A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk
Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey
2013-01-01
Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III
Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale
2003-01-01
Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...
Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair
2011-01-01
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H
2015-09-22
Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.
Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi
2017-08-24
Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.
Jelinic, Petar; Pellegrino, Jessica; David, Gregory
2011-01-01
Transcription requires the progression of RNA polymerase II (RNAP II) through a permissive chromatin structure. Recent studies of Saccharomyces cerevisiae have demonstrated that the yeast Sin3 protein contributes to the restoration of the repressed chromatin structure at actively transcribed loci. Yet, the mechanisms underlying the restoration of the repressive chromatin structure at transcribed loci and its significance in gene expression have not been investigated in mammals. We report here the identification of a mammalian complex containing the corepressor Sin3B, the histone deacetylase HDAC1, Mrg15, and the PHD finger-containing Pf1 and show that this complex plays important roles in regulation of transcription. We demonstrate that this complex localizes at discrete loci approximately 1 kb downstream of the transcription start site of transcribed genes, and this localization requires both Pf1's and Mrg15's interaction with chromatin. Inactivation of this mammalian complex promotes increased RNAP II progression within transcribed regions and subsequent increased transcription. Our results define a novel mammalian complex that contributes to the regulation of transcription and point to divergent uses of the Sin3 protein homologues throughout evolution in the modulation of transcription. PMID:21041482
Genome-wide analysis identifies 12 loci influencing human reproductive behavior.
Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C
2016-12-01
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.
Genome-wide analysis identifies 12 loci influencing human reproductive behavior
Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.
2017-01-01
The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627
Yu, Long-Xi
2017-01-01
Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses. PMID:28706532
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.
Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genesmore » differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.« less
Monir, Md. Mamun; Zhu, Jun
2017-01-01
Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101
Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi
2015-05-01
Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.
Age-Related Macular Degeneration: Genetics and Biology Coming Together
Fritsche, Lars G.; Fariss, Robert N.; Stambolian, Dwight; Abecasis, Gonçalo R.; Curcio, Christine A.
2014-01-01
Genetic and genomic studies have enhanced our understanding of complex neurodegenerative diseases that exert a devastating impact on individuals and society. One such disease, age-related macular degeneration (AMD), is a major cause of progressive and debilitating visual impairment. Since the pioneering discovery in 2005 of complement factor H (CFH) as a major AMD susceptibility gene, extensive investigations have confirmed 19 additional genetic risk loci, and more are anticipated. In addition to common variants identified by now-conventional genome-wide association studies, targeted genomic sequencing and exome-chip analyses are uncovering rare variant alleles of high impact. Here, we provide a critical review of the ongoing genetic studies and of common and rare risk variants at a total of 20 susceptibility loci, which together explain 40–60% of the disease heritability but provide limited power for diagnostic testing of disease risk. Identification of these susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment. PMID:24773320
Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.
Georges, Michel
2007-01-01
Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.
Dissection of complex adult traits in a mouse synthetic population.
Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T
2012-08-01
Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.
A novel eQTL-based analysis reveals the biology of breast cancer risk loci
Li, Qiyuan; Seo, Ji-Heui; Stranger, Barbara; McKenna, Aaron; Pe'er, Itsik; LaFramboise, Thomas; Brown, Myles; Tyekucheva, Svitlana; Freedman, Matthew L.
2014-01-01
Summary Germline determinants of gene expression in tumors are less studied due to the complexity of transcript regulation caused by somatically acquired alterations. We performed expression quantitative trait locus (eQTL) based analyses using the multi-level information provided in The Cancer Genome Atlas (TCGA). Of the factors we measured, cis-acting eQTL saccounted for 1.2% of the total variation of tumor gene expression, while somatic copy number alteration and CpG methylation accounted for 7.3% and 3.3%, respectively. eQTL analyses of 15 previously reported breast cancer risk loci resulted in discovery of three variants that are significantly associated with transcript levels (FDR<0.1). In a novel trans- based analysis, an additional three risk loci were identified to act through ESR1, MYC, and KLF4. These findings provide a more comprehensive picture of gene expression determinants in breast cancer as well as insights into the underlying biology of breast cancer risk loci. PMID:23374354
Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P
2010-04-01
Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.
Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena
2011-10-01
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.
Borg, Åsa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena
2011-01-01
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance. PMID:22393491
Discovery and fine mapping of serum protein loci through transethnic meta-analysis.
Franceschini, Nora; van Rooij, Frank J A; Prins, Bram P; Feitosa, Mary F; Karakas, Mahir; Eckfeldt, John H; Folsom, Aaron R; Kopp, Jeffrey; Vaez, Ahmad; Andrews, Jeanette S; Baumert, Jens; Boraska, Vesna; Broer, Linda; Hayward, Caroline; Ngwa, Julius S; Okada, Yukinori; Polasek, Ozren; Westra, Harm-Jan; Wang, Ying A; Del Greco M, Fabiola; Glazer, Nicole L; Kapur, Karen; Kema, Ido P; Lopez, Lorna M; Schillert, Arne; Smith, Albert V; Winkler, Cheryl A; Zgaga, Lina; Bandinelli, Stefania; Bergmann, Sven; Boban, Mladen; Bochud, Murielle; Chen, Y D; Davies, Gail; Dehghan, Abbas; Ding, Jingzhong; Doering, Angela; Durda, J Peter; Ferrucci, Luigi; Franco, Oscar H; Franke, Lude; Gunjaca, Grog; Hofman, Albert; Hsu, Fang-Chi; Kolcic, Ivana; Kraja, Aldi; Kubo, Michiaki; Lackner, Karl J; Launer, Lenore; Loehr, Laura R; Li, Guo; Meisinger, Christa; Nakamura, Yusuke; Schwienbacher, Christine; Starr, John M; Takahashi, Atsushi; Torlak, Vesela; Uitterlinden, André G; Vitart, Veronique; Waldenberger, Melanie; Wild, Philipp S; Kirin, Mirna; Zeller, Tanja; Zemunik, Tatijana; Zhang, Qunyuan; Ziegler, Andreas; Blankenberg, Stefan; Boerwinkle, Eric; Borecki, Ingrid B; Campbell, Harry; Deary, Ian J; Frayling, Timothy M; Gieger, Christian; Harris, Tamara B; Hicks, Andrew A; Koenig, Wolfgang; O' Donnell, Christopher J; Fox, Caroline S; Pramstaller, Peter P; Psaty, Bruce M; Reiner, Alex P; Rotter, Jerome I; Rudan, Igor; Snieder, Harold; Tanaka, Toshihiro; van Duijn, Cornelia M; Vollenweider, Peter; Waeber, Gerard; Wilson, James F; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wright, Alan F; Wu, Qingyu; Liu, Yongmei; Jenny, Nancy S; North, Kari E; Felix, Janine F; Alizadeh, Behrooz Z; Cupples, L Adrienne; Perry, John R B; Morris, Andrew P
2012-10-05
Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Genome wide association mapping for grain shape traits in indica rice.
Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua
2016-10-01
Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
Cousminer, Diana L; Berry, Diane J; Timpson, Nicholas J; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M; Taal, H Rob; Huikari, Ville; Bradfield, Jonathan P; Kerkhof, Marjan; Groen-Blokhuis, Maria M; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T; Perry, John R B; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M; Kemp, John P; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S; Kähönen, Mika; Warrington, Nicole M; Lye, Stephen J; Palmer, Lyle J; Tiesler, Carla M T; Flexeder, Claudia; Montgomery, Grant W; Medland, Sarah E; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M; Kaprio, Jaakko; Sørensen, Thorkild I A; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I; Koppelman, Gerard H; Grant, Struan F A; Jaddoe, Vincent W V; Martin, Nicholas G; Heinrich, Joachim; Pennell, Craig E; Raitakari, Olli T; Eriksson, Johan G; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I; Ripatti, Samuli; Widén, Elisabeth
2013-07-01
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
Cousminer, Diana L.; Berry, Diane J.; Timpson, Nicholas J.; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M.; Taal, H. Rob; Huikari, Ville; Bradfield, Jonathan P.; Kerkhof, Marjan; Groen-Blokhuis, Maria M.; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T.; Perry, John R.B.; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M.; Kemp, John P.; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S.; Kähönen, Mika; Warrington, Nicole M.; Lye, Stephen J.; Palmer, Lyle J.; Tiesler, Carla M.T.; Flexeder, Claudia; Montgomery, Grant W.; Medland, Sarah E.; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M.; Kaprio, Jaakko; Sørensen, Thorkild I.A.; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I.; Koppelman, Gerard H.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Martin, Nicholas G.; Heinrich, Joachim; Pennell, Craig E.; Raitakari, Olli T.; Eriksson, Johan G.; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I.; Ripatti, Samuli; Widén, Elisabeth
2013-01-01
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits. PMID:23449627
Annette M. Kretzer; Daniel L. Luoma; Randy Molina; Joseph W. Spatafora
2003-01-01
We are re-addressing species concepts in the Rhizopogon vinicolor species complex (Boletales, Basidiomycota) using sequence data from the interna transcribed spacer (ITS) region of the nuclear ribosomal repeat, as well as genoLypic data from five microsatellite loci. The R. vinicolor species complex by our definition includes,...
USDA-ARS?s Scientific Manuscript database
Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...
2012-01-01
Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite-mediated and sexual selection shape and maintain host genetic variation in nature. We believe that study systems like ours can make important contributions to the field of evolutionary biology and emphasize the necessity of integrating long-term field-based studies with detailed genetic analysis to unravel complex evolutionary processes. PMID:22587557
Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma
Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens
2013-01-01
Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945
Jiang, Yi; Liu, Hai-can; Zheng, Huajun; Dou, Xiangfeng; Tang, Biao; Zhao, Xiu-qin; Zhu, Yongqiang; Lu, Bing; Wang, Shengyue; Dong, Hai-yan; Zhang, Yuan-yuan; Zhao, Guoping; Wan, Kanglin
2013-07-01
Recently, tandem repeat typing has emerged as a rapid and easy method for the molecular epidemiology of the Mycobacterium tuberculosis (M. tuberculosis) complex. In this study, a collection of 19 VNTRs incorporating 15 previously described loci and 4 newly evaluated markers were used to genotype 206 Chinese M. tuberculosis isolates and 9 BCG strains. The discriminatory power was evaluated and compared with that obtained by Spoligotyping. It turned out that 15-locus VNTR could be very useful in M. tuberculosis complex strains genotyping in China. The 4 newly evaluated loci were proved informative and could be useful for future epidemiology studies, especially in Beijing family strains. In addition, a unique pattern of the latter 4 loci were found in Chinese BCG strains. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rheumatoid arthritis: identifying and characterising polymorphisms using rat models
2016-01-01
ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747
Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment
Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree; Zuber, Verena; Bettella, Francesco; Hugdahl, Kenneth; Espeseth, Thomas; Steen, Vidar M.; Melle, Ingrid; Desikan, Rahul; Schork, Andrew J.; Thompson, Wesley K.; Dale, Anders M.; Djurovic, Srdjan
2017-01-01
Abstract There is evidence for genetic overlap between cognitive abilities and schizophrenia (SCZ), and genome-wide association studies (GWAS) demonstrate that both SCZ and general cognitive abilities have a strong polygenic component with many single-nucleotide polymorphisms (SNPs) each with a small effect. Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a “proxy phenotype” for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college completion (“College,” n = 95 427), and years of education (“EduYears,” n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold <0.01, we identified 18 genomic loci associated with SCZ after conditioning on College and 15 loci associated with SCZ after conditioning on EduYears. Ten of these loci overlapped. Using conjunctional FDR, we identified 10 loci shared between SCZ and College, and 29 loci shared between SCZ and EduYears. The majority of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation. Importantly, our methods enable identification of bi-directional effects, which highlight the complex relationship between SCZ and educational attainment, and support polygenic mechanisms underlying both cognitive dysfunction and creativity in SCZ. PMID:27338279
Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment.
Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree; Zuber, Verena; Bettella, Francesco; Hugdahl, Kenneth; Espeseth, Thomas; Steen, Vidar M; Melle, Ingrid; Desikan, Rahul; Schork, Andrew J; Thompson, Wesley K; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A
2017-05-01
There is evidence for genetic overlap between cognitive abilities and schizophrenia (SCZ), and genome-wide association studies (GWAS) demonstrate that both SCZ and general cognitive abilities have a strong polygenic component with many single-nucleotide polymorphisms (SNPs) each with a small effect. Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a "proxy phenotype" for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college completion ("College," n = 95 427), and years of education ("EduYears," n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold <0.01, we identified 18 genomic loci associated with SCZ after conditioning on College and 15 loci associated with SCZ after conditioning on EduYears. Ten of these loci overlapped. Using conjunctional FDR, we identified 10 loci shared between SCZ and College, and 29 loci shared between SCZ and EduYears. The majority of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation. Importantly, our methods enable identification of bi-directional effects, which highlight the complex relationship between SCZ and educational attainment, and support polygenic mechanisms underlying both cognitive dysfunction and creativity in SCZ. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Wright, Jeffrey; Thakur, Siddharth
2006-01-01
Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.
A Memento of Complexity: The Rhetorics of Memory, Ambience, and Emergence
ERIC Educational Resources Information Center
Southergill, Glen T.
2014-01-01
Drawing from complexity theory, this dissertation develops a schema of rhetorical memory that exhibits extended characteristics. Scholars traditionally conceptualize memory, the fourth canon in classical rhetoric, as place (loci) or image (phantasm). However, memory rhetoric resists the traditional loci-phantasm framework and instead emerges from…
Identifying Causal Variants at Loci with Multiple Signals of Association
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-01-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515
Identifying causal variants at loci with multiple signals of association.
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-10-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.
Owen, Christopher L; Marshall, David C; Hill, Kathy B R; Simon, Chris
2015-02-01
The Pauropsalta generic complex is a large group of cicadas (72 described spp.; >82 undescribed spp.) endemic to Australia. No previous molecular work on deep level relationships within this complex has been conducted, but a recent morphological revision and phylogenetic analysis proposed relationships among the 11 genera. We present here the first comprehensive molecular phylogeny of the complex using five loci (1 mtDNA, 4 nDNA), two of which are from nuclear genes new to cicada systematics. We compare the molecular phylogeny to the morphological phylogeny. We evaluate the phylogenetic informativeness of the new loci to traditional cicada systematics loci to generate a baseline of performance and behavior to aid in gene choice decisions in future systematic and phylogenomic studies. Our maximum likelihood and Bayesian inference phylogenies strongly support the monophyly of most of the newly described genera; however, relationships among genera differ from the morphological phylogeny. A comparison of phylogenetic informativeness among all loci revealed that COI 3rd positions dominate the informativeness profiles relative to all other loci but exhibit some among taxon nucleotide bias. After removing COI 3rd positions, COI 1st positions dominate near the terminals, while the period intron has the most phylogenetic informativeness near the root. Among the nuclear loci, ARD1 and QtRNA have lower phylogenetic informativeness than period intron and elongation factor 1 alpha intron, but the informativeness increases at you move from the tips to the root. The increase in phylogenetic informativeness deeper in the tree suggests these loci may be useful for resolving older relationships. Copyright © 2015. Published by Elsevier Inc.
Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice
Pavlicev, Mihaela; Wagner, Günter P.; Noonan, James P.; Hallgrímsson, Benedikt; Cheverud, James M.
2013-01-01
Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation. PMID:24065733
Contrasting modes and tempos of venom expression evolution in two snake species.
Margres, Mark J; McGivern, James J; Seavy, Margaret; Wray, Kenneth P; Facente, Jack; Rokyta, Darin R
2015-01-01
Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be correlated with specific toxic proteins, establishing a direct link from genotype to phenotype. To determine the extent of expression variation and identify the processes driving patterns of phenotypic diversity, we constructed genotype-phenotype maps and compared range-wide toxin-protein expression variation for two species of snake with nearly identical ranges: the eastern diamondback rattlesnake (Crotalus adamanteus) and the eastern coral snake (Micrurus fulvius). We detected significant expression variation in C. adamanteus, identified the specific loci associated with population differentiation, and found that loci expressed at all levels contributed to this divergence. Contrary to expectations, we found no expression variation in M. fulvius, suggesting that M. fulvius populations are not locally adapted. Our results not only linked expression variation at specific loci to divergence in a polygenic, complex trait but also have extensive conservation and biomedical implications. C. adamanteus is currently a candidate for federal listing under the Endangered Species Act, and the loss of any major population would result in the irrevocable loss of a unique venom phenotype. The lack of variation in M. fulvius has significant biomedical application because our data will assist in the development of effective antivenom for this species. Copyright © 2015 by the Genetics Society of America.
Candidate loci involved in domestication and improvement detected by a published 90K wheat SNP array
Gao, Lifeng; Zhao, Guangyao; Huang, Dawei; Jia, Jizeng
2017-01-01
Selection is one of the most important forces in crop evolution. Common wheat is a major world food crop and a typical allopolyploid with a huge and complex genome. We applied four approaches to detect loci selected in wheat during domestication and improvement. A total of 7,984 candidate loci were detected, accounting for 23.3% of all 34,317 SNPs analysed, a much higher proportion than estimated in previous reports. We constructed a first generation wheat selection map which revealed the following new insights on genome-wide selection: (1) diversifying selection acted by increasing, decreasing or not affecting gene frequencies; (2) the number of loci under selection during domestication was much higher than that during improvement; (3) the contribution to wheat improvement by the D sub-genome was relatively small due to the bottleneck of hexaploidisation and diversity can be expanded by using synthetic wheat and introgression lines; and (4) clustered selection regions occur throughout the wheat genome, including the centromere regions. This study will not only help future wheat breeding and evolutionary studies, but will also accelerate study of other crops, especially polyploids. PMID:28327671
Comparative analysis of genetic architectures for nine developmental traits of rye.
Masojć, Piotr; Milczarski, P; Kruszona, P
2017-08-01
Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Chujo, Moeko; Tarumoto, Yusuke; Miyatake, Koichi; Nishida, Eisuke; Ishikawa, Fuyuki
2012-01-01
Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9+ as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9Δ cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation. PMID:22589550
Energy required to pinch a DNA plectoneme
NASA Astrophysics Data System (ADS)
Barde, Céline; Destainville, Nicolas; Manghi, Manoel
2018-03-01
DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the kBT range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.
Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann
2014-01-01
• Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625
Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.
Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P
2017-03-17
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.
Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping
2016-03-01
It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.
2012-01-01
Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596
The human lexinome: Genes of language and reading
Gibson, Christopher J.; Gruen, Jeffrey R.
2008-01-01
Within the human genome, genetic mapping studies have identified ten regions of different chromosomes, known as DYX loci, in genetic linkage with dyslexia, and two, known as SLI loci, in genetic linkage with Specific Language Impairment. Further genetic studies have identified four dyslexia genes within the DYX loci: DYX1C1 on 15q, KIAA0319 and DCDC2 on 6p22, and ROBO1on 13q. FOXP2 on 7q has been implicated in the development of Speech-Language Disorder. No genes for Specific Language impairment have yet been identified within the two SLI loci. Functional studies have shown that all four dyslexia genes play roles in brain development, and ongoing molecular studies are attempting to elucidate how these genes exert their effects at a subcellular level. Taken together, these genes and loci likely represent only a fraction of the human lexinome, a term we introduce here to refer to the collection of all the genetic and protein elements involved in the development of human language, expression, and reading. Learning outcomes The reader will become familiar with (i) methods for identifying genes for complex diseases, (ii) the application of these methods in the elucidation of genes underlying disorders of language and reading, and (iii) the cellular pathways through which polymorphisms in these genes may contribute to the development of the disorders. PMID:18466916
Deng, Huai; Kerppola, Tom K.
2014-01-01
Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457
Sexual selection and genetic colour polymorphisms in animals.
Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt
2014-11-01
Genetic colour polymorphisms are widespread across animals and often subjected to complex selection regimes. Traditionally, colour morphs were used as simple visual markers to measure allele frequency changes in nature, selection, population divergence and speciation. With advances in sequencing technology and analysis methods, several model systems are emerging where the molecular targets of selection are being described. Here, we discuss recent studies on the genetics of sexually selected colour polymorphisms, aiming at (i) reviewing the evidence of sexual selection on colour polymorphisms, (ii) highlighting the genetic architecture, molecular and developmental basis underlying phenotypic colour diversification and (iii) discuss how the maintenance of such polymorphisms might be facilitated or constrained by these. Studies of the genetic architecture of colour polymorphism point towards the importance of tight clustering of colour loci with other trait loci, such as in the case of inversions and supergene structures. Other interesting findings include linkage between colour loci and mate preferences or sex determination, and the role of introgression and regulatory variation in fuelling polymorphisms. We highlight that more studies are needed that explicitly integrate fitness consequences of sexual selection on colour with the underlying molecular targets of colour to gain insights into the evolutionary consequences of sexual selection on polymorphism maintenance. © 2014 John Wiley & Sons Ltd.
Ahn, Richard; Ding, Yuan Chun; Murray, Joseph; Fasano, Alessio; Green, Peter H. R.; Neuhausen, Susan L.; Garner, Chad
2012-01-01
Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region. PMID:22615847
An evolutionary reduction principle for mutation rates at multiple Loci.
Altenberg, Lee
2011-06-01
A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.
Hsieh, Chia-Hung; Ko, Chiun-Cheng; Chung, Cheng-Han; Wang, Hurng-Yi
2014-07-01
The sweet potato whitefly, Bemisia tabaci, is a highly differentiated species complex. Despite consisting of several morphologically indistinguishable entities and frequent invasions on all continents with important associated economic losses, the phylogenetic relationships, species status, and evolutionary history of this species complex is still debated. We sequenced and analyzed one mitochondrial and three single-copy nuclear genes from 9 of the 12 genetic groups of B. tabaci and 5 closely related species. Bayesian species delimitation was applied to investigate the speciation events of B. tabaci. The species statuses of the different genetic groups were strongly supported under different prior settings and phylogenetic scenarios. Divergence histories were estimated by a multispecies coalescence approach implemented in (*)BEAST. Based on mitochondrial locus, B. tabaci was originated 6.47 million years ago (MYA). Nevertheless, the time was 1.25MYA based on nuclear loci. According to the method of approximate Bayesian computation, this difference is probably due to different degrees of migration among loci; i.e., although the mitochondrial locus had differentiated, gene flow at nuclear loci was still possible, a scenario similar to parapatric mode of speciation. This is the first study in whiteflies using multilocus data and incorporating Bayesian coalescence approaches, both of which provide a more biologically realistic framework for delimiting species status and delineating the divergence history of B. tabaci. Our study illustrates that gene flow during species divergence should not be overlooked and has a great impact on divergence time estimation. Copyright © 2014 Elsevier Inc. All rights reserved.
Markov Logic Networks in the Analysis of Genetic Data
Sakhanenko, Nikita A.
2010-01-01
Abstract Complex, non-additive genetic interactions are common and can be critical in determining phenotypes. Genome-wide association studies (GWAS) and similar statistical studies of linkage data, however, assume additive models of gene interactions in looking for genotype-phenotype associations. These statistical methods view the compound effects of multiple genes on a phenotype as a sum of influences of each gene and often miss a substantial part of the heritable effect. Such methods do not use any biological knowledge about underlying mechanisms. Modeling approaches from the artificial intelligence (AI) field that incorporate deterministic knowledge into models to perform statistical analysis can be applied to include prior knowledge in genetic analysis. We chose to use the most general such approach, Markov Logic Networks (MLNs), for combining deterministic knowledge with statistical analysis. Using simple, logistic regression-type MLNs we can replicate the results of traditional statistical methods, but we also show that we are able to go beyond finding independent markers linked to a phenotype by using joint inference without an independence assumption. The method is applied to genetic data on yeast sporulation, a complex phenotype with gene interactions. In addition to detecting all of the previously identified loci associated with sporulation, our method identifies four loci with smaller effects. Since their effect on sporulation is small, these four loci were not detected with methods that do not account for dependence between markers due to gene interactions. We show how gene interactions can be detected using more complex models, which can be used as a general framework for incorporating systems biology with genetics. PMID:20958249
Complex disease and phenotype mapping in the domestic dog
Hayward, Jessica J.; Castelhano, Marta G.; Oliveira, Kyle C.; Corey, Elizabeth; Balkman, Cheryl; Baxter, Tara L.; Casal, Margret L.; Center, Sharon A.; Fang, Meiying; Garrison, Susan J.; Kalla, Sara E.; Korniliev, Pavel; Kotlikoff, Michael I.; Moise, N. S.; Shannon, Laura M.; Simpson, Kenneth W.; Sutter, Nathan B.; Todhunter, Rory J.; Boyko, Adam R.
2016-01-01
The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies. PMID:26795439
Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu
2016-12-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Yadav, Anupama; Dhole, Kaustubh
2016-01-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.
Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture
Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.
2016-08-15
Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less
Basile, Kevin J; Johnson, Matthew E; Xia, Qianghua; Grant, Struan F A
2014-01-01
Elucidating the underlying genetic variations influencing various complex diseases is one of the major challenges currently facing clinical genetic research. Although these variations are often difficult to uncover, approaches such as genome-wide association studies (GWASs) have been successful at finding statistically significant associations between specific genomic loci and disease susceptibility. GWAS has been especially successful in elucidating genetic variants that influence type 2 diabetes (T2D) and obesity/body mass index (BMI). Specifically, several GWASs have confirmed that a variant in transcription factor 7-like 2 (TCF7L2) confers risk for T2D, while a variant in fat mass and obesity-associated protein (FTO) confers risk for obesity/BMI; indeed both of these signals are considered the most statistically associated loci discovered for these respective traits to date. The discovery of these two key loci in this context has been invaluable for providing novel insight into mechanisms of heritability and disease pathogenesis. As follow-up studies of TCF7L2 and FTO have typically lead the way in how to follow up a GWAS discovery, we outline what has been learned from such investigations and how they have implications for the myriad of other loci that have been subsequently reported in this disease context.
Inference on the Strength of Balancing Selection for Epistatically Interacting Loci
Buzbas, Erkan Ozge; Joyce, Paul; Rosenberg, Noah A.
2011-01-01
Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes rely on the assumption that there are no epistatic interactions between loci. Complex systems in which balancing selection is prevalent, such as sets of human immune system genes, are known to contain components that interact epistatically. Therefore, current methods may not produce reliable inference on the strength of selection at these loci. In this paper, we address this problem by presenting statistical methods that can account for epistatic interactions in making inference about balancing selection. A theoretical result due to Fearnhead (2006) is used to build a multi-locus Wright-Fisher model of balancing selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions are examined. The joint posterior distribution of the selection and mutation parameters is sampled by Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As a component of the inference process, an algorithm to generate multi-locus allele frequencies under balancing selection models with epistasis is also presented. Recent evidence on interactions among a set of human immune system genes is introduced as a motivating biological system for the epistatic model, and data on these genes are used to demonstrate the methods. PMID:21277883
Epistatic Effects Contribute to Variation in BMD in Fischer 344 × Lewis F2 Rats
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-01-01
To further delineate the factors underlying the complex genetic architecture of BMD in the rat model, a genome screen for epistatic interactions was conducted. Several significant interactions were identified, involving both previously identified and novel QTLs. Introduction The variation in several of the risk factors for osteoporotic fracture, including BMD, has been shown to be caused largely by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We have previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 595 female F2 progeny of Fischer 344 and Lewis rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Materials and Methods Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted BMD (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine a genome-wide significance threshold for the epistasis or interaction LOD score corresponding to an α level of 0.01. Results and Conclusions Novel loci on chromosomes 12 and 15 showed a strong epistatic effect on total BMD at the femoral midshaft by pQCT (LOD = 5.4). A previously reported QTL on chromosome 7 was found to interact with a novel locus on chromosome 20 to affect whole lumbar BMD by pQCT (LOD = 6.2). These results provide new information regarding the mode of action of previously identified rat QTLs, as well as identifying novel loci that act in combination with known QTLs or with other novel loci to contribute to the risk factors for osteoporotic fracture. PMID:17907919
Epistatic effects contribute to variation in BMD in Fischer 344 x Lewis F2 rats.
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-01-01
To further delineate the factors underlying the complex genetic architecture of BMD in the rat model, a genome screen for epistatic interactions was conducted. Several significant interactions were identified, involving both previously identified and novel QTLs. The variation in several of the risk factors for osteoporotic fracture, including BMD, has been shown to be caused largely by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We have previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 595 female F(2) progeny of Fischer 344 and Lewis rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted BMD (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine a genome-wide significance threshold for the epistasis or interaction LOD score corresponding to an alpha level of 0.01. Novel loci on chromosomes 12 and 15 showed a strong epistatic effect on total BMD at the femoral midshaft by pQCT (LOD = 5.4). A previously reported QTL on chromosome 7 was found to interact with a novel locus on chromosome 20 to affect whole lumbar BMD by pQCT (LOD = 6.2). These results provide new information regarding the mode of action of previously identified rat QTLs, as well as identifying novel loci that act in combination with known QTLs or with other novel loci to contribute to the risk factors for osteoporotic fracture.
Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis
Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy
2010-01-01
Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979
The African Genome Variation Project shapes medical genetics in Africa
NASA Astrophysics Data System (ADS)
Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.
2015-01-01
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
The African Genome Variation Project shapes medical genetics in Africa.
Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S
2015-01-15
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Systems genetics approaches to understand complex traits
Civelek, Mete; Lusis, Aldons J.
2014-01-01
Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534
Zhang, Kunpu; Wang, Junjun; Zhang, Liyi; Rong, Chaowu; Zhao, Fengwu; Peng, Tao; Li, Huimin; Cheng, Dongmei; Liu, Xin; Qin, Huanju; Zhang, Aimin; Tong, Yiping; Wang, Daowen
2013-01-01
Grain weight, an essential yield component, is under strong genetic control and markedly influenced by the environment. Here, by genome-wide association analysis with a panel of 94 elite common wheat varieties, 37 loci were found significantly associated with thousand-grain weight (TGW) in one or more environments differing in water and fertiliser levels. Five loci were stably associated with TGW under all 12 environments examined. Their elite alleles had positive effects on TGW. Four, two, three, and two loci were consistently associated with TGW in the irrigated and fertilised (IF), rainfed (RF), reduced nitrogen (RN), and reduced phosphorus (RP) environments. The elite alleles of the IF-specific loci enhanced TGW under well-resourced conditions, whereas those of the RF-, RN-, or RP-specific loci conferred tolerance to the TGW decrease when irrigation, nitrogen, or phosphorus were reduced. Moreover, the elite alleles of the environment-independent and -specific loci often acted additively to enhance TGW. Four additional loci were found associated with TGW in specific locations, one of which was shown to contribute to the TGW difference between two experimental sites. Further analysis of 14 associated loci revealed that nine affected both grain length and width, whereas the remaining loci influenced either grain length or width, indicating that these loci control grain weight by regulating kernel size. Finally, the elite allele of Xpsp3152 frequently co-segregated with the larger grain haplotype of TaGW2-6A, suggesting probable genetic and functional linkages between Xpsp3152 and GW2 that are important for grain weight control in cereal plants. Our study provides new knowledge on TGW control in elite common wheat lines, which may aid the improvement of wheat grain weight trait in further research. PMID:23469248
2011-01-01
Background Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN
Roberts, Trina E.; Sargis, Eric J.; Olson, Link E.
2009-01-01
Multiple unlinked genetic loci often provide a more comprehensive picture of evolutionary history than any single gene can, but analyzing multigene data presents particular challenges. Differing rates and patterns of nucleotide substitution, combined with the limited information available in any data set, can make it difficult to specify a model of evolution. In addition, conflict among loci can be the result of real differences in evolutionary process or of stochastic variance and errors in reconstruction. We used 6 presumably unlinked nuclear loci to investigate relationships within the mammalian family Tupaiidae (Scandentia), containing all but one of the extant tupaiid genera. We used a phylogenetic mixture model to analyze the concatenated data and compared this with results using partitioned models. We found that more complex models were not necessarily preferred under tests using Bayes factors and that model complexity affected both tree length and parameter variance. We also compared the results of single-gene and multigene analyses and used splits networks to analyze the source and degree of conflict among genes. Networks can show specific relationships that are inconsistent with each other; these conflicting and minority relationships, which are implicitly ignored or collapsed by traditional consensus methods, can be useful in identifying the underlying causes of topological uncertainty. In our data, conflict is concentrated around particular relationships, not widespread throughout the tree. This pattern is further clarified by considering conflict surrounding the root separately from conflict within the ingroup. Uncertainty in rooting may be because of the apparent evolutionary distance separating these genera and our outgroup, the tupaiid genus Dendrogale. Unlike a previous mitochondrial study, these nuclear data strongly suggest that the genus Tupaia is not monophyletic with respect to the monotypic Urogale, even when uncertainty about rooting is taken into account. These data concur with mitochondrial DNA on other relationships, including the close affinity of Tupaia tana with the enigmatic Tupaia splendidula and of Tupaia belangeri with Tupaia glis. We also discuss the taxonomic and biogeographic implications of these results. PMID:20525582
Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick Ma; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent Wv; Pasmans, Suzanne Gma; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe Mr; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla Mt; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, Wh Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan
2015-12-01
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.
Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A
2018-03-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.
Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.
2018-01-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619
Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.
Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian
2018-03-02
The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.
Chang, Audrey S; Bennett, Sarah M; Noor, Mohamed A F
2010-10-27
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.
Chang, Audrey S.; Bennett, Sarah M.; Noor, Mohamed A. F.
2010-01-01
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed “mule-like”, to roughly 250 kilobases. PMID:21060872
Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.
2013-01-01
The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628
Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation
NASA Astrophysics Data System (ADS)
Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin
2018-05-01
The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.
McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M
2013-09-01
The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.
Conservation of the introgressed European water frog complex using molecular tools.
Holsbeek, G; Maes, G E; De Meester, L; Volckaert, F A M
2009-03-01
In Belgium, the Pelophylax esculentus complex has recently been subjected to multiple introductions of non-native water frogs, increasing the occurrence of hybridisation events. In the present study, we tested the reliability of morphometric and recently developed microsatellite tools to identify introgression and to determine the origin of exotic Belgian water frogs. By analysing 150 individuals of each taxon of the P. esculentus complex and an additional 60 specimens of the introduced P. cf. bedriagae, we show that neither of the currently available tools appears to have sufficient power to reliably distinguish all Belgian water frog species. We therefore aimed at increasing the discriminatory power of a microsatellite identification tool by developing a new marker panel with additional microsatellite loci. By adding only two new microsatellite loci (RlCA5 and RlCA1b20), all taxa of the P. esculentus complex could be distinguished from each other with high confidence. Three more loci (Res3, Res5 and Res17) provided a powerful discrimination of the exotic species.
Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy
Fujiwara, Tohru; O'Geen, Henriette; Keles, Sunduz; Blahnik, Kimberly; Linnemann, Amelia K.; Kang, Yoon-A; Choi, Kyunghee; Farnham, Peggy J.; Bresnick, Emery H.
2009-01-01
SUMMARY GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis. PMID:19941826
Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan
2015-01-01
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.
Shao, Yafang; Jin, Liang; Zhang, Gan; Lu, Yan; Shen, Yun; Bao, Jinsong
2011-03-01
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H (o)). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker-trait associations are validated in segregating populations.
The impact of low-frequency and rare variants on lipid levels
Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli
2016-01-01
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943
Complex Genetics of Behavior: BXDs in the Automated Home-Cage.
Loos, Maarten; Verhage, Matthijs; Spijker, Sabine; Smit, August B
2017-01-01
This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.
Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith
2011-05-01
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle.
Neupane, Mahesh; Geary, Thomas W; Kiser, Jennifer N; Burns, Gregory W; Hansen, Peter J; Spencer, Thomas E; Neibergs, Holly L
2017-01-01
Infertility and subfertility negatively impact the economics and reproductive performance of cattle. Of note, significant pregnancy loss occurs in cattle during the first month of pregnancy, yet little is known about the genetic loci influencing pregnancy success and loss in cattle. To identify quantitative trait loci (QTL) with large effects associated with early pregnancy loss, Angus crossbred heifers were classified based on day 28 pregnancy outcomes to serial embryo transfer. A genome wide association analysis (GWAA) was conducted comparing 30 high fertility heifers with 100% success in establishing pregnancy to 55 subfertile heifers with 25% or less success. A gene set enrichment analysis SNP (GSEA-SNP) was performed to identify gene sets and leading edge genes influencing pregnancy loss. The GWAA identified 22 QTL (p < 1 x 10-5), and GSEA-SNP identified 9 gene sets (normalized enrichment score > 3.0) with 253 leading edge genes. Network analysis identified TNF (tumor necrosis factor), estrogen, and TP53 (tumor protein 53) as the top of 671 upstream regulators (p < 0.001), whereas the SOX2 (SRY [sex determining region Y]-box 2) and OCT4 (octamer-binding transcription factor 4) complex was the top master regulator out of 773 master regulators associated with fertility (p < 0.001). Identification of QTL and genes in pathways that improve early pregnancy success provides critical information for genomic selection to increase fertility in cattle. The identified genes and regulators also provide insight into the complex biological mechanisms underlying pregnancy establishment in cattle.
Huang, Dandan; Yi, Xianfu; Zhang, Shijie; Zheng, Zhanye; Wang, Panwen; Xuan, Chenghao; Sham, Pak Chung; Wang, Junwen; Li, Mulin Jun
2018-05-16
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena
2011-10-01
The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.
A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea
Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368
Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan
2016-01-01
Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272
Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick MA; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent WV; Pasmans, Suzanne GMA; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe MR; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla MT; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, WH Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan
2015-01-01
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis. PMID:26482879
Allix-Béguec, Caroline; Wahl, Céline; Hanekom, Madeleine; Nikolayevskyy, Vladyslav; Drobniewski, Francis; Maeda, Shinji; Campos-Herrero, Isolina; Mokrousov, Igor; Niemann, Stefan; Kontsevaya, Irina; Rastogi, Nalin; Samper, Sofia; Sng, Li-Hwei; Warren, Robin M.
2014-01-01
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing. PMID:24172154
Allix-Béguec, Caroline; Wahl, Céline; Hanekom, Madeleine; Nikolayevskyy, Vladyslav; Drobniewski, Francis; Maeda, Shinji; Campos-Herrero, Isolina; Mokrousov, Igor; Niemann, Stefan; Kontsevaya, Irina; Rastogi, Nalin; Samper, Sofia; Sng, Li-Hwei; Warren, Robin M; Supply, Philip
2014-01-01
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.
Rozzo, Stephen J.; Vyse, Timothy J.; Drake, Charles G.; Kotzin, Brian L.
1996-01-01
Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease. PMID:8986781
Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès
2003-05-01
Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.
Rutschmann, Sereina; Detering, Harald; Simon, Sabrina; Funk, David H; Gattolliat, Jean-Luc; Hughes, Samantha J; Raposeiro, Pedro M; DeSalle, Rob; Sartori, Michel; Monaghan, Michael T
2017-02-01
The study of processes driving diversification requires a fully sampled and well resolved phylogeny, although a lack of phylogenetic markers remains a limitation for many non-model groups. Multilocus approaches to the study of recent diversification provide a powerful means to study the evolutionary process, but their application remains restricted because multiple unlinked loci with suitable variation for phylogenetic or coalescent analysis are not available for most non-model taxa. Here we identify novel, putative single-copy nuclear DNA (nDNA) phylogenetic markers to study the colonization and diversification of an aquatic insect species complex, Cloeon dipterum L. 1761 (Ephemeroptera: Baetidae), in Macaronesia. Whole-genome sequencing data from one member of the species complex were used to identify 59 nDNA loci (32,213 base pairs), followed by Sanger sequencing of 29 individuals sampled from 13 islands of three Macaronesian archipelagos. Multispecies coalescent analyses established six putative species. Three island species formed a monophyletic clade, with one species occurring on the Azores, Europe and North America. Ancestral state reconstruction indicated at least two colonization events from the mainland (to the Canaries, respectively Azores) and one within the archipelago (between Madeira and the Canaries). Random subsets of the 59 loci showed a positive linear relationship between number of loci and node support. In contrast, node support in the multispecies coalescent tree was negatively correlated with mean number of phylogenetically informative sites per locus, suggesting a complex relationship between tree resolution and marker variability. Our approach highlights the value of combining genomics, coalescent-based phylogeography, species delimitation, and phylogenetic reconstruction to resolve recent diversification events in an archipelago species complex. Copyright © 2016 Elsevier Inc. All rights reserved.
Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication.
Carneiro, Miguel; Rubin, Carl-Johan; Di Palma, Federica; Albert, Frank W; Alföldi, Jessica; Martinez Barrio, Alvaro; Pielberg, Gerli; Rafati, Nima; Sayyab, Shumaila; Turner-Maier, Jason; Younis, Shady; Afonso, Sandra; Aken, Bronwen; Alves, Joel M; Barrell, Daniel; Bolet, Gerard; Boucher, Samuel; Burbano, Hernán A; Campos, Rita; Chang, Jean L; Duranthon, Veronique; Fontanesi, Luca; Garreau, Hervé; Heiman, David; Johnson, Jeremy; Mage, Rose G; Peng, Ze; Queney, Guillaume; Rogel-Gaillard, Claire; Ruffier, Magali; Searle, Steve; Villafuerte, Rafael; Xiong, Anqi; Young, Sarah; Forsberg-Nilsson, Karin; Good, Jeffrey M; Lander, Eric S; Ferrand, Nuno; Lindblad-Toh, Kerstin; Andersson, Leif
2014-08-29
The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci. Copyright © 2014, American Association for the Advancement of Science.
The African Genome Variation Project shapes medical genetics in Africa
Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.
2014-01-01
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054
Statistical genetics and evolution of quantitative traits
NASA Astrophysics Data System (ADS)
Neher, Richard A.; Shraiman, Boris I.
