

  14. Association study of 25 type 2 diabetes related Loci with measures of obesity in Indian sib pairs.

    PubMed

    Gupta, Vipin; Vinay, Donipadi Guru; Sovio, Ulla; Rafiq, Sajjad; Kranthi Kumar, Madamchetty Venkata; Janipalli, Charles Spurgeon; Evans, David; Mani, Kulathu Radha; Sandeep, Madana Narasimha; Taylor, Amy; Kinra, Sanjay; Sullivan, Ruth; Bowen, Liza; Timpson, Nicholas; Smith, George Davey; Dudbridge, Frank; Prabhakaran, Dorairaj; Ben-Shlomo, Yoav; Reddy, Kolli Srinath; Ebrahim, Shah; Chandak, Giriraj Ratan

    2013-01-01

    Obesity is an established risk factor for type 2 diabetes (T2D) and they are metabolically related through the mechanism of insulin resistance. In order to explore how common genetic variants associated with T2D correlate with body mass index (BMI), we examined the influence of 25 T2D associated loci on obesity risk. We used 5056 individuals (2528 sib-pairs) recruited in Indian Migration Study and conducted within sib-pair analysis for six obesity phenotypes. We found associations of variants in CXCR4 (rs932206) and HHEX (rs5015480) with higher body mass index (BMI) (β=0.13, p=0.001) and (β=0.09, p=0.002), respectively and weight (β=0.13, p=0.001) and (β=0.09, p=0.001), respectively. CXCR4 variant was also strongly associated with body fat (β=0.10, p=0.0004). In addition, we demonstrated associations of CXCR4 and HHEX with overweight/obesity (OR=1.6, p=0.003) and (OR=1.4, p=0.002), respectively, in 1333 sib-pairs (2666 individuals). We observed marginal evidence of associations between variants at six loci (TCF7L2, NGN3, FOXA2, LOC646279, FLJ39370 and THADA) and waist hip ratio (WHR), BMI and/or overweight which needs to be validated in larger set of samples. All the above findings were independent of daily energy consumption and physical activity level. The risk score estimates based on eight significant loci (including nominal associations) showed associations with WHR and body fat which were independent of BMI. In summary, we establish the role of T2D associated loci in influencing the measures of obesity in Indian population, suggesting common underlying pathophysiology across populations.

  15. Association Study of 25 Type 2 Diabetes Related Loci with Measures of Obesity in Indian Sib Pairs

    PubMed Central

    Gupta, Vipin; Vinay, Donipadi Guru; Sovio, Ulla; Rafiq, Sajjad; Kranthi Kumar, Madamchetty Venkata; Janipalli, Charles Spurgeon; Evans, David; Mani, Kulathu Radha; Sandeep, Madana Narasimha; Taylor, Amy; Kinra, Sanjay; Sullivan, Ruth; Bowen, Liza; Timpson, Nicholas; Smith, George Davey; Dudbridge, Frank; Prabhakaran, Dorairaj; Ben-Shlomo, Yoav; Reddy, Kolli Srinath; Ebrahim, Shah; Chandak, Giriraj Ratan

    2013-01-01

    Obesity is an established risk factor for type 2 diabetes (T2D) and they are metabolically related through the mechanism of insulin resistance. In order to explore how common genetic variants associated with T2D correlate with body mass index (BMI), we examined the influence of 25 T2D associated loci on obesity risk. We used 5056 individuals (2528 sib-pairs) recruited in Indian Migration Study and conducted within sib-pair analysis for six obesity phenotypes. We found associations of variants in CXCR4 (rs932206) and HHEX (rs5015480) with higher body mass index (BMI) (β = 0.13, p = 0.001) and (β = 0.09, p = 0.002), respectively and weight (β = 0.13, p = 0.001) and (β = 0.09, p = 0.001), respectively. CXCR4 variant was also strongly associated with body fat (β = 0.10, p = 0.0004). In addition, we demonstrated associations of CXCR4 and HHEX with overweight/obesity (OR = 1.6, p = 0.003) and (OR = 1.4, p = 0.002), respectively, in 1333 sib-pairs (2666 individuals). We observed marginal evidence of associations between variants at six loci (TCF7L2, NGN3, FOXA2, LOC646279, FLJ3970 and THADA) and waist hip ratio (WHR), BMI and/or overweight which needs to be validated in larger set of samples. All the above findings were independent of daily energy consumption and physical activity level. The risk score estimates based on eight significant loci (including nominal associations) showed associations with WHR and body fat which were independent of BMI. In summary, we establish the role of T2D associated loci in influencing the measures of obesity in Indian population, suggesting common underlying pathophysiology across populations. PMID:23349771

  16. Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models

    PubMed Central

    Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody

    2013-01-01

    When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232

  17. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

    PubMed Central

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-01-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  18. Isolation and characterization of 21 polymorphic microsatellite loci in the Japanese dace (Tribolodon hakonensis)

    USGS Publications Warehouse

    Koizumi, Noriyuki; Quinn, Thomas W.; Park, Myeongsoo; Fike, Jennifer A.; Nishida, Kazuya; Takemura, Takeshi; Watabe, Keiji; Mori, Atsushi

    2011-01-01

    Twenty one polymorphic microsatellite loci for the Japanese dace (Tribolodon hakonensis) were isolated and characterized. The number of observed alleles per locus in 32 individuals ranged from 3 to 30. The observed and expected heterozygosities ranged from 0.125 to 0.969 and from 0.175 to 0.973, respectively. All loci conformed to Hardy–Weinberg equilibrium, no linkage disequilibrium was observed between pairs of loci and no loci showed evidence of null alleles. These microsatellite loci will be useful for investigating the intraspecific genetic variation and population structure of this species.