2011-10-01
The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone
2012-01-01
Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. PMID:23145096
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone
2012-01-01
Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.
Evolution of recombination in a constant environment
Feldman, Marcus W.; Christiansen, Freddy B.; Brooks, Lisa D.
1980-01-01
The theory of evolution at a selectively neutral locus that controls the recombination between two major loci that are under selection is studied. If the major loci are at a stable equilibrium in linkage disequilibrium under selection and recombination, then a mutation at the modifier locus will increase in frequency when rare if and only if it decreases the recombination fraction. If the major loci are in disequilibrium at a balance between selection against deleterious alleles and mutation towards them, then two new phenomena are observed. First, a recombination increasing mutation will succeed if the disequilibrium is negative and the modifier is sufficiently tightly linked to the major loci. Second, depending on the strength of selection, even if the disequilibrium is negative, recombination reduction may occur for looser linkage between the major and modifier loci. PMID:16592864
Wang, Xinchen; Tucker, Nathan R; Rizki, Gizem; Mills, Robert; Krijger, Peter HL; de Wit, Elzo; Subramanian, Vidya; Bartell, Eric; Nguyen, Xinh-Xinh; Ye, Jiangchuan; Leyton-Mange, Jordan; Dolmatova, Elena V; van der Harst, Pim; de Laat, Wouter; Ellinor, Patrick T; Newton-Cheh, Christopher; Milan, David J; Kellis, Manolis; Boyer, Laurie A
2016-01-01
Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits. DOI: http://dx.doi.org/10.7554/eLife.10557.001 PMID:27162171
Bertin, Angeline; Gouin, Nicolas; Baumel, Alex; Gianoli, Ernesto; Serratosa, Juan; Osorio, Rodomiro; Manel, Stephanie
2017-01-01
Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships. © 2016 John Wiley & Sons Ltd.
Isolation and characterization of microsatellite loci in the intertidal sponge Halichondria panicea
Knowlton, Anne L.; Pierson, Barbara J.; Talbot, S.L.; Highsmith, Ray C.
2003-01-01
GA- and CA-enriched genomic libraries were constructed for the intertidal sponge Halichondria panicea. Unique repeat motifs identified varied from the expected simple dinucleotide repeats to more complex repeat units. All sequences tended to be highly repetitive but did not necessarily contain the targeted motifs. Seven microsatellite loci were evaluated on sponges from the clone source population. All seven were polymorphic with 5.43 ± 0.92 mean number of alleles. Six of the seven loci that could be resolved had mean heterozygosities of 0.14–0.68. The loci identified here will be useful for population studies.
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle
Geary, Thomas W.; Kiser, Jennifer N.; Burns, Gregory W.; Hansen, Peter J.; Spencer, Thomas E.; Neibergs, Holly L.
2017-01-01
Infertility and subfertility negatively impact the economics and reproductive performance of cattle. Of note, significant pregnancy loss occurs in cattle during the first month of pregnancy, yet little is known about the genetic loci influencing pregnancy success and loss in cattle. To identify quantitative trait loci (QTL) with large effects associated with early pregnancy loss, Angus crossbred heifers were classified based on day 28 pregnancy outcomes to serial embryo transfer. A genome wide association analysis (GWAA) was conducted comparing 30 high fertility heifers with 100% success in establishing pregnancy to 55 subfertile heifers with 25% or less success. A gene set enrichment analysis SNP (GSEA-SNP) was performed to identify gene sets and leading edge genes influencing pregnancy loss. The GWAA identified 22 QTL (p < 1 x 10−5), and GSEA-SNP identified 9 gene sets (normalized enrichment score > 3.0) with 253 leading edge genes. Network analysis identified TNF (tumor necrosis factor), estrogen, and TP53 (tumor protein 53) as the top of 671 upstream regulators (p < 0.001), whereas the SOX2 (SRY [sex determining region Y]-box 2) and OCT4 (octamer-binding transcription factor 4) complex was the top master regulator out of 773 master regulators associated with fertility (p < 0.001). Identification of QTL and genes in pathways that improve early pregnancy success provides critical information for genomic selection to increase fertility in cattle. The identified genes and regulators also provide insight into the complex biological mechanisms underlying pregnancy establishment in cattle. PMID:29228019
Sonah, Humira; O'Donoughue, Louise; Cober, Elroy; Rajcan, Istvan; Belzile, François
2015-02-01
Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping-by-sequencing (GBS) approach was used to provide dense genome-wide marker coverage (>47,000 SNPs) for a panel of 304 short-season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Portis, Ezio; Scaglione, Davide; Acquadro, Alberto; Mauromicale, Giovanni; Mauro, Rosario; Knapp, Steven J; Lanteri, Sergio
2012-05-23
The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species' haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.
Smith, Andrew J P; Deloukas, Panos; Munroe, Patricia B
2018-04-13
Over the last decade, genome-wide association studies (GWAS) have propelled the discovery of thousands of loci associated with complex diseases. The focus is now turning towards the function of these association signals, determining the causal variant(s) amongst those in strong linkage disequilibrium, and identifying their underlying mechanisms, such as long-range gene regulation. Genome-editing techniques utilising zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly-interspaced short palindromic repeats with Cas9 nuclease (CRISPR-Cas9), are becoming the tools of choice to establish functionality for these variants, due to the ability to assess effects of single variants in vivo. This review will discuss examples of how these technologies have begun to aid functional analysis of GWAS loci for complex traits such as cardiovascular disease, type 2 diabetes, cancer, obesity and autoimmune disease. We focus on analysis of variants occurring within non-coding genomic regions, as these comprise the majority of GWAS variants, providing the greatest challenges to determining functionality, and compare editing strategies that provide different levels of evidence for variant functionality. The review describes molecular insights into some of these potentially causal variants, and how these may relate to the pathology of the trait, and look towards future directions for these technologies in post-GWAS analysis, such as base-editing.
Genetic Basis of Haloperidol Resistance in Saccharomyces cerevisiae Is Complex and Dose Dependent
Wang, Xin; Kruglyak, Leonid
2014-01-01
The genetic basis of most heritable traits is complex. Inhibitory compounds and their effects in model organisms have been used in many studies to gain insights into the genetic architecture underlying quantitative traits. However, the differential effect of compound concentration has not been studied in detail. In this study, we used a large segregant panel from a cross between two genetically divergent yeast strains, BY4724 (a laboratory strain) and RM11_1a (a vineyard strain), to study the genetic basis of variation in response to different doses of a drug. Linkage analysis revealed that the genetic architecture of resistance to the small-molecule therapeutic drug haloperidol is highly dose-dependent. Some of the loci identified had effects only at low doses of haloperidol, while other loci had effects primarily at higher concentrations of the drug. We show that a major QTL affecting resistance across all concentrations of haloperidol is caused by polymorphisms in SWH1, a homologue of human oxysterol binding protein. We identify a complex set of interactions among the alleles of the genes SWH1, MKT1, and IRA2 that are most pronounced at a haloperidol dose of 200 µM and are only observed when the remainder of the genome is of the RM background. Our results provide further insight into the genetic basis of drug resistance. PMID:25521586
Improvements of the Ray-Tracing Based Method Calculating Hypocentral Loci for Earthquake Location
NASA Astrophysics Data System (ADS)
Zhao, A. H.
2014-12-01
Hypocentral loci are very useful to reliable and visual earthquake location. However, they can hardly be analytically expressed when the velocity model is complex. One of methods numerically calculating them is based on a minimum traveltime tree algorithm for tracing rays: a focal locus is represented in terms of ray paths in its residual field from the minimum point (namely initial point) to low residual points (referred as reference points of the focal locus). The method has no restrictions on the complexity of the velocity model but still lacks the ability of correctly dealing with multi-segment loci. Additionally, it is rather laborious to set calculation parameters for obtaining loci with satisfying completeness and fineness. In this study, we improve the ray-tracing based numerical method to overcome its advantages. (1) Reference points of a hypocentral locus are selected from nodes of the model cells that it goes through, by means of a so-called peeling method. (2) The calculation domain of a hypocentral locus is defined as such a low residual area that its connected regions each include one segment of the locus and hence all the focal locus segments are respectively calculated with the minimum traveltime tree algorithm for tracing rays by repeatedly assigning the minimum residual reference point among those that have not been traced as an initial point. (3) Short ray paths without branching are removed to make the calculated locus finer. Numerical tests show that the improved method becomes capable of efficiently calculating complete and fine hypocentral loci of earthquakes in a complex model.
Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci
Simpson, Claire L.; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J. M.; Vitart, Veronique; Schache, Maria; Hosseini, S. Mohsen; Hysi, Pirro G.; Raffel, Leslie J.; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E. K.; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M.; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C.; Vingerling, Johannes R.; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H.-Erich; Wilson, James F.; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M.; Rahi, Jugnoo S.; Hammond, Chris J.; Hayward, Caroline; Wright, Alan F.; Paterson, Andrew D.; Baird, Paul N.; Klaver, Caroline C. W.; Rotter, Jerome I.; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E.; Stambolian, Dwight
2014-01-01
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution. PMID:25233373
Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.
Simpson, Claire L; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J M; Vitart, Veronique; Schache, Maria; Hosseini, S Mohsen; Hysi, Pirro G; Raffel, Leslie J; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E K; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C; Vingerling, Johannes R; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H-Erich; Wilson, James F; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M; Rahi, Jugnoo S; Hammond, Chris J; Hayward, Caroline; Wright, Alan F; Paterson, Andrew D; Baird, Paul N; Klaver, Caroline C W; Rotter, Jerome I; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E; Stambolian, Dwight
2014-01-01
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce
USDA-ARS?s Scientific Manuscript database
Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...
Bürger, R; Gimelfarb, A
1999-01-01
Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920
Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models
Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody
2013-01-01
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232
Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella
2008-01-01
Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They provide a basis for performing marker-assisted selection and testing the role of specific genes in trait variation. PMID:18419811
Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard
2005-12-01
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.
Identification of Genetic Loci Underlying the Phenotypic Constructs of Autism Spectrum Disorders
ERIC Educational Resources Information Center
Liu, Xiao-Qing; Georgiades, Stelios; Duku, Eric; Thompson, Ann; Devlin, Bernie; Cook, Edwin H.; Wijsman, Ellen M.; Paterson, Andrew D.; Szatmari, Peter
2011-01-01
Objective: To investigate the underlying phenotypic constructs in autism spectrum disorders (ASD) and to identify genetic loci that are linked to these empirically derived factors. Method: Exploratory factor analysis was applied to two datasets with 28 selected Autism Diagnostic Interview-Revised (ADI-R) algorithm items. The first dataset was from…
Estimation of selection intensity under overdominance by Bayesian methods.
Buzbas, Erkan Ozge; Joyce, Paul; Abdo, Zaid
2009-01-01
A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection, particularly of overdominance. Although this type of selection is of some interest in population genetics, there exists no likelihood based approaches specifically tailored to make inference on selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity under k-allele models with overdominance. Our model allows for an arbitrary number of loci and alleles within a locus. The neutral and selected variability within each locus are modeled with corresponding k-allele models. To estimate the posterior distribution of the mean selection intensity in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated with data at the Human Leukocyte Antigen loci from world-wide populations.
Nagano, Soichiro; Shirasawa, Kenta; Hirakawa, Hideki; Maeda, Fumi; Ishikawa, Masami; Isobe, Sachiko N
2017-05-12
The strawberry, Fragaria × ananassa, is an allo-octoploid (2n = 8x = 56) and outcrossing species. Although it is the most widely consumed berry crop in the world, its complex genome structure has hindered its genetic and genomic analysis, and thus discrimination of subgenome-specific loci among the homoeologous chromosomes is needed. In the present study, we identified candidate subgenome-specific single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) loci, and constructed a linkage map using an S 1 mapping population of the cultivar 'Reikou' with an IStraw90 Axiom® SNP array and previously published SSR markers. The 'Reikou' linkage map consisted of 11,574 loci (11,002 SNPs and 572 SSR loci) spanning 2816.5 cM of 31 linkage groups. The 11,574 loci were located on 4738 unique positions (bin) on the linkage map. Of the mapped loci, 8999 (8588 SNPs and 411 SSR loci) showed a 1:2:1 segregation ratio of AA:AB:BB allele, which suggested the possibility of deriving loci from candidate subgenome-specific sequences. In addition, 2575 loci (2414 SNPs and 161 SSR loci) showed a 3:1 segregation of AB:BB allele, indicating they were derived from homoeologous genomic sequences. Comparative analysis of the homoeologous linkage groups revealed differences in genome structure among the subgenomes. Our results suggest that candidate subgenome-specific loci are randomly located across the genomes, and that there are small- to large-scale structural variations among the subgenomes. The mapped SNPs and SSR loci on the linkage map are expected to be seed points for the construction of pseudomolecules in the octoploid strawberry.
Two genetic loci control syllable sequences of ultrasonic courtship vocalizations in inbred mice
2011-01-01
Background The ultrasonic vocalizations (USV) of courting male mice are known to possess a phonetic structure with a complex combination of several syllables. The genetic mechanisms underlying the syllable sequence organization were investigated. Results This study compared syllable sequence organization in two inbred strains of mice, 129S4/SvJae (129) and C57BL6J (B6), and demonstrated that they possessed two mutually exclusive phenotypes. The 129S4/SvJae (129) strain frequently exhibited a "chevron-wave" USV pattern, which was characterized by the repetition of chevron-type syllables. The C57BL/6J strain produced a "staccato" USV pattern, which was characterized by the repetition of short-type syllables. An F1 strain obtained by crossing the 129S4/SvJae and C57BL/6J strains produced only the staccato phenotype. The chevron-wave and staccato phenotypes reappeared in the F2 generations, following the Mendelian law of independent assortment. Conclusions These results suggest that two genetic loci control the organization of syllable sequences. These loci were occupied by the staccato and chevron-wave alleles in the B6 and 129 mouse strains, respectively. Recombination of these alleles might lead to the diversity of USV patterns produced by mice. PMID:22018021
Kessner, Darren; Novembre, John
2015-01-01
Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C A; Patsopoulos, Nikolaos A; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E; Edkins, Sarah; Gray, Emma; Booth, David R; Potter, Simon C; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D'alfonso, Sandra; Blackburn, Hannah; Martinelli Boneschi, Filippo; Liddle, Jennifer; Harbo, Hanne F; Perez, Marc L; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J; Barcellos, Lisa F; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P; Brassat, David; Broadley, Simon A; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M; Cavalla, Paola; Celius, Elisabeth G; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B; Cozen, Wendy; Cree, Bruce A C; Cross, Anne H; Cusi, Daniele; Daly, Mark J; Davis, Emma; de Bakker, Paul I W; Debouverie, Marc; D'hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F A; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G; Kilpatrick, Trevor J; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S; Leone, Maurizio A; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R; Link, Jenny; Liu, Jianjun; Lorentzen, Aslaug R; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L; Ramsay, Patricia P; Reunanen, Mauri; Reynolds, Richard; Rioux, John D; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J; Sellebjerg, Finn; Selmaj, Krzysztof W; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M A; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A; Tronczynska, Ewa; Casas, Juan P; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S; Wang, Kai; Mathew, Christopher G; Wason, James; Palmer, Colin N A; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C; Yaouanq, Jacqueline; Viswanathan, Ananth C; Zhang, Haitao; Wood, Nicholas W; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R; Pericak-Vance, Margaret A; Haines, Jonathan L; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J; De Jager, Philip L; Peltonen, Leena; Stewart, Graeme J; Hafler, David A; Hauser, Stephen L; McVean, Gil; Donnelly, Peter; Compston, Alastair
2011-08-10
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.
Regulation of gene transcription by Polycomb proteins
Aranda, Sergi; Mas, Gloria; Di Croce, Luciano
2015-01-01
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation. PMID:26665172
Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex.
Wilbe, Maria; Jokinen, Päivi; Truvé, Katarina; Seppala, Eija H; Karlsson, Elinor K; Biagi, Tara; Hughes, Angela; Bannasch, Danika; Andersson, Göran; Hansson-Hamlin, Helene; Lohi, Hannes; Lindblad-Toh, Kerstin
2010-03-01
The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)-related disease complex that includes both antinuclear antibody (ANA)-positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.
Kaiser, Sara A; Danner, J E; Bergner, Laura; Fleischer, Robert C
2015-11-24
Although the highest diversity of birds occurs in tropical regions, little is known about the genetic mating systems of most tropical species. We describe microsatellite markers isolated in the chestnut-crested yuhina (Staphida everetti), endemic to the island of Borneo, and the grey-throated babbler (Stachyris nigriceps), widely distributed across Southeast Asia. Both species belong to the avian family Timaliidae and are highly social, putatively cooperatively breeding birds in which helpers attend the nests of members of their social group. We obtained DNA from individuals in social groups breeding in Kinabalu Park, Malaysian Borneo. We used a shotgun sequencing approach and 454-technology to identify 36 microsatellite loci in the yuhina and 40 in the babbler. We tested 13 primer pairs in yuhinas and 20 in babblers and characterized eight polymorphic loci in 20 unrelated female yuhinas and 21 unrelated female babblers. Polymorphism at the yuhina loci ranged from 3 to 9 alleles, observed heterozygosities from 0.58 to 1.00, and expected heterozygosities from 0.64 to 0.81. Polymorphism at the babbler loci ranged from 3 to 12 alleles, observed heterozygosities from 0.14 to 0.90 and expected heterozygosities from 0.14 to 0.87. One locus in the yuhina deviated significantly from Hardy-Weinberg equilibrium. We detected nonrandom allele associations between two pairs of microsatellite loci in each species. Microsatellite markers will be used to describe the genetic mating system of these socially complex species and to measure genetic parentage and relatedness within social groups.
A role for the RNA pol II–associated PAF complex in AID-induced immune diversification
Willmann, Katharina L.; Milosevic, Sara; Pauklin, Siim; Schmitz, Kerstin-Maike; Rangam, Gopinath; Simon, Maria T.; Maslen, Sarah; Skehel, Mark; Robert, Isabelle; Heyer, Vincent; Schiavo, Ebe; Reina-San-Martin, Bernardo
2012-01-01
Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions. PMID:23008333
The evolution of multiple isotypic IgM heavy chain genes in the shark.
Lee, Victor; Huang, Jing Li; Lui, Ming Fai; Malecek, Karolina; Ohta, Yuko; Mooers, Arne; Hsu, Ellen
2008-06-01
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
Voros, Szilard; Maurovich-Horvat, Pal; Marvasty, Idean B; Bansal, Aruna T; Barnes, Michael R; Vazquez, Gustavo; Murray, Sarah S; Voros, Viktor; Merkely, Bela; Brown, Bradley O; Warnick, G Russell
2014-01-01
Complex biological networks of atherosclerosis are largely unknown. The main objective of the Genetic Loci and the Burden of Atherosclerotic Lesions study is to assemble comprehensive biological networks of atherosclerosis using advanced cardiovascular imaging for phenotyping, a panomic approach to identify underlying genomic, proteomic, metabolomic, and lipidomic underpinnings, analyzed by systems biology-driven bioinformatics. By design, this is a hypothesis-free unbiased discovery study collecting a large number of biologically related factors to examine biological associations between genomic, proteomic, metabolomic, lipidomic, and phenotypic factors of atherosclerosis. The Genetic Loci and the Burden of Atherosclerotic Lesions study (NCT01738828) is a prospective, multicenter, international observational study of atherosclerotic coronary artery disease. Approximately 7500 patients are enrolled and undergo non-contrast-enhanced coronary calcium scanning by CT for the detection and quantification of coronary artery calcium, as well as coronary artery CT angiography for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. In addition, patients undergo whole genome sequencing, DNA methylation, whole blood-based transcriptome sequencing, unbiased proteomics based on mass spectrometry, as well as metabolomics and lipidomics on a mass spectrometry platform. The study is analyzed in 3 subsequent phases, and each phase consists of a discovery cohort and an independent validation cohort. For the primary analysis, the primary phenotype will be the presence of any atherosclerotic plaque, as detected by cardiac CT. Additional phenotypic analyses will include per patient maximal luminal stenosis defined as 50% and 70% diameter stenosis. Single-omic and multi-omic associations will be examined for each phenotype; putative biomarkers will be assessed for association, calibration, discrimination, and reclassification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.
Ligthart, Symen; Marzi, Carola; Aslibekyan, Stella; Mendelson, Michael M; Conneely, Karen N; Tanaka, Toshiko; Colicino, Elena; Waite, Lindsay L; Joehanes, Roby; Guan, Weihua; Brody, Jennifer A; Elks, Cathy; Marioni, Riccardo; Jhun, Min A; Agha, Golareh; Bressler, Jan; Ward-Caviness, Cavin K; Chen, Brian H; Huan, Tianxiao; Bakulski, Kelly; Salfati, Elias L; Fiorito, Giovanni; Wahl, Simone; Schramm, Katharina; Sha, Jin; Hernandez, Dena G; Just, Allan C; Smith, Jennifer A; Sotoodehnia, Nona; Pilling, Luke C; Pankow, James S; Tsao, Phil S; Liu, Chunyu; Zhao, Wei; Guarrera, Simonetta; Michopoulos, Vasiliki J; Smith, Alicia K; Peters, Marjolein J; Melzer, David; Vokonas, Pantel; Fornage, Myriam; Prokisch, Holger; Bis, Joshua C; Chu, Audrey Y; Herder, Christian; Grallert, Harald; Yao, Chen; Shah, Sonia; McRae, Allan F; Lin, Honghuang; Horvath, Steve; Fallin, Daniele; Hofman, Albert; Wareham, Nicholas J; Wiggins, Kerri L; Feinberg, Andrew P; Starr, John M; Visscher, Peter M; Murabito, Joanne M; Kardia, Sharon L R; Absher, Devin M; Binder, Elisabeth B; Singleton, Andrew B; Bandinelli, Stefania; Peters, Annette; Waldenberger, Melanie; Matullo, Giuseppe; Schwartz, Joel D; Demerath, Ellen W; Uitterlinden, André G; van Meurs, Joyce B J; Franco, Oscar H; Chen, Yii-Der Ida; Levy, Daniel; Turner, Stephen T; Deary, Ian J; Ressler, Kerry J; Dupuis, Josée; Ferrucci, Luigi; Ong, Ken K; Assimes, Themistocles L; Boerwinkle, Eric; Koenig, Wolfgang; Arnett, Donna K; Baccarelli, Andrea A; Benjamin, Emelia J; Dehghan, Abbas
2016-12-12
Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10 -7 ) in the discovery panel of European ancestry and replicated (P < 2.29 × 10 -4 ) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10 -5 ), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10 -3 ), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10 -5 ). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.
USDA-ARS?s Scientific Manuscript database
Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association stud...
Hirata, Satoshi; Kojima, Kaname; Misawa, Kazuharu; Gervais, Olivier; Kawai, Yosuke; Nagasaki, Masao
2018-05-01
Forensic DNA typing is widely used to identify missing persons and plays a central role in forensic profiling. DNA typing usually uses capillary electrophoresis fragment analysis of PCR amplification products to detect the length of short tandem repeat (STR) markers. Here, we analyzed whole genome data from 1,070 Japanese individuals generated using massively parallel short-read sequencing of 162 paired-end bases. We have analyzed 843,473 STR loci with two to six basepair repeat units and cataloged highly polymorphic STR loci in the Japanese population. To evaluate the performance of the cataloged STR loci, we compared 23 STR loci, widely used in forensic DNA typing, with capillary electrophoresis based STR genotyping results in the Japanese population. Seventeen loci had high correlations and high call rates. The other six loci had low call rates or low correlations due to either the limitations of short-read sequencing technology, the bioinformatics tool used, or the complexity of repeat patterns. With these analyses, we have also purified the suitable 218 STR loci with four basepair repeat units and 53 loci with five basepair repeat units both for short read sequencing and PCR based technologies, which would be candidates to the actual forensic DNA typing in Japanese population.
Advances in cereal genomics and applications in crop breeding.
Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K
2006-11-01
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.
Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.
Tang, Binhua; Wang, Xin
2015-01-01
DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.
Underlying mathematics in diversification of human olfactory receptors in different loci.
Hassan, Sk Sarif; Choudhury, Pabitra Pal; Goswami, Arunava
2013-12-01
As per conservative estimate, approximately 51-105 Olfactory Receptors (ORs) loci are present in human genome occurring in clusters. These clusters are apparently unevenly spread as mosaics over 21 pairs of human chromosomes. Olfactory Receptor (OR) gene families which are thought to have expanded for the need to provide recognition capability for a huge number of pure and complex odorants, form the largest known multigene family in the human genome. Recent studies have shown that 388 full length and 414 OR pseudo-genes are present in these OR genomic clusters. In this paper, the authors report a classification method for all human ORs based on their sequential quantitative information like presence of poly strings of nucleotides bases, long range correlation and so on. An L-System generated sequence has been taken as an input into a star-model of specific subfamily members and resultant sequence has been mapped to a specific OR based on the classification scheme using fractal parameters like Hurst exponent and fractal dimensions.
Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa; Schwander, Karen L; Vazquez, Ana; Rao, Dabeeru C
2016-01-01
Blood pressure (BP) has been shown to be substantially heritable, yet identified genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have detected novel BP loci in cross-sectional family data. Longitudinal family data are available and have additional promise to identify BP loci. However, this type of data presents unique analysis challenges. Although several methods for analyzing longitudinal family data are available, which method is the most appropriate and under what conditions has not been fully studied. Using data from three clinic visits from the Framingham Heart Study, we performed association analysis accounting for gene-smoking interactions in BP at 31,203 markers on chromosome 22. We evaluated three different modeling frameworks: generalized estimating equations (GEE), hierarchical linear modeling, and pedigree-based mixed modeling. The three models performed somewhat comparably, with multiple overlaps in the most strongly associated loci from each model. Loci with the greatest significance were more strongly supported in the longitudinal analyses than in any of the component single-visit analyses. The pedigree-based mixed model was more conservative, with less inflation in the variant main effect and greater deflation in the gene-smoking interactions. The GEE, but not the other two models, resulted in substantial inflation in the tail of the distribution when variants with minor allele frequency <1% were included in the analysis. The choice of analysis method should depend on the model and the structure and complexity of the familial and longitudinal data. © 2015 WILEY PERIODICALS, INC.
2012-01-01
Background The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. Results A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. Conclusion The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection. PMID:22621324
The genetics of Takayasu arteritis.
Renauer, Paul; Sawalha, Amr H
Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa; Hara, Kazuo; Yasuda, Kazuki; Grarup, Niels; Zhao, Wei; Wang, Xu; Huerta-Chagoya, Alicia; Hu, Cheng; Moon, Sanghoon; Long, Jirong; Kwak, Soo Heon; Rasheed, Asif; Saxena, Richa; Ma, Ronald C. W.; Okada, Yukinori; Iwata, Minoru; Hosoe, Jun; Shojima, Nobuhiro; Iwasaki, Minaka; Fujita, Hayato; Suzuki, Ken; Danesh, John; Jørgensen, Torben; Jørgensen, Marit E.; Witte, Daniel R.; Brandslund, Ivan; Christensen, Cramer; Hansen, Torben; Mercader, Josep M.; Flannick, Jason; Moreno-Macías, Hortensia; Burtt, Noël P.; Zhang, Rong; Kim, Young Jin; Zheng, Wei; Singh, Jai Rup; Tam, Claudia H. T.; Hirose, Hiroshi; Maegawa, Hiroshi; Ito, Chikako; Kaku, Kohei; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kawamori, Ryuzo; Kubo, Michiaki; Cho, Yoon Shin; Chan, Juliana C. N.; Sanghera, Dharambir; Frossard, Philippe; Park, Kyong Soo; Shu, Xiao-Ou; Kim, Bong-Jo; Florez, Jose C.; Tusié-Luna, Teresa; Jia, Weiping; Tai, E Shyong; Pedersen, Oluf; Saleheen, Danish; Maeda, Shiro; Kadowaki, Takashi
2016-01-01
Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P<5 × 10−8), rs1116357 near CCDC85A, rs147538848 in FAM60A, rs1575972 near DMRTA1, rs9309245 near ASB3, rs67156297 near ATP8B2, rs7107784 near MIR4686 and rs67839313 near INAFM2. Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P<0.007). These results indicate that expansion of single ethnic GWAS is still useful to identify novel susceptibility loci to complex traits not only for ethnicity-specific loci but also for common loci across different ethnicities. PMID:26818947
Quintela, María; Johansson, Magnus P.; Kristjánsson, Bjarni K.; Barreiro, Rodolfo; Laurila, Anssi
2014-01-01
The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher FST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Mývatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Mývatn and highlight the utility of genome scans in detecting adaptive divergence. PMID:25007329
Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin
2016-11-01
Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto
2017-11-01
SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.
Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace
2017-03-01
Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.
Lebon, Sophie; Minai, Limor; Chretien, Dominique; Corcos, Johanna; Serre, Valérie; Kadhom, Noman; Steffann, Julie; Pauchard, Jean-Yves; Munnich, Arnold; Bonnefont, Jean-Paul; Rötig, Agnès
2007-01-01
Complex I deficiency is a frequent cause of mitochondrial disease as it accounts for one third of these disorders. By genotyping several putative disease loci using microsatellite markers we were able to describe a new NDUFS7 mutation in a consanguineous family with Leigh syndrome and isolated complex I deficiency. This mutation lies in the first intron of the NDUFS7 gene (c.17-1167 C>G) and creates a strong donor splice site resulting in the generation of a cryptic exon. This mutation is predicted to result in a shortened mutant protein of 41 instead of 213 amino acids containing only the first five amino acids of the normal protein. Analysis of the assembly state of the respiratory chain complexes under native condition revealed a marked decrease of fully assembled complex I while the quantity of the other complexes was not altered. These results report the first intronic NDUFS7 gene mutation and demonstrate the crucial role of NDUFS7 in the biogenesis of complex I.
Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application.
Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru; Langridge, Peter
2016-01-01
Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat.
Identifying gene networks underlying the neurobiology of ethanol and alcoholism.
Wolen, Aaron R; Miles, Michael F
2012-01-01
For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.
Immunogenetic aspects of a canine breeding colony.
Ladiges, W C; Deeg, H J; Raff, R F; Storb, R
1985-02-01
A colony of dogs was expanded by selective breeding to study the immunogenetic determinants coded for by the major histocompatibility complex (DLA). Polymorphic determinants were identified by alloantisera specific for DLA-A and B loci antigens and by the mixed lymphocyte culture (MLC) which defined alleles at the D locus. Thirteen families totaling 58 offspring were produced and typed for allelic determinants coded for by each of the three gene loci. Allelic segregation in a codominant manner occurred as expected and a recombinant between the A and B loci was detected. A number of animals were homozygous at one or more loci, thus providing genetically standardized animals as a source of typing cells, antigens, and sera to further study the immunogenetic details of DLA and for in vivo studies in transplantation biology.
Mapping Quantitative Trait Loci in Crosses between Outbred Lines Using Least Squares
Haley, C. S.; Knott, S. A.; Elsen, J. M.
1994-01-01
The use of genetic maps based upon molecular markers has allowed the dissection of some of the factors underlying quantitative variation in crosses between inbred lines. For many species crossing inbred lines is not a practical proposition, although crosses between genetically very different outbred lines are possible. Here we develop a least squares method for the analysis of crosses between outbred lines which simultaneously uses information from multiple linked markers. The method is suitable for crosses where the lines may be segregating at marker loci but can be assumed to be fixed for alternative alleles at the major quantitative trait loci (QTLs) affecting the traits under analysis (e.g., crosses between divergent selection lines or breeds with different selection histories). The simultaneous use of multiple markers from a linkage group increases the sensitivity of the test statistic, and thus the power for the detection of QTLs, compared to the use of single markers or markers flanking an interval. The gain is greater for more closely spaced markers and for markers of lower information content. Use of multiple markers can also remove the bias in the estimated position and effect of a QTL which may result when different markers in a linkage group vary in their heterozygosity in the F(1) (and thus in their information content) and are considered only singly or a pair at a time. The method is relatively simple to apply so that more complex models can be fitted than is currently possible by maximum likelihood. Thus fixed effects and effects of background genotype can be fitted simultaneously with the exploration of a single linkage group which will increase the power to detect QTLs by reducing the residual variance. More complex models with several QTLs in the same linkage group and two-locus interactions between QTLs can similarly be examined. Thus least squares provides a powerful tool to extend the range of crosses from which QTLs can be dissected whilst at the same time allowing flexible and realistic models to be explored. PMID:8005424
Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes
Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.
2008-01-01
Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865
Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J
2017-02-05
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).
Wallbank, Richard W. R.; Hanly, Joseph J.
2017-01-01
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the ‘Nymphalid Ground Plan’, which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent ‘hotspots’ for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994126
Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês
2012-09-01
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês
2012-01-01
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924
Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Bis, Joshua C; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E; Koplev, Simon; Björkegren, Johan L M; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L; Trégouët, David A; Christophersen, Ingrid E; Roselli, Carolina; Lubitz, Steven A; Ellinor, Patrick T; Tai, E Shyong; Kooner, Jaspal S; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C; Takeuchi, Fumihiko; Johnson, Andrew D; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin; Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; Hoed, Marcel den; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Amin, Najaf; Aparicio, Hugo S; Arnett, Donna K; Attia, John; Beiser, Alexa S; Berr, Claudine; Buring, Julie E; Bustamante, Mariana; Caso, Valeria; Cheng, Yu-Ching; Choi, Seung Hoan; Chowhan, Ayesha; Cullell, Natalia; Dartigues, Jean-François; Delavaran, Hossein; Delgado, Pilar; Dörr, Marcus; Engström, Gunnar; Ford, Ian; Gurpreet, Wander S; Hamsten, Anders; Heitsch, Laura; Hozawa, Atsushi; Ibanez, Laura; Ilinca, Andreea; Ingelsson, Martin; Iwasaki, Motoki; Jackson, Rebecca D; Jood, Katarina; Jousilahti, Pekka; Kaffashian, Sara; Kalra, Lalit; Kamouchi, Masahiro; Kitazono, Takanari; Kjartansson, Olafur; Kloss, Manja; Koudstaal, Peter J; Krupinski, Jerzy; Labovitz, Daniel L; Laurie, Cathy C; Levi, Christopher R; Li, Linxin; Lind, Lars; Lindgren, Cecilia M; Lioutas, Vasileios; Liu, Yong Mei; Lopez, Oscar L; Makoto, Hirata; Martinez-Majander, Nicolas; Matsuda, Koichi; Minegishi, Naoko; Montaner, Joan; Morris, Andrew P; Muiño, Elena; Müller-Nurasyid, Martina; Norrving, Bo; Ogishima, Soichi; Parati, Eugenio A; Peddareddygari, Leema Reddy; Pedersen, Nancy L; Pera, Joanna; Perola, Markus; Pezzini, Alessandro; Pileggi, Silvana; Rabionet, Raquel; Riba-Llena, Iolanda; Ribasés, Marta; Romero, Jose R; Roquer, Jaume; Rudd, Anthony G; Sarin, Antti-Pekka; Sarju, Ralhan; Sarnowski, Chloe; Sasaki, Makoto; Satizabal, Claudia L; Satoh, Mamoru; Sattar, Naveed; Sawada, Norie; Sibolt, Gerli; Sigurdsson, Ásgeir; Smith, Albert; Sobue, Kenji; Soriano-Tárraga, Carolina; Stanne, Tara; Stine, O Colin; Stott, David J; Strauch, Konstantin; Takai, Takako; Tanaka, Hideo; Tanno, Kozo; Teumer, Alexander; Tomppo, Liisa; Torres-Aguila, Nuria P; Touze, Emmanuel; Tsugane, Shoichiro; Uitterlinden, Andre G; Valdimarsson, Einar M; van der Lee, Sven J; Völzke, Henry; Wakai, Kenji; Weir, David; Williams, Stephen R; Wolfe, Charles D A; Wong, Quenna; Xu, Huichun; Yamaji, Taiki; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin
2018-04-01
Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.
Association analyses of 249,796 individuals reveal eighteen new loci associated with body mass index
Speliotes, Elizabeth K.; Willer, Cristen J.; Berndt, Sonja I.; Monda, Keri L.; Thorleifsson, Gudmar; Jackson, Anne U.; Allen, Hana Lango; Lindgren, Cecilia M.; Luan, Jian’an; Mägi, Reedik; Randall, Joshua C.; Vedantam, Sailaja; Winkler, Thomas W.; Qi, Lu; Workalemahu, Tsegaselassie; Heid, Iris M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Weedon, Michael N.; Wheeler, Eleanor; Wood, Andrew R.; Ferreira, Teresa; Weyant, Robert J.; Segré, Ayellet V.; Estrada, Karol; Liang, Liming; Nemesh, James; Park, Ju-Hyun; Gustafsson, Stefan; Kilpeläinen, Tuomas O.; Yang, Jian; Bouatia-Naji, Nabila; Esko, Tõnu; Feitosa, Mary F.; Kutalik, Zoltán; Mangino, Massimo; Raychaudhuri, Soumya; Scherag, Andre; Smith, Albert Vernon; Welch, Ryan; Zhao, Jing Hua; Aben, Katja K.; Absher, Devin M.; Amin, Najaf; Dixon, Anna L.; Fisher, Eva; Glazer, Nicole L.; Goddard, Michael E.; Heard-Costa, Nancy L.; Hoesel, Volker; Hottenga, Jouke-Jan; Johansson, Åsa; Johnson, Toby; Ketkar, Shamika; Lamina, Claudia; Li, Shengxu; Moffatt, Miriam F.; Myers, Richard H.; Narisu, Narisu; Perry, John R.B.; Peters, Marjolein J.; Preuss, Michael; Ripatti, Samuli; Rivadeneira, Fernando; Sandholt, Camilla; Scott, Laura J.; Timpson, Nicholas J.; Tyrer, Jonathan P.; van Wingerden, Sophie; Watanabe, Richard M.; White, Charles C.; Wiklund, Fredrik; Barlassina, Christina; Chasman, Daniel I.; Cooper, Matthew N.; Jansson, John-Olov; Lawrence, Robert W.; Pellikka, Niina; Prokopenko, Inga; Shi, Jianxin; Thiering, Elisabeth; Alavere, Helene; Alibrandi, Maria T. S.; Almgren, Peter; Arnold, Alice M.; Aspelund, Thor; Atwood, Larry D.; Balkau, Beverley; Balmforth, Anthony J.; Bennett, Amanda J.; Ben-Shlomo, Yoav; Bergman, Richard N.; Bergmann, Sven; Biebermann, Heike; Blakemore, Alexandra I.F.; Boes, Tanja; Bonnycastle, Lori L.; Bornstein, Stefan R.; Brown, Morris J.; Buchanan, Thomas A.; Busonero, Fabio; Campbell, Harry; Cappuccio, Francesco P.; Cavalcanti-Proença, Christine; Chen, Yii-Der Ida; Chen, Chih-Mei; Chines, Peter S.; Clarke, Robert; Coin, Lachlan; Connell, John; Day, Ian N.M.; den Heijer, Martin; Duan, Jubao; Ebrahim, Shah; Elliott, Paul; Elosua, Roberto; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Facheris, Maurizio F.; Felix, Stephan B.; Fischer-Posovszky, Pamela; Folsom, Aaron R.; Friedrich, Nele; Freimer, Nelson B.; Fu, Mao; Gaget, Stefan; Gejman, Pablo V.; Geus, Eco J.C.; Gieger, Christian; Gjesing, Anette P.; Goel, Anuj; Goyette, Philippe; Grallert, Harald; Gräßler, Jürgen; Greenawalt, Danielle M.; Groves, Christopher J.; Gudnason, Vilmundur; Guiducci, Candace; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hall, Alistair S.; Havulinna, Aki S.; Hayward, Caroline; Heath, Andrew C.; Hengstenberg, Christian; Hicks, Andrew A.; Hinney, Anke; Hofman, Albert; Homuth, Georg; Hui, Jennie; Igl, Wilmar; Iribarren, Carlos; Isomaa, Bo; Jacobs, Kevin B.; Jarick, Ivonne; Jewell, Elizabeth; John, Ulrich; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Kaakinen, Marika; Kajantie, Eero; Kaplan, Lee M.; Kathiresan, Sekar; Kettunen, Johannes; Kinnunen, Leena; Knowles, Joshua W.; Kolcic, Ivana; König, Inke R.; Koskinen, Seppo; Kovacs, Peter; Kuusisto, Johanna; Kraft, Peter; Kvaløy, Kirsti; Laitinen, Jaana; Lantieri, Olivier; Lanzani, Chiara; Launer, Lenore J.; Lecoeur, Cecile; Lehtimäki, Terho; Lettre, Guillaume; Liu, Jianjun; Lokki, Marja-Liisa; Lorentzon, Mattias; Luben, Robert N.; Ludwig, Barbara; Manunta, Paolo; Marek, Diana; Marre, Michel; Martin, Nicholas G.; McArdle, Wendy L.; McCarthy, Anne; McKnight, Barbara; Meitinger, Thomas; Melander, Olle; Meyre, David; Midthjell, Kristian; Montgomery, Grant W.; Morken, Mario A.; Morris, Andrew P.; Mulic, Rosanda; Ngwa, Julius S.; Nelis, Mari; Neville, Matt J.; Nyholt, Dale R.; O’Donnell, Christopher J.; O’Rahilly, Stephen; Ong, Ken K.; Oostra, Ben; Paré, Guillaume; Parker, Alex N.; Perola, Markus; Pichler, Irene; Pietiläinen, Kirsi H.; Platou, Carl G.P.; Polasek, Ozren; Pouta, Anneli; Rafelt, Suzanne; Raitakari, Olli; Rayner, Nigel W.; Ridderstråle, Martin; Rief, Winfried; Ruokonen, Aimo; Robertson, Neil R.; Rzehak, Peter; Salomaa, Veikko; Sanders, Alan R.; Sandhu, Manjinder S.; Sanna, Serena; Saramies, Jouko; Savolainen, Markku J.; Scherag, Susann; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Silander, Kaisa; Sinisalo, Juha; Siscovick, David S.; Smit, Jan H.; Soranzo, Nicole; Sovio, Ulla; Stephens, Jonathan; Surakka, Ida; Swift, Amy J.; Tammesoo, Mari-Liis; Tardif, Jean-Claude; Teder-Laving, Maris; Teslovich, Tanya M.; Thompson, John R.; Thomson, Brian; Tönjes, Anke; Tuomi, Tiinamaija; van Meurs, Joyce B.J.; van Ommen, Gert-Jan; Vatin, Vincent; Viikari, Jorma; Visvikis-Siest, Sophie; Vitart, Veronique; Vogel, Carla I. G.; Voight, Benjamin F.; Waite, Lindsay L.; Wallaschofski, Henri; Walters, G. Bragi; Widen, Elisabeth; Wiegand, Susanna; Wild, Sarah H.; Willemsen, Gonneke; Witte, Daniel R.; Witteman, Jacqueline C.; Xu, Jianfeng; Zhang, Qunyuan; Zgaga, Lina; Ziegler, Andreas; Zitting, Paavo; Beilby, John P.; Farooqi, I. Sadaf; Hebebrand, Johannes; Huikuri, Heikki V.; James, Alan L.; Kähönen, Mika; Levinson, Douglas F.; Macciardi, Fabio; Nieminen, Markku S.; Ohlsson, Claes; Palmer, Lyle J.; Ridker, Paul M.; Stumvoll, Michael; Beckmann, Jacques S.; Boeing, Heiner; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Collins, Francis S.; Cupples, L. Adrienne; Smith, George Davey; Erdmann, Jeanette; Froguel, Philippe; Grönberg, Henrik; Gyllensten, Ulf; Hall, Per; Hansen, Torben; Harris, Tamara B.; Hattersley, Andrew T.; Hayes, Richard B.; Heinrich, Joachim; Hu, Frank B.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Kaprio, Jaakko; Karpe, Fredrik; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Krude, Heiko; Laakso, Markku; Lawlor, Debbie A.; Metspalu, Andres; Munroe, Patricia B.; Ouwehand, Willem H.; Pedersen, Oluf; Penninx, Brenda W.; Peters, Annette; Pramstaller, Peter P.; Quertermous, Thomas; Reinehr, Thomas; Rissanen, Aila; Rudan, Igor; Samani, Nilesh J.; Schwarz, Peter E.H.; Shuldiner, Alan R.; Spector, Timothy D.; Tuomilehto, Jaakko; Uda, Manuela; Uitterlinden, André; Valle, Timo T.; Wabitsch, Martin; Waeber, Gérard; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Wright, Alan F.; Zillikens, M. Carola; Chatterjee, Nilanjan; McCarroll, Steven A.; Purcell, Shaun; Schadt, Eric E.; Visscher, Peter M.; Assimes, Themistocles L.; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Haritunians, Talin; Hunter, David J.; Kaplan, Robert C.; Mohlke, Karen L.; O’Connell, Jeffrey R.; Peltonen, Leena; Schlessinger, David; Strachan, David P.; van Duijn, Cornelia M.; Wichmann, H.-Erich; Frayling, Timothy M.; Thorsteinsdottir, Unnur; Abecasis, Gonçalo R.; Barroso, Inês; Boehnke, Michael; Stefansson, Kari; North, Kari E.; McCarthy, Mark I.; Hirschhorn, Joel N.; Ingelsson, Erik; Loos, Ruth J.F.
2010-01-01
Obesity is globally prevalent and highly heritable, but the underlying genetic factors remain largely elusive. To identify genetic loci for obesity-susceptibility, we examined associations between body mass index (BMI) and ~2.8 million SNPs in up to 123,865 individuals, with targeted follow-up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity-susceptibility loci and identified 18 new loci associated with BMI (P<5×10−8), one of which includes a copy number variant near GPRC5B. Some loci (MC4R, POMC, SH2B1, BDNF) map near key hypothalamic regulators of energy balance, and one is near GIPR, an incretin receptor. Furthermore, genes in other newly-associated loci may provide novel insights into human body weight regulation. PMID:20935630
Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W.; Gretarsdottir, Solveig; Anderson, Christopher D.; Chong, Michael; Adams, Hieab H. H.; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M.; Benavente, Oscar R.; Bevan, Steve; Boncoraglio, Giorgio B.; Brown, Robert D.; Butterworth, Adam S.; Carrera, Caty; Carty, Cara L.; Chasman, Daniel I.; Chen, Wei-Min; Cole, John W.; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I. W.; DeStefano, Anita L.; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T.; Falcone, Guido J.; Gottesman, Rebecca F.; Grewal, Raji P.; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B.; Hassan, Ahamad; Havulinna, Aki S.; Heckbert, Susan R.; Holliday, Elizabeth G.; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I.; Ikram, M. Arfan; ingelsson, Erik; Irvin, Marguerite R.; Jian, Xueqiu; Jimenez-Conde, Jordi; Johnson, Julie A.; Jukema, J. Wouter; Kanai, Masahiro; Keene, Keith L.; Kissela, Brett M.; Kleindorfer, Dawn O.; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A.; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M.; Lin, Wei-Yu; Lindgren, Arne G.; Lorentzen, Erik; Magnusson, Patrik K.; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F.; Meschia, James F.; Mitchell, Braxton D.; Mosley, Thomas H.; Nalls, Michael A.; Ninomiya, Toshiharu; O’Donnell, Martin J.; Psaty, Bruce M.; Pulit, Sara L.; Rannikmäe, Kristiina; Reiner, Alexander P.; Rexrode, Kathryn M.; Rice, Kenneth; Rich, Stephen S.; Ridker, Paul M.; Rost, Natalia S.; Rothwell, Peter M.; Rotter, Jerome I.; Rundek, Tatjana; Sacco, Ralph L.; Sakaue, Saori; Sale, Michele M.; Salomaa, Veikko; Sapkota, Bishwa R.; Schmidt, Reinhold; Schmidt, Carsten O.; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L. M.; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D.; Thijs, Vincent N. S.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M.; Walters, Matthew; Wareham, Nicholas J.; Wassertheil-Smoller, Sylvia; Wilson, James G.; Wiggins, Kerri L.; Yang, Qiong; Yusuf, Salim; Bis, Joshua C.; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E.; Koplev, Simon; Björkegren, Johan L. M.; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L.; Tregouet, David A.; Christophersen, Ingrid E.; Roselli, Carolina; Lubitz, Steven A.; Ellinor, Patrick T.; Tai, E. Shyong; Kooner, Jaspal S.; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C.; Takeuchi, Fumihiko; Johnson, Andrew D.; Sanghera, Dharambir K.; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W. T.; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C.; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B.; Kittner, Steven J.; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S.; Howson, Joanna M. M.; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin
2018-01-01
Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy. PMID:29531354
An update on the genetic architecture of hyperuricemia and gout.
Merriman, Tony R
2015-04-10
Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.
Alarcón-Riquelme, Marta E.; Ziegler, Julie T.; Molineros, Julio; Howard, Timothy D.; Moreno-Estrada, Andrés; Sánchez-Rodríguez, Elena; Ainsworth, Hannah C.; Ortiz-Tello, Patricia; Comeau, Mary E.; Rasmussen, Astrid; Kelly, Jennifer A.; Adler, Adam; Acevedo-Vázquez, Eduardo; Cucho, Jorge Mariano; García-De la Torre, Ignacio; Cardiel, Mario H.; Miranda, Pedro; Catoggio, Luis; Maradiaga-Ceceña, Marco; Gaffney, Patrick; Vyse, Timothy; Criswell, Lindsey A.; Tsao, Betty P.; Sivils, Kathy L.; Bae, Sang-Cheol; James, Judith A.; Kimberly, Robert; Kaufman, Ken; Harley, John B.; Esquivel-Valerio, Jorge; Moctezuma, José F.; García, Mercedes A.; Berbotto, Guillermo; Babini, Alejandra; Scherbarth, Hugo; Toloza, Sergio; Baca, Vicente; Nath, Swapan K.; Salinas, Carlos Aguilar; Orozco, Lorena; Tusié-Luna, Teresa; Zidovetzki, Raphael; Pons-Estel, Bernardo A.; Langefeld, Carl D.; Jacob, Chaim O.
2016-01-01
OBJECTIVES Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component. Our aim was to perform the first genome-wide association study on individuals from the Americas enriched for Native American heritage. MATERIALS and METHODS We analyzed 3,710 individuals from four countries of Latin America and the Unites States diagnosed with SLE and healthy controls. Samples were genotyped with the HumanOmni1 BeadChip. Data of out-of-study controls was obtained for the HumanOmni2.5. Statistical analyses were performed using SNPTEST and SNPGWA. Data was adjusted for genomic control and FDR. Imputation was done using IMPUTE2, and HiBAG for classical HLA alleles. RESULTS The IRF5-TNPO3 region showed the strongest association and largest odds ratio (OR) (rs10488631, Pgcadj = 2.61×10−29, OR = 2.12, 95% CI: 1.88–2.39) followed by the HLA class II on the DQA2-DQB1 loci (rs9275572, Pgcadj = 1.11 × 10−16, OR = 1.62, 95% CI: 1.46–1.80; rs9271366, Pgcadj=6.46 × 10−12, OR = 2.06, 95% CI: 1.71–2.50). Other known SLE loci associated were ITGAM, STAT4, TNIP1, NCF2 and IRAK1. We identified a novel locus on 10q24.33 (rs4917385, Pgcadj =1.4×10−8) with a eQTL effect (Peqtl=8.0 × 10−37 at USMG5/miR1307), and describe novel loci. We corroborate SLE-risk loci previously identified in European and Asians. Local ancestry estimation showed that HLA allele risk contribution is of European ancestral origin. Imputation of HLA alleles suggested that autochthonous Native American haplotypes provide protection. CONCLUSIONS Our results show the insight gained by studying admixed populations to delineate the genetic architecture that underlies autoimmune and complex diseases. PMID:26606652
2012-01-01
Background Genome-wide association studies (GWAS) do not provide a full account of the heritability of genetic diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address this problem, a considerable number of methods have been developed for identifying disease-associated gene-gene interactions. However, these methods typically fail to identify interacting markers explaining more of the disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by uninformative marker interactions e.g., linkage disequilibrium (LD). Results In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci). This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated interactions are then prioritized according to a novel ranking score calculated from the difference in marker dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can be completed in less than a day on a standard workstation with parallel processing capability. The proposed framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case Control Consortium (WTCCC) data. The results from simulated data showed the ability of iLOCi to identify various types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease, and interestingly, other previously unreported genes with biologically related roles. Conclusion iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more complete understanding of the genetic basis underlying complex disease. The program is available for download at http://www4a.biotec.or.th/GI/tools/iloci. PMID:23281813
Schardl, Christopher L; Young, Carolyn A; Hesse, Uljana; Amyotte, Stefan G; Andreeva, Kalina; Calie, Patrick J; Fleetwood, Damien J; Haws, David C; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G; Schweri, Kathryn K; Voisey, Christine R; Farman, Mark L; Jaromczyk, Jerzy W; Roe, Bruce A; O'Sullivan, Donal M; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G; Bullock, Charles T; Charlton, Nikki D; Chen, Li; Cox, Murray; Dinkins, Randy D; Florea, Simona; Glenn, Anthony E; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D; Khan, Anar K; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E; Tanaka, Eiji; Webb, Jennifer S; Wilson, Ella V; Wiseman, Jennifer L; Yoshida, Ruriko; Zeng, Zheng
2013-01-01
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Schardl, Christopher L.; Young, Carolyn A.; Hesse, Uljana; Amyotte, Stefan G.; Andreeva, Kalina; Calie, Patrick J.; Fleetwood, Damien J.; Haws, David C.; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G.; Schweri, Kathryn K.; Voisey, Christine R.; Farman, Mark L.; Jaromczyk, Jerzy W.; Roe, Bruce A.; O'Sullivan, Donal M.; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G.; Bullock, Charles T.; Charlton, Nikki D.; Chen, Li; Cox, Murray; Dinkins, Randy D.; Florea, Simona; Glenn, Anthony E.; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R.; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D.; Khan, Anar K.; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E.; Tanaka, Eiji; Webb, Jennifer S.; Wilson, Ella V.; Wiseman, Jennifer L.; Yoshida, Ruriko; Zeng, Zheng
2013-01-01
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses. PMID:23468653
Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.
Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.
Convergence of GWA and candidate gene studies for alcoholism
Olfson, Emily; Bierut, Laura Jean
2012-01-01
Background Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. Methods Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported SNPs in candidate genes were examined in the Study of Alcohol Addiction: Genetics and Addiction (SAGE), a GWA study comparing alcohol dependent and non-dependent subjects. Results Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1 and rs4680 in COMT, are not replicated in SAGE (p> .05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p=0.0052, OR=1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls and the lowest p value of any SNP was .0006. Discussion We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African Ancestry populations. Due to lack of coverage, we were unable to rule out the contribution of other variants and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases. PMID:22978509
Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice
Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study. PMID:24415945
Eckert, Andrew J; van Heerwaarden, Joost; Wegrzyn, Jill L; Nelson, C Dana; Ross-Ibarra, Jeffrey; González-Martínez, Santíago C; Neale, David B
2010-07-01
Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as F(ST) outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes.
NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.
Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow
2018-06-01
DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of MHC class I genes across horse MHC haplotypes
Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.
2010-01-01
The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063
Liu, Jimmy Z; van Sommeren, Suzanne; Huang, Hailiang; Ng, Siew C; Alberts, Rudi; Takahashi, Atsushi; Ripke, Stephan; Lee, James C; Jostins, Luke; Shah, Tejas; Abedian, Shifteh; Cheon, Jae Hee; Cho, Judy; Dayani, Naser E; Franke, Lude; Fuyuno, Yuta; Hart, Ailsa; Juyal, Ramesh C; Juyal, Garima; Kim, Won Ho; Morris, Andrew P; Poustchi, Hossein; Newman, William G; Midha, Vandana; Orchard, Timothy R; Vahedi, Homayon; Sood, Ajit; Sung, Joseph Y; Malekzadeh, Reza; Westra, Harm-Jan; Yamazaki, Keiko; Yang, Suk-Kyun; Barrett, Jeffrey C; Alizadeh, Behrooz Z; Parkes, Miles; Bk, Thelma; Daly, Mark J; Kubo, Michiaki; Anderson, Carl A; Weersma, Rinse K
2015-09-01
Ulcerative colitis and Crohn's disease are the two main forms of inflammatory bowel disease (IBD). Here we report the first trans-ancestry association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of the IBD risk loci, the direction and magnitude of effect are consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by differences in allele frequency (NOD2) or effect size (TNFSF15 and ATG16L1) or a combination of these factors (IL23R and IRGM). Our results provide biological insights into the pathogenesis of IBD and demonstrate the usefulness of trans-ancestry association studies for mapping loci associated with complex diseases and understanding genetic architecture across diverse populations.
Huang, Hailiang; Ng, Siew C; Alberts, Rudi; Takahashi, Atsushi; Ripke, Stephan; Lee, James C; Jostins, Luke; Shah, Tejas; Abedian, Shifteh; Cheon, Jae Hee; Cho, Judy; Dayani, Naser E; Franke, Lude; Fuyuno, Yuta; Hart, Ailsa; Juyal, Ramesh C; Juyal, Garima; Kim, Won Ho; Morris, Andrew P; Poustchi, Hossein; Newman, William G; Midha, Vandana; Orchard, Timothy R; Vahedi, Homayon; Sood, Ajit; Sung, Joseph Y; Malekzadeh, Reza; Westra, Harm-Jan; Yamazaki, Keiko; Yang, Suk-Kyun; Barrett, Jeffrey C; Alizadeh, Behrooz Z; Parkes, Miles; BK, Thelma; Daly, Mark J; Kubo, Michiaki; Anderson, Carl A; Weersma, Rinse K
2016-01-01
Ulcerative colitis and Crohn’s disease are the two main forms of inflammatory bowel disease (IBD). Here, we report the first trans-ethnic association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East-Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of IBD risk loci, the direction and magnitude of effect is consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by a combination of differences in allele frequencies (NOD2), effect sizes (TNFSF15, ATG16L1) or a combination of both (IL23R, IRGM). Our results provide biological insights into the pathogenesis of IBD, and demonstrate the utility of trans-ethnic association studies for mapping complex disease loci and understanding genetic architecture across diverse populations. PMID:26192919
Identification of female-specific QTLs affecting an emotionality-related behavior in rats.
Ramos, A; Moisan, M P; Chaouloff, F; Mormède, C; Mormède, P
1999-09-01
The influence of genetic factors on psychological traits and disorders has been repeatedly demonstrated; however, the molecular mechanisms underlying such an influence remain largely unknown. Anxiety-related disorders constitute the most common class of mental disorder in humans, with women being diagnosed far more frequently than men. A better understanding of the genetic and gender-related mechanisms mediating anxiety traits should enable the development of more rational methods for preventing and treating anxiety disorders. In this study we have aimed to identify, for the first time, quantitative trait loci (QTL) influencing anxiety/emotionality-related traits in rats. To this end, two strains-Lewis (LEW) and Spontaneously Hypertensive Rats (SHR)-that differ for several behavioral measures of anxiety/emotionality were intercrossed. A QTL analysis of the F2 population revealed suggestive loci for various traits, including behaviors in the elevated plus-maze and blood pressure. In addition, one major QTL explaining 50.4% of the total variance (LOD = 7.22) was identified on chromosome 4 for the locomotion in the central and aversive area of the open field. Two other relevant QTLs have been recently mapped near this chromosomic region in the rat, which also harbors Tac1r, the gene encoding for the substance P receptor. Our major QTL affected females but not males and its effect depended on the type of cross (LEW or SHR grandmothers). The present results reveal a complex genetic basis underlying emotional behaviors and they confirm the existence of interactions between genetic factors and sex for this kind of trait. Further investigation of the loci identified herein may give clues to the pathophysiology of psychiatric disorders such as anxiety-related ones.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair
2011-01-01
Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088
Golczyk, Hieronim; Hasterok, Robert; Joachimiak, Andrzej J
2005-02-01
Fluorescence in situ hybridization (FISH) using 25S rDNA, 5S rDNA, and telomere sequences as probes was carried out in the complex permanent heterozygote Rhoeo spathacea. Telomere sites were exclusively terminal. All 10 25S rDNA loci were located distally and appeared transcriptionally active after silver staining. Six distal and 2 interstitial 5S rDNA sites were detected; 2 of the distal sites strictly colocalized with 25S rDNA loci. The 2 intercalary 5S rDNA loci occurred in short arms of 2 chromosomes that conjoined at meiosis. Chromosomes differed as to the amount of AT-rich centric heterochromatin, suggesting involvement of pericentromeric regions in translocations. The possibility of Robertsonian-like rearrangements was discussed. Double target FISH with ribosomal probes along with DAPI fluorescence gave the basis for full chromosome identification in mitosis. The 2 Renner complexes are structurally balanced, both having 5 25S and 4 5S rDNA sites. Centromere clustering, telomere association, a high number of NOR sites, and a strong tendency for formation of joint nucleoli contribute to the preservation of highly polarized Rabl arrangement at interphase. These findings were discussed in relation to meiotic catenation in Rhoeo.
Jordan, Daniel M; Do, Ron
2018-04-11
While sequence-based genetic tests have long been available for specific loci, especially for Mendelian disease, the rapidly falling costs of genome-wide genotyping arrays, whole-exome sequencing, and whole-genome sequencing are moving us toward a future where full genomic information might inform the prognosis and treatment of a variety of diseases, including complex disease. Similarly, the availability of large populations with full genomic information has enabled new insights about the etiology and genetic architecture of complex disease. Insights from the latest generation of genomic studies suggest that our categorization of diseases as complex may conceal a wide spectrum of genetic architectures and causal mechanisms that ranges from Mendelian forms of complex disease to complex regulatory structures underlying Mendelian disease. Here, we review these insights, along with advances in the prediction of disease risk and outcomes from full genomic information. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 19 is August 31, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Lovell, John T; Mullen, Jack L; Lowry, David B; Awole, Kedija; Richards, James H; Sen, Saunak; Verslues, Paul E; Juenger, Thomas E; McKay, John K
2015-04-01
Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. © 2015 American Society of Plant Biologists. All rights reserved.
Control of gene expression by CRISPR-Cas systems
2013-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated cas (CRISPR-associated) genes provide adaptive immunity against viruses (phages) and other mobile genetic elements in bacteria and archaea. While most of the early work has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or plasmid DNA, recent studies have revealed a more complex landscape where CRISPR-Cas loci might be involved in gene regulation. In this review, we summarize the role of these loci in the regulation of gene expression as well as the recent development of synthetic gene regulation using engineered CRISPR-Cas systems. PMID:24273648
Exploiting induced variation to dissect quantitative traits in barley.
Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie
2010-04-01
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.
Turner, Leslie M; Harr, Bettina
2014-12-09
Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.
Genetic architectures of seropositive and seronegative rheumatic diseases.
Kirino, Yohei; Remmers, Elaine F
2015-07-01
Rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and some other rheumatic diseases are genetically complex, with evidence of familial clustering, but not of Mendelian inheritance. These diseases are thought to result from contributions and interactions of multiple genetic and nongenetic risk factors, which have small effects individually. Genome-wide association studies (GWAS) of large collections of data from cases and controls have revealed many genetic factors that contribute to non-Mendelian rheumatic diseases, thus providing insights into associated molecular mechanisms. This Review summarizes methods for the identification of gene variants that influence genetically complex diseases and focuses on what we have learned about the rheumatic diseases for which GWAS have been reported. Our review of the disease-associated loci identified to date reveals greater sharing of risk loci among the groups of seropositive (diseases in which specific autoantibodies are often present) or seronegative diseases than between these two groups. The nature of the shared and discordant loci suggests important similarities and differences among these diseases.
[Fine mapping of complex disease susceptibility loci].
Song, Qingfeng; Zhang, Hongxing; Ma, Yilong; Zhou, Gangqiao
2014-01-01
Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers have identified more than 3800 susceptibility loci for more than 660 diseases or traits. However, the most significantly associated variants or causative variants in these loci and their biological functions have remained to be clarified. These causative variants can help to elucidate the pathogenesis and discover new biomarkers of complex diseases. One of the main goals in the post-GWAS era is to identify the causative variants and susceptibility genes, and clarify their functional aspects by fine mapping. For common variants, imputation or re-sequencing based strategies were implemented to increase the number of analyzed variants and help to identify the most significantly associated variants. In addition, functional element, expression quantitative trait locus (eQTL) and haplotype analyses were performed to identify functional common variants and susceptibility genes. For rare variants, fine mapping was carried out by re-sequencing, rare haplotype analysis, family-based analysis, burden test, etc.This review summarizes the strategies and problems for fine mapping.
Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection.
Steinrueck, Magdalena; Guet, Călin C
2017-07-25
How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data.
Mägi, Reedik; Horikoshi, Momoko; Sofer, Tamar; Mahajan, Anubha; Kitajima, Hidetoshi; Franceschini, Nora; McCarthy, Mark I.; Morris, Andrew P.
2017-01-01
Abstract Trans-ethnic meta-analysis of genome-wide association studies (GWAS) across diverse populations can increase power to detect complex trait loci when the underlying causal variants are shared between ancestry groups. However, heterogeneity in allelic effects between GWAS at these loci can occur that is correlated with ancestry. Here, a novel approach is presented to detect SNP association and quantify the extent of heterogeneity in allelic effects that is correlated with ancestry. We employ trans-ethnic meta-regression to model allelic effects as a function of axes of genetic variation, derived from a matrix of mean pairwise allele frequency differences between GWAS, and implemented in the MR-MEGA software. Through detailed simulations, we demonstrate increased power to detect association for MR-MEGA over fixed- and random-effects meta-analysis across a range of scenarios of heterogeneity in allelic effects between ethnic groups. We also demonstrate improved fine-mapping resolution, in loci containing a single causal variant, compared to these meta-analysis approaches and PAINTOR, and equivalent performance to MANTRA at reduced computational cost. Application of MR-MEGA to trans-ethnic GWAS of kidney function in 71,461 individuals indicates stronger signals of association than fixed-effects meta-analysis when heterogeneity in allelic effects is correlated with ancestry. Application of MR-MEGA to fine-mapping four type 2 diabetes susceptibility loci in 22,086 cases and 42,539 controls highlights: (i) strong evidence for heterogeneity in allelic effects that is correlated with ancestry only at the index SNP for the association signal at the CDKAL1 locus; and (ii) 99% credible sets with six or fewer variants for five distinct association signals. PMID:28911207
Brüniche-Olsen, Anna; Austin, Jeremy J.; Jones, Menna E.; Holland, Barbara R.; Burridge, Christopher P.
2016-01-01
Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer—devil facial tumor disease (DFTD)—that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series ‘restriction site associated DNA’ (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results. PMID:26930198
Kallio, Eva R.; Koskela, Esa; Lonn, Eija
2017-01-01
The loci arginine vasopressin receptor 1a (avpr1a) and oxytocin receptor (oxtr) have evolutionarily conserved roles in vertebrate social and sexual behaviour. Allelic variation at a microsatellite locus in the 5′ regulatory region of these genes is associated with fitness in the bank vole Myodes glareolus. Given the low frequency of long and short alleles at these microsatellite loci in wild bank voles, we used breeding trials to determine whether selection acts against long and short alleles. Female bank voles with intermediate length avpr1a alleles had the highest probability of breeding, while male voles whose avpr1a alleles were very different in length had reduced probability of breeding. Moreover, there was a significant interaction between male and female oxtr genotypes, where potential breeding pairs with dissimilar length alleles had reduced probability of breeding. These data show how genetic variation at microsatellite loci associated with avpr1a and oxtr is associated with fitness, and highlight complex patterns of selection at these loci. More widely, these data show how stabilizing selection might act on allele length frequency distributions at gene-associated microsatellite loci. PMID:29237850
Russian Doll Genes and Complex Chromosome Rearrangements in Oxytricha trifallax
Braun, Jasper; Nabergall, Lukas; Neme, Rafik; Landweber, Laura F.; Saito, Masahico; Jonoska, Nataša
2018-01-01
Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC). Furthermore, Oxytricha trifallax undergoes extensive genome rearrangements during sexual conjugation and post-zygotic development of daughter cells. These rearrangements are necessary because the precursor MIC loci are often both fragmented and scrambled, with respect to the corresponding MAC loci. Such genome architectures are remarkably tolerant of encrypted MIC loci, because RNA-guided processes during MAC development reorganize the gene fragments in the correct order to resemble the parental MAC sequence. Here, we describe the germline organization of several nested and highly scrambled genes in Oxytricha trifallax. These include cases with multiple layers of nesting, plus highly interleaved or tangled precursor loci that appear to deviate from previously described patterns. We present mathematical methods to measure the degree of nesting between precursor MIC loci, and revisit a method for a mathematical description of scrambling. After applying these methods to the chromosome rearrangement maps of O. trifallax we describe cases of nested arrangements with up to five layers of embedded genes, as well as the most scrambled loci in O. trifallax. PMID:29545465
Genomic networks of hybrid sterility.
Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A
2014-02-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics.
Genomic Networks of Hybrid Sterility
Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.
2014-01-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics. PMID:24586194
Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development
Singer, Ruth; Atar, Shimshi; Atias, Osnat; Oron, Efrat; Segal, Daniel; Hirsch, Joel A.; Tuller, Tamir; Orian, Amir; Chamovitz, Daniel A.
2014-01-01
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health. PMID:25106867
2014-01-01
Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159
Oyler-McCance, Sara J.; St. John, Judy
2010-01-01
Primers for 10 microsatellite loci were developed specifically to amplify low quantity and quality DNA for Gunnison Sage-grouse (Centrocercus minimus), a species that has been petitioned for listing under the US Endangered Species Act. In a screen of 20 individuals from the largest population in the Gunnison Basin, Colorado, the 10 loci were found to have levels of variability ranging from two to seven alleles. No loci were found to be linked, although one locus revealed significant departures from Hardy–Weinberg equilibrium. These microsatellite loci will be applicable for population genetic analyses and for use in mark recapture studies that utilize DNA collected non invasively from feathers and fecal pellets, which will ultimately aid in management efforts.
Novel microsatellite loci for studies of Thamnophis Gartersnake genetic identity and hybridization
Sloss, Brian L.; Schuurman, Gregor W.; Paloski, Rori A.; Boyle, Owen D.; Kapfer, Joshua M.
2012-01-01
Butler’s Gartersnakes (BGS; Thamnophis butleri) are confined to open and semi-open canopy wetlands and adjacent uplands, habitats under threat of development in Wisconsin. To address issues of species identity and putative hybridization with congeneric snakes, a suite of 18 microsatellite loci capable of cross-species amplification of Plains Gartersnakes (T. radix) and Common Gartersnakes (T. sirtalis) was developed. All loci were polymorphic in BGS with mean number of alleles per locus of 16.11 (range = 3–41) and mean observed heterozygosity of 0.659 (range = 0.311–0.978). Loci amplified efficiently in the congeneric species with high levels of intra- and inter-specific variation. These loci will aid ongoing efforts to effectively identify and manage BGS in Wisconsin.
Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P
2005-10-01
Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.
Stephan, Wolfgang
2016-01-01
In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.
Eckert, Andrew J.; van Heerwaarden, Joost; Wegrzyn, Jill L.; Nelson, C. Dana; Ross-Ibarra, Jeffrey; González-Martínez, Santíago C.; Neale, David. B.
2010-01-01
Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as FST outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes. PMID:20439779
Navigating the Interface Between Landscape Genetics and Landscape Genomics.
Storfer, Andrew; Patton, Austin; Fraik, Alexandra K
2018-01-01
As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used.
Navigating the Interface Between Landscape Genetics and Landscape Genomics
Storfer, Andrew; Patton, Austin; Fraik, Alexandra K.
2018-01-01
As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used. PMID:29593776
Cammen, Kristina M; Wilcox, Lynsey A; Rosel, Patricia E; Wells, Randall S; Read, Andrew J
2015-02-01
The role the major histocompatibility complex (MHC) plays in response to exposure to environmental toxins is relatively poorly understood, particularly in comparison to its well-described role in pathogen immunity. We investigated associations between MHC diversity and resistance to brevetoxins in common bottlenose dolphins (Tursiops truncatus). A previous genome-wide association study investigating an apparent difference in harmful algal bloom (HAB) resistance among dolphin populations in the Gulf of Mexico identified genetic variation associated with survival in close genomic proximity to multiple MHC class II loci. Here, we characterized genetic variation at DQA, DQB, DRA, and DRB loci in dolphins from central-west Florida and the Florida Panhandle, including dolphins that died during HABs and dolphins presumed to have survived HAB exposure. We found that DRB and DQB exhibited patterns of genetic differentiation among geographic regions that differed from neutral microsatellite loci. In addition, genetic differentiation at DRB across multiple pairwise comparisons of live and dead dolphins was greater than differentiation observed at neutral loci. Our findings at these MHC loci did not approach the strength of association with survival previously described for a nearby genetic variant. However, the results provide evidence that selective pressures at the MHC vary among dolphin populations that differ in the frequency of HAB exposure and that the overall composition of DRB variants differs between dolphin survivors and non-survivors of HABs. These results may suggest a potential role of MHC diversity in variable survival of bottlenose dolphins exposed to HABs.
Turner, Leslie M; Harr, Bettina
2014-01-01
Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone. DOI: http://dx.doi.org/10.7554/eLife.02504.001 PMID:25487987
Novel genetic loci underlying human intracranial volume identified through genome-wide association.
Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M
2016-12-01
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M
2016-01-01
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991
Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application
Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru
2016-01-01
Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317
Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L
2009-12-01
Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.
van der Harst, Pim; Verweij, Niek
2018-02-02
Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view on the genetic architecture of CAD. © 2017 The Authors.
Predicting the evolution of sex on complex fitness landscapes.
Misevic, Dusan; Kouyos, Roger D; Bonhoeffer, Sebastian
2009-09-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, Delta Var(HD), also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. Delta Var(HD) is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction.
Predicting the Evolution of Sex on Complex Fitness Landscapes
Misevic, Dusan; Kouyos, Roger D.; Bonhoeffer, Sebastian
2009-01-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction. PMID:19763171
Turelli, Michael; Barton, N H
2004-01-01
We investigate three alternative selection-based scenarios proposed to maintain polygenic variation: pleiotropic balancing selection, G x E interactions (with spatial or temporal variation in allelic effects), and sex-dependent allelic effects. Each analysis assumes an additive polygenic trait with n diallelic loci under stabilizing selection. We allow loci to have different effects and consider equilibria at which the population mean departs from the stabilizing-selection optimum. Under weak selection, each model produces essentially identical, approximate allele-frequency dynamics. Variation is maintained under pleiotropic balancing selection only at loci for which the strength of balancing selection exceeds the effective strength of stabilizing selection. In addition, for all models, polymorphism requires that the population mean be close enough to the optimum that directional selection does not overwhelm balancing selection. This balance allows many simultaneously stable equilibria, and we explore their properties numerically. Both spatial and temporal G x E can maintain variation at loci for which the coefficient of variation (across environments) of the effect of a substitution exceeds a critical value greater than one. The critical value depends on the correlation between substitution effects at different loci. For large positive correlations (e.g., rho(ij)2>3/4), even extreme fluctuations in allelic effects cannot maintain variation. Surprisingly, this constraint on correlations implies that sex-dependent allelic effects cannot maintain polygenic variation. We present numerical results that support our analytical approximations and discuss our results in connection to relevant data and alternative variance-maintaining mechanisms. PMID:15020487
Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholest...
Imaging dynamic and selective low-complexity domain interactions that control gene transcription.
Chong, Shasha; Dugast-Darzacq, Claire; Liu, Zhe; Dong, Peng; Dailey, Gina M; Cattoglio, Claudia; Heckert, Alec; Banala, Sambashiva; Lavis, Luke; Darzacq, Xavier; Tjian, Robert
2018-06-21
Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity domains (LCDs), but how they drive transactivation remains unclear. Here, live-cell single-molecule imaging reveals that TF-LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF-LCD hubs stabilize DNA binding, recruit RNA polymerase II (Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for novel drugs targeting gene regulatory interactions implicated in disease. Copyright © 2018, American Association for the Advancement of Science.
Mapping complex traits as a dynamic system
Sun, Lidan; Wu, Rongling
2017-01-01
Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476
Wang, Hui; Drake, Thomas A; Lusis, Aldons J
2006-01-01
The integration of expression profiling with linkage analysis has increasingly been used to identify genes underlying complex phenotypes. The effects of gender on the regulation of many physiological traits are well documented; however, “genetical genomic” analyses have not yet addressed the degree to which their conclusions are affected by sex. We constructed and densely genotyped a large F2 intercross derived from the inbred mouse strains C57BL/6J and C3H/HeJ on an apolipoprotein E null (ApoE−/−) background. This BXH.ApoE−/− population recapitulates several “metabolic syndrome” phenotypes. The cross consists of 334 animals of both sexes, allowing us to specifically test for the dependence of linkage on sex. We detected several thousand liver gene expression quantitative trait loci, a significant proportion of which are sex-biased. We used these analyses to dissect the genetics of gonadal fat mass, a complex trait with sex-specific regulation. We present evidence for a remarkably high degree of sex-dependence on both the cis and trans regulation of gene expression. We demonstrate how these analyses can be applied to the study of the genetics underlying gonadal fat mass, a complex trait showing significantly female-biased heritability. These data have implications on the potential effects of sex on the genetic regulation of other complex traits. PMID:16462940
2012-01-01
Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species. PMID:23083308
Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J
2015-06-26
Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. Copyright © 2015, American Association for the Advancement of Science.
Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits
Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos
2016-01-01
Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.
Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan
2012-01-01
Genome-wide association studies (GWAS) have identified many common variants associated with complex traits in human populations. Thus far, most reported variants have relatively small effects and explain only a small proportion of phenotypic variance, leading to the issues of 'missing' heritability and its explanation. Using height as an example, we examined two possible sources of missing heritability: first, variants with smaller effects whose associations with height failed to reach genome-wide significance and second, allelic heterogeneity due to the effects of multiple variants at a single locus. Using a novel analytical approach we examined allelic heterogeneity of height-associated loci selected from SNPs of different significance levels based on the summary data of the GIANT (stage 1) studies. In a sample of 1,304 individuals collected from an island population of the Adriatic coast of Croatia, we assessed the extent of height variance explained by incorporating the effects of less significant height loci and multiple effective SNPs at the same loci. Our results indicate that approximately half of the 118 loci that achieved stringent genome-wide significance (p-value<5×10(-8)) showed evidence of allelic heterogeneity. Additionally, including less significant loci (i.e., p-value<5×10(-4)) and accounting for effects of allelic heterogeneity substantially improved the variance explained in height.
Carlson, Hanqian L; Quinn, Jeffrey J; Yang, Yul W; Thornburg, Chelsea K; Chang, Howard Y; Stadler, H Scott
2015-12-01
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage.
Carlson, Hanqian L.; Quinn, Jeffrey J.; Yang, Yul W.; Thornburg, Chelsea K.; Chang, Howard Y.; Stadler, H. Scott
2015-01-01
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. PMID:26633036
Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development.
Singer, Ruth; Atar, Shimshi; Atias, Osnat; Oron, Efrat; Segal, Daniel; Hirsch, Joel A; Tuller, Tamir; Orian, Amir; Chamovitz, Daniel A
2014-09-01
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sherman, Natasha A.; Victorine, Anna; Wang, Richard J.; Moyle, Leonie C.
2014-01-01
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations. PMID:25211473
Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea
De La Torre, A; Ingvarsson, P K; Aitken, S N
2015-01-01
Hybrid zones provide an opportunity to study the effects of selection and gene flow in natural settings. We employed nuclear microsatellites (single sequence repeat (SSR)) and candidate gene single-nucleotide polymorphism markers (SNPs) to characterize the genetic architecture and patterns of interspecific gene flow in the Picea glauca × P. engelmannii hybrid zone across a broad latitudinal (40–60 degrees) and elevational (350–3500 m) range in western North America. Our results revealed a wide and complex hybrid zone with broad ancestry levels and low interspecific heterozygosity, shaped by asymmetric advanced-generation introgression, and low reproductive barriers between parental species. The clinal variation based on geographic variables, lack of concordance in clines among loci and the width of the hybrid zone points towards the maintenance of species integrity through environmental selection. Congruency between geographic and genomic clines suggests that loci with narrow clines are under strong selection, favoring either one parental species (directional selection) or their hybrids (overdominance) as a result of strong associations with climatic variables such as precipitation as snow and mean annual temperature. Cline movement due to past demographic events (evidenced by allelic richness and heterozygosity shifts from the average cline center) may explain the asymmetry in introgression and predominance of P. engelmannii found in this study. These results provide insights into the genetic architecture and fine-scale patterns of admixture, and identify loci that may be involved in reproductive barriers between the species. PMID:25806545
Simon, Matthieu; Durand, Stéphanie; Pluta, Natacha; Gobron, Nicolas; Botran, Lucy; Ricou, Anthony; Camilleri, Christine; Budar, Françoise
2016-01-01
Species differentiation and the underlying genetics of reproductive isolation are central topics in evolutionary biology. Hybrid sterility is one kind of reproductive barrier that can lead to differentiation between species. Here, we analyze the complex genetic basis of the intraspecific hybrid male sterility that occurs in the offspring of two distant natural strains of Arabidopsis thaliana, Shahdara and Mr-0, with Shahdara as the female parent. Using both classical and quantitative genetic approaches as well as cytological observation of pollen viability, we demonstrate that this particular hybrid sterility results from two causes of pollen mortality. First, the Shahdara cytoplasm induces gametophytic cytoplasmic male sterility (CMS) controlled by several nuclear loci. Second, several segregation distorters leading to allele-specific pollen abortion (pollen killers) operate in hybrids with either cytoplasm. The complete sterility of the hybrid with the Shahdara cytoplasm results from the genetic linkage of the two causes of pollen mortality, i.e., CMS nuclear determinants and pollen killers. Furthermore, natural variation at these loci in A. thaliana is associated with different male-sterility phenotypes in intraspecific hybrids. Our results suggest that the genomic conflicts that underlie segregation distorters and CMS can concurrently lead to reproductive barriers between distant strains within a species. This study provides a new framework for identifying molecular mechanisms and the evolutionary history of loci that contribute to reproductive isolation, and possibly to speciation. It also suggests that two types of genomic conflicts, CMS and segregation distorters, may coevolve in natural populations. PMID:27182945
Xu, Ke; Schadt, Eric E.; Pollard, Katherine S.; Roussos, Panos; Dudley, Joel T.
2015-01-01
The population persistence of schizophrenia despite associated reductions in fitness and fecundity suggests that the genetic basis of schizophrenia has a complex evolutionary history. A recent meta-analysis of schizophrenia genome-wide association studies offers novel opportunities for assessment of the evolutionary trajectories of schizophrenia-associated loci. In this study, we hypothesize that components of the genetic architecture of schizophrenia are attributable to human lineage-specific evolution. Our results suggest that schizophrenia-associated loci enrich in genes near previously identified human accelerated regions (HARs). Specifically, we find that genes near HARs conserved in nonhuman primates (pHARs) are enriched for schizophrenia-associated loci, and that pHAR-associated schizophrenia genes are under stronger selective pressure than other schizophrenia genes and other pHAR-associated genes. We further evaluate pHAR-associated schizophrenia genes in regulatory network contexts to investigate associated molecular functions and mechanisms. We find that pHAR-associated schizophrenia genes significantly enrich in a GABA-related coexpression module that was previously found to be differentially regulated in schizophrenia affected individuals versus healthy controls. In another two independent networks constructed from gene expression profiles from prefrontal cortex samples, we find that pHAR-associated schizophrenia genes are located in more central positions and their average path lengths to the other nodes are significantly shorter than those of other schizophrenia genes. Together, our results suggest that HARs are associated with potentially important functional roles in the genetic architecture of schizophrenia. PMID:25681384
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units
Kam-Thong, Tony; Czamara, Darina; Tsuda, Koji; Borgwardt, Karsten; Lewis, Cathryn M; Erhardt-Lehmann, Angelika; Hemmer, Bernhard; Rieckmann, Peter; Daake, Markus; Weber, Frank; Wolf, Christiane; Ziegler, Andreas; Pütz, Benno; Holsboer, Florian; Schölkopf, Bernhard; Müller-Myhsok, Bertram
2011-01-01
Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to case–control studies and consists of a two-step process in which the difference in Pearson's correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair. PMID:21150885
Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells*
Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.