  19. Genome-Wide Association Mapping for Seedling and Adult Plant Resistance to Stripe Rust in Synthetic Hexaploid Wheat

    PubMed Central

    Makdis, Farid; Badebo, Ayele; Ogbonnaya, Francis C.

    2014-01-01

    Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars. PMID:25153126

  20. Integrating evolutionary and functional approaches to infer adaptation at specific loci.

    PubMed

    Storz, Jay F; Wheat, Christopher W

    2010-09-01

    Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.

  1. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    PubMed Central

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. Methods 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). Results No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium’s panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10–14) and explained approximately 2% of the phenotypic variance. Conclusions Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. PMID:23871474

  2. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation.

    PubMed

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bruggeman, Richard; Cahn, Wiepke; Chandler, David; Collier, David A; Crespo-Facorro, Benedicto; Dazzan, Paola; de Haan, Lieuwe; Di Forti, Marta; Dragović, Milan; Giegling, Ina; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, René S; Kalaydjieva, Luba; Kravariti, Eugenia; Lawrie, Stephen; Linszen, Don H; Mata, Ignacio; McDonald, Colm; McIntosh, Andrew; Myin-Germeys, Inez; Ophoff, Roel A; Pariante, Carmine M; Paunio, Tiina; Picchioni, Marco; Ripke, Stephan; Rujescu, Dan; Sauer, Heinrich; Shaikh, Madiha; Sussmann, Jessika; Suvisaari, Jaana; Tosato, Sarah; Toulopoulou, Timothea; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Whalley, Heather; Wiersma, Durk; Blackwell, Jenefer M; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Lewis, Cathryn M; Murray, Robin M; Donnelly, Peter; Powell, John; Spencer, Chris C A

    2014-03-01

    Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium's panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10(-14)) and explained approximately 2% of the phenotypic variance. Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Comparison of Marker-Based Genomic Estimated Breeding Values and Phenotypic Evaluation for Selection of Bacterial Spot Resistance in Tomato.

    PubMed

    Liabeuf, Debora; Sim, Sung-Chur; Francis, David M

    2018-03-01

    Bacterial spot affects tomato crops (Solanum lycopersicum) grown under humid conditions. Major genes and quantitative trait loci (QTL) for resistance have been described, and multiple loci from diverse sources need to be combined to improve disease control. We investigated genomic selection (GS) prediction models for resistance to Xanthomonas euvesicatoria and experimentally evaluated the accuracy of these models. The training population consisted of 109 families combining resistance from four sources and directionally selected from a population of 1,100 individuals. The families were evaluated on a plot basis in replicated inoculated trials and genotyped with single nucleotide polymorphisms (SNP). We compared the prediction ability of models developed with 14 to 387 SNP. Genomic estimated breeding values (GEBV) were derived using Bayesian least absolute shrinkage and selection operator regression (BL) and ridge regression (RR). Evaluations were based on leave-one-out cross validation and on empirical observations in replicated field trials using the next generation of inbred progeny and a hybrid population resulting from selections in the training population. Prediction ability was evaluated based on correlations between GEBV and phenotypes (r g ), percentage of coselection between genomic and phenotypic selection, and relative efficiency of selection (r g /r p ). Results were similar with BL and RR models. Models using only markers previously identified as significantly associated with resistance but weighted based on GEBV and mixed models with markers associated with resistance treated as fixed effects and markers distributed in the genome treated as random effects offered greater accuracy and a high percentage of coselection. The accuracy of these models to predict the performance of progeny and hybrids exceeded the accuracy of phenotypic selection.

  4. Multidrug-resistant tuberculosis: The problem and some priorities in controlling it.

    PubMed

    Hoffner, Sven

    2016-12-01

    Multidrug-resistant tuberculosis (MDR-TB), and even more severe forms of drug resistance, cause significant problems and costs for national TB control programs and constitutes an increasing public health concern globally. In parts of the former Soviet Union, the prevalence of MDR-TB is as high as 50% and one third of all newly detected TB patients are infected with MDR strains. Such strains transmit and certain MDR-TB clones constitute an important part of the problem, especially in high MDR-TB burden areas. There are several actions that should be given priority to control this situation. A first important step is timely detection of all patients infected with resistant strains, which makes possible prompt change of standard TB chemotherapy to more effective combinations of drugs. This is important both from the public health and clinical perspectives, since it renders the individual patient noninfectious and subsequently cured. Early detection of MDR-TB also allows infection control to be focused where it is most needed. Strengthened infection control measures are crucial for limiting the ongoing spread of resistant TB in hospitals and elsewhere. In addition, a sustainable drug supply must be ensured to guarantee that all patients are initiated on effective treatment and can avoid interruptions due to drug shortages. An extra focus should be put on vulnerable cases, such as immunosuppressed individuals, prisoners, drug addicts, and migrants, in whom TB is generally more frequent and difficult to control than in the normal population. Finally, political support is needed to ensure necessary infrastructures, human and financial resources to effectively control drug resistant TB. Copyright © 2016.

  5. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    PubMed Central

    Horikoshi, Momoko; Pasquali, Lorenzo; Wiltshire, Steven; Huyghe, Jeroen R.; Mahajan, Anubha; Asimit, Jennifer L.; Ferreira, Teresa; Locke, Adam E.; Robertson, Neil R.; Wang, Xu; Sim, Xueling; Fujita, Hayato; Hara, Kazuo; Young, Robin; Zhang, Weihua; Choi, Sungkyoung; Chen, Han; Kaur, Ismeet; Takeuchi, Fumihiko; Fontanillas, Pierre; Thuillier, Dorothée; Yengo, Loic; Below, Jennifer E.; Tam, Claudia H.T.; Wu, Ying; Abecasis, Gonçalo; Altshuler, David; Bell, Graeme I.; Blangero, John; Burtt, Noél P.; Duggirala, Ravindranath; Florez, Jose C.; Hanis, Craig L.; Seielstad, Mark; Atzmon, Gil; Chan, Juliana C.N.; Ma, Ronald C.W.; Froguel, Philippe; Wilson, James G.; Bharadwaj, Dwaipayan; Dupuis, Josee; Meigs, James B.; Cho, Yoon Shin; Park, Taesung; Kooner, Jaspal S.; Chambers, John C.; Saleheen, Danish; Kadowaki, Takashi; Tai, E. Shyong; Mohlke, Karen L.; Cox, Nancy J.; Ferrer, Jorge; Zeggini, Eleftheria; Kato, Norihiro; Teo, Yik Ying; Boehnke, Michael; McCarthy, Mark I.; Morris, Andrew P.

    2016-01-01

    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci. PMID:26911676

  6. Multiple Genetic Backgrounds of the Amplified Plasmodium falciparum Multidrug Resistance (pfmdr1) Gene and Selective Sweep of 184F Mutation in Cambodia

    PubMed Central

    Vinayak, Sumiti; Alam, Md Tauqeer; Sem, Rithy; Shah, Naman K.; Susanti, Augustina I.; Lim, Pharath; Muth, Sinuon; Maguire, Jason D.; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam

    2011-01-01

    Background The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. Methods We characterized 13 microsatellite loci flanking (± 99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. Results Genetic analysis revealed no difference in the mean (± standard deviation) expected heterozygosity (He) at loci around single (0.75 ± 0.03) and multiple (0.76 ± 0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean He (± SD) around mutant allele (0.56 ± 0.05), compared with wild-type allele (0.84 ± 0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. Conclusion The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds. PMID:20367478

  7. [Genetic polymorphisms of 21 non-CODIS STR loci].

    PubMed

    Shao, Wei-bo; Zhang, Su-hua; Li, Li

    2011-02-01

    To investigate genetic polymorphisms of 21 non-CODIS STR loci in Han population from the east of China and to explore their forensic application value. Twenty-one non-CODIS STR loci, were amplified with AGCU 21+1 STR kit and DNA samples were obtained from 225 unrelated individuals of the Han population from the east of China. The PCR products were analyzed with 3130 Genetic Analyzer and genotyped with GeneMapper ID v3.2 software. The genetic data were statistically analyzed with PowerStats v12.xls and Cervus 2.0 software. The distributions of 21 non-CODIS STR loci satisfied the Hardy-Weinberg equilibration. The heterozygosity (H) distributions were 0.596-0.804, the discrimination power (DP) were 0.764-0.948, the probability of exclusion of duo-testing (PEduo) were 0.176-0.492, the probability of exclusion of trios-testing (PEtrio) were 0.334-0.663, and the polymorphic information content (PIC) were 0.522-0.807. The cumulative probability of exclusion (CPE) of duo-testing was 0.999707, the CPE of trios-testing was 0.9999994, and the cumulated discrimination power (CDP) was 0.99999999999999999994. Twenty-one non-CODIS STR loci are highly polymorphic. They can be effectively used in personal identification and paternity testing in trios cases. They can also be used as supplement in the difficult cases of diad paternity testing.

  8. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection.

    PubMed

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G; Holbrook, C C; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum ) is a major fungal disease of cultivated peanut ( Arachis hypogaea ). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  9. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

    PubMed Central

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G.; Holbrook, C. C.; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping. PMID:29459876

  10. Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment

    PubMed Central

    Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree; Zuber, Verena; Bettella, Francesco; Hugdahl, Kenneth; Espeseth, Thomas; Steen, Vidar M.; Melle, Ingrid; Desikan, Rahul; Schork, Andrew J.; Thompson, Wesley K.; Dale, Anders M.; Djurovic, Srdjan

    2017-01-01

    Abstract There is evidence for genetic overlap between cognitive abilities and schizophrenia (SCZ), and genome-wide association studies (GWAS) demonstrate that both SCZ and general cognitive abilities have a strong polygenic component with many single-nucleotide polymorphisms (SNPs) each with a small effect. Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a “proxy phenotype” for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college completion (“College,” n = 95 427), and years of education (“EduYears,” n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold <0.01, we identified 18 genomic loci associated with SCZ after conditioning on College and 15 loci associated with SCZ after conditioning on EduYears. Ten of these loci overlapped. Using conjunctional FDR, we identified 10 loci shared between SCZ and College, and 29 loci shared between SCZ and EduYears. The majority of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation. Importantly, our methods enable identification of bi-directional effects, which highlight the complex relationship between SCZ and educational attainment, and support polygenic mechanisms underlying both cognitive dysfunction and creativity in SCZ. PMID:27338279