2015-01-01
Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (HUSH), a complex of three poorly-characterised proteins, TASOR, MPP8, and periphilin, which is absent from Drosophila but conserved from fish to humans. Loss of HUSH subunits resulted in decreased H3K9me3 at both endogenous genomic loci and retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. PMID:26022416
Li, Xiaokai; Guo, Zilong; Lv, Yan; Cen, Xiang; Ding, Xipeng; Wu, Hua; Li, Xianghua; Huang, Jianping
2017-01-01
A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance. PMID:28686596
Korchagin, V I; Badaeva, T N; Tokarskaya, O N; Martirosyan, I A; Darevsky, I S; Ryskov, A P
2007-05-01
Populations of parthenogenetic lizards of the genus Darevskia consist of genetically identical animals, and represent a unique model for studying the molecular mechanisms underlying the variability and evolution of hypervariable DNA repeats. As unisexual lineages, parthenogenetic lizards are characterized by some level of genetic diversity at microsatellite loci. We cloned and sequenced a number of (GATA)n microsatellite loci of Darevskia unisexualis. PCR products from these loci were also sequenced and the degree of intraspecific polymorphism was assessed. Among the five (GATA)n loci analysed, two (Du215 and Du281) were polymorphic. Cross-species analysis of Du215 and Du281 indicate that the priming sites at the D. unisexualis loci are conserved in the bisexual parental species, D. raddei and D. valentini. Sequencing the PCR products amplified from Du215 and Du281 and from monomorphic Du323 showed that allelic differences at the polymorphic loci are caused by microsatellite mutations and by point mutations in the flanking regions. The haplotypes identified among the allelic variants of Du281 and among its orthologues in the parental species provide new evidence of the cross-species origin of D. unisexualis. To our knowledge, these data are the first to characterize the nucleotide sequences of allelic variants at microsatellite loci within parthenogenetic vertebrate animals.
Dissection of Host Susceptibility to Bacterial Infections and Its Toxins.
Nashef, Aysar; Agbaria, Mahmoud; Shusterman, Ariel; Lorè, Nicola Ivan; Bragonzi, Alessandra; Wiess, Ervin; Houri-Haddad, Yael; Iraqi, Fuad A
2017-01-01
Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.
Andersen, J C; Gwiazdowski, R A; Gdanetz, K; Gruwell, M E
2015-02-01
Armored scale insects and their primary bacterial endosymbionts show nearly identical patterns of co-diversification when viewed at the family level, though the persistence of these patterns at the species level has not been explored in this group. Therefore we investigated genealogical patterns of co-diversification near the species level between the primary endosymbiont Uzinura diaspidicola and its hosts in the Chionaspis pinifoliae-Chionaspis heterophyllae species complex. To do this we generated DNA sequence data from three endosymbiont loci (rspB, GroEL, and 16S) and analyzed each locus independently using statistical parsimony network analyses and as a concatenated dataset using Bayesian phylogenetic reconstructions. We found that for two endosymbiont loci, 16S and GroEL, sequences from U. diaspidicola were broadly associated with host species designations, while for rspB this pattern was less clear as C. heterophyllae (species S1) shared haplotypes with several other Chionaspis species. We then compared the topological congruence of the phylogenetic reconstructions generated from a concatenated dataset of endosymbiont loci (including all three loci, above) to that from a concatenated dataset of armored scale hosts, using published data from two nuclear loci (28S and EF1α) and one mitochondrial locus (COI-COII) from the armored scale hosts. We calculated whether the two topologies were congruent using the Shimodaira-Hasegawa test. We found no significant differences (P = 0.4892) between the topologies suggesting that, at least at this level of resolution, co-diversification of U. diaspidicola with its armored scale hosts also occurs near the species level. This is the first such study of co-speciation at the species level between U. diaspidicola and a group of armored scale insects.
Evolution of major histocompatibility complex class I and class II genes in the brown bear
2012-01-01
Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405
Evolution of major histocompatibility complex class I and class II genes in the brown bear.
Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek
2012-10-02
Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.
Identification of novel loci for the generation of reporter mice
Rebecchi, Monica; Levandis, Giovanna
2017-01-01
Abstract Deciphering the etiology of complex pathologies at molecular level requires longitudinal studies encompassing multiple biochemical pathways (apoptosis, proliferation, inflammation, oxidative stress). In vivo imaging of current reporter animals enabled the spatio-temporal analysis of specific molecular events, however, the lack of a multiplicity of loci for the generalized and regulated expression of the integrated transgenes hampers the creation of systems for the simultaneous analysis of more than a biochemical pathways at the time. We here developed and tested an in vivo-based methodology for the identification of multiple insertional loci suitable for the generation of reliable reporter mice. The validity of the methodology was tested with the generation of novel mice useful to report on inflammation and oxidative stress. PMID:27899606
Won, Sungho; Choi, Hosik; Park, Suyeon; Lee, Juyoung; Park, Changyi; Kwon, Sunghoon
2015-01-01
Owing to recent improvement of genotyping technology, large-scale genetic data can be utilized to identify disease susceptibility loci and this successful finding has substantially improved our understanding of complex diseases. However, in spite of these successes, most of the genetic effects for many complex diseases were found to be very small, which have been a big hurdle to build disease prediction model. Recently, many statistical methods based on penalized regressions have been proposed to tackle the so-called "large P and small N" problem. Penalized regressions including least absolute selection and shrinkage operator (LASSO) and ridge regression limit the space of parameters, and this constraint enables the estimation of effects for very large number of SNPs. Various extensions have been suggested, and, in this report, we compare their accuracy by applying them to several complex diseases. Our results show that penalized regressions are usually robust and provide better accuracy than the existing methods for at least diseases under consideration.
Convergence of genome-wide association and candidate gene studies for alcoholism.
Olfson, Emily; Bierut, Laura Jean
2012-12-01
Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported single nucleotide polymorphisms (SNPs) in candidate genes were examined in the Study of Addiction: Genetics and Environment (SAGE), a GWA study comparing alcohol-dependent and nondependent subjects. Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1, and rs4680 in COMT, are not replicated in SAGE (p > 0.05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p = 0.0052, OR = 1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls, and the lowest p-value of any SNP was 0.0006. We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African ancestry populations. Owing to the lack of coverage, we were unable to rule out the contribution of other variants, and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases. Copyright © 2012 by the Research Society on Alcoholism.
Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M
2011-01-01
Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012
Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M
2011-09-01
Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.
Phenotype and Tissue Expression as a Function of Genetic Risk in Polycystic Ovary Syndrome
Pau, Cindy T.; Mosbruger, Tim; Saxena, Richa; Welt, Corrine K.
2017-01-01
Genome-wide association studies and replication analyses have identified (n = 5) or replicated (n = 10) DNA variants associated with risk for polycystic ovary syndrome (PCOS) in European women. However, the causal gene and underlying mechanism for PCOS risk at these loci have not been determined. We hypothesized that analysis of phenotype, gene expression and metformin response as a function of genotype would identify candidate genes and pathways that could provide insight into the underlying mechanism for risk at these loci. To test the hypothesis, subjects with PCOS (n = 427) diagnosed according to the NIH criteria (< 9 menses per year and clinical or biochemical hyperandrogenism) and controls (n = 407) with extensive phenotyping were studied. A subset of subjects (n = 38) underwent a subcutaneous adipose tissue biopsy for RNA sequencing and were subsequently treated with metformin for 12 weeks with standardized outcomes measured. Data were analyzed according to genotype at PCOS risk loci and adjusted for the false discovery rate. A gene variant in the THADA locus was associated with response to metformin and metformin was a predicted upstream regulator at the same locus. Genotype at the FSHB locus was associated with LH levels. Genes near the PCOS risk loci demonstrated differences in expression as a function of genotype in adipose including BLK and NEIL2 (GATA4 locus), GLIPR1 and PHLDA1 (KRR1 locus). Based on the phenotypes, expression quantitative trait loci (eQTL), and upstream regulatory and pathway analyses we hypothesize that there are PCOS subtypes. FSHB, FHSR and LHR loci may influence PCOS risk based on their relationship to gonadotropin levels. The THADA, GATA4, ERBB4, SUMO1P1, KRR1 and RAB5B loci appear to confer risk through metabolic mechanisms. The IRF1, SUMO1P1 and KRR1 loci may confer PCOS risk in development. The TOX3 and GATA4 loci appear to be involved in inflammation and its consequences. The data suggest potential PCOS subtypes and point to the need for additional studies to replicate these findings and identify personalized diagnosis and treatment options for PCOS. PMID:28068351
GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer
Pharoah, Paul D. P.; Tsai, Ya-Yu; Ramus, Susan J.; Phelan, Catherine M.; Goode, Ellen L.; Lawrenson, Kate; Price, Melissa; Fridley, Brooke L.; Tyrer, Jonathan P.; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C.; Song, Honglin; Tessier, Daniel C.; Bacot, François; Vincent, Daniel; Cunningham, Julie M.; Dennis, Joe; Dicks, Ed; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M.; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brenton, James D.; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S.; Chang-Claude, Jenny; Chen, Y. Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S.; Coetzee, Gerhard; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K.; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne Krüger; Konecny, Gottfried E.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C.; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S.; van Altena, Anne M.; Berg, David Van Den; Vergote, Ignace; Vierkant, Robert A.; Vitonis, Allison F.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T.; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N.A.; Gayther, Simon A.; Schildkraut, Joellen M.; Sellers, Thomas A.
2013-01-01
Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer. PMID:23535730
GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer.
Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J; Phelan, Catherine M; Goode, Ellen L; Lawrenson, Kate; Buckley, Melissa; Fridley, Brooke L; Tyrer, Jonathan P; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C; Song, Honglin; Tessier, Daniel C; Bacot, François; Vincent, Daniel; Cunningham, Julie M; Dennis, Joe; Dicks, Ed; Aben, Katja K; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M; Baglietto, Laura; Bandera, Elisa V; Beckmann, Matthias W; Birrer, Michael J; Bloom, Greg; Bogdanova, Natalia; Brenton, James D; Brinton, Louise A; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S; Chang-Claude, Jenny; Chen, Y Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S; Coetzee, Gerhard; Cook, Linda S; Cramer, Daniel W; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B; Fasching, Peter A; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne Krüger; Konecny, Gottfried E; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Nakanishi, Toru; Narod, Steven A; Ness, Roberta B; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; van Altena, Anne M; van den Berg, David; Vergote, Ignace; Vierkant, Robert A; Vitonis, Allison F; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N A; Gayther, Simon A; Schildkraut, Joellen M; Sellers, Thomas A
2013-04-01
Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.
Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes
2018-01-01
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.
Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes
2018-01-01
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608
E-Index for Differentiating Complex Dynamic Traits
Qi, Jiandong; Sun, Jianfeng; Wang, Jianxin
2016-01-01
While it is a daunting challenge in current biology to understand how the underlying network of genes regulates complex dynamic traits, functional mapping, a tool for mapping quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs), has been applied in a variety of cases to tackle this challenge. Though useful and powerful, functional mapping performs well only when one or more model parameters are clearly responsible for the developmental trajectory, typically being a logistic curve. Moreover, it does not work when the curves are more complex than that, especially when they are not monotonic. To overcome this inadaptability, we therefore propose a mathematical-biological concept and measurement, E-index (earliness-index), which cumulatively measures the earliness degree to which a variable (or a dynamic trait) increases or decreases its value. Theoretical proofs and simulation studies show that E-index is more general than functional mapping and can be applied to any complex dynamic traits, including those with logistic curves and those with nonmonotonic curves. Meanwhile, E-index vector is proposed as well to capture more subtle differences of developmental patterns. PMID:27064292
The evolution of phenotypic integration: How directional selection reshapes covariation in mice
Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel
2017-01-01
Abstract Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. PMID:28685813
Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait
Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.
2003-01-01
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094
Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening
Lane, Andrew B.; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W.; Wittmann, Torsten; Heald, Rebecca
2015-01-01
Summary CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. PMID:26212133
Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice
USDA-ARS?s Scientific Manuscript database
A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...
Lo, Min-Tzu; Hinds, David A.; Tung, Joyce Y.; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B.; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J.; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E.; Stefansson, Kari; McEvoy, Linda K.; Dale, Anders M.; Andreassen, Ole A.; Chen, Chi-Hua
2017-01-01
Summary Personality is influenced by genetic and environmental factors1, and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N=123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N=5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit/hyperactivity disorder (ADHD), and between openness and schizophrenia/bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression/anxiety). PMID:27918536
Lo, Min-Tzu; Hinds, David A; Tung, Joyce Y; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E; Stefansson, Kari; McEvoy, Linda K; Dale, Anders M; Andreassen, Ole A; Chen, Chi-Hua
2017-01-01
Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit-hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
Preferential Mating in Symmetric Multilocus Systems: Limits for Multiallelism and for Many Loci
Raper, J.
1982-01-01
Models in which general forms of preferential mating have been superimposed on the framework of the symmetric heterozygosity selection regime have been examined previously with respect to the existence and local stability of a central polymorphic equilibrium. The results are now extended to produce the limiting form of the stability conditions in two cases: First, where the number of alleles per locus is assumed to be very large; second, where the number of loci affecting the character is very large. It is argued that some type of frequency dependence in the mating pattern must be included, and a particular case is examined in detail. It is shown that multiallelism is ambiguous in its effect on stability, while an increasing number of loci, at least under zero linkage, leads to a simple stability condition which is analogous to the one-locus heterosis principle. Assortative mating appears to be more likely to produce a stable central polymorphism under high levels of allelism than is sexual selection, but is relatively very much weaker than sexual or viability selection if the number of loci involved is large. PMID:17246061
Parmar, Drashti R; Mitra, Siuli; Bhadouriya, Snehalata; Rao, Tirupathi; Kunteepuram, Vaishnavi; Gaur, Ajay
2017-12-01
The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.
Pardiñas, Antonio F.; Holmans, Peter; Pocklington, Andrew J.; Escott-Price, Valentina; Ripke, Stephan; Carrera, Noa; Legge, Sophie E.; Bishop, Sophie; Cameron, Darren; Hamshere, Marian L.; Han, Jun; Hubbard, Leon; Lynham, Amy; Mantripragada, Kiran; Rees, Elliott; MacCabe, James H.; McCarroll, Steven A.; Baune, Bernhard T.; Breen, Gerome; Byrne, Enda M.; Dannlowski, Udo; Eley, Thalia C.; Hayward, Caroline; Martin, Nicholas G.; McIntosh, Andrew M.; Plomin, Robert; Porteous, David J.; Wray, Naomi R.; Caballero, Armando; Geschwind, Daniel H.; Huckins, Laura M.; Ruderfer, Douglas M.; Santiago, Enrique; Sklar, Pamela; Stahl, Eli A.; Won, Hyejung; Agerbo, Esben; Als, Thomas D.; Andreassen, Ole A.; Bækvad-Hansen, Marie; Mortensen, Preben Bo; Pedersen, Carsten Bøcker; Børglum, Anders D.; Bybjerg-Grauholm, Jonas; Djurovic, Srdjan; Durmishi, Naser; Pedersen, Marianne Giørtz; Golimbet, Vera; Grove, Jakob; Hougaard, David M.; Mattheisen, Manuel; Molden, Espen; Mors, Ole; Nordentoft, Merete; Pejovic-Milovancevic, Milica; Sigurdsson, Engilbert; Silagadze, Teimuraz; Hansen, Christine Søholm; Stefansson, Kari; Stefansson, Hreinn; Steinberg, Stacy; Tosato, Sarah; Werge, Thomas; Collier, David A.; Rujescu, Dan; Kirov, George; Owen, Michael J.; O’Donovan, Michael C.; Walters, James T. R.
2018-01-01
Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide insights. We report a new genome-wide association study of schizophrenia (11,260 cases and 24,542 controls), and through meta-analysis with existing data we identify 50 novel associated loci and 145 loci in total. Through integrating genomic fine-mapping with brain expression and chromosome conformation data, we identify candidate causal genes within 33 loci. We also show for the first time that the common variant association signal is highly enriched among genes that are under strong selective pressures. These findings provide new insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation-intolerant genes and suggest a mechanism by which common risk variants persist in the population. PMID:29483656
Qiu, Tian-Xia; Teo, Ee-Chon; Lee, Kim-Kheng; Ng, Hong-Wan; Yang, Kai
2004-04-01
The purpose of this study was to determine the locations and loci of instantaneous axes of rotation (IARs) of the T10-T11 motion segment in flexion and extension. An anatomically accurate three-dimensional model of thoracic T10-T11 functional spinal unit (FSU) was developed and validated against published experimental data under flexion, extension, lateral bending, and axial rotation loading configurations. The validated model was exercised under six load configurations that produced motions only in the sagittal plane to characterize the loci of IARs for flexion and extension. The IARs for both flexion and extension under these six load types were directly below the geometric center of the moving vertebra, and all the loci of IARs were tracked superoanteriorly for flexion and inferoposteriorly for extension with rotation. These findings may offer an insight to better understanding of the kinematics of the human thoracic spine and provide clinically relevant information for the evaluation of spinal stability and implant device functionality.
Breaux, Breanna; Hunter, Margaret; Cruz-Schneider, Maria Paula; Sena, Leonardo; Bonde, Robert K.; Criscitiello, Michael F.
2018-01-01
The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA and TRB loci between T. m. latirostrisand human. Increased genomic locus complexity correlated to increased locus synteny. We also identified evidence for a VHD pseudogene for the first time in a eutherian mammal. These findings emphasize the value of including species within this basal eutherian radiation in comparative studies.
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.
Andlauer, Till F M; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A; Loleit, Verena; Luessi, Felix; Meuth, Sven G; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram
2016-06-01
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur; Morris, Andrew P; Dina, Christian; Welch, Ryan P; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S; Thorleifsson, Gudmar; McCulloch, Laura J; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J; Raychaudhuri, Soumya; McCarroll, Steve A; Langenberg, Claudia; Hofmann, Oliver M; Dupuis, Josée; Qi, Lu; Segrè, Ayellet V; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L; Boström, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noisël P; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn; Couper, David J; Crawford, Gabe; Doney, Alex S F; Elliott, Katherine S; Elliott, Amanda L; Erdos, Michael R; Fox, Caroline S; Franklin, Christopher S; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U; Johnson, Paul R V; Jørgensen, Torben; Kao, Wen H L; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Payne, Felicity; Perry, John R B; Petersen, Ann-Kristin; Platou, Carl; Proença, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N William; Robertson, Neil R; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J; Saxena, Richa; Shields, Beverley M; Shrader, Peter; Sigurdsson, Gunnar; Sparsø, Thomas; Strassburger, Klaus; Stringham, Heather M; Sun, Qi; Swift, Amy J; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M; van Haeften, Timon W; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V; Walters, G Bragi; Weedon, Michael N; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N; Cauchi, Stephane; Collins, Francis S; Gloyn, Anna L; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A; Hitman, Graham A; Hofman, Albert; Hunter, David J; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L; Morris, Andrew D; Palmer, Colin N A; Pramstaller, Peter P; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J; Watanabe, Richard M; Abecasis, Gonçalo R; Boehm, Bernhard O; Campbell, Harry; Daly, Mark J; Hattersley, Andrew T; Hu, Frank B; Meigs, James B; Pankow, James S; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Inês; Florez, Jose C; Frayling, Timothy M; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I
2011-01-01
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits. PMID:20581827
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
Andlauer, Till F. M.; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A.; Loleit, Verena; Luessi, Felix; Meuth, Sven G.; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H.; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K.; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O.; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B.; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M.; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M.; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram
2016-01-01
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis. PMID:27386562
Breaux, Breanna; Hunter, Margaret E; Cruz-Schneider, Maria Paula; Sena, Leonardo; Bonde, Robert K; Criscitiello, Michael F
2018-08-01
The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA and TRB loci between T. m. latirostris and human. Increased genomic locus complexity correlated to increased locus synteny. We also identified evidence for a VHD pseudogene for the first time in a eutherian mammal. These findings emphasize the value of including species within this basal eutherian radiation in comparative studies. Copyright © 2018. Published by Elsevier Ltd.
Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C
2003-08-01
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.
Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C
2003-01-01
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations. PMID:12930748
Kwon, Matt Hyoung; Callaway, Heather; Zhong, Jim; Yedvobnick, Barry
2013-05-20
Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.
Pervasive antagonistic interactions among hybrid incompatibility loci
Josway, Sarah
2017-01-01
Species barriers, expressed as hybrid inviability and sterility, are often due to epistatic interactions between divergent loci from two lineages. Theoretical models indicate that the strength, direction, and complexity of these genetic interactions can strongly affect the expression of interspecific reproductive isolation and the rates at which new species evolve. Nonetheless, empirical analyses have not quantified the frequency with which loci are involved in interactions affecting hybrid fitness, and whether these loci predominantly interact synergistically or antagonistically, or preferentially involve loci that have strong individual effects on hybrid fitness. We systematically examined the prevalence of interactions between pairs of short chromosomal regions from one species (Solanum habrochaites) co-introgressed into a heterospecific genetic background (Solanum lycopersicum), using lines containing pairwise combinations of 15 chromosomal segments from S. habrochaites in the background of S. lycopersicum (i.e., 95 double introgression lines). We compared the strength of hybrid incompatibility (either pollen sterility or seed sterility) expressed in each double introgression line to the expected additive effect of its two component single introgressions. We found that epistasis was common among co-introgressed regions. Interactions for hybrid dysfunction were substantially more prevalent in pollen fertility compared to seed fertility phenotypes, and were overwhelmingly antagonistic (i.e., double hybrids were less unfit than expected from additive single introgression effects). This pervasive antagonism is expected to attenuate the rate at which hybrid infertility accumulates among lineages over time (i.e., giving diminishing returns as more reproductive isolation loci accumulate), as well as decouple patterns of accumulation of sterility loci and hybrid incompatibility phenotypes. This decoupling effect might explain observed differences between pollen and seed fertility in their fit to theoretical predictions of the accumulation of isolation loci, including the ‘snowball’ effect. PMID:28604770
Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria
2017-02-01
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.
Julià, Antonio; López-Longo, Francisco Javier; Pérez Venegas, José J; Bonàs-Guarch, Silvia; Olivé, Àlex; Andreu, José Luís; Aguirre-Zamorano, Mª Ángeles; Vela, Paloma; Nolla, Joan M; de la Fuente, José Luís Marenco; Zea, Antonio; Pego-Reigosa, José María; Freire, Mercedes; Díez, Elvira; Rodríguez-Almaraz, Esther; Carreira, Patricia; Blanco, Ricardo; Taboada, Víctor Martínez; López-Lasanta, María; Corbeto, Mireia López; Mercader, Josep M; Torrents, David; Absher, Devin; Marsal, Sara; Fernández-Nebro, Antonio
2018-05-30
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10 - 8 ): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10 - 6 ), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10 - 5 ), interleukin-4 signaling (p = 3.97 × 10 - 5 ) and cell surface interactions at the vascular wall (p = 4.63 × 10 - 5 ). Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.
Genetic Mapping of Fixed Phenotypes: Disease Frequency as a Breed Characteristic
Jones, Paul; Martin, Alan; Ostrander, Elaine A.; Lark, Karl G.
2009-01-01
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pacreatitis. PMID:19321632
Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic.
Chase, Kevin; Jones, Paul; Martin, Alan; Ostrander, Elaine A; Lark, Karl G
2009-01-01
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.
Genetic diversity of the human immunoglobulin heavy chain VH region.
Li, Honghua; Cui, Xiangfeng; Pramanik, Sreemanta; Chimge, Nyam-Osor
2002-12-01
The human immunoglobulin heavy chain VH region is one of the most complex regions in the human genome. The high level of diversity of this region has been shown by a number of studies. However, because of the limitations of the conventional experimental methods, it has been difficult to learn the extent of the diversity and the underlying mechanisms. This review describes a number of new genetic approaches developed in the authors' laboratory. By using these approaches, significant progress has been made in assigning different VH sequences to their respective loci, in learning the diversity of gene segment number and composition among the VH haplotypes, and in learning VH gene segment organization in individual haplotypes. Information obtained toward this direction could help in understanding the mechanisms underlying VH region diversity and the biological impact of the VH region diversity.
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-01-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580
Chenu, Karine; Chapman, Scott C.; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L.
2009-01-01
Under drought, substantial genotype–environment (G × E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this “gene-to-phenotype” gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G × E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such “leafy” genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G × E interactions for complex traits such as drought tolerance. PMID:19786622
2013-01-01
Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems. PMID:23734729
Sun, Han; Zeng, Jun; Cao, Zhendong; Li, Yan; Qian, Weiqiang
2015-01-01
Active DNA demethylation plays crucial roles in the regulation of gene expression in both plants and animals. In Arabidopsis thaliana, active DNA demethylation is initiated by the ROS1 subfamily of 5-methylcytosine-specific DNA glycosylases via a base excision repair mechanism. Recently, IDM1 and IDM2 were shown to be required for the recruitment of ROS1 to some of its target loci. However, the mechanism(s) by which IDM1 is targeted to specific genomic loci remains to be determined. Affinity purification of IDM1- and IDM2- associating proteins demonstrated that IDM1 and IDM2 copurify together with two novel components, methyl-CpG-binding domain protein 7 (MBD7) and IDM2-like protein 1 (IDL1). IDL1 encodes an α-crystallin domain protein that shows high sequence similarity with IDM2. MBD7 interacts with IDM2 and IDL1 in vitro and in vivo and they form a protein complex associating with IDM1 in vivo. MBD7 directly binds to the target loci and is required for the H3K18 and H3K23 acetylation in planta. MBD7 dysfunction causes DNA hypermethylation and silencing of reporter genes and a subset of endogenous genes. Our results suggest that a histone acetyltransferase complex functions in active DNA demethylation and in suppression of gene silencing at some loci in Arabidopsis. PMID:25933434
A phylogenetic delimitation of the "Sphagnum subsecundum complex" (Sphagnaceae, Bryophyta).
Shaw, A Jonathan; Boles, Sandra; Shaw, Blanka
2008-06-01
A seemingly obvious but sometimes overlooked premise of any evolutionary analysis is delineating the group of taxa under study. This is especially problematic in some bryophyte groups because of morphological simplicity and convergence. This research applies information from nucleotide sequences for eight plastid and nuclear loci to delineate a group of northern hemisphere peat moss species, the so-called Sphagnum subsecundum complex, which includes species known to be gametophytically haploid or diploid (i.e., sporophytically diploid-tetraploid). Despite the fact that S. subsecundum and several species in the complex have been attributed disjunct ranges that include all major continents, phylogenetic analyses suggest that the group is actually restricted to Europe and eastern North America. Plants from western North America, from California to Alaska, which are morphologically similar to species of the S. subsecundum complex in eastern N. America and Europe, actually belong to a different deep clade within Sphagnum section Subsecunda. One species often considered part of the S. subsecundum complex, S. contortum, likely has a reticulate history involving species in the two deepest clades within section Subsecunda. Nucleotide sequences have a strong geographic structure across the section Subsecunda, but shallow tip clades suggest repeated long-distance dispersal in the section as well.
Crystal structure of the Csm3-Csm4 subcomplex in the type III-A CRISPR-Cas interference complex.
Numata, Tomoyuki; Inanaga, Hideko; Sato, Chikara; Osawa, Takuo
2015-01-30
Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci play a pivotal role in the prokaryotic host defense system against invading genetic materials. The CRISPR loci are transcribed to produce CRISPR RNAs (crRNAs), which form interference complexes with CRISPR-associated (Cas) proteins to target the invading nucleic acid for degradation. The interference complex of the type III-A CRISPR-Cas system is composed of five Cas proteins (Csm1-Csm5) and a crRNA, and targets invading DNA. Here, we show that the Csm1, Csm3, and Csm4 proteins from Methanocaldococcus jannaschii form a stable subcomplex. We also report the crystal structure of the M. jannaschii Csm3-Csm4 subcomplex at 3.1Å resolution. The complex structure revealed the presence of a basic concave surface around their interface, suggesting the RNA and/or DNA binding ability of the complex. A gel retardation analysis showed that the Csm3-Csm4 complex binds single-stranded RNA in a non-sequence-specific manner. Csm4 structurally resembles Cmr3, a component of the type III-B CRISPR-Cas interference complex. Based on bioinformatics, we constructed a model structure of the Csm1-Csm4-Csm3 ternary complex, which provides insights into its role in the Csm interference complex. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...
The IQ Quantitative Trait Loci Project: A Critique.
ERIC Educational Resources Information Center
King, David
1998-01-01
Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)
Chobanu, D; Rudykh, I A; Riabinina, N L; Grechko, V V; Kramerov, D A; Darevskiĭ, I S
2002-01-01
The genetic relatedness of several bisexual and of four unisexual "Lacerta saxicola complex" lizards was studied, using monomer sequences of the complex-specific CLsat tandem repeats and anonymous RAPD markers. Genomes of parthenospecies were shown to include different satellite monomers. The structure of each such monomer is specific for a certain pair of bisexual species. This fact might be interpreted in favor of co-dominant inheritance of these markers in bisexual species hybridogenesis. This idea is supported by the results obtained with RAPD markers; i.e., unisexual species genomes include only the loci characteristic of certain bisexual species. At the same time, in neither case parthenospecies possess specific, autoapomorphic loci that were not present in this or that bisexual species.
Gosset, Célia C; Do Nascimento, Joana; Augé, Marie-Thérèse; Bierne, Nicolas
2014-06-01
Genome scans of population differentiation identify candidate loci for adaptation but provide little information on how selection has influenced the genetic structure of these loci. Following a genome scan, we investigated the nature of the selection responsible for the outlying differentiation observed between populations of the marine mussel Mytilus edulis at a leucine/arginine polymorphism (L31R) in the antimicrobial peptide MGD2. We analysed DNA sequence polymorphisms, allele frequencies and population differentiation of polymorphisms closely linked to L31R, and pairwise and third-order linkage disequilibria. An outlying level of population differentiation was observed at L31R only, while no departure from panmixia was observed at linked loci surrounding L31R, as in most of the genome. Selection therefore seems to affect L31R directly. Three hypotheses can explain the lack of differentiation in the chromosomal region close to L31R: (i) hitchhiking has occurred but migration and recombination subsequently erased the signal, (ii) selection was weak enough and recombination strong enough to limit the hitchhiking effect to a very small chromosomal region or (iii) selection acted on a pre-existing polymorphism (i.e. standing variation) at linkage equilibrium with its background. Linkage equilibrium was observed between L31R and linked polymorphisms in every population analysed, as expected under the three hypotheses. However, linkage disequilibrium was observed in some populations between pairs of loci located upstream and downstream to L31R, generating a complex pattern of third-order linkage disequilibria which is best explained by the hypothesis of selection on a pre-existing polymorphism. We hypothesise that selection could be either balanced, maintaining alleles at different frequencies depending on the pathogen community encountered locally by mussels, or intermittent, resulting in sporadic fluctuations in allele frequency. © 2014 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...
USDA-ARS?s Scientific Manuscript database
In rice (Oryza sativa L.), end-use/cooking quality is vital for producers and millions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors. Deciphering the complex genetic architecture associated with grain quality, will provide vital informati...
Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.
Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W
2002-01-01
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055
Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)
Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao
2016-01-01
Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793
Yap, John Stephen; Fan, Jianqing; Wu, Rongling
2009-12-01
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
Match probabilities in a finite, subdivided population
Malaspinas, Anna-Sapfo; Slatkin, Montgomery; Song, Yun S.
2011-01-01
We generalize a recently introduced graphical framework to compute the probability that haplotypes or genotypes of two individuals drawn from a finite, subdivided population match. As in the previous work, we assume an infinite-alleles model. We focus on the case of a population divided into two subpopulations, but the underlying framework can be applied to a general model of population subdivision. We examine the effect of population subdivision on the match probabilities and the accuracy of the product rule which approximates multi-locus match probabilities as a product of one-locus match probabilities. We quantify the deviation from predictions of the product rule by R, the ratio of the multi-locus match probability to the product of the one-locus match probabilities.We carry out the computation for two loci and find that ignoring subdivision can lead to underestimation of the match probabilities if the population under consideration actually has subdivision structure and the individuals originate from the same subpopulation. On the other hand, under a given model of population subdivision, we find that the ratio R for two loci is only slightly greater than 1 for a large range of symmetric and asymmetric migration rates. Keeping in mind that the infinite-alleles model is not the appropriate mutation model for STR loci, we conclude that, for two loci and biologically reasonable parameter values, population subdivision may lead to results that disfavor innocent suspects because of an increase in identity-by-descent in finite populations. On the other hand, for the same range of parameters, population subdivision does not lead to a substantial increase in linkage disequilibrium between loci. Those results are consistent with established practice. PMID:21266180
2012-01-01
Background Hybridization between closely related wild and domestic species is of great concern because it can alter the evolutionary integrity of the affected populations. The high allelic variability of Major Histocompatibility Complex (MHC) loci usually excludes them from being used in studies to detect hybridization events. However, if a) the parental species don’t share alleles, and b) one of the parental species possesses an exceptionally low number of alleles (to facilitate analysis), then even MHC loci have the potential to detect hybrids. Results By genotyping the exon2 of the MHC class II DRB1 locus, we were able to detect hybridization between domestic goats (Capra hircus) and free-ranging Iberian ibex (Capra pyrenaica hispanica) by molecular means. Conclusions This is the first documentation of a Capra pyrenaica × Capra hircus hybridization, which presented us the opportunity to test the applicability of MHC loci as new, simple, cost-effective, and time-saving approach to detect hybridization between wild species and their domesticated relatives, thus adding value to MHC genes role in animal conservation and management. PMID:23006678
Boisson, Bertrand; Laplantine, Emmanuel; Dobbs, Kerry; Cobat, Aurélie; Tarantino, Nadine; Hazen, Melissa; Lidov, Hart G.W.; Hopkins, Gregory; Du, Likun; Belkadi, Aziz; Chrabieh, Maya; Itan, Yuval; Picard, Capucine; Fournet, Jean-Christophe; Eibel, Hermann; Tsitsikov, Erdyni; Pai, Sung-Yun; Abel, Laurent; Al-Herz, Waleed; Israel, Alain
2015-01-01
Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC. The missense allele (L72P, in the PUB domain) is at least severely hypomorphic, as it impairs HOIP expression and destabilizes the whole LUBAC complex. Linear ubiquitination and NF-κB activation are impaired in the patient’s fibroblasts stimulated by IL-1β or TNF. In contrast, the patient’s monocytes respond to IL-1β more vigorously than control monocytes. However, the activation and differentiation of the patient’s B cells are impaired in response to CD40 engagement. These cellular and clinical phenotypes largely overlap those of HOIL-1-deficient patients. Clinical differences between HOIL-1- and HOIP-mutated patients may result from differences between the mutations, the loci, or other factors. Our findings show that human HOIP is essential for the assembly and function of LUBAC and for various processes governing inflammation and immunity in both hematopoietic and nonhematopoietic cells. PMID:26008899
Betrán, E; Quezada-Díaz, J E; Ruiz, A; Santos, M; Fontdevila, A
1995-02-01
Chromosome polymorphism in Drosophila buzzatii is under selection but the genes responsible for the effect of the inversions of fitness are unknown. On the other hand, there is evidence for selection on several allozyme loci but the presence of paracentric inversions on the second chromosome, where most of the polymorphic loci are located, complicates the interpretation. Studies of the associations between allozymes and inversions are thus necessary to help understand the effect of selection at both the chromosomal and allozymic level. Until now this kind of information has only been available in D. buzzatii for two loci, Est-1 and Est-2, in Australian populations. Here we describe the genetic constitution of two Old World populations, Carboneras and Colera. Emphasis has been placed on the analysis of the linkage disequilibria between the second chromosome arrangements and three allozyme loci, Est-2, Pept-2 and Aldox, located on this chromosome. In addition, the recombination frequencies between the loci, and between the loci and the inversion breakpoints, have been estimated and a genetic map of the three loci has been produced. The two populations differ in allele and arrangement frequencies, as well as in the pattern of one-locus disequilibria. Est-2 and Aldox are associated with the second chromosome arrangements in both populations. On the other hand, Pept-2 is associated with the inversions in Colera but not in Carboneras. The gametic associations among the three loci are discussed taking into account the position of these loci on the chromosome map and the lack of recombination in the heterokaryotypes.
Simon, Matthieu; Durand, Stéphanie; Pluta, Natacha; Gobron, Nicolas; Botran, Lucy; Ricou, Anthony; Camilleri, Christine; Budar, Françoise
2016-07-01
Species differentiation and the underlying genetics of reproductive isolation are central topics in evolutionary biology. Hybrid sterility is one kind of reproductive barrier that can lead to differentiation between species. Here, we analyze the complex genetic basis of the intraspecific hybrid male sterility that occurs in the offspring of two distant natural strains of Arabidopsis thaliana, Shahdara and Mr-0, with Shahdara as the female parent. Using both classical and quantitative genetic approaches as well as cytological observation of pollen viability, we demonstrate that this particular hybrid sterility results from two causes of pollen mortality. First, the Shahdara cytoplasm induces gametophytic cytoplasmic male sterility (CMS) controlled by several nuclear loci. Second, several segregation distorters leading to allele-specific pollen abortion (pollen killers) operate in hybrids with either cytoplasm. The complete sterility of the hybrid with the Shahdara cytoplasm results from the genetic linkage of the two causes of pollen mortality, i.e., CMS nuclear determinants and pollen killers. Furthermore, natural variation at these loci in A. thaliana is associated with different male-sterility phenotypes in intraspecific hybrids. Our results suggest that the genomic conflicts that underlie segregation distorters and CMS can concurrently lead to reproductive barriers between distant strains within a species. This study provides a new framework for identifying molecular mechanisms and the evolutionary history of loci that contribute to reproductive isolation, and possibly to speciation. It also suggests that two types of genomic conflicts, CMS and segregation distorters, may coevolve in natural populations. Copyright © 2016 by the Genetics Society of America.
High-precision genetic mapping of behavioral traits in the diversity outbred mouse population
Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J
2013-01-01
Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259
Devi, Sundru Manjulata; Halami, Prakash M
2017-10-13
In the present study, 14 different plantaricin-encoding genes of pln loci were studied and compared to available sequences from public domain database of probiotic Lactobacillus plantarum strains. Based upon the presence and absence of selected genes, pln locus was grouped into eight clusters. Further, quantitative real-time PCR (qRT-PCR) analysis for seven genes has discriminated the complex pln locus into five types which includes WCFS1 (in Lactobacillus plantarum subsp. plantarum MCC 2976 and MCC 2974 and Lactobacillus paraplantarum MCC 2978), closely related to J51 (in Lb. paraplantarum MCC 2973 and MCC 2977), J23 (in Lb. plantarum MTCC 5422), NC8 (in Lb. paraplantarum MTCC 9483), and a new E1 type (in Lb. plantarum subsp. plantarum E1). It was observed that the plnA, EF, NC8βα, NC81F, NC8HK, and G were expressed in E1 strain. Further, southern hybridization confirmed the chromosome-encoded plantaricin in Lb. plantarum group (LPG) strains. Several PCR assays and DNA sequence analysis of the regions amplified in pln loci of E1 isolate suggested a hybrid variant of NC8 and J51 plantaritypes. This indicates the wide distribution of plantaricin with remarkable variation, diversity, and plasticity among the LPG strains of vegetable origin. Further, the selected strains were able to reduce the growth of Kocuria rhizophila ATCC 9341 by 40-54% within 6 h of co-incubation under in vitro pathogen exclusion assay. These isolates also possessed cholesterol-lowering and antioxidant activity suggesting their application in the development of functional foods.
Yamaoka, Kiyoshi; Takakura, Yoshinobu
2004-12-01
An attempt has been made to review the nonlinearities in the disposition in vitro, in situ, in loci and in vivo mainly from a theoretical point of view. Parallel Michaelis-Menten and linear (first-order) eliminations are often observed in the cellular uptake, metabolism and efflux of drugs. The well-stirred and parallel-tube models are mainly adopted under steady-state conditions in perfusion experiments, whereas distribution, tank-in-series and dispersion models are often used under nonsteady-state conditions with a pulse input. The analysis of the nonlinear local disposition in loci is reviewed from two points of view, namely an indirect method involving physiologically based pharmacokinetics (PBPK) and a direct (two or three samplings) method using live animals. The nonlinear global pharmacokinetics in vivo is reviewed with regard to absorption, elimination (metabolism and excretion) and distribution.
Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening.
Lane, Andrew B; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W; Wittmann, Torsten; Heald, Rebecca
2015-08-10
CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. Copyright © 2015 Elsevier Inc. All rights reserved.
Multiple Loci are associated with dilated cardiomyopathy in Irish wolfhounds.