  11. Isolation and characterization of eight novel microsatellite loci in the double-crested cormorant (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan; Mullins, Thomas

    2010-01-01

    We describe the isolation and characterization of eight microsatellite loci from the double-crested cormorant (Phalacrocorax auritus). Genetic variability was assessed using 60 individuals from three populations. All loci were variable with the number of alleles ranging from two to 17 per locus, and observed heterozygosity varying from 0.05 to 0.89. No loci showed signs of linkage disequilibrium and all loci conformed to Hardy–Weinberg equilibrium frequencies. Further, all loci amplified and were polymorphic in two related Phalacrocorax species. These loci should prove useful for population genetic studies of the double-crested cormorant and other pelecaniform species.

  12. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  13. Genome-wide identification of QTLs conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 16...

  14. Blood pressure loci identified with a gene-centric array.

    PubMed

    Johnson, Toby; Gaunt, Tom R; Newhouse, Stephen J; Padmanabhan, Sandosh; Tomaszewski, Maciej; Kumari, Meena; Morris, Richard W; Tzoulaki, Ioanna; O'Brien, Eoin T; Poulter, Neil R; Sever, Peter; Shields, Denis C; Thom, Simon; Wannamethee, Sasiwarang G; Whincup, Peter H; Brown, Morris J; Connell, John M; Dobson, Richard J; Howard, Philip J; Mein, Charles A; Onipinla, Abiodun; Shaw-Hawkins, Sue; Zhang, Yun; Davey Smith, George; Day, Ian N M; Lawlor, Debbie A; Goodall, Alison H; Fowkes, F Gerald; Abecasis, Gonçalo R; Elliott, Paul; Gateva, Vesela; Braund, Peter S; Burton, Paul R; Nelson, Christopher P; Tobin, Martin D; van der Harst, Pim; Glorioso, Nicola; Neuvrith, Hani; Salvi, Erika; Staessen, Jan A; Stucchi, Andrea; Devos, Nabila; Jeunemaitre, Xavier; Plouin, Pierre-François; Tichet, Jean; Juhanson, Peeter; Org, Elin; Putku, Margus; Sõber, Siim; Veldre, Gudrun; Viigimaa, Margus; Levinsson, Anna; Rosengren, Annika; Thelle, Dag S; Hastie, Claire E; Hedner, Thomas; Lee, Wai K; Melander, Olle; Wahlstrand, Björn; Hardy, Rebecca; Wong, Andrew; Cooper, Jackie A; Palmen, Jutta; Chen, Li; Stewart, Alexandre F R; Wells, George A; Westra, Harm-Jan; Wolfs, Marcel G M; Clarke, Robert; Franzosi, Maria Grazia; Goel, Anuj; Hamsten, Anders; Lathrop, Mark; Peden, John F; Seedorf, Udo; Watkins, Hugh; Ouwehand, Willem H; Sambrook, Jennifer; Stephens, Jonathan; Casas, Juan-Pablo; Drenos, Fotios; Holmes, Michael V; Kivimaki, Mika; Shah, Sonia; Shah, Tina; Talmud, Philippa J; Whittaker, John; Wallace, Chris; Delles, Christian; Laan, Maris; Kuh, Diana; Humphries, Steve E; Nyberg, Fredrik; Cusi, Daniele; Roberts, Robert; Newton-Cheh, Christopher; Franke, Lude; Stanton, Alice V; Dominiczak, Anna F; Farrall, Martin; Hingorani, Aroon D; Samani, Nilesh J; Caulfield, Mark J; Munroe, Patricia B

    2011-12-09

    Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Can Genetic Analysis of Putative Blood Alzheimer's Disease Biomarkers Lead to Identification of Susceptibility Loci?

    PubMed

    Barber, Robert C; Phillips, Nicole R; Tilson, Jeffrey L; Huebinger, Ryan M; Shewale, Shantanu J; Koenig, Jessica L; Mitchel, Jeffrey S; O'Bryant, Sid E; Waring, Stephen C; Diaz-Arrastia, Ramon; Chasse, Scott; Wilhelmsen, Kirk C

    2015-01-01

    Although 24 Alzheimer's disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10(-7). Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel

  16. Characterization of ten microsatellite loci in the Broad-tailed hummingbird (Selasphorus platycercus)

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Fike, Jennifer A.; Talley-Farnham, Tiffany; Engelman, Tena; Engelman, Fred

    2011-01-01

    The Broad-tailed Hummingbird (Selaphorus platycercus) breeds at higher elevations in the central and southern Rockies, eastern California, and Mexico and has been studied for 8 years in Rocky Mountain National Park, Colorado. Questions regarding the relatedness of Broad-tailed Hummingbirds banded together and then recaptured in close time proximity in later years led us to isolate and develop primers for 10 polymorphic microsatellite loci. In a screen of 25 individuals from a population in Rocky Mountain National Park, the 10 loci were found to have levels of variability ranging from two to 16 alleles. No loci were found to depart from linkage disequilibrium, although two loci revealed significant departures from Hardy–Weinberg equilibrium. These 10 microsatellite loci will be applicable for population genetic analyses, investigation of mating systems and relatedness, and may help gain insight into the migration timing and routes for this species.

  17. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  18. Characterization of ten microsatellite loci in midget faded rattlesnake (Crotalus oreganus concolor)

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Parker, Joshua M.

    2010-01-01

    Primers for 10 microsatellite loci were developed for midget faded rattlesnake (Crotalus oreganus concolor), a small bodied subspecies of the Western Rattlesnake, which is found in the Colorado Plateau of eastern Utah, western Colorado and southwestern Wyoming. In a screen of 23 individuals from the most northern portion of the subspecies range in southwestern Wyoming, the 10 loci were found to have levels of variability ranging from 4 to 11 alleles. No loci were found to be linked, although one locus revealed significant departures from Hardy–Weinberg equilibrium. These microsatellite loci will be applicable for population genetic analyses, which will ultimately aid in management efforts for this rare subspecies of rattlesnake.

  19. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1.

    PubMed

    Leung, Danny; Du, Tingting; Wagner, Ulrich; Xie, Wei; Lee, Ah Young; Goyal, Preeti; Li, Yujing; Szulwach, Keith E; Jin, Peng; Lorincz, Matthew C; Ren, Bing

    2014-05-06

    During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.

  20. Resistance to genetic insect control: Modelling the effects of space.

    PubMed

    Watkinson-Powell, Benjamin; Alphey, Nina

    2017-01-21

    Genetic insect control, such as self-limiting RIDL 2 (Release of Insects Carrying a Dominant Lethal) technology, is a development of the sterile insect technique which is proposed to suppress wild populations of a number of major agricultural and public health insect pests. This is achieved by mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic construct, which causes death in progeny when inherited. The released genetically engineered ('GE') insects compete for mates with wild individuals, resulting in population suppression. A previous study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-dependent population genetic and population dynamic approach. This found that proliferation of resistance is possible but can be diluted by the introgression of susceptible alleles from the released homozygous-susceptible GE males. We develop this approach within a spatial context by modelling the spread of a lethal construct and resistance trait, and the effect on population control, in a two deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an increased or decreased evolution of resistance in both the target and non-target demes, depending on the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles for the target deme through dispersal. This can in turn have a major impact on the effectiveness of insect population control. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Genomic selection for quantitative adult plant stem rust resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...

  2. Authority defied: need for cognitive closure influences regulatory control when resisting authority.

    PubMed

    Damen, Tom G E; van Leeuwen, Matthijs L; Dijksterhuis, Ap; van Baaren, Rick B

    2014-08-01

    The present studies examined whether differences in need for cognitive closure (NCC) were related to differences in regulatory control when confronted with authority. In two studies, levels of regulatory control were measured when participants resisted (Study 1; N = 46) or prepared to resist the influence attempt of an authority figure (Study 2; N = 50). Results showed that resisting the influence attempt from a high-authority figure was more depleting for participants higher in NCC compared to individuals lower in NCC. However, when they were given instructions and time to prepare the act of resistance, individuals high in NCC actually showed an increase in regulatory control. Authority is usually viewed as a general principle of influence; however, the present studies suggest that there are individual differences that influence how people may experience interactions with authorities. © 2013 Wiley Periodicals, Inc.

  3. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease

    PubMed Central

    Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Harold, Denise; Naj, Adam C; Sims, Rebecca; Bellenguez, Céline; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Gerrish, Amy; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Choi, Seung-Hoan; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Ramirez, Alfredo; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Morón, Francisco J; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Green, Robert; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; St George-Hyslop, Peter; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petroula; Collinge, John; Sorbi, Sandro; Sanchez-Garcia, Florentino; Fox, Nick C; Hardy, John; Deniz Naranjo, Maria Candida; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Matthews, Fiona; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O’Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Wang, Li-san; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Jones, Lesley; Haines, Jonathan L; Holmans, Peter A; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broeckhoven, Christine; Moskvina, Valentina; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D; Amouyel, Philippe

    2013-01-01

    Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease. PMID:24162737

  4. An acute bout of localized resistance exercise can rapidly improve inhibitory control

    PubMed Central

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Takeuchi, Tatsuya; Tanaka, Daichi; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2017-01-01

    The positive effect of acute resistance exercise on executive function, such as inhibitory control (IC), is poorly understood. Several previous studies have demonstrated this effect using whole-body resistance exercise. However, it remains unclear whether localized resistance exercise performed using only limited muscle groups could also acutely improve IC. Thus, the present study examined the effect of an acute bout of localized resistance exercise on IC. Twelve healthy men performed a color-word Stroop task (CWST) before and immediately after the experimental conditions, which consisted of 2 resistance exercises and a resting control (CON). Bilateral knee extension was used to create 2 resistance exercise conditions: light-intensity resistance exercise (LRE) and high-intensity resistance exercise (HRE) conditions, which were 40% and 80% of one-repetition maximum, respectively. The resistance exercise session was programmed for 6 sets with 10 repetitions per set. The CWST-measured IC was significantly improved immediately after both LRE and HRE, but it did not improve immediately after CON. However, the improved IC was significantly greater in HRE than in LRE. The present findings showed that IC could be rapidly improved by an acute bout of localized resistance exercise, especially with high-intensity. Therefore, we suggest that in addition to whole-body resistance exercise, localized resistance exercise performed using limited muscle groups may be sufficient for improving IC. PMID:28877232

  5. Characterization of microsatellite loci isolated in Mountain Plover (Charadrius montanus)

    USGS Publications Warehouse

    John, J. St; Kysela, R.F.; Oyler-McCance, S.J.