Philipp, Ute; Vollmar, Andrea; Häggström, Jens; Thomas, Anne; Distl, Ottmar
2012-01-01
Dilated cardiomyopathy (DCM) is a highly prevalent and often lethal disease in Irish wolfhounds. Complex segregation analysis indicated different loci involved in pathogenesis. Linear fixed and mixed models were used for the genome-wide association study. Using 106 DCM cases and 84 controls we identified one SNP significantly associated with DCM on CFA37 and five SNPs suggestively associated with DCM on CFA1, 10, 15, 21 and 17. On CFA37 MOGAT1 and ACSL3 two enzymes of the lipid metabolism were located near the identified SNP.
Multiple Loci Are Associated with Dilated Cardiomyopathy in Irish Wolfhounds
Philipp, Ute; Vollmar, Andrea; Häggström, Jens; Thomas, Anne; Distl, Ottmar
2012-01-01
Dilated cardiomyopathy (DCM) is a highly prevalent and often lethal disease in Irish wolfhounds. Complex segregation analysis indicated different loci involved in pathogenesis. Linear fixed and mixed models were used for the genome-wide association study. Using 106 DCM cases and 84 controls we identified one SNP significantly associated with DCM on CFA37 and five SNPs suggestively associated with DCM on CFA1, 10, 15, 21 and 17. On CFA37 MOGAT1 and ACSL3 two enzymes of the lipid metabolism were located near the identified SNP. PMID:22761652
Establishing the role of rare coding variants in known Parkinson's disease risk loci.
Jansen, Iris E; Gibbs, J Raphael; Nalls, Mike A; Price, T Ryan; Lubbe, Steven; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Williams, Nigel M; Brice, Alexis; Hardy, John; Wood, Nicholas W; Morris, Huw R; Gasser, Thomas; Singleton, Andrew B; Heutink, Peter; Sharma, Manu
2017-11-01
Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks. Copyright © 2017 Elsevier Inc. All rights reserved.
Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.
Adriaens, M E; Bezzina, C R
2018-06-22
Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
Tromp, Gerard; Kuivaniemi, Helena; Gretarsdottir, Solveig; Baas, Annette F.; Giusti, Betti; Strauss, Ewa; van‘t Hof, Femke N.G.; Webb, Thomas R.; Erdman, Robert; Ritchie, Marylyn D.; Elmore, James R.; Verma, Anurag; Pendergrass, Sarah; Kullo, Iftikhar J.; Ye, Zi; Peissig, Peggy L.; Gottesman, Omri; Verma, Shefali S.; Malinowski, Jennifer; Rasmussen-Torvik, Laura J.; Borthwick, Kenneth M.; Smelser, Diane T.; Crosslin, David R.; de Andrade, Mariza; Ryer, Evan J.; McCarty, Catherine A.; Böttinger, Erwin P.; Pacheco, Jennifer A.; Crawford, Dana C.; Carrell, David S.; Gerhard, Glenn S.; Franklin, David P.; Carey, David J.; Phillips, Victoria L.; Williams, Michael J.A.; Wei, Wenhua; Blair, Ross; Hill, Andrew A.; Vasudevan, Thodor M.; Lewis, David R.; Thomson, Ian A.; Krysa, Jo; Hill, Geraldine B.; Roake, Justin; Merriman, Tony R.; Oszkinis, Grzegorz; Galora, Silvia; Saracini, Claudia; Abbate, Rosanna; Pulli, Raffaele; Pratesi, Carlo; Saratzis, Athanasios; Verissimo, Ana R.; Bumpstead, Suzannah; Badger, Stephen A.; Clough, Rachel E.; Cockerill, Gillian; Hafez, Hany; Scott, D. Julian A.; Futers, T. Simon; Romaine, Simon P.R.; Bridge, Katherine; Griffin, Kathryn J.; Bailey, Marc A.; Smith, Alberto; Thompson, Matthew M.; van Bockxmeer, Frank M.; Matthiasson, Stefan E.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Blankensteijn, Jan D.; Teijink, Joep A.W.; Wijmenga, Cisca; de Graaf, Jacqueline; Kiemeney, Lambertus A.; Lindholt, Jes S.; Hughes, Anne; Bradley, Declan T.; Stirrups, Kathleen; Golledge, Jonathan; Norman, Paul E.; Powell, Janet T.; Humphries, Steve E.; Hamby, Stephen E.; Goodall, Alison H.; Nelson, Christopher P.; Sakalihasan, Natzi; Courtois, Audrey; Ferrell, Robert E.; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Eicher, John D.; Johnson, Andrew D.; Betsholtz, Christer; Ruusalepp, Arno; Franzén, Oscar; Schadt, Eric E.; Björkegren, Johan L.M.; Lipovich, Leonard; Drolet, Anne M.; Verhoeven, Eric L.; Zeebregts, Clark J.; Geelkerken, Robert H.; van Sambeek, Marc R.; van Sterkenburg, Steven M.; de Vries, Jean-Paul; Stefansson, Kari; Thompson, John R.; de Bakker, Paul I.W.; Deloukas, Panos; Sayers, Robert D.; Harrison, Seamus C.; van Rij, Andre M.; Samani, Nilesh J.
2017-01-01
Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies. Methods and Results: Through a meta-analysis of 6 genome-wide association study data sets and a validation study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease. PMID:27899403
Association Mapping of Main Tomato Fruit Sugars and Organic Acids
Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing
2016-01-01
Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019
Association Mapping of Main Tomato Fruit Sugars and Organic Acids.
Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing
2016-01-01
Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.
How does epistasis influence the response to selection?
Barton, N H
2017-01-01
Much of quantitative genetics is based on the ‘infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. PMID:27901509
How does epistasis influence the response to selection?
Barton, N H
2017-01-01
Much of quantitative genetics is based on the 'infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4N e by the 'drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large N e s, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects.
Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice.
Liu, Fengxia; Xu, Wenying; Song, Qian; Tan, Lubin; Liu, Jiayong; Zhu, Zuofeng; Fu, Yongcai; Su, Zhen; Sun, Chuanqing
2013-05-01
Many important agronomic traits, including cold stress resistance, are complex and controlled by quantitative trait loci (QTLs). Isolation of these QTLs will greatly benefit the agricultural industry but it is a challenging task. This study explored an integrated strategy by combining microarray with QTL-mapping in order to identify cold-tolerant QTLs from a cold-tolerant variety IL112 at early-seedling stage. All the early seedlings of IL112 survived normally for 9 d at 4-5°C, while Guichao2 (GC2), an indica cultivar, died after 4 d under the same conditions. Using the F2:3 population derived from the progeny of GC2 and IL112, we identified seven QTLs for cold tolerance. Furthermore, we performed Affymetrix rice whole-genome array hybridization and obtained the expression profiles of IL112 and GC2 under both low-temperature and normal conditions. Four genes were selected as cold QTL-related candidates, based on microarray data mining and QTL-mapping. One candidate gene, LOC_Os07g22494, was shown to be highly associated with cold tolerance in a number of rice varieties and in the F2:3 population, and its overexpression transgenic rice plants displayed strong tolerance to low temperature at early-seedling stage. The results indicated that overexpression of this gene (LOC_Os07g22494) could increase cold tolerance in rice seedlings. Therefore, this study provides a promising strategy for identifying candidate genes in defined QTL regions.
Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B
2016-07-07
Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci. Copyright © 2016 American Society of Human Genetics. All rights reserved.
Skogen, Krissa A; Hilpman, Evan T; Todd, Sadie L; Fant, Jeremie B
2012-08-01
Microsatellite markers were developed in the annual herb, Oenothera harringtonii, to investigate patterns of genetic diversity, gene flow, and parentage within and among populations of this Colorado endemic. Ten polymorphic loci were identified in O. harringtonii and tested in four populations sampled across the range of the species. These loci contained trinucleotide repeats with 7-29 alleles per locus. Nine of the 10 loci also amplified in O. caespitosa subsp. macroglottis, O. caespitosa subsp. marginata, and O. caespitosa subsp. navajoensis. In addition, we optimized three markers developed for O. biennis and provide reports of their effectiveness in all four taxa. These results indicate the utility of these markers in O. harringtonii for future studies of genetic structure, gene flow, and parentage as well as their applicability in other members of the O. caespitosa species complex.
Fernando, Michelle M A; Freudenberg, Jan; Lee, Annette; Morris, David Lester; Boteva, Lora; Rhodes, Benjamin; Gonzalez-Escribano, María Francisca; Lopez-Nevot, Miguel Angel; Navarra, Sandra V; Gregersen, Peter K; Martin, Javier; Vyse, Timothy J
2012-01-01
Objectives Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype. Methods A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined. Results Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon. Conclusion These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis. PMID:22233601
Flowering time control: another window to the connection between antisense RNA and chromatin.
Ietswaart, Robert; Wu, Zhe; Dean, Caroline
2012-09-01
A high proportion of all eukaryotic genes express antisense RNA (asRNA), which accumulates to varying degrees at different loci. Whether there is a general function for asRNA is unknown, but its widespread occurrence and frequent regulation by stress suggest an important role. The best-characterized plant gene exhibiting a complex antisense transcript pattern is the Arabidopsis floral regulator FLOWERING LOCUS C (FLC). Changes occur in the accumulation, splicing, and polyadenylation of this antisense transcript, termed COOLAIR, in different environments and genotypes. These changes are associated with altered chromatin regulation and differential FLC expression, provoking mechanistic comparisons with many well-studied loci in yeast and mammals. Detailed analysis of these specific examples may shed light on the complex interplay between asRNA and chromatin modifications in different genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward; Grallert, Harald; Glunk, Viktoria; Berulava, Tea; Lee, Heekyoung; Oskolkov, Nikolay; Fadista, Joao; Ehlers, Kerstin; Wahl, Simone; Hoffmann, Christoph; Qian, Kun; Rönn, Tina; Riess, Helene; Müller-Nurasyid, Martina; Bretschneider, Nancy; Schroeder, Timm; Skurk, Thomas; Horsthemke, Bernhard; Spieler, Derek; Klingenspor, Martin; Seifert, Martin; Kern, Michael J; Mejhert, Niklas; Dahlman, Ingrid; Hansson, Ola; Hauck, Stefanie M; Blüher, Matthias; Arner, Peter; Groop, Leif; Illig, Thomas; Suhre, Karsten; Hsu, Yi-Hsiang; Mellgren, Gunnar; Hauner, Hans; Laumen, Helmut
2014-01-16
Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Pillas, Demetris; Hoggart, Clive J; Evans, David M; O'Reilly, Paul F; Sipilä, Kirsi; Lähdesmäki, Raija; Millwood, Iona Y; Kaakinen, Marika; Netuveli, Gopalakrishnan; Blane, David; Charoen, Pimphen; Sovio, Ulla; Pouta, Anneli; Freimer, Nelson; Hartikainen, Anna-Liisa; Laitinen, Jaana; Vaara, Sarianna; Glaser, Beate; Crawford, Peter; Timpson, Nicholas J; Ring, Susan M; Deng, Guohong; Zhang, Weihua; McCarthy, Mark I; Deloukas, Panos; Peltonen, Leena; Elliott, Paul; Coin, Lachlan J M; Smith, George Davey; Jarvelin, Marjo-Riitta
2010-02-26
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5x10(-8), and 5 with suggestive association (P<5x10(-6)). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years.
Sipilä, Kirsi; Lähdesmäki, Raija; Millwood, Iona Y.; Kaakinen, Marika; Netuveli, Gopalakrishnan; Blane, David; Charoen, Pimphen; Sovio, Ulla; Pouta, Anneli; Freimer, Nelson; Hartikainen, Anna-Liisa; Laitinen, Jaana; Vaara, Sarianna; Glaser, Beate; Crawford, Peter; Timpson, Nicholas J.; Ring, Susan M.; Deng, Guohong; Zhang, Weihua; McCarthy, Mark I.; Deloukas, Panos; Peltonen, Leena
2010-01-01
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5×10−8, and 5 with suggestive association (P<5×10−6). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years. PMID:20195514
Fan, Qiao; Verhoeven, Virginie J M; Wojciechowski, Robert; Barathi, Veluchamy A; Hysi, Pirro G; Guggenheim, Jeremy A; Höhn, René; Vitart, Veronique; Khawaja, Anthony P; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E; Williams, Katie M; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F; Joshi, Peter K; McMahon, George; St Pourcain, Beate; Evans, David M; Simpson, Claire L; Schwantes-An, Tae-Hwi; Igo, Robert P; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M; Amin, Najaf; Uitterlinden, André G; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E H; Lim, Wan'e; Beuerman, Roger W; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N; Foster, Paul J; Klein, Barbara E K; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B; Teo, Yik-Ying; Mackey, David A; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N; Stambolian, Dwight; Wilson, Joan E Bailey; Cheng, Ching-Yu; Hammond, Christopher J; Klaver, Caroline C W; Saw, Seang-Mei; Rahi, Jugnoo S; Korobelnik, Jean-François; Kemp, John P; Timpson, Nicholas J; Smith, George Davey; Craig, Jamie E; Burdon, Kathryn P; Fogarty, Rhys D; Iyengar, Sudha K; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F; Fondran, Jeremy R; Lass, Jonathan H; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O; Jhanji, Vishal; Young, Alvin L; Döring, Angela; Raffel, Leslie J; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K H; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L; Tedja, Milly; Deangelis, Margaret M; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti
2016-03-29
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.
Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome
Limborg, Morten T.; Larson, Wesley; Seeb, Lisa W.; Seeb, James E.
2017-01-01
A whole-genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid-origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid-origin species. We demonstrate a new method that enables genome-wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus-specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid-origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.
Fan, Qiao; Verhoeven, Virginie J. M.; Wojciechowski, Robert; Barathi, Veluchamy A.; Hysi, Pirro G.; Guggenheim, Jeremy A.; Höhn, René; Vitart, Veronique; Khawaja, Anthony P.; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W.; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E.; Williams, Katie M.; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F.; Joshi, Peter K.; McMahon, George; St Pourcain, Beate; Evans, David M.; Simpson, Claire L.; Schwantes-An, Tae-Hwi; Igo, Robert P.; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S.; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M.; Amin, Najaf; Uitterlinden, André G.; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R.; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M. Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E. H.; Lim, Wan'e; Beuerman, Roger W.; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N.; Foster, Paul J.; Klein, Barbara E. K.; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L.; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M.; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B.; Teo, Yik-Ying; Mackey, David A.; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D.; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N.; Stambolian, Dwight; Wilson, Joan E. Bailey; Cheng, Ching-Yu; Hammond, Christopher J.; Klaver, Caroline C. W.; Saw, Seang-Mei; Rahi, Jugnoo S.; Korobelnik, Jean-François; Kemp, John P.; Timpson, Nicholas J.; Smith, George Davey; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G.; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F.; Fondran, Jeremy R.; Lass, Jonathan H.; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J.; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O.; Jhanji, Vishal; Young, Alvin L.; Döring, Angela; Raffel, Leslie J.; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K.H.; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L.; Tedja, Milly; Deangelis, Margaret M.; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti
2016-01-01
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia. PMID:27020472
Bozinovic, Goran; Oleksiak, Marjorie F.
2010-01-01
Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843
Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria
2018-02-01
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria
2017-01-01
ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950
Perceptual Learning: Use-Dependent Cortical Plasticity.
Li, Wu
2016-10-14
Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-04-01
Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.
Byars, Sean G; Huang, Qin Qin; Gray, Lesley-Ann; Bakshi, Andrew; Ripatti, Samuli; Abraham, Gad; Stearns, Stephen C; Inouye, Michael
2017-06-01
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.
Li, R; Li, C T; Zhao, S M; Li, H X; Li, L; Wu, R G; Zhang, C C; Sun, H Y
2017-04-01
To establish a query table of IBS critical value and identification power for the detection systems with different numbers of STR loci under different false judgment standards. Samples of 267 pairs of full siblings and 360 pairs of unrelated individuals were collected and 19 autosomal STR loci were genotyped by Golden e ye™ 20A system. The full siblings were determined using IBS scoring method according to the 'Regulation for biological full sibling testing'. The critical values and identification power for the detection systems with different numbers of STR loci under different false judgment standards were calculated by theoretical methods. According to the formal IBS scoring criteria, the identification power of full siblings and unrelated individuals was 0.764 0 and the rate of false judgment was 0. The results of theoretical calculation were consistent with that of sample observation. The query table of IBS critical value for identification of full sibling detection systems with different numbers of STR loci was successfully established. The IBS scoring method defined by the regulation has high detection efficiency and low false judgment rate, which provides a relatively conservative result. The query table of IBS critical value for identification of full sibling detection systems with different numbers of STR loci provides an important reference data for the result judgment of full sibling testing and owns a considerable practical value. Copyright© by the Editorial Department of Journal of Forensic Medicine
Becker, Kerstin; Siegert, Sabine; Toliat, Mohammad Reza; Du, Juanjiangmeng; Casper, Ramona; Dolmans, Guido H.; Werker, Paul M.; Tinschert, Sigrid; Franke, Andre; Gieger, Christian; Strauch, Konstantin; Nothnagel, Michael; Nürnberg, Peter; Hennies, Hans Christian
2016-01-01
Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease. PMID:27467239
Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques
2007-01-01
TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent evolution of TBDRs in Proteobacteria and Bacteroidetes. PMID:17311090
Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.
2016-01-01
The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604
Patterns of gene variation in central and marginal populations of Drosophila robusta.
Prakash, S
1973-10-01
The central and marginal populations of D. robusta differ greatly in the level of inversion polymorphism; the marginal populations are monomorphic or nearly so and the central populations are highly polymorphic. This paper presents the frequencies of alleles at forty gene loci in various populations of D. robusta, studied by electrophoresis of proteins and enzymes. Population samples were obtained from eight widely separated populations of D. robusta which included the central, the extreme marginal and the intervening populations between the center and the margins. We find that the proportion of polymorphic loci and average heterozygosity per individual is slightly higher in the marginal populations than the central populations. In D. robusta on an average, 39% of the loci are polymorphic and the average proportion of loci heterozygous per individual is 11%. A breakdown of loci in three categories, viz, hydrolytic enzymes and some other enzymes, larval proteins and glycolytic and Kreb's cycle enzymes, shows that in all populations the level of polymorphism is highest in the hydrolytic enzymes, intermediate in larval proteins and least in the glycolytic and Kreb's cycle enzymes. On the average, the proportion of loci heterozygous per individual for three groups of loci is: hydrolytic enzymes and others (.164), larval proteins (.115) and glycolytic and Kreb's cycle enzymes (.037). We also observe that in all populations the level of polymorphism on the X chromosome is far less than the expected 38%; in salivary gland cells the euchromatic length of the X chromosome is 38% of the entire genome. Lower levels of polymorphism for the X chromosome loci are explained due to low probability of balanced polymorphisms for the X-linked loci since the conditions for establishment of balanced polymorphism for X-linked loci are more restrictive than for the autosomal loci.-The polymorphic loci can be grouped according to pattern of allele frequencies in different populations as follows: (1) The allele frequencies are similar in all populations at the XDH, Pep-1 and Hex-1 loci. (2) The alleles at the Est-1, Est-2, Amy loci and the AP-4(1.0) and the LAP-1(.90) alleles show north south clinal change in frequency. (3) There is north south and east west differentiation at the Pt-5, Pt-8 and Pt-9 loci and the allele AP-4(.81). (4) Polymorphism at loci such as Fum, B.Ox, Hex-8, Pep-2 and Pep-3 are restricted to only one or two of the populations. (5) Allele frequencies at the MDH and ODH loci fluctuate between populations. (6) Allele frequencies at many polymorphic loci such as Est-1, Est-2, LAP-1, AP-4, Pt-5, Pt-8, Pt-9, Pt-16, MDH, Fum change clinally within a gene arrangement. The pattern of gene variation in D. robusta is very complex and cannot be easily explained due to migration of neutral alleles between once-isolated populations or to semi-isolation of neutral alleles. The observations of the pattern of allele variation in different populations, high levels of polymorphism in the marginal populations which have small population size and low levels of polymorphism of the X chromosome loci all support the argument in favor of balancing selection as the main mechanism for the maintenance of these polymorphisms. Environmental factors must play a role in the maintenance of a great deal of these polymorphisms, since we observe clinal allele frequency changes even within a given inversion type.
Patterns of Gene Variation in Central and Marginal Populations of DROSOPHILA ROBUSTA
Prakash, Satya
1973-01-01
The central and marginal populations of D. robusta differ greatly in the level of inversion polymorphism; the marginal populations are monomorphic or nearly so and the central populations are highly polymorphic. This paper presents the frequencies of alleles at forty gene loci in various populations of D. robusta, studied by electrophoresis of proteins and enzymes. Population samples were obtained from eight widely separated populations of D. robusta which included the central, the extreme marginal and the intervening populations between the center and the margins. We find that the proportion of polymorphic loci and average heterozygosity per individual is slightly higher in the marginal populations than the central populations. In D. robusta on an average, 39% of the loci are polymorphic and the average proportion of loci heterozygous per individual is 11%. A breakdown of loci in three categories, viz, hydrolytic enzymes and some other enzymes, larval proteins and glycolytic and Kreb's cycle enzymes, shows that in all populations the level of polymorphism is highest in the hydrolytic enzymes, intermediate in larval proteins and least in the glycolytic and Kreb's cycle enzymes. On the average, the proportion of loci heterozygous per individual for three groups of loci is: hydrolytic enzymes and others (.164), larval proteins (.115) and glycolytic and Kreb's cycle enzymes (.037). We also observe that in all populations the level of polymorphism on the X chromosome is far less than the expected 38%; in salivary gland cells the euchromatic length of the X chromosome is 38% of the entire genome. Lower levels of polymorphism for the X chromosome loci are explained due to low probability of balanced polymorphisms for the X-linked loci since the conditions for establishment of balanced polymorphism for X-linked loci are more restrictive than for the autosomal loci.—The polymorphic loci can be grouped according to pattern of allele frequencies in different populations as follows: (1) The allele frequencies are similar in all populations at the XDH, Pep-1 and Hex-1 loci. (2) The alleles at the Est-1, Est-2, Amy loci and the AP-41.0 and the LAP-1.90 alleles show north south clinal change in frequency. (3) There is north south and east west differentiation at the Pt-5, Pt-8 and Pt-9 loci and the allele AP-4.81. (4) Polymorphism at loci such as Fum, B.Ox, Hex-8, Pep-2 and Pep-3 are restricted to only one or two of the populations. (5) Allele frequencies at the MDH and ODH loci fluctuate between populations. (6) Allele frequencies at many polymorphic loci such as Est-1, Est-2, LAP-1, AP-4, Pt-5, Pt-8, Pt-9, Pt-16, MDH, Fum change clinally within a gene arrangement. The pattern of gene variation in D. robusta is very complex and cannot be easily explained due to migration of neutral alleles between once-isolated populations or to semi-isolation of neutral alleles. The observations of the pattern of allele variation in different populations, high levels of polymorphism in the marginal populations which have small population size and low levels of polymorphism of the X chromosome loci all support the argument in favor of balancing selection as the main mechanism for the maintenance of these polymorphisms. Environmental factors must play a role in the maintenance of a great deal of these polymorphisms, since we observe clinal allele frequency changes even within a given inversion type. PMID:4203580
Genome-wide association study of colorectal cancer identifies six new susceptibility loci.
Schumacher, Fredrick R; Schmit, Stephanie L; Jiao, Shuo; Edlund, Christopher K; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P; Harju, John F; Idos, Gregory E; Lejbkowicz, Flavio; Manion, Frank J; McDonnell, Kevin; McNeil, Caroline E; Melas, Marilena; Rennert, Hedy S; Shi, Wei; Thomas, Duncan C; Van Den Berg, David J; Hutter, Carolyn M; Aragaki, Aaron K; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Chanock, Stephen J; Curtis, Keith R; Fuchs, Charles S; Gala, Manish; Giovannucc, Edward L; Giocannucci, Edward L; Gogarten, Stephanie M; Hayes, Richard B; Henderson, Brian; Hunter, David J; Jackson, Rebecca D; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Kury, Sebastian; LaCroix, Andrea; Laurie, Cathy C; Laurie, Cecelia A; Lemire, Mathieu; Lemire, Mathiew; Levine, David; Ma, Jing; Makar, Karen W; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M; Wu, Kana; Kono, Suminori; West, Dee W; Berndt, Sonja I; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Coetzee, Gerhard A; Conti, David V; Duggan, David; Figueiredo, Jane C; Fortini, Barbara K; Gallinger, Steven J; Gauderman, W James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A; Potter, John D; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B; Peters, Ulrike
2015-07-07
Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
Trans-ethnic meta-analysis of white blood cell phenotypes
Keller, Margaux F.; Reiner, Alexander P.; Okada, Yukinori; van Rooij, Frank J.A.; Johnson, Andrew D.; Chen, Ming-Huei; Smith, Albert V.; Morris, Andrew P.; Tanaka, Toshiko; Ferrucci, Luigi; Zonderman, Alan B.; Lettre, Guillaume; Harris, Tamara; Garcia, Melissa; Bandinelli, Stefania; Qayyum, Rehan; Yanek, Lisa R.; Becker, Diane M.; Becker, Lewis C.; Kooperberg, Charles; Keating, Brendan; Reis, Jared; Tang, Hua; Boerwinkle, Eric; Kamatani, Yoichiro; Matsuda, Koichi; Kamatani, Naoyuki; Nakamura, Yusuke; Kubo, Michiaki; Liu, Simin; Dehghan, Abbas; Felix, Janine F.; Hofman, Albert; Uitterlinden, André G.; van Duijn, Cornelia M.; Franco, Oscar H.; Longo, Dan L.; Singleton, Andrew B.; Psaty, Bruce M.; Evans, Michelle K.; Cupples, L. Adrienne; Rotter, Jerome I.; O'Donnell, Christopher J.; Takahashi, Atsushi; Wilson, James G.; Ganesh, Santhi K.; Nalls, Mike A.
2014-01-01
White blood cell (WBC) count is a common clinical measure used as a predictor of certain aspects of human health, including immunity and infection status. WBC count is also a complex trait that varies among individuals and ancestry groups. Differences in linkage disequilibrium structure and heterogeneity in allelic effects are expected to play a role in the associations observed between populations. Prior genome-wide association study (GWAS) meta-analyses have identified genomic loci associated with WBC and its subtypes, but much of the heritability of these phenotypes remains unexplained. Using GWAS summary statistics for over 50 000 individuals from three diverse populations (Japanese, African-American and European ancestry), a Bayesian model methodology was employed to account for heterogeneity between ancestry groups. This approach was used to perform a trans-ethnic meta-analysis of total WBC, neutrophil and monocyte counts. Ten previously known associations were replicated and six new loci were identified, including several regions harboring genes related to inflammation and immune cell function. Ninety-five percent credible interval regions were calculated to narrow the association signals and fine-map the putatively causal variants within loci. Finally, a conditional analysis was performed on the most significant SNPs identified by the trans-ethnic meta-analysis (MA), and nine secondary signals within loci previously associated with WBC or its subtypes were identified. This work illustrates the potential of trans-ethnic analysis and ascribes a critical role to multi-ethnic cohorts and consortia in exploring complex phenotypes with respect to variants that lie outside the European-biased GWAS pool. PMID:25096241
Gaia, Valeria; Fry, Norman K.; Harrison, Timothy G.; Peduzzi, Raffaele
2003-01-01
Seven gene loci of Legionella pneumophila serogroup 1 were analyzed as potential epidemiological typing markers to aid in the investigation of legionella outbreaks. The genes chosen included four likely to be selectively neutral (acn, groES, groEL, and recA) and three likely to be under selective pressure (flaA, mompS, and proA). Oligonucleotide primers were designed to amplify 279- to 763-bp fragments from each gene. Initial sequence analysis of the seven loci from 10 well-characterized isolates of L. pneumophila serogroup 1 gave excellent reproducibility (R) and epidemiological concordance (E) values (R = 1.00; E = 1.00). The three loci showing greatest discrimination and nucleotide variation, flaA, mompS, and proA, were chosen for further study. Indices of discrimination (D) were calculated using a panel of 79 unrelated isolates. Single loci gave D values ranging from 0.767 to 0.857, and a combination of all three loci resulted in a D value of 0.924. When all three loci were combined with monoclonal antibody subgrouping, the D value was 0.971. Sequence-based typing of L. pneumophila serogroup 1 using only three loci is epidemiologically concordant and highly discriminatory and has the potential to become the new “gold standard” for the epidemiological typing of L. pneumophila. PMID:12843023
Kuo, Jane Z; Sheu, Wayne Huey-Herng; Assimes, Themistocles L; Hung, Yi-Jen; Absher, Devin; Chiu, Yen-Feng; Mak, Jordan; Wang, Jun-Sing; Kwon, Soonil; Hsu, Chih-Cheng; Goodarzi, Mark O; Lee, I-Te; Knowles, Joshua W; Miller, Brittany E; Lee, Wen-Jane; Juang, Jyh-Ming J; Wang, Tzung-Dau; Guo, Xiuqing; Taylor, Kent D; Chuang, Lee-Ming; Hsiung, Chao A; Quertermous, Thomas; Rotter, Jerome I; Chen, Yii-Der I
2013-12-01
Candidate gene and genome-wide association studies have identified ∼60 susceptibility loci for type 2 diabetes. A majority of these loci have been discovered and tested only in European populations. The aim of this study was to assess the presence and extent of trans-ethnic effects of these loci in an East Asian population. A total of 9,335 unrelated Chinese Han individuals, including 4,535 with type 2 diabetes and 4,800 non-diabetic ethnically matched controls, were genotyped using the Illumina 200K Metabochip. We tested 50 established loci for type 2 diabetes and related traits (fasting glucose, fasting insulin, 2 h glucose). Disease association with the additive model of inheritance was analysed with logistic regression. We found that 14 loci significantly transferred to the Chinese population, with two loci (p = 5.7 × 10(-12) for KCNQ1; p = 5.0 × 10(-8) for CDKN2A/B-CDKN2BAS) reaching independent genome-wide statistical significance. Five of these 14 loci had similar lead single-nucleotide polymorphisms (SNPs) as were found in the European studies while the other nine were different. Further stepwise conditional analysis identified a total of seven secondary signals and an independent novel locus at the 3' end of CDKAL1. These results suggest that many loci associated with type 2 diabetes are commonly shared between European and Chinese populations. Identification of population-specific SNPs may increase our understanding of the genetic architecture underlying type 2 diabetes in different ethnic populations.
Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain
Siracusa, Linda D.
2012-01-01
Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734
Przyboś, Ewa; Tarcz, Sebastian; Rautian, Maria; Lebedeva, Natalia
2014-06-01
P. aurelia is currently defined as a complex of 15 sibling species including 14 species designated by Sonneborn (1975) and one, P. sonneborni, by Aufderheide et al. (1983). The latter was known from only one stand (Texas, USA). The main reason for the present study was a new stand of Paramecium in Cyprus, with strains recognized as P. sonneborni based on the results of strain crosses, cytological slides, and molecular analyses of three loci (ITS1-5.8S-ITS2-5'LSU rDNA, COI, CytB). The new stand of P. sonneborni in Europe shows that the species, previously considered endemic, may have a wider range. This demonstrates the impact of under-sampling on the knowledge of the biogeography of microbial eukaryotes. Phylogenetic trees based on all the studied fragments revealed that P. sonneborni forms a separate cluster that is closer to P. jenningsi and P. schewiakoffi than to the other members of the P. aurelia complex. Copyright © 2014 Elsevier GmbH. All rights reserved.
Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822
Abad-Grau, Mara M; Medina-Medina, Nuria; Montes-Soldado, Rosana; Matesanz, Fuencisla; Bafna, Vineet
2012-01-01
Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker 2-Groups TDT (mTDT(2G)), a test which under the hypothesis of no linkage, asymptotically follows a χ2 distribution with 1 degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that mTDT(2G) test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, mTDT(2G) turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases.
Abad-Grau, Mara M.; Medina-Medina, Nuria; Montes-Soldado, Rosana; Matesanz, Fuencisla; Bafna, Vineet
2012-01-01
Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker -Groups TDT ( ), a test which under the hypothesis of no linkage, asymptotically follows a distribution with degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases. PMID:22363405
Age at menarche and age at natural menopause in East Asian women: a genome-wide association study.
Shi, Jiajun; Zhang, Ben; Choi, Ji-Yeob; Gao, Yu-Tang; Li, Huaixing; Lu, Wei; Long, Jirong; Kang, Daehee; Xiang, Yong-Bing; Wen, Wanqing; Park, Sue K; Ye, Xingwang; Noh, Dong-Young; Zheng, Ying; Wang, Yiqin; Chung, Seokang; Lin, Xu; Cai, Qiuyin; Shu, Xiao-Ou
2016-12-01
Age at menarche (AM) and age at natural menopause (ANM) are complex traits with a high heritability. Abnormal timing of menarche or menopause is associated with a reduced span of fertility and risk for several age-related diseases including breast, endometrial and ovarian cancer, cardiovascular disease, and osteoporosis. To identify novel genetic loci for AM or ANM in East Asian women and to replicate previously identified loci primarily in women of European ancestry by genome-wide association studies (GWASs), we conducted a two-stage GWAS. Stage I aimed to discover promising novel AM and ANM loci using GWAS data of 8073 women from Shanghai, China. The Stage II replication study used the data from another Chinese GWAS (n = 1230 for AM and n = 1458 for ANM), a Korean GWAS (n = 4215 for AM and n = 1739 for ANM), and de novo genotyping of 2877 additional Chinese women. Previous GWAS-identified loci for AM and ANM were also evaluated. We identified two suggestive menarcheal age loci tagged by rs79195475 at 10q21.3 (beta = -0.118 years, P = 3.4 × 10 -6 ) and rs1023935 at 4p15.1 (beta = -0.145 years, P = 4.9 × 10 -6 ) and one menopausal age locus tagged by rs3818134 at 22q12.2 (beta = -0.276 years, P = 8.8 × 10 -6 ). These suggestive loci warrant a further validation in independent populations. Although limited by low statistical power, we replicated 19 of the 98 menarche loci and 5 of the 20 menopause loci previously identified in women of European ancestry in East Asian women, suggesting a shared genetic architecture for these two traits across populations.
The evolution of phenotypic integration: How directional selection reshapes covariation in mice.
Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel
2017-10-01
Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-09-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Resolving the Conflict Between Associative Overdominance and Background Selection
Zhao, Lei; Charlesworth, Brian
2016-01-01
In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations, selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection). We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the product of twice the effective population size and the selection coefficient, is of order 1. With S >> 1, background selection always causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability. PMID:27182952
Alarcón-Riquelme, Marta E; Ziegler, Julie T; Molineros, Julio; Howard, Timothy D; Moreno-Estrada, Andrés; Sánchez-Rodríguez, Elena; Ainsworth, Hannah C; Ortiz-Tello, Patricia; Comeau, Mary E; Rasmussen, Astrid; Kelly, Jennifer A; Adler, Adam; Acevedo-Vázquez, Eduardo M; Cucho-Venegas, Jorge Mariano; García-De la Torre, Ignacio; Cardiel, Mario H; Miranda, Pedro; Catoggio, Luis J; Maradiaga-Ceceña, Marco; Gaffney, Patrick M; Vyse, Timothy J; Criswell, Lindsey A; Tsao, Betty P; Sivils, Kathy L; Bae, Sang-Cheol; James, Judith A; Kimberly, Robert P; Kaufman, Kenneth M; Harley, John B; Esquivel-Valerio, Jorge A; Moctezuma, José F; García, Mercedes A; Berbotto, Guillermo A; Babini, Alejandra M; Scherbarth, Hugo; Toloza, Sergio; Baca, Vicente; Nath, Swapan K; Aguilar Salinas, Carlos; Orozco, Lorena; Tusié-Luna, Teresa; Zidovetzki, Raphael; Pons-Estel, Bernardo A; Langefeld, Carl D; Jacob, Chaim O
2016-04-01
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component. We undertook the present work to perform the first genome-wide association study on individuals from the Americas who are enriched for Native American heritage. We analyzed 3,710 individuals from the US and 4 countries of Latin America who were diagnosed as having SLE, and healthy controls. Samples were genotyped with HumanOmni1 BeadChip. Data on out-of-study controls genotyped with HumanOmni2.5 were also included. Statistical analyses were performed using SNPtest and SNPGWA. Data were adjusted for genomic control and false discovery rate. Imputation was performed using Impute2 and, for classic HLA alleles, HiBag. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. The IRF5-TNPO3 region showed the strongest association and largest OR for SLE (rs10488631: genomic control-adjusted P [Pgcadj ] = 2.61 × 10(-29), OR 2.12 [95% CI 1.88-2.39]), followed by HLA class II on the DQA2-DQB1 loci (rs9275572: Pgcadj = 1.11 × 10(-16), OR 1.62 [95% CI 1.46-1.80] and rs9271366: Pgcadj = 6.46 × 10(-12), OR 2.06 [95% CI 1.71-2.50]). Other known SLE loci found to be associated in this population were ITGAM, STAT4, TNIP1, NCF2, and IRAK1. We identified a novel locus on 10q24.33 (rs4917385: Pgcadj = 1.39 × 10(-8)) with an expression quantitative trait locus (eQTL) effect (Peqtl = 8.0 × 10(-37) at USMG5/miR1307), and several new suggestive loci. SLE risk loci previously identified in Europeans and Asians were corroborated. Local ancestry estimation showed that the HLA allele risk contribution is of European ancestral origin. Imputation of HLA alleles suggested that autochthonous Native American haplotypes provide protection against development of SLE. Our results demonstrate that studying admixed populations provides new insights in the delineation of the genetic architecture that underlies autoimmune and complex diseases. © 2016, American College of Rheumatology.
Long-term selection strategies for complex traits using high-density genetic markers.
Kemper, K E; Bowman, P J; Pryce, J E; Hayes, B J; Goddard, M E
2012-08-01
Selection of animals for breeding ranked on estimated breeding value maximizes genetic gain in the next generation but does not necessarily maximize long-term response. An alternative method, as practiced by plant breeders, is to build a desired genotype by selection on specific loci. Maximal long-term response in animal breeding requires selection on estimated breeding values with constraints on coancestry. In this paper, we compared long-term genetic response using either a genotype building or a genomic estimated breeding value (GEBV) strategy for the Australian Selection Index (ASI), a measure of profit. First, we used real marker effects from the Australian Dairy Herd Improvement Scheme to estimate breeding values for chromosome segments (approximately 25 cM long) for 2,650 Holstein bulls. Second, we selected 16 animals to be founders for a simulated breeding program where, between them, founders contain the best possible combination of 2 segments from 2 animals at each position in the genome. Third, we mated founder animals and their descendants over 30 generations with 2 breeding objectives: (1) to create a population with the "ideal genotype," where the best 2 segments from the founders segregate at each position, or (2) obtain the highest possible response in ASI with coancestry lower than that achieved under breeding objective 1. Results show that genotype building achieved the ideal genotype for breeding objective 1 and obtained a large gain in ASI over the current population (+A$864.99). However, selection on overall GEBV had greater short-term response and almost as much long-term gain (+A$820.42). When coancestry was lowered under breeding objective 2, selection on overall GEBV achieved a higher response in ASI than the genotype building strategy. Selection on overall GEBV seems more flexible in its selection decisions and was therefore better able to precisely control coancestry while maximizing ASI. We conclude that selection on overall GEBV while minimizing average coancestry is the more practical strategy for dairy cattle where selection is for highly polygenic traits, the reproductive rate is relatively low, and there is low tolerance of coancestry. The outcome may be different for traits controlled by few loci of relatively large effects or for different species. In contrast to other simulations, our results indicate that response to selection on overall GEBV may continue for several generations. This is because long-term genetic change in complex traits requires favorable changes to allele frequencies for many loci located throughout the genome. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
On curve veering and flutter of rotating blades
NASA Technical Reports Server (NTRS)
Afolabi, Dare; Mehmed, Oral
1993-01-01
The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.
Body mass index (BMI) has been implicated as a primary factor influencing cancer development. However, understanding the relationship between these two complex traits has been confounded by both environmental and genetic heterogeneity. Analysis of QTL linked to tumorigenesis and BMI identified several loci associated with both phenotypes. Exploring these loci in greater detail revealed a novel relationship between the Pannexin 3 gene (Panx3) and both BMI and tumorigenesis. Panx3 is positively associated with BMI and is strongly tied to a lipid metabolism gene expression network.
Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M
2015-01-22
Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.
Chiang, Yu-Chung; Tsai, Chi-Chu; Hsu, Tsai-Wen; Chou, Chang-Hung
2012-11-01
Microsatellite loci were developed from Imperata cylindrica, a traditional medicinal herb in Asia and among the top 10 worst invasive weeds in the world, to aid in the identification of the limits of asexual clonal individuals. A total of 21 microsatellite markers, including 18 polymorphic and three monomorphic loci, were developed from I. cylindrica using a magnetic bead enrichment protocol. The primers amplified dinucleotide, trinucleotide, and complex repeats. The number of alleles ranged from one to 19 per locus, with an observed heterozygosity ranging from 0.09 to 1.00. Several loci deviated significantly from the within-population Hardy-Weinberg equilibrium as a result of asexual clonal reproduction. These polymorphic markers should be useful tools in further studies on the identification of the range of clonal reproduction units and the selection and classification of the medicinal cultivar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...
2016-11-28
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin
2010-05-01
Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.
Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J.; Snyder, Michael; Weng, Zhiping; Struhl, Kevin
2012-01-01
Genome-wide occupancy profiles of five components of the RNA Polymerase III (Pol III) machinery in human cells identified the expected tRNA and non-coding RNA targets and revealed many additional Pol III-associated loci, mostly near SINEs. Several genes are targets of an alternative TFIIIB containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike non-expressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner. PMID:20418883
Gillen, K L; Hughes, K T
1991-01-01
The complex regulation of flagellin gene expression in Salmonella typhimurium was characterized in vivo by using lac transcriptional fusions to the two flagellin structural genes (fliC [H1] and fljB [H2]). Phase variation was measured as the rate of switching of flagellin gene expression. Switching frequencies varied from 1/500 per cell per generation to 1/10,000 per cell per generation depending on the particular insertion and the direction of switching. There is a 4- to 20-fold bias in favor of switching from the fljB(On) to the fljB(Off) orientation. Random Tn10dTc insertions were isolated which failed to express flagellin. While most of these insertions mapped to loci known to be required for flagellin expression, several new loci were identified. The presence of functional copies of all of the genes responsible for complete flagellar assembly, except the hook-associated proteins (flgK, flgL, and fliD gene products), were required for expression of the fliC or fljB flagellin genes. Two novel loci involved in negative regulation of fliC and fljB in fla mutant backgrounds were identified. One of these loci, designated the flgR locus, mapped to the flg operon at 23 min on the Salmonella linkage map. An flgR insertion mutation resulted in relief of repression of the fliC and fljB genes in all fla mutant backgrounds except for mutants in the positive regulatory loci (flhC, flhD, and fliA genes). PMID:1848842
Shereshevskaia, Ts M; Krasnopol'skiĭ, Iu M; Verkhovskiĭ, B A
1977-01-01
The nucleolar-chromatin complex of the hybrids liver cells is shown to contain a larger amount of RNA and phospholipids. When teeated with 1.0 M NaCl nucleoproteins of hybrid organisms display greater dissociation. A large number of free loci was determined in the matrix when titrating nucleolar chromatin complex with actinomycin "D". The effect of heterosis might be connected with a specific physiochemical state of chromosome in hybrid organisms.
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.
van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem
2015-10-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.
Zhu, Xiaofeng; Feng, Tao; Tayo, Bamidele O; Liang, Jingjing; Young, J Hunter; Franceschini, Nora; Smith, Jennifer A; Yanek, Lisa R; Sun, Yan V; Edwards, Todd L; Chen, Wei; Nalls, Mike; Fox, Ervin; Sale, Michele; Bottinger, Erwin; Rotimi, Charles; Liu, Yongmei; McKnight, Barbara; Liu, Kiang; Arnett, Donna K; Chakravati, Aravinda; Cooper, Richard S; Redline, Susan
2015-01-08
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Mägi, Reedik; Suleimanov, Yury V; Clarke, Geraldine M; Kaakinen, Marika; Fischer, Krista; Prokopenko, Inga; Morris, Andrew P
2017-01-11
Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) have been successful in identifying loci contributing genetic effects to a wide range of complex human diseases and quantitative traits. The traditional approach to GWAS analysis is to consider each phenotype separately, despite the fact that many diseases and quantitative traits are correlated with each other, and often measured in the same sample of individuals. Multivariate analyses of correlated phenotypes have been demonstrated, by simulation, to increase power to detect association with SNPs, and thus may enable improved detection of novel loci contributing to diseases and quantitative traits. We have developed the SCOPA software to enable GWAS analysis of multiple correlated phenotypes. The software implements "reverse regression" methodology, which treats the genotype of an individual at a SNP as the outcome and the phenotypes as predictors in a general linear model. SCOPA can be applied to quantitative traits and categorical phenotypes, and can accommodate imputed genotypes under a dosage model. The accompanying META-SCOPA software enables meta-analysis of association summary statistics from SCOPA across GWAS. Application of SCOPA to two GWAS of high-and low-density lipoprotein cholesterol, triglycerides and body mass index, and subsequent meta-analysis with META-SCOPA, highlighted stronger association signals than univariate phenotype analysis at established lipid and obesity loci. The META-SCOPA meta-analysis also revealed a novel signal of association at genome-wide significance for triglycerides mapping to GPC5 (lead SNP rs71427535, p = 1.1x10 -8 ), which has not been reported in previous large-scale GWAS of lipid traits. The SCOPA and META-SCOPA software enable discovery and dissection of multiple phenotype association signals through implementation of a powerful reverse regression approach.
Davis, G L; McMullen, M D; Baysdorfer, C; Musket, T; Grant, D; Staebell, M; Xu, G; Polacco, M; Koster, L; Melia-Hancock, S; Houchins, K; Chao, S; Coe, E H
1999-01-01
We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits. PMID:10388831
Ciavaglia, Sherryn; Linacre, Adrian
2018-05-01
Reptile species, and in particular snakes, are protected by national and international agreements yet are commonly handled illegally. To aid in the enforcement of such legislation, we report on the development of three 11-plex assays from the genome of the carpet python to type 24 loci of tetra-nucleotide and penta-nucleotide repeat motifs (pure, compound and complex included). The loci range in size between 70 and 550 bp. Seventeen of the loci are newly characterised with the inclusion of seven previously developed loci to facilitate cross-comparison with previous carpet python genotyping studies. Assays were optimised in accordance with human forensic profiling kits using one nanogram template DNA. Three loci are included in all three of the multiplex reactions as quality assurance markers, to ensure sample identity and genotyping accuracy is maintained across the three profiling assays. Allelic ladders have been developed for the three assays to ensure consistent and precise allele designation. A DNA reference database of allele frequencies is presented based on 249 samples collected from throughout the species native range. A small number of validation tests are conducted to demonstrate the utility of these multiplex assays. We suggest further appropriate validation tests that should be conducted prior to the application of the multiplex assays in criminal investigations involving carpet pythons. Copyright © 2018 Elsevier B.V. All rights reserved.
Hou, Liping; Bergen, Sarah E.; Akula, Nirmala; Song, Jie; Hultman, Christina M.; Landén, Mikael; Adli, Mazda; Alda, Martin; Ardau, Raffaella; Arias, Bárbara; Aubry, Jean-Michel; Backlund, Lena; Badner, Judith A.; Barrett, Thomas B.; Bauer, Michael; Baune, Bernhard T.; Bellivier, Frank; Benabarre, Antonio; Bengesser, Susanne; Berrettini, Wade H.; Bhattacharjee, Abesh Kumar; Biernacka, Joanna M.; Birner, Armin; Bloss, Cinnamon S.; Brichant-Petitjean, Clara; Bui, Elise T.; Byerley, William; Cervantes, Pablo; Chillotti, Caterina; Cichon, Sven; Colom, Francesc; Coryell, William; Craig, David W.; Cruceanu, Cristiana; Czerski, Piotr M.; Davis, Tony; Dayer, Alexandre; Degenhardt, Franziska; Del Zompo, Maria; DePaulo, J. Raymond; Edenberg, Howard J.; Étain, Bruno; Falkai, Peter; Foroud, Tatiana; Forstner, Andreas J.; Frisén, Louise; Frye, Mark A.; Fullerton, Janice M.; Gard, Sébastien; Garnham, Julie S.; Gershon, Elliot S.; Goes, Fernando S.; Greenwood, Tiffany A.; Grigoroiu-Serbanescu, Maria; Hauser, Joanna; Heilbronner, Urs; Heilmann-Heimbach, Stefanie; Herms, Stefan; Hipolito, Maria; Hitturlingappa, Shashi; Hoffmann, Per; Hofmann, Andrea; Jamain, Stephane; Jiménez, Esther; Kahn, Jean-Pierre; Kassem, Layla; Kelsoe, John R.; Kittel-Schneider, Sarah; Kliwicki, Sebastian; Koller, Daniel L.; König, Barbara; Lackner, Nina; Laje, Gonzalo; Lang, Maren; Lavebratt, Catharina; Lawson, William B.; Leboyer, Marion; Leckband, Susan G.; Liu, Chunyu; Maaser, Anna; Mahon, Pamela B.; Maier, Wolfgang; Maj, Mario; Manchia, Mirko; Martinsson, Lina; McCarthy, Michael J.; McElroy, Susan L.; McInnis, Melvin G.; McKinney, Rebecca; Mitchell, Philip B.; Mitjans, Marina; Mondimore, Francis M.; Monteleone, Palmiero; Mühleisen, Thomas W.; Nievergelt, Caroline M.; Nöthen, Markus M.; Novák, Tomas; Nurnberger, John I.; Nwulia, Evaristus A.; Ösby, Urban; Pfennig, Andrea; Potash, James B.; Propping, Peter; Reif, Andreas; Reininghaus, Eva; Rice, John; Rietschel, Marcella; Rouleau, Guy A.; Rybakowski, Janusz K.; Schalling, Martin; Scheftner, William A.; Schofield, Peter R.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schweizer, Barbara W.; Severino, Giovanni; Shekhtman, Tatyana; Shilling, Paul D.; Simhandl, Christian; Slaney, Claire M.; Smith, Erin N.; Squassina, Alessio; Stamm, Thomas; Stopkova, Pavla; Streit, Fabian; Strohmaier, Jana; Szelinger, Szabolcs; Tighe, Sarah K.; Tortorella, Alfonso; Turecki, Gustavo; Vieta, Eduard; Volkert, Julia; Witt, Stephanie H.; Wright, Adam; Zandi, Peter P.; Zhang, Peng; Zollner, Sebastian; McMahon, Francis J.
2016-01-01
Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behaviour. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, P = 5.87 × 10 − 9; odds ratio (OR) = 1.12) and markers within ERBB2 (rs2517959, P = 4.53 × 10 − 9; OR = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS. PMID:27329760
Molecular mapping and breeding with microsatellite markers.
Lightfoot, David A; Iqbal, Muhammad J
2013-01-01
In genetics databases for crop plant species across the world, there are thousands of mapped loci that underlie quantitative traits, oligogenic traits, and simple traits recognized by association mapping in populations. The number of loci will increase as new phenotypes are measured in more diverse genotypes and genetic maps based on saturating numbers of markers are developed. A period of locus reevaluation will decrease the number of important loci as those underlying mega-environmental effects are recognized. A second wave of reevaluation of loci will follow from developmental series analysis, especially for harvest traits like seed yield and composition. Breeding methods to properly use the accurate maps of QTL are being developed. New methods to map, fine map, and isolate the genes underlying the loci will be critical to future advances in crop biotechnology. Microsatellite markers are the most useful tool for breeders. They are codominant, abundant in all genomes, highly polymorphic so useful in many populations, and both economical and technically easy to use. The selective genotyping approaches, including genotype ranking (indexing) based on partial phenotype data combined with favorable allele data and bulked segregation event (segregant) analysis (BSA), will be increasingly important uses for microsatellites. Examples of the methods for developing and using microsatellites derived from genomic sequences are presented for monogenic, oligogenic, and polygenic traits. Examples of successful mapping, fine mapping, and gene isolation are given. When combined with high-throughput methods for genotyping and a genome sequence, the use of association mapping with microsatellite markers will provide critical advances in the analysis of crop traits.
Byars, Sean G.; Gray, Lesley-Ann; Ripatti, Samuli; Stearns, Stephen C.; Inouye, Michael
2017-01-01
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD. PMID:28640878
The genetic architecture of susceptibility to parasites.
Wilfert, Lena; Schmid-Hempel, Paul
2008-06-30
The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.
The coupling hypothesis: why genome scans may fail to map local adaptation genes.
Bierne, Nicolas; Welch, John; Loire, Etienne; Bonhomme, François; David, Patrice
2011-05-01
Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables. © 2011 Blackwell Publishing Ltd.
Polysaccharide Utilization Loci: Fueling Microbial Communities
Grondin, Julie M.; Tamura, Kazune; Déjean, Guillaume
2017-01-01
ABSTRACT The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments. PMID:28138099
Interference of transcription across H-NS binding sites and repression by H-NS.
Rangarajan, Aathmaja Anandhi; Schnetz, Karin
2018-05-01
Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.
Yadav, Vikas; Billmyre, R. Blake; Cuomo, Christina A.; Nowrousian, Minou; Wang, Liuyang; Souciet, Jean-Luc; Boekhout, Teun; Porcel, Betina; Wincker, Patrick; Granek, Joshua A.; Sanyal, Kaustuv; Heitman, Joseph
2017-01-01
Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species. PMID:28800596
Ficklin, Stephen P.; Feltus, F. Alex
2011-01-01
One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species. PMID:21606319
Ficklin, Stephen P; Feltus, F Alex
2011-07-01
One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species.
Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice[S
Leduc, Magalie S.; Hageman, Rachael S.; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly
2011-01-01
To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a “toolbox” of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits. PMID:21622629
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A
2016-08-09
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.
2016-01-01
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774
Linkage disequilibrium interval mapping of quantitative trait loci.
Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte
2006-03-16
For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.
Sherlock: Detecting Gene-Disease Associations by Matching Patterns of Expression QTL and GWAS
He, Xin; Fuller, Chris K.; Song, Yi; Meng, Qingying; Zhang, Bin; Yang, Xia; Li, Hao
2013-01-01
Genetic mapping of complex diseases to date depends on variations inside or close to the genes that perturb their activities. A strong body of evidence suggests that changes in gene expression play a key role in complex diseases and that numerous loci perturb gene expression in trans. The information in trans variants, however, has largely been ignored in the current analysis paradigm. Here we present a statistical framework for genetic mapping by utilizing collective information in both cis and trans variants. We reason that for a disease-associated gene, any genetic variation that perturbs its expression is also likely to influence the disease risk. Thus, the expression quantitative trait loci (eQTL) of the gene, which constitute a unique “genetic signature,” should overlap significantly with the set of loci associated with the disease. We translate this idea into a computational algorithm (named Sherlock) to search for gene-disease associations from GWASs, taking advantage of independent eQTL data. Application of this strategy to Crohn disease and type 2 diabetes predicts a number of genes with possible disease roles, including several predictions supported by solid experimental evidence. Importantly, predicted genes are often implicated by multiple trans eQTL with moderate associations. These genes are far from any GWAS association signals and thus cannot be identified from the GWAS alone. Our approach allows analysis of association data from a new perspective and is applicable to any complex phenotype. It is readily generalizable to molecular traits other than gene expression, such as metabolites, noncoding RNAs, and epigenetic modifications. PMID:23643380
Boulard, Olivier; Fluteau, Guy; Eloy, Laure; Damotte, Diane; Bedossa, Pierre; Garchon, Henri-Jean
2002-04-15
The nonobese diabetic (NOD) mouse strain provides a good study model for Sjögren's syndrome (SS). The genetic control of SS was investigated in this model using different matings, including a (NOD x C57BL/6 (B6))F(2) cross, a (NOD x NZW)F(2) cross, and ((NOD x B6) x NOD) backcross. Multiple and different loci were detected depending on parent strain combination and sex. Despite significant complexity, two main features were prominent. First, the middle region of chromosome 1 (chr.1) was detected in all crosses. Its effect was most visible in the (NOD x B6)F(2) cross and dominated over that of other loci, including those mapping on chr.8, 9, 10, and 16; the effect of these minor loci was observed only in the absence of the NOD haplotype on chr.1. Most critically, the chr.1 region was sufficient to trigger an SS-like inflammatory infiltrate of salivary glands as shown by the study of a new C57BL/6 congenic strain carrying a restricted segment derived from NOD chr.1. Second, several chromosomal regions were previously associated with NOD autoimmune phenotypes, including Iddm (chr.1, 2, 3, 9, and 17, corresponding to Idd5, Idd13, Idd3, Idd2, and Idd1, respectively), accounting for the strong linkage previously reported between insulitis and sialitis, and autoantibody production (chr.10 and 16, corresponding to Bana2 and Bah2, respectively). Interestingly, only two loci were detected in the (NOD x NZW)F(2) cross, on chr.1 in females and on chr.7 in males, probably because of the latent autoimmune predisposition of the NZW strain. Altogether these findings reflect the complexity and heterogeneity of human SS.
Knight, Jo; Spain, Sarah L; Capon, Francesca; Hayday, Adrian; Nestle, Frank O; Clop, Alex; Barker, Jonathan N; Weale, Michael E; Trembath, Richard C
2012-12-01
Psoriasis is a common, chronic, inflammatory skin disorder. A number of genetic loci have been shown to confer risk for psoriasis. Collectively, these offer an integrated model for the inherited basis for susceptibility to psoriasis that combines altered skin barrier function together with the dysregulation of innate immune pathogen sensing and adap-tive immunity. The major histocompatibility complex (MHC) harbours the psoriasis susceptibility region which exhibits the largest effect size, driven in part by variation contained on the HLA-Cw*0602 allele. However, the resolution of the number and genomic location of potential independent risk loci are hampered by extensive linkage disequilibrium across the region. We leveraged the power of large psoriasis case and control data sets and the statistical approach of conditional analysis to identify potential further association signals distributed across the MHC. In addition to the major loci at HLA-C (P = 2.20 × 10(-236)), we observed and replicated four additional independent signals for disease association, three of which are novel. We detected evidence for association at SNPs rs2507971 (P = 6.73 × 10(-14)), rs9260313 (P = 7.93 × 10(-09)), rs66609536 (P = 3.54 × 10(-07)) and rs380924 (P = 6.24 × 10(-06)), located within the class I region of the MHC, with each observation replicated in an independent sample (P ≤ 0.01). The previously identified locus is close to MICA, the other three lie near MICB, HLA-A and HCG9 (a non-coding RNA gene). The identification of disease associations with both MICA and MICB is particularly intriguing, since each encodes an MHC class I-related protein with potent immunological function.
Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.
2014-01-01
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139
Raelson, John V; Little, Randall D; Ruether, Andreas; Fournier, Hélène; Paquin, Bruno; Van Eerdewegh, Paul; Bradley, W E C; Croteau, Pascal; Nguyen-Huu, Quynh; Segal, Jonathan; Debrus, Sophie; Allard, René; Rosenstiel, Philip; Franke, Andre; Jacobs, Gunnar; Nikolaus, Susanna; Vidal, Jean-Michel; Szego, Peter; Laplante, Nathalie; Clark, Hilary F; Paulussen, René J; Hooper, John W; Keith, Tim P; Belouchi, Abdelmajid; Schreiber, Stefan
2007-09-11
Genome-wide association (GWA) studies offer a powerful unbiased method for the identification of multiple susceptibility genes for complex diseases. Here we report the results of a GWA study for Crohn's disease (CD) using family trios from the Quebec Founder Population (QFP). Haplotype-based association analyses identified multiple regions associated with the disease that met the criteria for genome-wide significance, with many containing a gene whose function appears relevant to CD. A proportion of these were replicated in two independent German Caucasian samples, including the established CD loci NOD2 and IBD5. The recently described IL23R locus was also identified and replicated. For this region, multiple individuals with all major haplotypes in the QFP were sequenced and extensive fine mapping performed to identify risk and protective alleles. Several additional loci, including a region on 3p21 containing several plausible candidate genes, a region near JAKMIP1 on 4p16.1, and two larger regions on chromosome 17 were replicated. Together with previously published loci, the spectrum of CD genes identified to date involves biochemical networks that affect epithelial defense mechanisms, innate and adaptive immune response, and the repair or remodeling of tissue.
Smeland, Olav B; Wang, Yunpeng; Frei, Oleksandr; Li, Wen; Hibar, Derrek P; Franke, Barbara; Bettella, Francesco; Witoelar, Aree; Djurovic, Srdjan; Chen, Chi-Hua; Thompson, Paul M; Dale, Anders M; Andreassen, Ole A
2018-06-06
Schizophrenia (SCZ) is associated with differences in subcortical brain volumes and intracranial volume (ICV). However, little is known about the underlying etiology of these brain alterations. Here, we explored whether brain structure volumes and SCZ share genetic risk factors. Using conditional false discovery rate (FDR) analysis, we integrated genome-wide association study (GWAS) data on SCZ (n = 82315) and GWAS data on 7 subcortical brain volumes and ICV (n = 11840). By conditioning the FDR on overlapping associations, this statistical approach increases power to discover genetic loci. To assess the credibility of our approach, we studied the identified loci in larger GWAS samples on ICV (n = 26577) and hippocampal volume (n = 26814). We observed polygenic overlap between SCZ and volumes of hippocampus, putamen, and ICV. Based on conjunctional FDR < 0.05, we identified 2 loci shared between SCZ and ICV implicating genes FOXO3 (rs10457180) and ITIH4 (rs4687658), 2 loci shared between SCZ and hippocampal volume implicating SLC4A10 (rs4664442) and SPATS2L (rs1653290), and 2 loci shared between SCZ and volume of putamen implicating DCC (rs4632195) and DLG2 (rs11233632). The loci shared between SCZ and hippocampal volume or ICV had not reached significance in the primary GWAS on brain phenotypes. Proving our point of increased power, 2 loci did reach genome-wide significance with ICV (rs10457180) and hippocampal volume (rs4664442) in the larger GWAS. Three of the 6 identified loci are novel for SCZ. Altogether, the findings provide new insights into the relationship between SCZ and brain structure volumes, suggesting that their genetic architectures are not independent.
Linkage Disequilibrium Under Recurrent Bottlenecks
Schaper, E.; Eriksson, A.; Rafajlovic, M.; Sagitov, S.; Mehlig, B.
2012-01-01
To model deviations from selectively neutral genetic variation caused by different forms of selection, it is necessary to first understand patterns of neutral variation. Best understood is neutral genetic variation at a single locus. But, as is well known, additional insights can be gained by investigating multiple loci. The resulting patterns reflect the degree of association (linkage) between loci and provide information about the underlying multilocus gene genealogies. The statistical properties of two-locus gene genealogies have been intensively studied for populations of constant size, as well as for simple demographic histories such as exponential population growth and single bottlenecks. By contrast, the combined effect of recombination and sustained demographic fluctuations is poorly understood. Addressing this issue, we study a two-locus Wright–Fisher model of a population subject to recurrent bottlenecks. We derive coalescent approximations for the covariance of the times to the most recent common ancestor at two loci in samples of two chromosomes. This covariance reflects the degree of association and thus linkage disequilibrium between these loci. We find, first, that an effective population-size approximation describes the numerically observed association between two loci provided that recombination occurs either much faster or much more slowly than the population-size fluctuations. Second, when recombination occurs frequently between but rarely within bottlenecks, we observe that the association of gene histories becomes independent of physical distance over a certain range of distances. Third, we show that in this case, a commonly used measure of linkage disequilibrium, σd2 (closely related to r^2), fails to capture the long-range association between two loci. The reason is that constituent terms, each reflecting the long-range association, cancel. Fourth, we analyze a limiting case in which the long-range association can be described in terms of a Xi coalescent allowing for simultaneous multiple mergers of ancestral lines. PMID:22048021
MHC class II-assortative mate choice in European badgers (Meles meles).
Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L
2015-06-01
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms
2014-01-01
Background Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. Results We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. Conclusions We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement. PMID:24947429
Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.
2015-01-01
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. PMID:26694027
Lan, Caixia; Basnet, Bhoja R; Singh, Ravi P; Huerta-Espino, Julio; Herrera-Foessel, Sybil A; Ren, Yong; Randhawa, Mandeep S
2017-03-01
New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds. CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5-60.8%, 9.0-14.3%, 2.8-13.9%, and 11.6-29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
Knowles, L Lacey; Huang, Huateng; Sukumaran, Jeet; Smith, Stephen A
2018-03-01
Discordant gene trees are commonly encountered when sequences from thousands of loci are applied to estimate phylogenetic relationships. Several processes contribute to this discord. Yet, we have no methods that jointly model different sources of conflict when estimating phylogenies. An alternative to analyzing entire genomes or all the sequenced loci is to identify a subset of loci for phylogenetic analysis. If we can identify data partitions that are most likely to reflect descent from a common ancestor (i.e., discordant loci that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such as lateral gene transfer [LGT]), we can analyze this subset using powerful coalescent-based species-tree approaches. Test data sets were simulated where discord among loci could arise from ILS and LGT. Data sets where analyzed using the newly developed program CLASSIPHY (Huang et al., ) to assess whether our ability to distinguish the cause of discord among loci varied when ILS and LGT occurred in the recent versus deep past and whether the accuracy of these inferences were affected by the mutational process. We show that accuracy of probabilistic classification of individual loci by the cause of discord differed when ILS and LGT events occurred more recently compared with the distant past and that the signal-to-noise ratio arising from the mutational process contributes to difficulties in inferring LGT data partitions. We discuss our findings in terms of the promise and limitations of identifying subsets of loci for species-tree inference that will not violate the underlying coalescent model (i.e., data partitions in which ILS, and not LGT, contributes to discord). We also discuss the empirical implications of our work given the many recalcitrant nodes in the tree of life (e.g., origins of angiosperms, amniotes, or Neoaves), and recent arguments for concatenating loci. © 2018 Botanical Society of America.
Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K; Eyre, Steve; Bowes, John; Pappas, Dimitrios A; Kremer, Joel M; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P; Karlson, Elizabeth W; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Greenberg, Jeffrey D; Plenge, Robert M; Bae, Sang-Cheol
2015-03-01
A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C
NASA Technical Reports Server (NTRS)
Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.
1998-01-01
An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.
Shriner, Daniel; Adeyemo, Adebowale; Gerry, Norman P.; Herbert, Alan; Chen, Guanjie; Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Christman, Michael F.; Rotimi, Charles N.
2009-01-01
Human height is the prototypical polygenic quantitative trait. Recently, several genetic variants influencing adult height were identified, primarily in individuals of East Asian (Chinese Han or Korean) or European ancestry. Here, we examined 152 genetic variants representing 107 independent loci previously associated with adult height for transferability in a well-powered sample of 1,016 unrelated African Americans. When we tested just the reported variants originally identified as associated with adult height in individuals of East Asian or European ancestry, only 8.3% of these loci transferred (p-values≤0.05 under an additive genetic model with directionally consistent effects) to our African American sample. However, when we comprehensively evaluated all HapMap variants in linkage disequilibrium (r 2≥0.3) with the reported variants, the transferability rate increased to 54.1%. The transferability rate was 70.8% for associations originally reported as genome-wide significant and 38.0% for associations originally reported as suggestive. An additional 23 loci were significantly associated but failed to transfer because of directionally inconsistent effects. Six loci were associated with adult height in all three groups. Using differences in linkage disequilibrium patterns between HapMap CEU or CHB reference data and our African American sample, we fine-mapped these six loci, improving both the localization and the annotation of these transferable associations. PMID:20027299
Mapping autism risk loci using genetic linkage and chromosomal rearrangements
Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie
2007-01-01
Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880
Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon
2012-01-01
Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.
Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca
2006-01-01
Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown. PMID:16685651
Replication of Caucasian loci associated with bone mineral density in Koreans.
Kim, Y A; Choi, H J; Lee, J Y; Han, B G; Shin, C S; Cho, N H
2013-10-01
Most bone mineral density (BMD) loci were reported in Caucasian genome-wide association studies (GWAS). This study investigated the association between 59 known BMD loci (+200 suggestive SNPs) and DXA-derived BMD in East Asian population with respect to sex and site specificity. We also identified four novel BMD candidate loci from the suggestive SNPs. Most GWAS have reported BMD-related variations in Caucasian populations. This study investigates whether the BMD loci discovered in Caucasian GWAS are also associated with BMD in East Asian ethnic samples. A total of 2,729 unrelated Korean individuals from a population-based cohort were analyzed. We selected 747 single-nucleotide polymorphisms (SNPs). These markers included 547 SNPs from 59 loci with genome-wide significance (GWS, p value less than 5 × 10(-8)) levels and 200 suggestive SNPs that showed weaker BMD association with p value less than 5 × 10(-5). After quality control, 535 GWS SNPs and 182 suggestive SNPs were included in the replication analysis. Of the 535 GWS SNPs, 276 from 25 loci were replicated (p < 0.05) in the Korean population with 51.6 % replication rate. Of the 182 suggestive variants, 16 were replicated (p < 0.05, 8.8 % of replication rate), and five reached a significant combined p value (less than 7.0 × 10(-5), 0.05/717 SNPs, corrected for multiple testing). Two markers (rs11711157, rs3732477) are for the same signal near the gene CPN2 (carboxypeptidase N, polypeptide 2). The other variants, rs6436440 and rs2291296, were located in the genes AP1S3 (adaptor-related protein complex 1, sigma 3 subunit) and RARB (retinoic acid receptor, beta). Our results illustrate ethnic differences in BMD susceptibility genes and underscore the need for further genetic studies in each ethnic group. We were also able to replicate some SNPs with suggestive associations. These SNPs may be BMD-related genetic markers and should be further investigated.
Pettengill, James B; Neel, Maile C
2011-05-01
Given that inaccurate taxonomy can have negative consequences for species of conservation concern and result in erroneous conclusions regarding macroecological patterns, efficient methods for resolving taxonomic uncertainty are essential. The primary objective of this study was to assess the evolutionary distinctiveness of the federally endangered plant species Agalinis acuta (Orobanchaceae) to ensure it represents a distinct taxon warranting protection under the United States Endangered Species Act. We describe and implement a sequential approach that begins with the most restrictive criteria of genealogical exclusivity within which we first conducted a phylogenetic analysis based on six chloroplast DNA loci assayed from multiple representatives of five putative species. Because of the possibility that incomplete lineage sorting is responsible for the lack of genealogical exclusivity among A. acuta individuals, we then conducted intensive population level analyses based on 21 microsatellite loci and 61 morphological traits. The distinctiveness of A. acuta from Agalinis decemloba and Agalinis tenella was not supported under the genealogical species concept. The results from the analyses of microsatellite loci and morphological characters evaluated under alternative species concepts also did not support the distinctiveness of A. acuta from A. decemloba . Through this successive approach, we found insufficient evidence to support the evolutionary distinctiveness of the listed taxon A. acuta . We recommend that it be synonymized under A. decemloba and also conclude that the taxon that would now include A. acuta is deserving of protection under the Endangered Species Act.
Integrated genomics for pinpointing survival loci within arm-level somatic copy number alterations
Roy, David M.; Walsh, Logan A.; Desrichard, Alexis; Huse, Jason T.; Wu, Wei; Gao, JianJiong; Bose, Promita; Lee, William; Chan, Timothy A.
2016-01-01
SUMMARY The identification of driver loci underlying arm-level somatic copy number alterations (SCNAs) in cancer has remained challenging and incomplete. Here we assess the relative impact and present a detailed landscape of arm-level SCNAs in 10985 patient samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Further, using chromosome 9p loss in lower grade glioma (LGG) as a model, we employ a unique multi-tiered genomic dissection strategy using 540 patients from 3 independent LGG datasets to identify genetic loci that govern tumor aggressiveness and poor survival. This comprehensive approach uncovered several 9p loss-specific prognostic markers, validated existing ones, and re-defined the impact of CDKN2A loss in LGG. PMID:27165745
Gajurel, Jyoti Prasad; Cornejo, Carolina; Werth, Silke; Shrestha, Krishna Kumar; Scheidegger, Christoph
2013-03-01
Microsatellite primers were developed in the endangered tree species Taxus wallichiana from Nepal to investigate regional genetic differentiation, local genetic diversity, and gene flow for the conservation of this species under climate- and land-use change scenarios in mountain regions of Nepal. • We developed 10 highly polymorphic microsatellite markers from 454 DNA sequencing. Characterization of the new microsatellite loci was done in 99 individuals collected from three valleys with different climatic regimes. The number of alleles per locus varied from four to 12. Observed heterozygosity of populations, averaged across loci, ranged from 0.30 to 0.59. • The new markers provided by this study will substantially increase the resolution for detailed studies in phylogeography, population genetics, and parentage analysis.
Canturk, Kemal Murat; Emre, Ramazan; Gurkan, Cemal; Komur, Ilhami; Muslumanoglu, Omer; Dogan, Muhammed
2016-07-01
Here, we report an incest paternity case involving three biological brothers as alleged fathers (AFs), their biological sister and her child that was investigated using the Investigator ESSplex Plus, AmpFLSTR Identifiler Plus/Investigator IDplex Plus and PowerPlex 16 kits. Initial duo paternity investigations using 15-loci autosomal short tandem repeat (STR) analyses failed to exclude any of the AFs. Despite the fact that one of the brothers, AF1, had a mismatch with the child at a single locus (D2S1338), the possibility of a single-step mutation could not be ruled out. When the number of autosomal STR loci analysed was increased to 22 without the inclusion of the mother, AF2 and AF3 still could not be excluded, since both of them again had no mismatches with the child. A breakthrough was possible only upon inclusion of the mother so that trio paternity investigations were carried out. This time AF1 and AF2 could be excluded at two loci (D2S1338 and D1S1656) and six loci (vWa, D1S1656, D12S391, FGA, PENTA E and PENTA D), respectively, and AF3 was then the only brother who could not be excluded from paternity. Subsequent statistical analyses suggested that AF3 could be the biological father of the child with a combined paternity index >100 billion and a probability of paternity >99.99999999%. These findings consolidate the fact that complex paternity cases such as those involving incest could benefit more from the inclusion of the mother than simply increasing the number of STR loci analysed. © The Author(s) 2015.
Genetic heterogeneity in Finnish hereditary prostate cancer using ordered subset analysis
Simpson, Claire L; Cropp, Cheryl D; Wahlfors, Tiina; George, Asha; Jones, MaryPat S; Harper, Ursula; Ponciano-Jackson, Damaris; Tammela, Teuvo; Schleutker, Johanna; Bailey-Wilson, Joan E
2013-01-01
Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families. PMID:22948022
VAV1 and BAFF, via NFκB pathway, are genetic risk factors for myasthenia gravis
Avidan, Nili; Le Panse, Rozen; Harbo, Hanne F; Bernasconi, Pia; Poulas, Konstantinos; Ginzburg, Elizabeta; Cavalcante, Paola; Colleoni, Lara; Baggi, Fulvio; Antozzi, Carlo; Truffault, Frédérique; Horn-Saban, Shirley; Pöschel, Simone; Zagoriti, Zoi; Maniaol, Angelina; Lie, Benedicte A; Bernard, Isabelle; Saoudi, Abdelhadi; Illes, Zsolt; Casasnovas Pons, Carlos; Melms, Arthur; Tzartos, Socrates; Willcox, Nicholas; Kostera-Pruszczyk, Anna; Tallaksen, Chantal; Mantegazza, Renato; Berrih-Aknin, Sonia; Miller, Ariel
2014-01-01
Objective To identify novel genetic loci that predispose to early-onset myasthenia gravis (EOMG) applying a two-stage association study, exploration, and replication strategy. Methods Thirty-four loci and one confirmation loci, human leukocyte antigen (HLA)-DRA, were selected as candidate genes by team members of groups involved in different research aspects of MG. In the exploration step, these candidate genes were genotyped in 384 EOMG and 384 matched controls and significant difference in allele frequency were found in eight genes. In the replication step, eight candidate genes and one confirmation loci were genotyped in 1177 EOMG patients and 814 controls, from nine European centres. Results Allele frequency differences were found in four novel loci: CD86, AKAP12, VAV1, B-cell activating factor (BAFF), and tumor necrosis factor-alpha (TNF-α), and these differences were consistent in all nine cohorts. Haplotype trend test supported the differences in allele frequencies between cases and controls. In addition, allele frequency difference in female versus male patients at HLA-DRA and TNF-α loci were observed. Interpretation The genetic associations to EOMG outside the HLA complex are novel and of interest as VAV1 is a key signal transducer essential for T- and B-cell activation, and BAFF is a cytokine that plays important roles in the proliferation and differentiation of B-cells. Moreover, we noted striking epistasis between the predisposing VAV1 and BAFF haplotypes; they conferred a greater risk in combination than alone. These, and CD86, share the same signaling pathway, namely nuclear factor-kappaB (NFκB), thus implicating dysregulation of proinflammatory signaling in predisposition to EOMG. PMID:25356403
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Evaluation of European coeliac disease risk variants in a north Indian population
Senapati, Sabyasachi; Gutierrez-Achury, Javier; Sood, Ajit; Midha, Vandana; Szperl, Agata; Romanos, Jihane; Zhernakova, Alexandra; Franke, Lude; Alonso, Santos; Thelma, B K; Wijmenga, Cisca; Trynka, Gosia
2015-01-01
Studies in European populations have contributed to a better understanding of the genetics of complex diseases, for example, in coeliac disease (CeD), studies of over 23 000 European samples have reported association to the HLA locus and another 39 loci. However, these associations have not been evaluated in detail in other ethnicities. We sought to better understand how disease-associated loci that have been mapped in Europeans translate to a disease risk for a population with a different ethnic background. We therefore performed a validation of European risk loci for CeD in 497 cases and 736 controls of north Indian origin. Using a dense-genotyping platform (Immunochip), we confirmed the strong association to the HLA region (rs2854275, P=8.2 × 10−49). Three loci showed suggestive association (rs4948256, P=9.3 × 10−7, rs4758538, P=8.6 × 10−5 and rs17080877, P=2.7 × 10−5). We directly replicated five previously reported European variants (P<0.05; mapping to loci harbouring FASLG/TNFSF18, SCHIP1/IL12A, PFKFB3/PRKCQ, ZMIZ1 and ICOSLG). Using a transferability test, we further confirmed association at PFKFB3/PRKCQ (rs2387397, P=2.8 × 10−4) and PTPRK/THEMIS (rs55743914, P=3.4 × 10−4). The north Indian population has a higher degree of consanguinity than Europeans and we therefore explored the role of recessively acting variants, which replicated the HLA locus (rs9271850, P=3.7 × 10−23) and suggested a role of additional four loci. To our knowledge, this is the first replication study of CeD variants in a non-European population. PMID:25052311
Mohorianu, Irina; Stocks, Matthew Benedict; Wood, John; Dalmay, Tamas; Moulton, Vincent
2013-07-01
Small RNAs (sRNAs) are 20-25 nt non-coding RNAs that act as guides for the highly sequence-specific regulatory mechanism known as RNA silencing. Due to the recent increase in sequencing depth, a highly complex and diverse population of sRNAs in both plants and animals has been revealed. However, the exponential increase in sequencing data has also made the identification of individual sRNA transcripts corresponding to biological units (sRNA loci) more challenging when based exclusively on the genomic location of the constituent sRNAs, hindering existing approaches to identify sRNA loci. To infer the location of significant biological units, we propose an approach for sRNA loci detection called CoLIde (Co-expression based sRNA Loci Identification) that combines genomic location with the analysis of other information such as variation in expression levels (expression pattern) and size class distribution. For CoLIde, we define a locus as a union of regions sharing the same pattern and located in close proximity on the genome. Biological relevance, detected through the analysis of size class distribution, is also calculated for each locus. CoLIde can be applied on ordered (e.g., time-dependent) or un-ordered (e.g., organ, mutant) series of samples both with or without biological/technical replicates. The method reliably identifies known types of loci and shows improved performance on sequencing data from both plants (e.g., A. thaliana, S. lycopersicum) and animals (e.g., D. melanogaster) when compared with existing locus detection techniques. CoLIde is available for use within the UEA Small RNA Workbench which can be downloaded from: http://srna-workbench.cmp.uea.ac.uk.
The Pathogenesis of Autoimmune Liver Disease.
Arndtz, Katherine; Hirschfield, Gideon M
Autoimmune liver disease (AILD) encompasses 3 main distinct clinical diseases: autoimmune hepatitis, primary biliary cholangitis (formally known as cirrhosis, PBC) and primary sclerosing cholangitis (PSC). These conditions are an important, yet under-appreciated cause of patient morbidity and mortality with ongoing unmet needs for further research and clinical advances. There is observational evidence for genetic predisposition, with all 3 conditions being more common in first degree relatives. AILD is associated with the presence of auto-antibodies and higher risks of other non-hepatic auto-immune conditions. Genetic risk association studies have identified HLA and non-HLA risk loci for the development of disease, with some HLA loci providing prognostic information. This re-enforces the concept that genetic predisposition to autoimmunity is important, likely in the context of environmental exposures. Such environmental triggers are unclear but relevant risks include smoking, drug and xenobiotic exposure as well as the complexities of the microbiome. There is evidence for a loss of immune tolerance to self-antigens playing a part in the development of these conditions. In particular the IL-2 and IL-12 regulatory pathways have been implicated in pre-disposing to an unopposed inflammatory response within the liver. Main immunological themes revolve around loss of immune tolerance leading to T-cell mediated injury, imbalance in the regulation of immune cells and defective immune response to foreign antigens. For PBC and PSC, there is then the added complexity of the consequences of cholestasis on hepato-biliary injury, immune regulation and liver fibrosis. Whilst specific disease causes and triggers are still lacking, AILD arises on the background of collective genetic and environmental risk, leading to chronic and abnormal hepato-biliary immune responses. Effective and more rational therapy will ultimately be developed when the multiple pathways to liver injury are better understood. © 2016 S. Karger AG, Basel.
Zorrilla-Fontanesi, Yasmín; Rambla, José-Luis; Cabeza, Amalia; Medina, Juan J.; Sánchez-Sevilla, José F.; Valpuesta, Victoriano; Botella, Miguel A.; Granell, Antonio; Amaya, Iraida
2012-01-01
Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype ‘1392’, selected for its superior flavor, and ‘232’ was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line ‘1392’ displayed higher volatile levels than ‘232’, and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening. PMID:22474217
Chen, H X; Cai, C; Liu, J Y; Zhang, Z G; Yuan, M; Jia, J N; Sun, Z G; Huang, H R; Gao, J M; Li, W M
2017-06-10
Objective: Using the standard genotype method, variable number of tandem repeats (VNTR), we constructed a VNTR database to cover all provinces and proposed a set of optimized VNTR loci combinations for each province, in order to improve the preventive and control programs on tuberculosis, in China. Methods: A total of 15 loci VNTR was used to analyze 4 116 Mycobacterium tuberculosis strains, isolated from national survey of Drug Resistant Tuberculosis, in 2007. Hunter-Gaston Index (HGI) was also used to analyze the discriminatory power of each VNTR site. A set combination of 12-VNTR, 10-VNTR, 8-VNTR and 5-VNTR was respectively constructed for each province, based on 1) epidemic characteristics of M. tuberculosis lineages in China, with high discriminatory power and genetic stability. Results: Through the completed 15 loci VNTR patterns of 3 966 strains under 96.36 % (3 966/4 116) coverage, we found seven high HGI loci (including QUB11b and MIRU26) as well as low stable loci (including QUB26, MIRU16, Mtub21 and QUB11b) in several areas. In all the 31 provinces, we found an optimization VNTR combination as 10-VNTR loci in Inner Mongolia, Chongqing and Heilongjiang, but with 8-VNTR combination shared in other provinces. Conclusions: It is necessary to not only use the VNTR database for tracing the source of infection and cluster of M. tuberculosis in the nation but also using the set of optimized VNTR combinations in monitoring those local epidemics and M. tuberculosis (genetics in local) population.