    2007-01-01

    Primers for 15 microsatellite loci were developed for Mountain Plover, a species whose distribution and abundance have been reduced drastically in the past 30 years. In a screen of 126 individuals collected from four breeding locales across the species' range, levels of polymorphism ranged from two to 13 alleles per locus. No two loci were found to be linked, although one locus revealed significant departures from Hardy-Weinberg equilibrium. These microsatellite loci can be used in population genetic studies, ultimately aiding in management efforts for Mountain Plover. Additionally, these markers can potentially be used in studies investigating the mating system of Mountain Plover. ?? 2007 Blackwell Publishing Ltd.

  6. Genome-wide association of body fat distribution in African ancestry populations suggests new loci.

    PubMed

    Liu, Ching-Ti; Monda, Keri L; Taylor, Kira C; Lange, Leslie; Demerath, Ellen W; Palmas, Walter; Wojczynski, Mary K; Ellis, Jaclyn C; Vitolins, Mara Z; Liu, Simin; Papanicolaou, George J; Irvin, Marguerite R; Xue, Luting; Griffin, Paula J; Nalls, Michael A; Adeyemo, Adebowale; Liu, Jiankang; Li, Guo; Ruiz-Narvaez, Edward A; Chen, Wei-Min; Chen, Fang; Henderson, Brian E; Millikan, Robert C; Ambrosone, Christine B; Strom, Sara S; Guo, Xiuqing; Andrews, Jeanette S; Sun, Yan V; Mosley, Thomas H; Yanek, Lisa R; Shriner, Daniel; Haritunians, Talin; Rotter, Jerome I; Speliotes, Elizabeth K; Smith, Megan; Rosenberg, Lynn; Mychaleckyj, Josyf; Nayak, Uma; Spruill, Ida; Garvey, W Timothy; Pettaway, Curtis; Nyante, Sarah; Bandera, Elisa V; Britton, Angela F; Zonderman, Alan B; Rasmussen-Torvik, Laura J; Chen, Yii-Der Ida; Ding, Jingzhong; Lohman, Kurt; Kritchevsky, Stephen B; Zhao, Wei; Peyser, Patricia A; Kardia, Sharon L R; Kabagambe, Edmond; Broeckel, Ulrich; Chen, Guanjie; Zhou, Jie; Wassertheil-Smoller, Sylvia; Neuhouser, Marian L; Rampersaud, Evadnie; Psaty, Bruce; Kooperberg, Charles; Manson, Joann E; Kuller, Lewis H; Ochs-Balcom, Heather M; Johnson, Karen C; Sucheston, Lara; Ordovas, Jose M; Palmer, Julie R; Haiman, Christopher A; McKnight, Barbara; Howard, Barbara V; Becker, Diane M; Bielak, Lawrence F; Liu, Yongmei; Allison, Matthew A; Grant, Struan F A; Burke, Gregory L; Patel, Sanjay R; Schreiner, Pamela J; Borecki, Ingrid B; Evans, Michele K; Taylor, Herman; Sale, Michele M; Howard, Virginia; Carlson, Christopher S; Rotimi, Charles N; Cushman, Mary; Harris, Tamara B; Reiner, Alexander P; Cupples, L Adrienne; North, Kari E; Fox, Caroline S

    2013-01-01

    Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0 × 10(-6) were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10(-8) for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10(-8) for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5 × 10(-8); RREB1: p = 5.7 × 10(-8)). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept

  7. Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci

    PubMed Central

    Lange, Leslie; Demerath, Ellen W.; Palmas, Walter; Wojczynski, Mary K.; Ellis, Jaclyn C.; Vitolins, Mara Z.; Liu, Simin; Papanicolaou, George J.; Irvin, Marguerite R.; Xue, Luting; Griffin, Paula J.; Nalls, Michael A.; Adeyemo, Adebowale; Liu, Jiankang; Li, Guo; Ruiz-Narvaez, Edward A.; Chen, Wei-Min; Chen, Fang; Henderson, Brian E.; Millikan, Robert C.; Ambrosone, Christine B.; Strom, Sara S.; Guo, Xiuqing; Andrews, Jeanette S.; Sun, Yan V.; Mosley, Thomas H.; Yanek, Lisa R.; Shriner, Daniel; Haritunians, Talin; Rotter, Jerome I.; Speliotes, Elizabeth K.; Smith, Megan; Rosenberg, Lynn; Mychaleckyj, Josyf; Nayak, Uma; Spruill, Ida; Garvey, W. Timothy; Pettaway, Curtis; Nyante, Sarah; Bandera, Elisa V.; Britton, Angela F.; Zonderman, Alan B.; Rasmussen-Torvik, Laura J.; Chen, Yii-Der Ida; Ding, Jingzhong; Lohman, Kurt; Kritchevsky, Stephen B.; Zhao, Wei; Peyser, Patricia A.; Kardia, Sharon L. R.; Kabagambe, Edmond; Broeckel, Ulrich; Chen, Guanjie; Zhou, Jie; Wassertheil-Smoller, Sylvia; Neuhouser, Marian L.; Rampersaud, Evadnie; Psaty, Bruce; Kooperberg, Charles; Manson, JoAnn E.; Kuller, Lewis H.; Ochs-Balcom, Heather M.; Johnson, Karen C.; Sucheston, Lara; Ordovas, Jose M.; Palmer, Julie R.; Haiman, Christopher A.; McKnight, Barbara; Howard, Barbara V.; Becker, Diane M.; Bielak, Lawrence F.; Liu, Yongmei; Allison, Matthew A.; Grant, Struan F. A.; Burke, Gregory L.; Patel, Sanjay R.; Schreiner, Pamela J.; Borecki, Ingrid B.; Evans, Michele K.; Taylor, Herman; Sale, Michele M.; Howard, Virginia; Carlson, Christopher S.; Rotimi, Charles N.; Cushman, Mary; Harris, Tamara B.; Reiner, Alexander P.; Cupples, L. Adrienne; North, Kari E.; Fox, Caroline S.

    2013-01-01

    Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce

  8. Live visualization of genomic loci with BiFC-TALE

    PubMed Central

    Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao

    2017-01-01

    Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP. PMID:28074901

  9. Live visualization of genomic loci with BiFC-TALE.

    PubMed

    Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao

    2017-01-11

    Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP.

  10. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Genetic resistance is a key strategy for soybean disease management. In past decades, soybean germplasm has been phenotyped for resistance to many different pathogens and genes for resistance have been incorporated into elite breeding lines often resulting in commercial cultivars with disease resist...

  11. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid.

    PubMed

    Jeuken, Marieke J W; Zhang, Ningwen W; McHale, Leah K; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W; Visser, Richard G F; Niks, Rients E

    2009-10-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.

  12. Insecticide resistance, control failure likelihood and the First Law of Geography.

    PubMed

    Guedes, Raul Narciso C

    2017-03-01

    Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well-recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right - the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision-making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling - aiming to use spatial analysis in area-wide surveys - to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment.

    PubMed

    Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree; Zuber, Verena; Bettella, Francesco; Hugdahl, Kenneth; Espeseth, Thomas; Steen, Vidar M; Melle, Ingrid; Desikan, Rahul; Schork, Andrew J; Thompson, Wesley K; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A

    2017-05-01

    There is evidence for genetic overlap between cognitive abilities and schizophrenia (SCZ), and genome-wide association studies (GWAS) demonstrate that both SCZ and general cognitive abilities have a strong polygenic component with many single-nucleotide polymorphisms (SNPs) each with a small effect. Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a "proxy phenotype" for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college completion ("College," n = 95 427), and years of education ("EduYears," n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold <0.01, we identified 18 genomic loci associated with SCZ after conditioning on College and 15 loci associated with SCZ after conditioning on EduYears. Ten of these loci overlapped. Using conjunctional FDR, we identified 10 loci shared between SCZ and College, and 29 loci shared between SCZ and EduYears. The majority of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation. Importantly, our methods enable identification of bi-directional effects, which highlight the complex relationship between SCZ and educational attainment, and support polygenic mechanisms underlying both cognitive dysfunction and creativity in SCZ. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. [Genetic diversity of common wheat varieties at the gliadin-coding loci].

    PubMed

    Novoselskaya-Dragovich, A Yu; Bespalova, L A; Shishkina, A A; Melnik, V A; Upelniek, V P; Fisenko, A V; Dedova, L V; Kudryavtsev, A M

    2015-03-01

    One hundred and fifty Russian and foreign winter common wheat varieties were examined by the PAGE method. A total of 70 alleles were identified at seven gliadin-coding loci. It was demonstrated that 42% of varieties were heterogeneous, i.e., were represented by a number of genotypes, while 52% of varieties were homogeneous. A unique combination of gliadin alleles was typical of 91.3% of examined varieties, while 8.7% of varieties had identical alleles of all gliadin-coding loci and were indistinguishable. Frequent and rare alleles were identified, with the former accounting for 18.6% of all alleles. It was demonstrated that allelic diversity at the Gli-2 loci (47 alleles) was almost twice that at the Gli-1 loci (23 loci) and was determined by the number of rare alleles. New alleles for the winter common wheat, including three alleles of the GliA2 locus and two alleles of the Gli-B2 locus, were determined. A tendency toward a reduction of the genetic diversity level in modern varieties, which was due to the use of identical parental varieties in breeding programs, was identified.

  15. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota

    PubMed Central

    Lapidot, Moshe; Karniel, Uri; Gelbart, Dana; Fogel, Doron; Evenor, Dalia; Kutsher, Yaarit; Makhbash, Zion; Nahon, Sahadia; Shlomo, Haviva; Chen, Lea; Reuveni, Moshe; Levin, Ilan

    2015-01-01

    Tomato yellow leaf curl virus (TYLCV) is a devastating disease of tomato (Solanum lycopersicum) that can be effectively controlled by the deployment of resistant cultivars. The TYLCV-resistant line TY172 carries a major recessive locus for TYLCV resistance, designated ty-5, on chromosome 4. In this study, the association between 27 polymorphic DNA markers, spanning the ty-5 locus, and the resistance characteristics of individual plants inoculated with TYLCV in 51 segregating recombinant populations were analyzed. These analyses localized ty-5 into a 425 bp region containing two transversions: one in the first exon of a gene encoding the tomato homolog of the messenger RNA surveillance factor Pelota (Pelo), and a second in its proximal promoter. Analyses of susceptible and resistant lines revealed that the relative transcript level of the gene remained unchanged, regardless of whether the plants were infected with TYLCV or not. This suggests that the polymorphism discovered in the coding region of the gene controls the resistance. Silencing of Pelo in a susceptible line rendered the transgenic plants highly resistant, while in the resistant line TY172 had no effect on symptom development. In addition, over-expression of the susceptible allele of the gene in the resistant TY172 line rendered it susceptible, while over-expression of the resistant allele in susceptible plants had no effect. These results confirm that Pelo is the gene controlling resistance at the ty-5 locus. Pelo, implicated in the ribosome recycling-phase of protein synthesis, offers an alternative route to promote resistance to TYLCV and other viruses. PMID:26448569