A genome-wide scan for signatures of directional selection in domesticated pigs.
Moon, Sunjin; Kim, Tae-Hun; Lee, Kyung-Tai; Kwak, Woori; Lee, Taeheon; Lee, Si-Woo; Kim, Myung-Jick; Cho, Kyuho; Kim, Namshin; Chung, Won-Hyong; Sung, Samsun; Park, Taesung; Cho, Seoae; Groenen, Martien Am; Nielsen, Rasmus; Kim, Yuseob; Kim, Heebal
2015-02-25
Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication. Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an F ST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness. We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.
Qiu, Ying-Hua; Deng, Fei-Yan; Tang, Zai-Xiang; Jiang, Zhen-Huan; Lei, Shu-Feng
2015-10-01
Type 1 diabetes mellitus (type 1 DM) is an autoimmune disease. Although genome-wide association studies (GWAS) and meta-analyses have successfully identified numerous type 1 DM-associated susceptibility loci, the underlying mechanisms for these susceptibility loci are currently largely unclear. Based on publicly available datasets, we performed integrative analyses (i.e., integrated gene relationships among implicated loci, differential gene expression analysis, functional prediction and functional annotation clustering analysis) and combined with expression quantitative trait loci (eQTL) results to further explore function mechanisms underlying the associations between genetic variants and type 1 DM. Among a total of 183 type 1 DM-associated SNPs, eQTL analysis showed that 17 SNPs with cis-regulated eQTL effects on 9 genes. All the 9 eQTL genes enrich in immune-related pathways or Gene Ontology (GO) terms. Functional prediction analysis identified 5 SNPs located in transcription factor (TF) binding sites. Of the 9 eQTL genes, 6 (TAP2, HLA-DOB, HLA-DQB1, HLA-DQA1, HLA-DRB5 and CTSH) were differentially expressed in type 1 DM-associated related cells. Especially, rs3825932 in CTSH has integrative functional evidence supporting the association with type 1 DM. These findings indicated that integrative analyses can yield important functional information to link genetic variants and type 1 DM. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Lintner, Nathanael G.; Kerou, Melina; Brumfield, Susan K.; Graham, Shirley; Liu, Huanting; Naismith, James H.; Sdano, Matthew; Peng, Nan; She, Qunxin; Copié, Valérie; Young, Mark J.; White, Malcolm F.; Lawrence, C. Martin
2011-01-01
In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli “CRISPR-associated complex for antiviral defense” (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea. PMID:21507944
Lintner, Nathanael G; Kerou, Melina; Brumfield, Susan K; Graham, Shirley; Liu, Huanting; Naismith, James H; Sdano, Matthew; Peng, Nan; She, Qunxin; Copié, Valérie; Young, Mark J; White, Malcolm F; Lawrence, C Martin
2011-06-17
In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea.
Mancuso, Nicholas; Shi, Huwenbo; Goddard, Pagé; Kichaev, Gleb; Gusev, Alexander; Pasaniuc, Bogdan
2017-03-02
Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. Here, we introduce a method for estimating the local genetic correlation between gene expression and a complex trait and utilize it to estimate the genetic correlation due to predicted expression between pairs of traits. We integrated gene expression measurements from 45 expression panels with summary GWAS data to perform 30 multi-tissue transcriptome-wide association studies (TWASs). We identified 1,196 genes whose expression is associated with these traits; of these, 168 reside more than 0.5 Mb away from any previously reported GWAS significant variant. We then used our approach to find 43 pairs of traits with significant genetic correlation at the level of predicted expression; of these, eight were not found through genetic correlation at the SNP level. Finally, we used bi-directional regression to find evidence that BMI causally influences triglyceride levels and that triglyceride levels causally influence low-density lipoprotein. Together, our results provide insight into the role of gene expression in the susceptibility of complex traits and diseases. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
52 Genetic Loci Influencing Myocardial Mass
van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.
2017-01-01
BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466
Green, Nancy S.; Ender, Katherine L.; Pashankar, Farzana; Driscoll, Catherine; Giardina, Patricia J.; Mullen, Craig A.; Clark, Lorraine N.; Manwani, Deepa; Crotty, Jennifer; Kisselev, Sergey; Neville, Kathleen A.; Hoppe, Carolyn; Barral, Sandra
2013-01-01
Background Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. Methodology/Principal Findings In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. Conclusions/Significance These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. PMID:23409025
Bardet-Biedl syndrome and Usher syndrome.
Koenig, Rainer
2003-01-01
Bardet-Biedl syndrome (BBS) and Usher syndrome (USH) are the most prevalent syndromic forms of retinitis pigmentosa (RP), together they make up almost a quarter of the patients with RP. BBS is defined by the association of retinopathy, obesity, hypogonadism, renal dysfunction, postaxial polydactyly and mental retardation. This clinically complex syndrome is genetically heterogeneous with linkage to more than 6 loci, and 4 genes have been cloned so far. Recent molecular data present evidence that, in some instances, the clinical manifestation of BBS requires recessive mutations in 1 of the 6 BBS loci plus one or two additional mutations in a second BBS locus (tri- or tetra-allelic inheritance). USH is characterized by the combination of congenital or early-onset sensorineural deafness, RP, and variable degrees of vestibular dysfunction. Each of the three clinical types is genetically heterogeneous: 7 loci have been mapped for type 1, three loci for type 2, and two loci for type 3. Currently, 6 USH genes (MYO7A, USH1C, CDH23, PCDH15, USH2A, USH3) have been identified. Pathogenetically, mutations of the USH1 genes seem to result in defects of auditory and retinal sensory cells, the USH 2 phenotype is caused by defects of extracellular matrix or cell surface receptor proteins, and USH3 may be due to synaptic disturbances. The considerable contribution of syndromic forms of RP requires interdisciplinary approaches to the clinical and diagnostic management of RP patients.
Electrophysiological Endophenotypes for Schizophrenia
Owens, Emily; Bachman, Peter; Glahn, David C; Bearden, Carrie E
2016-01-01
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABA-ergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating datasets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype. PMID:26954597
Ensemble learning of QTL models improves prediction of complex traits
USDA-ARS?s Scientific Manuscript database
Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...
Contribution of Large Region Joint Associations to Complex Traits Genetics
Paré, Guillaume; Asma, Senay; Deng, Wei Q.
2015-01-01
A polygenic model of inheritance, whereby hundreds or thousands of weakly associated variants contribute to a trait’s heritability, has been proposed to underlie the genetic architecture of complex traits. However, relatively few genetic variants have been positively identified so far and they collectively explain only a small fraction of the predicted heritability. We hypothesized that joint association of multiple weakly associated variants over large chromosomal regions contributes to complex traits variance. Confirmation of such regional associations can help identify new loci and lead to a better understanding of known ones. To test this hypothesis, we first characterized the ability of commonly used genetic association models to identify large region joint associations. Through theoretical derivation and simulation, we showed that multivariate linear models where multiple SNPs are included as independent predictors have the most favorable association profile. Based on these results, we tested for large region association with height in 3,740 European participants from the Health and Retirement Study (HRS) study. Adjusting for SNPs with known association with height, we demonstrated clustering of weak associations (p = 2x10-4) in regions extending up to 433.0 Kb from known height loci. The contribution of regional associations to phenotypic variance was estimated at 0.172 (95% CI 0.063-0.279; p < 0.001), which compared favorably to 0.129 explained by known height variants. Conversely, we showed that suggestively associated regions are enriched for known height loci. To extend our findings to other traits, we also tested BMI, HDLc and CRP for large region associations, with consistent results for CRP. Our results demonstrate the presence of large region joint associations and suggest these can be used to pinpoint weakly associated SNPs. PMID:25856144
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits
van Zanten, Martijn
2015-01-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492
Nwakanma, Davis C.; Duffy, Craig W.; Amambua-Ngwa, Alfred; Oriero, Eniyou C.; Bojang, Kalifa A.; Pinder, Margaret; Drakeley, Chris J.; Sutherland, Colin J.; Milligan, Paul J.; MacInnis, Bronwyn; Kwiatkowski, Dominic P.; Clark, Taane G.; Greenwood, Brian M.; Conway, David J.
2014-01-01
Background. Analysis of genome-wide polymorphism in many organisms has potential to identify genes under recent selection. However, data on historical allele frequency changes are rarely available for direct confirmation. Methods. We genotyped single nucleotide polymorphisms (SNPs) in 4 Plasmodium falciparum drug resistance genes in 668 archived parasite-positive blood samples of a Gambian population between 1984 and 2008. This covered a period before antimalarial resistance was detected locally, through subsequent failure of multiple drugs until introduction of artemisinin combination therapy. We separately performed genome-wide sequence analysis of 52 clinical isolates from 2008 to prospect for loci under recent directional selection. Results. Resistance alleles increased from very low frequencies, peaking in 2000 for chloroquine resistance-associated crt and mdr1 genes and at the end of the survey period for dhfr and dhps genes respectively associated with pyrimethamine and sulfadoxine resistance. Temporal changes fit a model incorporating likely selection coefficients over the period. Three of the drug resistance loci were in the top 4 regions under strong selection implicated by the genome-wide analysis. Conclusions. Genome-wide polymorphism analysis of an endemic population sample robustly identifies loci with detailed documentation of recent selection, demonstrating power to prospectively detect emerging drug resistance genes. PMID:24265439
Reappraisal of known malaria resistance loci in a large multi-centre study
Rockett, Kirk A.; Clarke, Geraldine M.; Fitzpatrick, Kathryn; Hubbart, Christina; Jeffreys, Anna E.; Rowlands, Kate; Craik, Rachel; Jallow, Muminatou; Conway, David J.; Bojang, Kalifa A.; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A.; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D.; Bougouma, Edith C.; Sirima, Sodiomon B.; Modiano, David; Amenga-Etego, Lucas N.; Ghansah, Anita; Koram, Kwadwo A.; Wilson, Michael D.; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M.; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N.; Manjurano, Alphaxard; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J.; Phu, Nguyen Hoan; Ngoc Quyen, Nguyen Thi; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy M. E.; Michon, Pascal; Mueller, Ivo; Green, Angie; Molloy, Sile; Johnson, Kimberly J.; Kerasidou, Angeliki; Cornelius, Victoria; Hart, Lee; Vanderwal, Aaron; SanJoaquin, Miguel; Band, Gavin; Le, Si Quang; Pirinen, Matti; Sepúlveda, Nuno; Spencer, Chris C.A.; Clark, Taane G.; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P.
2015-01-01
Many human genetic associations with resistance to malaria have been reported but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. There was strong evidence of association with the HBB, ABO, ATP2B4, G6PD and CD40LG loci but previously reported associations at 22 other loci did not replicate in the multi-centre analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anaemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed. PMID:25261933
Ellinghaus, David; Jostins, Luke; Spain, Sarah L; Cortes, Adrian; Bethune, Jörn; Han, Buhm; Park, Yu Rang; Raychaudhuri, Soumya; Pouget, Jennie G; Hübenthal, Matthias; Folseraas, Trine; Wang, Yunpeng; Esko, Tonu; Metspalu, Andres; Westra, Harm-Jan; Franke, Lude; Pers, Tune H; Weersma, Rinse K; Collij, Valerie; D'Amato, Mauro; Halfvarson, Jonas; Jensen, Anders Boeck; Lieb, Wolfgang; Degenhardt, Franziska; Forstner, Andreas J; Hofmann, Andrea; Schreiber, Stefan; Mrowietz, Ulrich; Juran, Brian D; Lazaridis, Konstantinos N; Brunak, Søren; Dale, Anders M; Trembath, Richard C; Weidinger, Stephan; Weichenthal, Michael; Ellinghaus, Eva; Elder, James T; Barker, Jonathan NWN; Andreassen, Ole A; McGovern, Dermot P; Karlsen, Tom H; Barrett, Jeffrey C; Parkes, Miles; Brown, Matthew A; Franke, Andre
2016-01-01
We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the relationship between these clinically related diseases. Using high-density genotype data from more than 86,000 individuals of European-ancestry we identified 244 independent multi-disease signals including 27 novel genome-wide significant susceptibility loci and 3 unreported shared risk loci. Complex pleiotropy was supported when contrasting multi-disease signals with expression data sets from human, rat and mouse, and epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity (a subgroup of cases that is genetically identical to another disease, possibly due to diagnostic misclassification, molecular subtypes, or excessive comorbidity). In particular, the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is likely the result of a unique disease, which is genetically distinct from classical inflammatory bowel disease phenotypes. PMID:26974007
Assessment of Parkinson’s disease risk loci in Greece
Kara, Eleanna; Xiromerisiou, Georgia; Spanaki, Cleanthe; Bozi, Maria; Koutsis, Georgios; Panas, Marios; Dardiotis, Efthimios; Ralli, Styliani; Bras, Jose; Letson, Christopher; Edsall, Connor; Pliner, Hannah; Arepali, Sampath; Kalinderi, Kallirhoe; Fidani, Liana; Bostanjopoulou, Sevasti; Keller, Margaux F; Wood, Nicholas W; Hardy, John; Houlden, Henry; Stefanis, Leonidas; Plaitakis, Andreas; Hernandez, Dena; Hadjigeorgiou, Georgios M; Nalls, Mike A; Singleton, Andrew B
2013-01-01
Genome wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson’s disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and controls from Greece. We showed that previously published risk profiles for Northern European and American populations are also applicable to the Greek population. In addition, while we were largely underpowered to detect individual associations we replicated 5 of 32 previously published risk variants with nominal p-values <0.05. Genome-wide complex trait analysis (GCTA) revealed that known risk loci explain disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a substantial genetic component to PD in Greece similarly to other worldwide populations that remains to be discovered. PMID:24080174
Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.).
Hoban, Sean; Anderson, Robert; McCleary, Tim; Schlarbaum, Scott; Romero-Severson, Jeanne
2008-05-01
Butternut (Juglans cinerea L.) is an eastern North American forest tree severely threatened by an exotic fungal pathogen, Sirococcus clavigignenti-juglandacearum. We report here 13 nuclear microsatellites for genetic evaluation of the remaining natural populations. Summary statistics are reported for individuals from a population of butternuts in central Kentucky (N = 63). All markers were polymorphic, with an average of 13.7 alleles per locus observed. Four loci exhibited significantly fewer heterozygotes than expected under Hardy-Weinberg equilibrium (P < 0.05). © 2007 The Authors.
Rahmioglu, Nilufer; Nyholt, Dale R.; Morris, Andrew P.; Missmer, Stacey A.; Montgomery, Grant W.; Zondervan, Krina T.
2014-01-01
BACKGROUND Endometriosis is a heritable common gynaecological condition influenced by multiple genetic and environmental factors. Genome-wide association studies (GWASs) have proved successful in identifying common genetic variants of moderate effects for various complex diseases. To date, eight GWAS and replication studies from multiple populations have been published on endometriosis. In this review, we investigate the consistency and heterogeneity of the results across all the studies and their implications for an improved understanding of the aetiology of the condition. METHODS Meta-analyses were conducted on four GWASs and four replication studies including a total of 11 506 cases and 32 678 controls, and on the subset of studies that investigated associations for revised American Fertility Society (rAFS) Stage III/IV including 2859 cases. The datasets included 9039 cases and 27 343 controls of European (Australia, Belgium, Italy, UK, USA) and 2467 cases and 5335 controls of Japanese ancestry. Fixed and Han and Elkin random-effects models, and heterogeneity statistics (Cochran's Q test), were used to investigate the evidence of the nine reported genome-wide significant loci across datasets and populations. RESULTS Meta-analysis showed that seven out of nine loci had consistent directions of effect across studies and populations, and six out of nine remained genome-wide significant (P < 5 × 10−8), including rs12700667 on 7p15.2 (P = 1.6 × 10−9), rs7521902 near WNT4 (P = 1.8 × 10−15), rs10859871 near VEZT (P = 4.7 × 10−15), rs1537377 near CDKN2B-AS1 (P = 1.5 × 10−8), rs7739264 near ID4 (P = 6.2 × 10−10) and rs13394619 in GREB1 (P = 4.5 × 10−8). In addition to the six loci, two showed borderline genome-wide significant associations with Stage III/IV endometriosis, including rs1250248 in FN1 (P = 8 × 10−8) and rs4141819 on 2p14 (P = 9.2 × 10−8). Two independent inter-genic loci, rs4141819 and rs6734792 on chromosome 2, showed significant evidence of heterogeneity across datasets (P < 0.005). Eight of the nine loci had stronger effect sizes among Stage III/IV cases, implying that they are likely to be implicated in the development of moderate to severe, or ovarian, disease. While three out of nine loci were inter-genic, the remaining were in or near genes with known functions of biological relevance to endometriosis, varying from roles in developmental pathways to cellular growth/carcinogenesis. CONCLUSIONS Our meta-analysis shows remarkable consistency in endometriosis GWAS results across studies, with little evidence of population-based heterogeneity. They also show that the phenotypic classifications used in GWAS to date have been limited. Stronger associations with Stage III/IV disease observed for most loci emphasize the importance for future studies to include detailed sub-phenotype information. Functional studies in relevant tissues are needed to understand the effect of the variants on downstream biological pathways. PMID:24676469
Sola, Christophe
2015-06-01
The natural history of tuberculosis may be tackled by various means, among which the record of molecular scars that have been registered by the Mycobacterium tuberculosis complex (MTBC) genomes transmitted from patient to patient for tens of thousands years and possibly more. Recently discovered polymorphic loci, the CRISPR sequences, are indirect witnesses of the historical phage-bacteria struggle, and may be related to the time when the ancestor of today's tubercle bacilli were environmental bacteria, i.e. before becoming intracellular parasites. In this article, we present what are CRISPRs and try to summarize almost 20 years of research results obtained using the genetic diversity of the CRISPR loci in MTBC as a perspective for studying new models. We show that the study of the diversity of CRISPR sequences, thanks to «spoligotyping», has played a great role in our global understanding of the population structure of MTBC. Copyright © 2015 Elsevier Ltd. All rights reserved.
An integrated map of structural variation in 2,504 human genomes.
Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Fritz, Markus Hsi-Yang; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Casale, Francesco Paolo; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Mu, Xinmeng Jasmine; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O
2015-10-01
Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.
Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A
2009-01-01
The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.
Ashman, Tia-Lynn; Tennessen, Jacob A.; Dalton, Rebecca M.; Govindarajulu, Rajanikanth; Koski, Matthew H.; Liston, Aaron
2015-01-01
Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria. PMID:26483011
Bakkeren, G; Kronstad, J W
1994-01-01
Sexual compatibility requires self vs. non-self recognition. Genetically, two compatibility or mating-type systems govern recognition in heterothallic basidiomycete fungi such as the edible and woodrotting mushrooms and the economically important rust and smut phytopathogens. A bipolar system is defined by a single genetic locus (MAT) that can have two or multiple alleles. A tetrapolar system has two loci, each with two or more specificities. We have employed two species from the genus Ustilago (smut fungi) to discover a molecular explanation for the genetic difference in mating systems. Ustilago maydis, a tetrapolar species, has two genetically unlinked loci that encode the distinct mating functions of cell fusion (a locus) and subsequent sexual development and pathogenicity (b locus). We have recently described a b locus in a bipolar species, Ustilago hordei, wherein the existence of an a locus has been suspected, but not demonstrated. We report here the cloning of an allele of the a locus (a1) from U. hordei and the discovery that physical linkage of the a and b loci in this bipolar fungus accounts for the distinct mating system. Linkage establishes a large complex MAT locus in U. hordei; this locus appears to be in a region suppressed for recombination. Images PMID:7913746
Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments
Sanchez-Mazas, Alicia; Lemaître, Jean-François; Currat, Mathias
2012-01-01
Human leucocyte antigen (HLA) loci have a complex evolution where both stochastic (e.g. genetic drift) and deterministic (natural selection) forces are involved. Owing to their extraordinary level of polymorphism, HLA genes are useful markers for reconstructing human settlement history. However, HLA variation often deviates significantly from neutral expectations towards an excess of genetic diversity. Because HLA molecules play a crucial role in immunity, this observation is generally explained by pathogen-driven-balancing selection (PDBS). In this study, we investigate the PDBS model by analysing HLA allelic diversity on a large database of 535 populations in relation to pathogen richness. Our results confirm that geographical distances are excellent predictors of HLA genetic differentiation worldwide. We also find a significant positive correlation between genetic diversity and pathogen richness at two HLA class I loci (HLA-A and -B), as predicted by PDBS, and a significant negative correlation at one HLA class II locus (HLA-DQB1). Although these effects are weak, as shown by a loss of significance when populations submitted to rapid genetic drift are removed from the analysis, the inverse relationship between genetic diversity and pathogen richness at different loci indicates that HLA genes have adopted distinct evolutionary strategies to provide immune protection in pathogen-rich environments. PMID:22312050
Chen, Lin; An, Yixin; Li, Yong-xiang; Li, Chunhui; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Wang, Tianyu; Li, Yu
2017-01-01
Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci. PMID:29312420
Tragante, Vinicius; Barnes, Michael R.; Ganesh, Santhi K.; Lanktree, Matthew B.; Guo, Wei; Franceschini, Nora; Smith, Erin N.; Johnson, Toby; Holmes, Michael V.; Padmanabhan, Sandosh; Karczewski, Konrad J.; Almoguera, Berta; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C.; Farrall, Martin; Fischer, Mary E.; Gaunt, Tom R.; Gho, Johannes M.I.H.; Gieger, Christian; Goel, Anuj; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E.; Leach, Irene Mateo; McDonough, Caitrin W.; Meijs, Matthijs F.L.; Melander, Olle; Nelson, Christopher P.; Nolte, Ilja M.; Pankratz, Nathan; Price, Tom S.; Shaffer, Jonathan; Shah, Sonia; Tomaszewski, Maciej; van der Most, Peter J.; Van Iperen, Erik P.A.; Vonk, Judith M.; Witkowska, Kate; Wong, Caroline O.L.; Zhang, Li; Beitelshees, Amber L.; Berenson, Gerald S.; Bhatt, Deepak L.; Brown, Morris; Burt, Amber; Cooper-DeHoff, Rhonda M.; Connell, John M.; Cruickshanks, Karen J.; Curtis, Sean P.; Davey-Smith, George; Delles, Christian; Gansevoort, Ron T.; Guo, Xiuqing; Haiqing, Shen; Hastie, Claire E.; Hofker, Marten H.; Hovingh, G. Kees; Kim, Daniel S.; Kirkland, Susan A.; Klein, Barbara E.; Klein, Ronald; Li, Yun R.; Maiwald, Steffi; Newton-Cheh, Christopher; O’Brien, Eoin T.; Onland-Moret, N. Charlotte; Palmas, Walter; Parsa, Afshin; Penninx, Brenda W.; Pettinger, Mary; Vasan, Ramachandran S.; Ranchalis, Jane E.; M Ridker, Paul; Rose, Lynda M.; Sever, Peter; Shimbo, Daichi; Steele, Laura; Stolk, Ronald P.; Thorand, Barbara; Trip, Mieke D.; van Duijn, Cornelia M.; Verschuren, W. Monique; Wijmenga, Cisca; Wyatt, Sharon; Young, J. Hunter; Zwinderman, Aeilko H.; Bezzina, Connie R.; Boerwinkle, Eric; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chasman, Daniel I.; Davidson, Karina W.; Doevendans, Pieter A.; Dominiczak, Anna F.; FitzGerald, Garret A.; Gums, John G.; Fornage, Myriam; Hakonarson, Hakon; Halder, Indrani; Hillege, Hans L.; Illig, Thomas; Jarvik, Gail P.; Johnson, Julie A.; Kastelein, John J.P.; Koenig, Wolfgang; Kumari, Meena; März, Winfried; Murray, Sarah S.; O’Connell, Jeffery R.; Oldehinkel, Albertine J.; Pankow, James S.; Rader, Daniel J.; Redline, Susan; Reilly, Muredach P.; Schadt, Eric E.; Kottke-Marchant, Kandice; Snieder, Harold; Snyder, Michael; Stanton, Alice V.; Tobin, Martin D.; Uitterlinden, André G.; van der Harst, Pim; van der Schouw, Yvonne T.; Samani, Nilesh J.; Watkins, Hugh; Johnson, Andrew D.; Reiner, Alex P.; Zhu, Xiaofeng; de Bakker, Paul I.W.; Levy, Daniel; Asselbergs, Folkert W.; Munroe, Patricia B.; Keating, Brendan J.
2014-01-01
Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10−7) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification. PMID:24560520
Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.
Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I
2018-05-01
Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen
2016-04-25
Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals.
Bayesian linkage and segregation analysis: factoring the problem.
Matthysse, S
2000-01-01
Complex segregation analysis and linkage methods are mathematical techniques for the genetic dissection of complex diseases. They are used to delineate complex modes of familial transmission and to localize putative disease susceptibility loci to specific chromosomal locations. The computational problem of Bayesian linkage and segregation analysis is one of integration in high-dimensional spaces. In this paper, three available techniques for Bayesian linkage and segregation analysis are discussed: Markov Chain Monte Carlo (MCMC), importance sampling, and exact calculation. The contribution of each to the overall integration will be explicitly discussed.
1993-01-01
FUNDING NUMBERS Lutzomyia Longipalpis is a Species Complex:Genetic Divergence and Interspecific Hybrid Sterility Among Three 6. AUTHOR(S) Populations...genus Lutzomyia . Between 7% and 22% of the loci studied were diagnostic for any two of the colony,-populations. Experimental hybridization between...our results to natural populations. 14. SUBJECT TERMS UES 1S. NUMBER Of PAGlE Lutzomyia longipalpis, Leishmania donovani chagasi 16. PRICE CODE 17
Neutral mutation as the source of genetic variation in life history traits.
Brcić-Kostić, Krunoslav
2005-08-01
The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way for improving the precision of posterior time estimation. However, even if a huge amount of sequence data is analyzed, considerable uncertainty will persist in time estimates. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
SAPIR, YUVAL; MOODY, MICHAEL L.; BROUILLETTE, LARRY C.; DONOVAN, LISA A.; RIESEBERG, LOREN H.
2008-01-01
Natural hybridization accompanied by a shift in niche preference by hybrid genotypes can lead to hybrid speciation. Natural selection may cause the fixation of advantageous alleles in the ecologically diverged hybrids, and the loci experiencing selection should exhibit a reduction in allelic diversity relative to neutral loci. Here, we analyzed patterns of genetic diversity at 59 microsatellite loci associated with expressed sequence tags (ESTs) in a homoploid hybrid sunflower species, Helianthus anomalus. We used two indices, ln RV and ln RH, to compare variation and heterozygosity (respectively) at each locus between the hybrid species and its two parental species, H. annuus and H. petiolaris. Mean values of ln RV and ln RH were significantly lower than zero, which implies that H. anomalus experienced a population bottleneck during its recent evolutionary history. After correcting for the apparent bottleneck, we found six loci with a significant reduction in variation or with heterozygosity in the hybrid species, compared to one or both of the parental species. These loci should be viewed as a ranked list of candidate loci, pending further sequencing and functional analyses. Sequence data were generated for two of the candidate loci, but population genetics tests failed to detect deviations from neutral evolution at either locus. Nonetheless, a greater than eight-fold excess of nonsynonymous substitutions was found near a putative N-myristoylation motif at the second locus (HT998), and likelihood-based models indicated that the protein has been under selection in H. anomalus in the past and, perhaps, in one or both parental species. Finally, our data suggest that selective sweeps may have united populations of H. anomalus isolated by a mountain range, indicating that even low gene-flow species may be held together by the spread of advantageous alleles. PMID:17944850
NASA Technical Reports Server (NTRS)
Gil, Christopher M.
1998-01-01
An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.
Neural correlates of attributing causes to the self, another person and the situation
Ma, Ning; Baetens, Kris; Clément, Nikki; Van Overwalle, Frank; Vandekerckhove, Marie
2015-01-01
This study compares brain activation during causal attribution to three different loci, the self, another person and the situation; and further explores correlations with clinical scales (i.e. depression, anxiety and autism) in a typical population. While they underwent functional magnetic resonance imaging, 20 participants read short sentences about another person (‘someone’) who engaged in behaviors with the participant or made comments about the participant. The participants then attributed these behaviors to three attribution loci: themselves, the other person or the situation. The results revealed common activation across the three attribution loci in the bilateral temporo-parietal junction (TPJ), left posterior superior temporal sulcus, precuneus and right temporal pole (TP). Comparisons between the attribution loci revealed very little differences, except for increased activation of the right TP while making attributions to the situation compared with the self. In addition, when making attributions to the situation or other persons for negative events, there were reliable correlations between low activity in the left TPJ and high levels of anxiety and problematic social interaction in autism. The results indicate that attributions to different loci are based on the same underlying brain process, which might be atypical among persons with anxiety or autism symptoms. PMID:24633532
Jans, Christoph; Boleij, Annemarie
2018-01-01
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike. PMID:29692760
Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J; Thompson, Deborah J; Kibel, Adam S; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K; Gentry-Maharaj, Aleksandra; Whittemore, Alice S; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B; Burwinkel, Barbara; Karlan, Beth Y; Nordestgaard, Børge G; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B; Høgdall, Claus K; Teerlink, Craig C; Kang, Daehee; Tessier, Daniel C; Schaid, Daniel J; Stram, Daniel O; Cramer, Daniel W; Neal, David E; Eccles, Diana; Flesch-Janys, Dieter; Edwards, Digna R Velez; Wokozorczyk, Dominika; Levine, Douglas A; Yannoukakos, Drakoulis; Sawyer, Elinor J; Bandera, Elisa V; Poole, Elizabeth M; Goode, Ellen L; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C; Wiklund, Fredrik; Giles, Graham G; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A; Darabi, Hatef; Salvesen, Helga B; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L; Benítez, Javier; Doherty, Jennifer A; Permuth, Jennifer B; Chang-Claude, Jenny; Donovan, Jenny L; Dennis, Joe; Schildkraut, Joellen M; Schleutker, Johanna; Hopper, John L; Kupryjanczyk, Jolanta; Park, Jong Y; Figueroa, Jonine; Clements, Judith A; Knight, Julia A; Peto, Julian; Cunningham, Julie M; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A; Massuger, Leon F A G; Fitzgerald, Liesel M; Cook, Linda S; Cannon-Albright, Lisa; Hooning, Maartje J; Pike, Malcolm C; Bolla, Manjeet K; Luedeke, Manuel; Teixeira, Manuel R; Goodman, Marc T; Schmidt, Marjanka K; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A T; Hou, Ming-Feng; Schoemaker, Minouk J; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M; Broberg, Per; Fasching, Peter A; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K; Stephenson, Robert A; MacInnis, Robert J; Hoover, Robert N; Winqvist, Robert; Ness, Roberta; Milne, Roger L; Travis, Ruth C; Benlloch, Sara; Olson, Sara H; McDonnell, Shannon K; Tworoger, Shelley S; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N; Bojesen, Stig E; Gapstur, Susan M; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L J; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J; Edwards, Todd L; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L; Berchuck, Andrew; Dunning, Alison M; Simard, Jacques; Haiman, Christopher A; Spurdle, Amanda; Sellers, Thomas A; Hunter, David J; Henderson, Brian E; Kraft, Peter; Chanock, Stephen J; Couch, Fergus J; Hall, Per; Gayther, Simon A; Easton, Douglas F; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D P; Lambrechts, Diether
2016-09-01
Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain
2008-01-01
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development. PMID:18305101
Genetic architecture of adiposity and organ weight using combined generation QTL analysis.
Fawcett, Gloria L; Roseman, Charles C; Jarvis, Joseph P; Wang, Bing; Wolf, Jason B; Cheverud, James M
2008-08-01
We present here a detailed study of the genetic contributions to adult body size and adiposity in the LG,SM advanced intercross line (AIL), an obesity model. This study represents a first step in fine-mapping obesity quantitative trait loci (QTLs) in an AIL. QTLs for adiposity in this model were previously isolated to chromosomes 1, 6, 7, 8, 9, 12, 13, and 18. This study focuses on heritable contributions and the genetic architecture of fatpad and organ weights. We analyzed both the F(2) and F(3) generations of the LG,SM AIL population single-nucleotide polymorphism (SNP) genotyped with a marker density of approximately 4 cM. We replicate 88% of the previously identified obesity QTLs and identify 13 new obesity QTLs. Nearly half of the single-trait QTLs were sex-specific. Several broad QTL regions were resolved into multiple, narrower peaks. The 113 single-trait QTLs for organs and body weight clustered into 27 pleiotropic loci. A large number of epistatic interactions are described which begin to elucidate potential interacting molecular networks. We present a relatively rapid means to obtain fine-mapping details from AILs using dense marker maps and consecutive generations. Analysis of the complex genetic architecture underlying fatpad and organ weights in this model may eventually help to elucidate not only heritable contributions to obesity but also common gene sets for obesity and its comorbidities.
2013-01-01
Background Species are the fundamental units in evolutionary biology. However, defining them as evolutionary independent lineages requires integration of several independent sources of information in order to develop robust hypotheses for taxonomic classification. Here, we exemplarily propose an integrative framework for species delimitation in the “brown lemur complex” (BLC) of Madagascar, which consists of seven allopatric populations of the genus Eulemur (Primates: Lemuridae), which were sampled extensively across northern, eastern and western Madagascar to collect fecal samples for DNA extraction as well as recordings of vocalizations. Our data base was extended by including museum specimens with reliable identification and locality information for skull shape and pelage color analysis. Results Between-group analyses of principal components revealed significant heterogeneity in skull shape, pelage color variation and loud calls across all seven populations. Furthermore, post-hoc statistical tests between pairs of populations revealed considerable discordance among different data sets for different dyads. Despite a high degree of incomplete lineage sorting among nuclear loci, significant exclusive ancestry was found for all populations, except for E. cinereiceps, based on one mitochondrial and three nuclear genetic loci. Conclusions Using several independent lines of evidence, our results confirm the species status of the members of the BLC under the general lineage concept of species. More generally, the present analyses demonstrate the importance and value of integrating different kinds of data in delimiting recently evolved radiations. PMID:24159931
Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle
Utsunomiya, Yuri T.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Matos, Márcia C.; Zavarez, Ludmilla B.; Ito, Pier K. R. K.; Pérez O'Brien, Ana M.; Sölkner, Johann; Porto-Neto, Laercio R.; Schenkel, Flávio S.; McEwan, John; Cole, John B.; da Silva, Marcos V. G. B.; Van Tassell, Curtis P.; Sonstegard, Tad S.; Garcia, José Fernando
2014-01-01
The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility. PMID:24558400
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-11-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-01-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. PMID:25244680
Clonal population structure of Legionella pneumophila inferred from allelic profiling.
Edwards, Martin T; Fry, Norman K; Harrison, Timothy G
2008-03-01
The population structure of Legionella pneumophila was investigated by analysing nucleotide sequences from six loci (flaA, pilE, asd, mip, mompS and proA) of 335 globally distributed isolates from clinical and environmental sources over a 29-year period (1977-2006). Data were obtained from unrelated isolates from Europe (n=270), Japan (n=31), Canada (n=7), the USA (n=24) and Australia (n=1). The country of origin of two strains was unknown. Analysis of these isolates indicated significant linkage disequilibrium between the six loci. Application of six sequence-based recombination detection tests did not reveal evidence of recombination, but estimates of rates of recombination and mutation made by a seventh test suggested that recombination could have occurred at a rate similar to, but probably lower than, that of mutation. Genealogies inferred under models with and without recombination were congruent with each other, providing no definitive evidence regarding recombination, and were in agreement with sequence clusters identified by graph methods. Further evidence supporting the distinct nature of two of the three subspecies of L. pneumophila, subsp. fraseri and subsp. pascullei, was also found. The ratios of non-synonymous to synonymous nucleotide polymorphisms for each of the allele sets were examined and revealed that the putative virulence loci mompS and pilE are under diversifying pressure, while the allelic regions of three other loci linked to virulence (flaA, proA and mip) do not appear to be.
Phadnis, Nitin
2011-11-01
Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.
Huang, Li-Min; Huang, Fu-Yuan; Chiu, Nan-Chang; Chen, Ming-Ren; Chi, Hsin; Lee, Yann-Jinn; Chang, Li-Ching; Liu, Yi-Min; Wang, Hsiang-Hua; Chen, Chien-Hsiun; Chen, Yuan-Tsong; Wu, Jer-Yuarn
2011-01-01
Kawasaki disease (KD) is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS) in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs) detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit) gene: rs1873668 (p = 9.52×10−5), rs4243399 (p = 9.93×10−5), and rs16849083 (p = 9.93×10−5). We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1) gene (rs149481, pbest = 4.61×10−5). Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667) clustered in an area containing immunoglobulin heavy chain variable regions genes, with pbest-values between 2.08×10−5 and 8.93×10−6, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD. PMID:21326860
Faster-X Evolution of Gene Expression in Drosophila
Meisel, Richard P.; Malone, John H.; Clark, Andrew G.
2012-01-01
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459
Hime, Paul M; Hotaling, Scott; Grewelle, Richard E; O'Neill, Eric M; Voss, S Randal; Shaffer, H Bradley; Weisrock, David W
2016-12-01
Perhaps the most important recent advance in species delimitation has been the development of model-based approaches to objectively diagnose species diversity from genetic data. Additionally, the growing accessibility of next-generation sequence data sets provides powerful insights into genome-wide patterns of divergence during speciation. However, applying complex models to large data sets is time-consuming and computationally costly, requiring careful consideration of the influence of both individual and population sampling, as well as the number and informativeness of loci on species delimitation conclusions. Here, we investigated how locus number and information content affect species delimitation results for an endangered Mexican salamander species, Ambystoma ordinarium. We compared results for an eight-locus, 137-individual data set and an 89-locus, seven-individual data set. For both data sets, we used species discovery methods to define delimitation models and species validation methods to rigorously test these hypotheses. We also used integrated demographic model selection tools to choose among delimitation models, while accounting for gene flow. Our results indicate that while cryptic lineages may be delimited with relatively few loci, sampling larger numbers of loci may be required to ensure that enough informative loci are available to accurately identify and validate shallow-scale divergences. These analyses highlight the importance of striking a balance between dense sampling of loci and individuals, particularly in shallowly diverged lineages. They also suggest the presence of a currently unrecognized, endangered species in the western part of A. ordinarium's range. © 2016 John Wiley & Sons Ltd.
Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O
2015-08-01
Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.
Gu, Xiaofeng; Jiang, Danhua; Yang, Wannian; Jacob, Yannick; Michaels, Scott D; He, Yuehui
2011-11-01
RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA-triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA-mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA-directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts.
High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal
Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.
2004-01-01
The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802
Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize
Brown, Patrick J.; Upadyayula, Narasimham; Mahone, Gregory S.; Tian, Feng; Bradbury, Peter J.; Myles, Sean; Holland, James B.; Flint-Garcia, Sherry; McMullen, Michael D.; Buckler, Edward S.; Rocheford, Torbert R.
2011-01-01
We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. PMID:22125498
Weidinger, Stephan; Willis-Owen, Saffron A G; Kamatani, Yoichiro; Baurecht, Hansjörg; Morar, Nilesh; Liang, Liming; Edser, Pauline; Street, Teresa; Rodriguez, Elke; O'Regan, Grainne M; Beattie, Paula; Fölster-Holst, Regina; Franke, Andre; Novak, Natalija; Fahy, Caoimhe M; Winge, Mårten C G; Kabesch, Michael; Illig, Thomas; Heath, Simon; Söderhäll, Cilla; Melén, Erik; Pershagen, Göran; Kere, Juha; Bradley, Maria; Lieden, Agne; Nordenskjold, Magnus; Harper, John I; McLean, W H Irwin; Brown, Sara J; Cookson, William O C; Lathrop, G Mark; Irvine, Alan D; Moffatt, Miriam F
2013-12-01
Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci.
Weidinger, Stephan; Willis-Owen, Saffron A.G.; Kamatani, Yoichiro; Baurecht, Hansjörg; Morar, Nilesh; Liang, Liming; Edser, Pauline; Street, Teresa; Rodriguez, Elke; O'Regan, Grainne M.; Beattie, Paula; Fölster-Holst, Regina; Franke, Andre; Novak, Natalija; Fahy, Caoimhe M.; Winge, Mårten C.G.; Kabesch, Michael; Illig, Thomas; Heath, Simon; Söderhäll, Cilla; Melén, Erik; Pershagen, Göran; Kere, Juha; Bradley, Maria; Lieden, Agne; Nordenskjold, Magnus; Harper, John I.; Mclean, W.H. Irwin; Brown, Sara J.; Cookson, William O.C.; Lathrop, G. Mark; Irvine, Alan D.; Moffatt, Miriam F.