  16. Inheritance pattern of microsatellite loci and their use for kinship analysis in the Japanese scallop Patinopecten yessoensis

    NASA Astrophysics Data System (ADS)

    Xu, Kefeng; Li, Qi

    2009-06-01

    The inheritance mode of seven microsatellite markers was investigated in Patinopecten yessoensis larvae from four controlled crosses, and the feasibility of using these markers for kinship estimation was also examined. All the seven microsatellite loci were compatible with Mendelian inheritance. Neither sex-linked barriers to transmission nor major barriers to fertilization between gametes from the parents were evident. Two of the seven loci showed the presence of null alleles in two families, suggesting the need to conduct comprehensive species-specific inheritance studies for microsatellite loci used in population genetic studies. However, even if the null allele heterozygotes were considered as homozygotes in the calculation of genetic distance, offspring from four families were all unambiguously discriminated in the neighbor-joining dendrogram. This result indicates that the microsatellite markers used may be capable of discriminating between related and unrelated scallop larvae in the absence of pedigree information, and of investigating the effective number of parents contributing to the hatchery population of the Japanese scallop.

  17. Meta-analysis of loci associated with age at natural menopause in African-American women

    PubMed Central

    Chen, Christina T.L.; Liu, Ching-Ti; Chen, Gary K.; Andrews, Jeanette S.; Arnold, Alice M.; Dreyfus, Jill; Franceschini, Nora; Garcia, Melissa E.; Kerr, Kathleen F.; Li, Guo; Lohman, Kurt K.; Musani, Solomon K.; Nalls, Michael A.; Raffel, Leslie J.; Smith, Jennifer; Ambrosone, Christine B.; Bandera, Elisa V.; Bernstein, Leslie; Britton, Angela; Brzyski, Robert G.; Cappola, Anne; Carlson, Christopher S.; Couper, David; Deming, Sandra L.; Goodarzi, Mark O.; Heiss, Gerardo; John, Esther M.; Lu, Xiaoning; Le Marchand, Loic; Marciante, Kristin; Mcknight, Barbara; Millikan, Robert; Nock, Nora L.; Olshan, Andrew F.; Press, Michael F.; Vaiyda, Dhananjay; Woods, Nancy F.; Taylor, Herman A.; Zhao, Wei; Zheng, Wei; Evans, Michele K.; Harris, Tamara B.; Henderson, Brian E.; Kardia, Sharon L.R.; Kooperberg, Charles; Liu, Yongmei; Mosley, Thomas H.; Psaty, Bruce; Wellons, Melissa; Windham, Beverly G.; Zonderman, Alan B.; Cupples, L. Adrienne; Demerath, Ellen W.; Haiman, Christopher; Murabito, Joanne M.; Rajkovic, Aleksandar

    2014-01-01

    Age at menopause marks the end of a woman's reproductive life and its timing associates with risks for cancer, cardiovascular and bone disorders. GWAS and candidate gene studies conducted in women of European ancestry have identified 27 loci associated with age at menopause. The relevance of these loci to women of African ancestry has not been previously studied. We therefore sought to uncover additional menopause loci and investigate the relevance of European menopause loci by performing a GWAS meta-analysis in 6510 women with African ancestry derived from 11 studies across the USA. We did not identify any additional loci significantly associated with age at menopause in African Americans. We replicated the associations between six loci and age at menopause (P-value < 0.05): AMHR2, RHBLD2, PRIM1, HK3/UMC1, BRSK1/TMEM150B and MCM8. In addition, associations of 14 loci are directionally consistent with previous reports. We provide evidence that genetic variants influencing reproductive traits identified in European populations are also important in women of African ancestry residing in USA. PMID:24493794

  18. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  19. Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?

    PubMed Central

    Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain

    2010-01-01

    Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451

  20. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error.

    PubMed

    Cheng, Ching-Yu; Schache, Maria; Ikram, M Kamran; Young, Terri L; Guggenheim, Jeremy A; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J M; Barathi, Veluchamy A; Liao, Jiemin; Hysi, Pirro G; Bailey-Wilson, Joan E; St Pourcain, Beate; Kemp, John P; McMahon, George; Timpson, Nicholas J; Evans, David M; Montgomery, Grant W; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F; Amin, Najaf; van Leeuwen, Elisabeth M; Wilson, James F; Pennell, Craig E; van Duijn, Cornelia M; de Jong, Paulus T V M; Vingerling, Johannes R; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Burdon, Kathryn P; Craig, Jamie E; Iyengar, Sudha K; Igo, Robert P; Lass, Jonathan H; Chew, Emily Y; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E; Hosseini, S Mohsen; Paterson, Andrew D; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K H; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W; Williams, Cathy; Oostra, Ben A; Teo, Yik-Ying; Hammond, Christopher J; Stambolian, Dwight; Mackey, David A; Klaver, Caroline C W; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N

    2013-08-08

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.