2013-01-01
Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci. PMID:23886662
Timakov, B; Zhang, P
2000-01-01
The heterochromatic Y chromosome of Drosophila melanogaster contains approximately 40 Mb of DNA but has only six loci mutable to male sterility. Region h1-h9 on YL, which carries the kl-3 and kl-5 loci, induces male sterility when present in three copies. We show that three separate segments within the region are responsible for the triplosterility and have an additive effect on male fertility. The triplosterile males displayed pleiotropic defects, beginning at early postmeiotic stages. However, the triplosterility was unaffected by kl-3 or kl-5 alleles. These data suggest that region h1-h9 is complex and may contain novel functions in addition to those of the previously identified kl-3 and kl-5 loci. The kl-3 and kl-5 mutations as well as deficiencies within region h1-h9 result in loss of the spermatid axonemal outer dynein arms. Examination using fluorescent probes showed that males deficient for h1-h3 or h4-h9 displayed a postmeiotic lesion with disrupted individualization complexes scattered along the spermatid bundle. In contrast, the kl-3 and kl-5 mutations had no effect on spermatid individualization despite the defect in the axonemes. These results demonstrate that region h1-h9 carries genetically separable functions: one required for spermatid individualization and the other essential for assembling the axonemal dynein arms. PMID:10790393
Signature of genetic associations in oral cancer.
Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi
2017-10-01
Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene-environment interaction studies is needed to confirm their involvement in modifying oral cancer.
Kiryluk, Krzysztof; Li, Yifu; Sanna-Cherchi, Simone; Rohanizadegan, Mersedeh; Suzuki, Hitoshi; Eitner, Frank; Snyder, Holly J.; Choi, Murim; Hou, Ping; Scolari, Francesco; Izzi, Claudia; Gigante, Maddalena; Gesualdo, Loreto; Savoldi, Silvana; Amoroso, Antonio; Cusi, Daniele; Zamboli, Pasquale; Julian, Bruce A.; Novak, Jan; Wyatt, Robert J.; Mucha, Krzysztof; Perola, Markus; Kristiansson, Kati; Viktorin, Alexander; Magnusson, Patrik K.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Stefansson, Kari; Boland, Anne; Metzger, Marie; Thibaudin, Lise; Wanner, Christoph; Jager, Kitty J.; Goto, Shin; Maixnerova, Dita; Karnib, Hussein H.; Nagy, Judit; Panzer, Ulf; Xie, Jingyuan; Chen, Nan; Tesar, Vladimir; Narita, Ichiei; Berthoux, Francois; Floege, Jürgen; Stengel, Benedicte; Zhang, Hong; Lifton, Richard P.; Gharavi, Ali G.
2012-01-01
IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN. PMID:22737082
Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro
2016-01-01
This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.
Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro
2016-01-01
This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139
Roy, Sribash; Tyagi, Antariksh; Shukla, Virendra; Kumar, Anil; Singh, Uma M.; Chaudhary, Lal Babu; Datt, Bhaskar; Bag, Sumit K.; Singh, Pradhyumna K.; Nair, Narayanan K.; Husain, Tariq; Tuli, Rakesh
2010-01-01
Background The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. Methodology and Principal Findings We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome- ITS, and three from plastid genome- trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. Conclusions/Significance We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may not work in this case. PMID:21060687
The 'species complex' issue in clinically relevant fungi: A case study in Scedosporium apiospermum.
Chen, Min; Zeng, Jingsi; De Hoog, G Sybren; Stielow, Benjamin; Gerrits Van Den Ende, A H G; Liao, Wanqing; Lackner, Michaela
2016-02-01
The genus Scedosporium currently comprises six species, Scedosporium apiospermum, Scedosporium boydii, Pseudallescheria angusta, Scedosporium minutisporum, Scedosporium dehoogii, and Scedosporium aurantiacum, most of which can be distinguished with the primary fungal DNA barcode, the ITS1/2 region of the rDNA gene cluster. In the present study, four additional genetic loci were explored from a phylogenetic point of view enabling a barcoding approach based on K2P pairwise distances to resolve the taxa Scedosporium. We included partial γ-actin (ACT), β-tubulin (BT2), elongation factor 1α (TEF1), and the small ribosomal protein 60S L10 (L1) (RP60S). Phylogenetic inference of each marker individually showed that four out of six species within Scedosporium can be distinguished unambiguously, while strains of S. apiospermum, S. boydii, and P. angusta showed occasional recombination, and accordingly, no genealogical concordance between markers was obtainable. We defined S. apiospermum, S. boydii, and P. angusta as the 'S. apiospermum species complex' since observed differences were not consistent between lineages, and no clinical differences are known between entities within the complex. While BT2 revealed the best performance among the genetic loci tested at the lineage level, barcoding of the ITS region is sufficient for distinction of all entities in Scedosporium at the species or 'complex' level. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy.
Wang, Zhihua; Zhang, Xiao-Jing; Ji, Yan-Xiao; Zhang, Peng; Deng, Ke-Qiong; Gong, Jun; Ren, Shuxun; Wang, Xinghua; Chen, Iris; Wang, He; Gao, Chen; Yokota, Tomohiro; Ang, Yen Sin; Li, Shen; Cass, Ashley; Vondriska, Thomas M; Li, Guangping; Deb, Arjun; Srivastava, Deepak; Yang, Huang-Tian; Xiao, Xinshu; Li, Hongliang; Wang, Yibin
2016-10-01
Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.
Process Timing and Its Relation to the Coding of Tonal Harmony
ERIC Educational Resources Information Center
Aksentijevic, Aleksandar; Barber, Paul J.; Elliott, Mark A.
2011-01-01
Advances in auditory research suggest that gamma-band synchronization of frequency-specific cortical loci could be responsible for the integration of pure tones (harmonics) into harmonic complex tones. Thus far, evidence for such a mechanism has been revealed in neurophysiological studies, with little corroborative psychophysical evidence. In six…
Huebinger, Ryan M.; Shewale, Shantanu J.; Koenig, Jessica L.; Mitchel, Jeffrey S.; O’Bryant, Sid E.; Waring, Stephen C.; Diaz-Arrastia, Ramon; Chasse, Scott
2015-01-01
Although 24 Alzheimer’s disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10-7. Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel genetic interactions and should be further investigated. PMID:26625115
Barber, Robert C; Phillips, Nicole R; Tilson, Jeffrey L; Huebinger, Ryan M; Shewale, Shantanu J; Koenig, Jessica L; Mitchel, Jeffrey S; O'Bryant, Sid E; Waring, Stephen C; Diaz-Arrastia, Ramon; Chasse, Scott; Wilhelmsen, Kirk C
2015-01-01
Although 24 Alzheimer's disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10(-7). Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel genetic interactions and should be further investigated.
Fike, Jennifer A.; Oyler-McCance, Sara J.; Zimmerman, Shawna J; Castoe, Todd A.
2015-01-01
Gunnison Sage-grouse are an obligate sagebrush species that has experienced significant population declines and has been proposed for listing under the U.S. Endangered Species Act. In order to examine levels of connectivity among Gunnison Sage-grouse leks, we identified 13 novel microsatellite loci though next-generation shotgun sequencing, and tested them on the closely related Greater Sage-grouse. The number of alleles per locus ranged from 2 to 12. No loci were found to be linked, although 2 loci revealed significant departures from Hardy–Weinberg equilibrium or evidence of null alleles. While these microsatellites were designed for Gunnison Sage-grouse, they also work well for Greater Sage-grouse and could be used for numerous genetic questions including landscape and population genetics.
Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, C.L.; Kennedy, J.L.; Pakstis, A.J.
1994-03-15
Genetic linkage studies of a kindred from Sweden segregating for schizophrenia have been performed using a genetic model (autosomal dominant, f - 0.72, q - 0.02, phenocopies=0.001) as described in Kennedy et al., 1988. Analyses of the restriction fragment length polymorphism (RFLP), allele-specific oligonucleotides (ASO), and short tandem repeat (STR also called microsatellite) data for 180 polymorphisms (individual probe-enzyme, ASO, or STR systems) at 155 loci have been completed using the MLINK and LIPED programs. Linkage to schizophrenia was excluded, under the given model, at 47 loci; indeterminate lod scores occurred at 108 loci. The total exclusion region across 20more » chromosomes is estimated at 330 cM; 211 cM excluded by pairwise analyses and 119 cM previously excluded by multipoint analyses. 37 refs., 2 tabs.« less
Long noncoding RNA HOTTIP cooperates with CCCTC-binding factor to coordinate HOXA gene expression.
Wang, Feng; Tang, Zhongqiong; Shao, Honglian; Guo, Jun; Tan, Tao; Dong, Yang; Lin, Lianbing
2018-06-12
The spatiotemporal control of HOX gene expression is dependent on positional identity and often correlated to their genomic location within each loci. Maintenance of HOX expression patterns is under complex transcriptional and epigenetic regulation, which is not well understood. Here we demonstrate that HOTTIP, a lincRNA transcribed from the 5' edge of the HOXA locus, physically associates with the CCCTC-binding factor (CTCF) that serves as an insulator by organizing HOXA cluster into disjoint domains, to cooperatively maintain the chromatin modifications of HOXA genes and thus coordinate the transcriptional activation of distal HOXA genes in human foreskin fibroblasts. Our results reveal the functional connection of HOTTIP and CTCF, and shed light on lincRNAs in gene activation and CTCF mediated chromatin organization. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-11-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).
Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.
Thurber, Carrie S; Ma, Justin M; Higgins, Race H; Brown, Patrick J
2013-06-26
Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation. We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time. Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.
Hartati, Hartati; Utsunomiya, Yuri Tani; Sonstegard, Tad Stewart; Garcia, José Fernando; Jakaria, Jakaria; Muladno, Muladno
2015-07-04
Peranakan Ongole (PO) is a major Indonesian Bos indicus breed that derives from animals imported from India in the late 19(th) century. Early imports were followed by hybridization with the Bos javanicus subspecies of cattle. Here, we used genomic data to partition the ancestry components of PO cattle and map loci implicated in birth weight. We found that B. javanicus contributes about 6-7% to the average breed composition of PO cattle. Only two nearly fixed B. javanicus haplotypes were identified, suggesting that most of the B. javanicus variants are segregating under drift or by the action of balancing selection. The zebu component of the PO genome was estimated to derive from at least two distinct ancestral pools. Additionally, well-known loci underlying body size in other beef cattle breeds, such as the PLAG1 region on chromosome 14, were found to also affect birth weight in PO cattle. This study is the first attempt to characterize PO at the genome level, and contributes evidence of successful, stabilized B. indicus x B. javanicus hybridization. Additionally, previously described loci implicated in body size in worldwide beef cattle breeds also affect birth weight in PO cattle.
Baum, Thierry-Pascal; Hierle, Vivien; Pasqual, Nicolas; Bellahcene, Fatena; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice Noël; Demongeot, Jacques
2006-01-01
Background Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract. Description IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(D)J genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at . Conclusion IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(D)J gene rearrangements and their applications in immune response analysis. PMID:16640788
Leslie, Elizabeth J.; Carlson, Jenna C.; Shaffer, John R.; Feingold, Eleanor; Wehby, George; Laurie, Cecelia A.; Jain, Deepti; Laurie, Cathy C.; Doheny, Kimberly F.; McHenry, Toby; Resick, Judith; Sanchez, Carla; Jacobs, Jennifer; Emanuele, Beth; Vieira, Alexandre R.; Neiswanger, Katherine; Lidral, Andrew C.; Valencia-Ramirez, Luz Consuelo; Lopez-Palacio, Ana Maria; Valencia, Dora Rivera; Arcos-Burgos, Mauricio; Czeizel, Andrew E.; Field, L. Leigh; Padilla, Carmencita D.; Cutiongco-de la Paz, Eva Maria, C.; Deleyiannis, Frederic; Christensen, Kaare; Munger, Ronald G.; Lie, Rolv T.; Wilcox, Allen; Romitti, Paul A.; Castilla, Eduardo E.; Mereb, Juan C.; Poletta, Fernando A.; Orioli, Iêda M.; Carvalho, Flavia M.; Hecht, Jacqueline T.; Blanton, Susan H.; Buxó, Carmen J.; Butali, Azeez; Mossey, Peter A.; Adeyemo, Wasiu L.; James, Olutayo; Braimah, Ramat O.; Aregbesola, Babatunde S.; Eshete, Mekonen A.; Abate, Fikre; Koruyucu, Mine; Seymen, Figen; Ma, Lian; de Salamanca, Javier Enríquez; Weinberg, Seth M.; Moreno, Lina; Murray, Jeffrey C.; Marazita, Mary L.
2016-01-01
Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case–parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10−8), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10−8). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10−8) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs. PMID:27033726
Shirasawa, Kenta; Hand, Melanie L.; Henderson, Steven T.; Okada, Takashi; Johnson, Susan D.; Taylor, Jennifer M.; Spriggs, Andrew; Siddons, Hayley; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Koltunow, Anna M. G.
2015-01-01
Background and Aims Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. Methods RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. Key Results A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. Conclusions A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci in Hieracium and should also assist with identification of quantitative loci that affect the expressivity of apomixis. Future work will focus on mapping AutE using alternative populations. PMID:25538115
Yeo, Seungeun; Hodgkinson, Colin A; Zhou, Zhifeng; Jung, Jeesun; Leung, Ming; Yuan, Qiaoping; Goldman, David
2016-08-11
Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL's for complex phenotypes. We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs.
A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.
Qian, Jing; Nunez, Sara; Reed, Eric; Reilly, Muredach P; Foulkes, Andrea S
2016-01-01
Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs. We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT), to identify protein-coding gene association with 14 cardiometabolic (CMD) related traits across 6 publicly available genome wide association (GWA) meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1. We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes. We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and adds significant value with respect to its potential for identifying multiple novel and clinically relevant trait associations.
Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R
2013-07-01
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.
Ahsan, Muhammad; Ek, Weronica E.; Karlsson, Torgny; Gyllensten, Ulf
2017-01-01
Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units’ change per 1% change in DNA methylation levels and up to four standard units’ change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease. PMID:28915241
Evolution and polymorphism in the multilocus Levene model with no or weak epistasis.
Bürger, Reinhard
2010-09-01
Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and under mild, generic conditions, every trajectory converges to a stationary point in linkage equilibrium. Consequently, the equilibrium and stability structure can be determined by investigating the much simpler gene-frequency dynamics on the linkage-equilibrium manifold. For a haploid species an analogous result is shown. For weak epistasis, global convergence to quasi-linkage equilibrium is established. As an application, the maintenance of multilocus polymorphism is explored if the degree of dominance is intermediate at every locus and epistasis is absent or weak. If there are at least two demes, then arbitrarily many multiallelic loci can be maintained polymorphic at a globally asymptotically stable equilibrium. Because this holds for an open set of parameters, such equilibria are structurally stable. If the degree of dominance is not only intermediate but also deme independent, and loci are diallelic, an open set of parameters yielding an internal equilibrium exists only if the number of loci is strictly less than the number of demes. Otherwise, a fully polymorphic equilibrium exists only nongenerically, and if it exists, it consists of a manifold of equilibria. Its dimension is determined. In the absence of genotype-by-environment interaction, however, a manifold of equilibria occurs for an open set of parameters. In this case, the equilibrium structure is not robust to small deviations from no genotype-by-environment interaction. In a quantitative-genetic setting, the assumptions of no epistasis and intermediate dominance are equivalent to assuming that in every deme directional selection acts on a trait that is determined additively, i.e., by nonepistatic loci with dominance. Some of our results are exemplified in this quantitative-genetic context. Copyright 2010 Elsevier Inc. All rights reserved.
Population-based analysis of Alzheimer's disease risk alleles implicates genetic interactions.
Ebbert, Mark T W; Ridge, Perry G; Wilson, Andrew R; Sharp, Aaron R; Bailey, Matthew; Norton, Maria C; Tschanz, JoAnn T; Munger, Ronald G; Corcoran, Christopher D; Kauwe, John S K
2014-05-01
Reported odds ratios and population attributable fractions (PAF) for late-onset Alzheimer's disease (LOAD) risk loci (BIN1, ABCA7, CR1, MS4A4E, CD2AP, PICALM, MS4A6A, CD33, and CLU) come from clinically ascertained samples. Little is known about the combined PAF for these LOAD risk alleles and the utility of these combined markers for case-control prediction. Here we evaluate these loci in a large population-based sample to estimate PAF and explore the effects of additive and nonadditive interactions on LOAD status prediction performance. 2419 samples from the Cache County Memory Study were genotyped for APOE and nine LOAD risk loci from AlzGene.org. We used logistic regression and receiver operator characteristic analysis to assess the LOAD status prediction performance of these loci using additive and nonadditive models and compared odds ratios and PAFs between AlzGene.org and Cache County. Odds ratios were comparable between Cache County and AlzGene.org when identical single nucleotide polymorphisms were genotyped. PAFs from AlzGene.org ranged from 2.25% to 37%; those from Cache County ranged from .05% to 20%. Including non-APOE alleles significantly improved LOAD status prediction performance (area under the curve = .80) over APOE alone (area under the curve = .78) when not constrained to an additive relationship (p < .03). We identified potential allelic interactions (p values uncorrected): CD33-MS4A4E (synergy factor = 5.31; p < .003) and CLU-MS4A4E (synergy factor = 3.81; p < .016). Although nonadditive interactions between loci significantly improve diagnostic ability, the improvement does not reach the desired sensitivity or specificity for clinical use. Nevertheless, these results suggest that understanding gene-gene interactions may be important in resolving Alzheimer's disease etiology. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
1988-01-01
T cells primed specifically for the envelope glycoprotein of Friend murine leukemia helper virus (F-MuLV) were prepared by immunizing mice with a recombinant vaccinia virus that expressed the entire env gene of F-MuLV. Significant proliferative responses of F-MuLV envelope- specific, H-2a/b T cells were observed when the T cells were stimulated with antigen-pulsed peritoneal exudate cells (PEC) having the b allele at the K, A beta, A alpha, and E beta loci of the H-2. On the other hand, PEC having only the kappa allele at these loci did not induce the envelope-specific T cell proliferation, even when the PEC had the b allele at the E alpha, S, or D loci. F-MuLV envelope-specific proliferation of H-2a/b T cells under the stimulation of antigen- pulsed, H-2a/b PEC was specifically blocked with anti-I-Ab and anti-I- Ek mAbs but not with anti-Kb, anti-Kk, or anti-I-Ak mAbs. Moreover, (B10.MBR x A/WySn)F1 mice that have the b allele only at the K locus but not in I-A subregion were nonresponders to the envelope glycoprotein, and the bm12 mutation at the A beta locus completely abolished the T cell responsiveness to this antigen. These results indicate that proliferative T cells recognize a limited number of epitopes on F-MuLV envelope protein in the context of I-Ab, hybrid I- Ak/b, and/or hybrid I-Ek/b class II MHC molecules but fail to recognize the same envelope protein in the context of I-Ak or I-Ek molecules. This influence of the H-2I region on T cell recognition of the envelope glycoprotein appeared to control in vivo induction of protective immunity against Friend virus complex after immunization with the vaccinia-F-MuLV env vaccine. Thus, these results provide, for the first time, direct evidence for Ir gene-controlled responder/nonresponder phenotypes influencing the immune response to a pathogenic virus of mice. PMID:3141552
Ancot, Frédéric; Lemay, Philippe; Knowler, Susan P; Kennedy, Karen; Griffiths, Sandra; Cherubini, Giunio Bruto; Sykes, Jane; Mandigers, Paul J J; Rouleau, Guy A; Rusbridge, Clare; Kibar, Zoha
2018-03-22
Syringomyelia (SM) is a common condition affecting brachycephalic toy breed dogs and is characterized by the development of fluid-filled cavities within the spinal cord. It is often concurrent with a complex developmental malformation of the skull and craniocervical vertebrae called Chiari-like malformation (CM) characterized by a conformational change and overcrowding of the brain and cervical spinal cord particularly at the craniocervical junction. CM and SM have a polygenic mode of inheritance with variable penetrance. We identified six cranial T1-weighted sagittal MRI measurements that were associated to maximum transverse diameter of the syrinx cavity. Increased syrinx transverse diameter has been correlated previously with increased likelihood of behavioral signs of pain. We next conducted a whole genome association study of these traits in 65 Cavalier King Charles Spaniel (CKCS) dogs (33 controls, 32 with extreme phenotypes). Two loci on CFA22 and CFA26 were found to be significantly associated to two traits associated with a reduced volume and altered orientation of the caudal cranial fossa. Their reconstructed haplotypes defined two associated regions that harbor only two genes: PCDH17 on CFA22 and ZWINT on CFA26. PCDH17 codes for a cell adhesion molecule expressed specifically in the brain and spinal cord. ZWINT plays a role in chromosome segregation and its expression is increased with the onset of neuropathic pain. Targeted genomic sequencing of these regions identified respectively 37 and 339 SNPs with significantly associated P values. Genotyping of tagSNPs selected from these 2 candidate loci in an extended cohort of 461 CKCS (187 unaffected, 274 SM affected) identified 2 SNPs on CFA22 that were significantly associated to SM strengthening the candidacy of this locus in SM development. We identified 2 loci on CFA22 and CFA26 that contained only 2 genes, PCDH17 and ZWINT, significantly associated to two traits associated with syrinx transverse diameter. The locus on CFA22 was significantly associated to SM secondary to CM in the CKCS dog breed strengthening its candidacy for this disease. This study will provide an entry point for identification of the genetic factors predisposing to this condition and its underlying pathogenic mechanisms.
Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche
Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F
2014-01-01
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870
Tragante, Vinicius; Barnes, Michael R; Ganesh, Santhi K; Lanktree, Matthew B; Guo, Wei; Franceschini, Nora; Smith, Erin N; Johnson, Toby; Holmes, Michael V; Padmanabhan, Sandosh; Karczewski, Konrad J; Almoguera, Berta; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C; Farrall, Martin; Fischer, Mary E; Gaunt, Tom R; Gho, Johannes M I H; Gieger, Christian; Goel, Anuj; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E; Mateo Leach, Irene; McDonough, Caitrin W; Meijs, Matthijs F L; Melander, Olle; Nelson, Christopher P; Nolte, Ilja M; Pankratz, Nathan; Price, Tom S; Shaffer, Jonathan; Shah, Sonia; Tomaszewski, Maciej; van der Most, Peter J; Van Iperen, Erik P A; Vonk, Judith M; Witkowska, Kate; Wong, Caroline O L; Zhang, Li; Beitelshees, Amber L; Berenson, Gerald S; Bhatt, Deepak L; Brown, Morris; Burt, Amber; Cooper-DeHoff, Rhonda M; Connell, John M; Cruickshanks, Karen J; Curtis, Sean P; Davey-Smith, George; Delles, Christian; Gansevoort, Ron T; Guo, Xiuqing; Haiqing, Shen; Hastie, Claire E; Hofker, Marten H; Hovingh, G Kees; Kim, Daniel S; Kirkland, Susan A; Klein, Barbara E; Klein, Ronald; Li, Yun R; Maiwald, Steffi; Newton-Cheh, Christopher; O'Brien, Eoin T; Onland-Moret, N Charlotte; Palmas, Walter; Parsa, Afshin; Penninx, Brenda W; Pettinger, Mary; Vasan, Ramachandran S; Ranchalis, Jane E; M Ridker, Paul; Rose, Lynda M; Sever, Peter; Shimbo, Daichi; Steele, Laura; Stolk, Ronald P; Thorand, Barbara; Trip, Mieke D; van Duijn, Cornelia M; Verschuren, W Monique; Wijmenga, Cisca; Wyatt, Sharon; Young, J Hunter; Zwinderman, Aeilko H; Bezzina, Connie R; Boerwinkle, Eric; Casas, Juan P; Caulfield, Mark J; Chakravarti, Aravinda; Chasman, Daniel I; Davidson, Karina W; Doevendans, Pieter A; Dominiczak, Anna F; FitzGerald, Garret A; Gums, John G; Fornage, Myriam; Hakonarson, Hakon; Halder, Indrani; Hillege, Hans L; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Kastelein, John J P; Koenig, Wolfgang; Kumari, Meena; März, Winfried; Murray, Sarah S; O'Connell, Jeffery R; Oldehinkel, Albertine J; Pankow, James S; Rader, Daniel J; Redline, Susan; Reilly, Muredach P; Schadt, Eric E; Kottke-Marchant, Kandice; Snieder, Harold; Snyder, Michael; Stanton, Alice V; Tobin, Martin D; Uitterlinden, André G; van der Harst, Pim; van der Schouw, Yvonne T; Samani, Nilesh J; Watkins, Hugh; Johnson, Andrew D; Reiner, Alex P; Zhu, Xiaofeng; de Bakker, Paul I W; Levy, Daniel; Asselbergs, Folkert W; Munroe, Patricia B; Keating, Brendan J
2014-03-06
Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ~50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Ashman, Tia-Lynn; Tennessen, Jacob A; Dalton, Rebecca M; Govindarajulu, Rajanikanth; Koski, Matthew H; Liston, Aaron
2015-10-19
Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria. Copyright © 2015 Ashman et al.
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Perry, John Rb; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco Ej; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul Dp; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce Hr; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth Jf; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild Ia; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K
2014-10-02
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
Gao, Xuefei; Tsang, Jason C.H.; Gaba, Fortis; Wu, Donghai; Lu, Liming; Liu, Pentao
2014-01-01
The transcription activator–like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas9) utlilize distinct molecular mechanisms in targeting site recognition. The two proteins can be modified to carry additional functional domains to regulate expression of genomic loci in mammalian cells. In this study, we have compared the two systems in activation and suppression of the Oct4 and Nanog loci by targeting their enhancers. Although both are able to efficiently activate the luciferase reporters, the CRISPR/dCas9 system is much less potent in activating the endogenous loci and in the application of reprogramming somatic cells to iPS cells. Nevertheless, repression by CRISPR/dCas9 is comparable to or even better than TALE repressors. We demonstrated that dCas9 protein binding results in significant physical interference to binding of native transcription factors at enhancer, less efficient active histone markers induction or recruitment of activating complexes in gene activation. This study thus highlighted the merits and drawbacks of transcription regulation by each system. A combined approach of TALEs and CRISPR/dCas9 should provide an optimized solution to regulate genomic loci and to study genetic elements such as enhancers in biological processes including somatic cell reprogramming and guided differentiation. PMID:25223790
Ge, Bing; Tayo, Bamidele; Mathias, Rasika A.; Ding, Jingzhong; Nalls, Michael A.; Adeyemo, Adebowale; Adoue, Véronique; Ambrosone, Christine B.; Atwood, Larry; Bandera, Elisa V.; Becker, Lewis C.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Boerwinkle, Eric; Britton, Angela; Casey, Graham; Chanock, Stephen J.; Demerath, Ellen; Deming, Sandra L.; Diver, W. Ryan; Fox, Caroline; Harris, Tamara B.; Hernandez, Dena G.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Johnson, Craig; Keating, Brendan; Kittles, Rick A.; Kolonel, Laurence N.; Kritchevsky, Stephen B.; Le Marchand, Loic; Lohman, Kurt; Liu, Jiankang; Millikan, Robert C.; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; North, Kari E.; Nyante, Sarah; Ogunniyi, Adesola; Ostrander, Elaine A.; Papanicolaou, George; Patel, Sanjay; Pettaway, Curtis A.; Press, Michael F.; Redline, Susan; Rodriguez-Gil, Jorge L.; Rotimi, Charles; Rybicki, Benjamin A.; Salako, Babatunde; Schreiner, Pamela J.; Signorello, Lisa B.; Singleton, Andrew B.; Stanford, Janet L.; Stram, Alex H.; Stram, Daniel O.; Strom, Sara S.; Suktitipat, Bhoom; Thun, Michael J.; Witte, John S.; Yanek, Lisa R.; Ziegler, Regina G.; Zheng, Wei; Zhu, Xiaofeng; Zmuda, Joseph M.; Zonderman, Alan B.; Evans, Michele K.; Liu, Yongmei; Becker, Diane M.; Cooper, Richard S.; Pastinen, Tomi; Henderson, Brian E.; Hirschhorn, Joel N.; Lettre, Guillaume; Haiman, Christopher A.
2011-01-01
Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits. PMID:21998595
CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.
Ogrodzki, Pauline; Forsythe, Stephen James
2016-12-01
Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.
Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F
2010-02-01
Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.
Fractional populations in multiple gene inheritance.
Chung, Myung-Hoon; Kim, Chul Koo; Nahm, Kyun
2003-01-22
With complete knowledge of the human genome sequence, one of the most interesting tasks remaining is to understand the functions of individual genes and how they communicate. Using the information about genes (locus, allele, mutation rate, fitness, etc.), we attempt to explain population demographic data. This population evolution study could complement and enhance biologists' understanding about genes. We present a general approach to study population genetics in complex situations. In the present approach, multiple allele inheritance, multiple loci inheritance, natural selection and mutations are allowed simultaneously in order to consider a more realistic situation. A simulation program is presented so that readers can readily carry out studies with their own parameters. It is shown that the multiplicity of the loci greatly affects the demographic results of fractional population ratios. Furthermore, the study indicates that some high infant mortality rates due to congenital anomalies can be attributed to multiple loci inheritance. The simulation program can be downloaded from http://won.hongik.ac.kr/~mhchung/index_files/yapop.htm. In order to run this program, one needs Visual Studio.NET platform, which can be downloaded from http://msdn.microsoft.com/netframework/downloads/default.asp.
Allelic polymorphism in the T cell receptor and its impact on immune responses.
Gras, Stephanie; Chen, Zhenjun; Miles, John J; Liu, Yu Chih; Bell, Melissa J; Sullivan, Lucy C; Kjer-Nielsen, Lars; Brennan, Rebekah M; Burrows, Jacqueline M; Neller, Michelle A; Khanna, Rajiv; Purcell, Anthony W; Brooks, Andrew G; McCluskey, James; Rossjohn, Jamie; Burrows, Scott R
2010-07-05
In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01(+) public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2beta loop (Gln55-->His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55-->Ala55) in complex with HLA-B*3501(HPVGEADYFEY) revealed that the Gln55-->His55 polymorphism affected the charge complementarity at the TCR-peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection.
High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences.
Abbott, Kristin M; Wickings, E Jean; Knapp, Leslie A
2006-08-01
The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.
Mahajan, Anubha; Go, Min Jin; Zhang, Weihua; Below, Jennifer E; Gaulton, Kyle J; Ferreira, Teresa; Horikoshi, Momoko; Johnson, Andrew D; Ng, Maggie C Y; Prokopenko, Inga; Saleheen, Danish; Wang, Xu; Zeggini, Eleftheria; Abecasis, Goncalo R; Adair, Linda S; Almgren, Peter; Atalay, Mustafa; Aung, Tin; Baldassarre, Damiano; Balkau, Beverley; Bao, Yuqian; Barnett, Anthony H; Barroso, Ines; Basit, Abdul; Been, Latonya F; Beilby, John; Bell, Graeme I; Benediktsson, Rafn; Bergman, Richard N; Boehm, Bernhard O; Boerwinkle, Eric; Bonnycastle, Lori L; Burtt, Noël; Cai, Qiuyin; Campbell, Harry; Carey, Jason; Cauchi, Stephane; Caulfield, Mark; Chan, Juliana C N; Chang, Li-Ching; Chang, Tien-Jyun; Chang, Yi-Cheng; Charpentier, Guillaume; Chen, Chien-Hsiun; Chen, Han; Chen, Yuan-Tsong; Chia, Kee-Seng; Chidambaram, Manickam; Chines, Peter S; Cho, Nam H; Cho, Young Min; Chuang, Lee-Ming; Collins, Francis S; Cornelis, Marylin C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Danesh, John; Das, Debashish; de Faire, Ulf; Dedoussis, George; Deloukas, Panos; Dimas, Antigone S; Dina, Christian; Doney, Alex S; Donnelly, Peter J; Dorkhan, Mozhgan; van Duijn, Cornelia; Dupuis, Josée; Edkins, Sarah; Elliott, Paul; Emilsson, Valur; Erbel, Raimund; Eriksson, Johan G; Escobedo, Jorge; Esko, Tonu; Eury, Elodie; Florez, Jose C; Fontanillas, Pierre; Forouhi, Nita G; Forsen, Tom; Fox, Caroline; Fraser, Ross M; Frayling, Timothy M; Froguel, Philippe; Frossard, Philippe; Gao, Yutang; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Grallert, Harald; Grant, George B; Grrop, Leif C; Groves, Chrisropher J; Grundberg, Elin; Guiducci, Candace; Hamsten, Anders; Han, Bok-Ghee; Hara, Kazuo; Hassanali, Neelam; Hattersley, Andrew T; Hayward, Caroline; Hedman, Asa K; Herder, Christian; Hofman, Albert; Holmen, Oddgeir L; Hovingh, Kees; Hreidarsson, Astradur B; Hu, Cheng; Hu, Frank B; Hui, Jennie; Humphries, Steve E; Hunt, Sarah E; Hunter, David J; Hveem, Kristian; Hydrie, Zafar I; Ikegami, Hiroshi; Illig, Thomas; Ingelsson, Erik; Islam, Muhammed; Isomaa, Bo; Jackson, Anne U; Jafar, Tazeen; James, Alan; Jia, Weiping; Jöckel, Karl-Heinz; Jonsson, Anna; Jowett, Jeremy B M; Kadowaki, Takashi; Kang, Hyun Min; Kanoni, Stavroula; Kao, Wen Hong L; Kathiresan, Sekar; Kato, Norihiro; Katulanda, Prasad; Keinanen-Kiukaanniemi, Kirkka M; Kelly, Ann M; Khan, Hassan; Khaw, Kay-Tee; Khor, Chiea-Chuen; Kim, Hyung-Lae; Kim, Sangsoo; Kim, Young Jin; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Korpi-Hyövälti, Eeva; Kowlessur, Sudhir; Kraft, Peter; Kravic, Jasmina; Kristensen, Malene M; Krithika, S; Kumar, Ashish; Kumate, Jesus; Kuusisto, Johanna; Kwak, Soo Heon; Laakso, Markku; Lagou, Vasiliki; Lakka, Timo A; Langenberg, Claudia; Langford, Cordelia; Lawrence, Robert; Leander, Karin; Lee, Jen-Mai; Lee, Nanette R; Li, Man; Li, Xinzhong; Li, Yun; Liang, Junbin; Liju, Samuel; Lim, Wei-Yen; Lind, Lars; Lindgren, Cecilia M; Lindholm, Eero; Liu, Ching-Ti; Liu, Jian Jun; Lobbens, Stéphane; Long, Jirong; Loos, Ruth J F; Lu, Wei; Luan, Jian'an; Lyssenko, Valeriya; Ma, Ronald C W; Maeda, Shiro; Mägi, Reedik; Männisto, Satu; Matthews, David R; Meigs, James B; Melander, Olle; Metspalu, Andres; Meyer, Julia; Mirza, Ghazala; Mihailov, Evelin; Moebus, Susanne; Mohan, Viswanathan; Mohlke, Karen L; Morris, Andrew D; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Musk, Bill; Nakamura, Jiro; Nakashima, Eitaro; Navarro, Pau; Ng, Peng-Keat; Nica, Alexandra C; Nilsson, Peter M; Njølstad, Inger; Nöthen, Markus M; Ohnaka, Keizo; Ong, Twee Hee; Owen, Katharine R; Palmer, Colin N A; Pankow, James S; Park, Kyong Soo; Parkin, Melissa; Pechlivanis, Sonali; Pedersen, Nancy L; Peltonen, Leena; Perry, John R B; Peters, Annette; Pinidiyapathirage, Janini M; Platou, Carl G; Potter, Simon; Price, Jackie F; Qi, Lu; Radha, Venkatesan; Rallidis, Loukianos; Rasheed, Asif; Rathman, Wolfgang; Rauramaa, Rainer; Raychaudhuri, Soumya; Rayner, N William; Rees, Simon D; Rehnberg, Emil; Ripatti, Samuli; Robertson, Neil; Roden, Michael; Rossin, Elizabeth J; Rudan, Igor; Rybin, Denis; Saaristo, Timo E; Salomaa, Veikko; Saltevo, Juha; Samuel, Maria; Sanghera, Dharambir K; Saramies, Jouko; Scott, James; Scott, Laura J; Scott, Robert A; Segrè, Ayellet V; Sehmi, Joban; Sennblad, Bengt; Shah, Nabi; Shah, Sonia; Shera, A Samad; Shu, Xiao Ou; Shuldiner, Alan R; Sigurđsson, Gunnar; Sijbrands, Eric; Silveira, Angela; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; So, Wing Yee; Stančáková, Alena; Stefansson, Kari; Steinbach, Gerald; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Strawbridge, Rona J; Stringham, Heather M; Sun, Qi; Suo, Chen; Syvänen, Ann-Christine; Takayanagi, Ryoichi; Takeuchi, Fumihiko; Tay, Wan Ting; Teslovich, Tanya M; Thorand, Barbara; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Trakalo, Joseph; Tremoli, Elena; Trip, Mieke D; Tsai, Fuu Jen; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Uitterlinden, Andre G; Valladares-Salgado, Adan; Vedantam, Sailaja; Veglia, Fabrizio; Voight, Benjamin F; Wang, Congrong; Wareham, Nicholas J; Wennauer, Roman; Wickremasinghe, Ananda R; Wilsgaard, Tom; Wilson, James F; Wiltshire, Steven; Winckler, Wendy; Wong, Tien Yin; Wood, Andrew R; Wu, Jer-Yuarn; Wu, Ying; Yamamoto, Ken; Yamauchi, Toshimasa; Yang, Mingyu; Yengo, Loic; Yokota, Mitsuhiro; Young, Robin; Zabaneh, Delilah; Zhang, Fan; Zhang, Rong; Zheng, Wei; Zimmet, Paul Z; Altshuler, David; Bowden, Donald W; Cho, Yoon Shin; Cox, Nancy J; Cruz, Miguel; Hanis, Craig L; Kooner, Jaspal; Lee, Jong-Young; Seielstad, Mark; Teo, Yik Ying; Boehnke, Michael; Parra, Esteban J; Chambers, Jonh C; Tai, E Shyong; McCarthy, Mark I; Morris, Andrew P
2014-03-01
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.
2016-01-01
Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822
2014-01-01
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry. PMID:24509480
VNTR alleles associated with the {alpha}-globin locus are haplotype and population related
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, J.J.; Clegg, J.B.; Boyce, A.J.
1994-09-01
The human {alpha}-globin complex contains several polymorphic restriction-enzyme sites (i.e., RFLPs) linked to form haplotypes and is flanked by two hypervariable VNTR loci, the 5{prime} hypervariable region (HVR) and the more highly polymorphic 3{prime}HVR. Using a combination of RFLP analysis and PCR, the authors have characterized the 5{prime}HVR and 3{prime}HVR alleles associated with the {alpha}-globin haplotypes of 133 chromosomes, and they here show that specific {alpha}-globin haplotypes are each associated with discrete subsets of the alleles observed at these two VNTR loci. This statistically highly significant association is observed over a region spanning {approximately} 100 kb. With the exception ofmore » closely related haplotypes, different haplotypes do not share identically sized 3{prime}HVR alleles. Earlier studies have shown that {alpha}-globin haplotype distributions differ between populations; the current findings also reveal extensive population substructure in the repertoire of {alpha}-globin VNTRs. If similar features are characteristic of other VNTR loci, this will have important implications for forensic and anthropological studies. 42 refs., 5 figs., 5 tabs.« less
Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.
Lin, Honghuang; van Setten, Jessica; Smith, Albert V; Bihlmeyer, Nathan A; Warren, Helen R; Brody, Jennifer A; Radmanesh, Farid; Hall, Leanne; Grarup, Niels; Müller-Nurasyid, Martina; Boutin, Thibaud; Verweij, Niek; Lin, Henry J; Li-Gao, Ruifang; van den Berg, Marten E; Marten, Jonathan; Weiss, Stefan; Prins, Bram P; Haessler, Jeffrey; Lyytikäinen, Leo-Pekka; Mei, Hao; Harris, Tamara B; Launer, Lenore J; Li, Man; Alonso, Alvaro; Soliman, Elsayed Z; Connell, John M; Huang, Paul L; Weng, Lu-Chen; Jameson, Heather S; Hucker, William; Hanley, Alan; Tucker, Nathan R; Chen, Yii-Der Ida; Bis, Joshua C; Rice, Kenneth M; Sitlani, Colleen M; Kors, Jan A; Xie, Zhijun; Wen, Chengping; Magnani, Jared W; Nelson, Christopher P; Kanters, Jørgen K; Sinner, Moritz F; Strauch, Konstantin; Peters, Annette; Waldenberger, Melanie; Meitinger, Thomas; Bork-Jensen, Jette; Pedersen, Oluf; Linneberg, Allan; Rudan, Igor; de Boer, Rudolf A; van der Meer, Peter; Yao, Jie; Guo, Xiuqing; Taylor, Kent D; Sotoodehnia, Nona; Rotter, Jerome I; Mook-Kanamori, Dennis O; Trompet, Stella; Rivadeneira, Fernando; Uitterlinden, André; Eijgelsheim, Mark; Padmanabhan, Sandosh; Smith, Blair H; Völzke, Henry; Felix, Stephan B; Homuth, Georg; Völker, Uwe; Mangino, Massimo; Spector, Timothy D; Bots, Michiel L; Perez, Marco; Kähönen, Mika; Raitakari, Olli T; Gudnason, Vilmundur; Arking, Dan E; Munroe, Patricia B; Psaty, Bruce M; van Duijn, Cornelia M; Benjamin, Emelia J; Rosand, Jonathan; Samani, Nilesh J; Hansen, Torben; Kääb, Stefan; Polasek, Ozren; van der Harst, Pim; Heckbert, Susan R; Jukema, J Wouter; Stricker, Bruno H; Hayward, Caroline; Dörr, Marcus; Jamshidi, Yalda; Asselbergs, Folkert W; Kooperberg, Charles; Lehtimäki, Terho; Wilson, James G; Ellinor, Patrick T; Lubitz, Steven A; Isaacs, Aaron
2018-05-01
Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction ( P <1.2×10 -6 ), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 ( P =5.9×10 -11 ) and SCN5A ( P =1.1×10 -7 ) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health. © 2018 American Heart Association, Inc.